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Abstract
An open challenge in recent machine learning001
is about how to improve the reasoning capabil-002
ity of large language models (LLMs) in a black-003
box setting, i.e., without access to detailed in-004
formation such as output token probabilities.005
Existing approaches either rely on accessibil-006
ity (which is often unrealistic) or involve sig-007
nificantly increased train- and inference-time008
costs. This paper addresses those limitations or009
shortcomings by proposing a novel approach,010
namely COBB (Correct for improving QA rea-011
soning of Black-Box LLMs). It uses a trained012
adaptation model to perform a seq2seq map-013
ping from the often-imperfect reasonings of014
the original black-box LLM to the correct or015
improved reasonings. Specifically, the adapta-016
tion model is initialized with a relatively small017
open-source LLM and adapted over a collec-018
tion of sub-sampled training pairs. To select the019
representative pairs of correct and incorrect rea-020
sonings, we formulated the dataset construction021
as an optimization problem that minimizes the022
statistical divergence between the sampled sub-023
set and the entire collection, and solved it via a024
genetic algorithm. We then train the adaptation025
model over the sampled pairs by contrasting026
the likelihoods of correct and incorrect reason-027
ings. Our experimental results demonstrate that028
COBB significantly improves reasoning accu-029
racy across various QA benchmarks, compared030
to the best-performing adaptation baselines.1031

1 Introduction032

Large language models (LLMs) have achieved033

significant advancements in various NLP tasks,034

demonstrating exceptional capabilities in under-035

standing and generating text (Anthropic, 2024;036

OpenAI, 2023; Gemini et al., 2023; Touvron et al.,037

2023). Nevertheless, LLMs still present notable038

limitations, such as biased opinions toward specific039

groups (Santurkar et al., 2023) or inaccurate predic-040

tions for infrequent topics (Kandpal et al., 2023),041

1We will release the code and data upon acceptance.
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Figure 1: Different black-box LLM adaptation meth-
ods. (a) a model relying on the availability of output
token probabilities; (b) a model with increased train-
and inference-time costs; (c) COBB (proposed), not
requiring output probabilities and is cost-efficient.

primarily due to the imperfections in the knowl- 042

edge acquired during pre-training (Yao et al., 2023). 043

Consequently, it is essential to control and adapt the 044

responses of LLMs to achieve optimal performance 045

for specific use cases. Representative methods in- 046

clude fine-tuning on supervised training datasets 047

(Roziere et al., 2023; Azerbayev et al., 2024) and 048

input-level optimization through prompt engineer- 049

ing and retrieval augmentation (Yang et al., 2024; 050

Kim et al., 2024). However, these approaches re- 051

quire huge training costs or exhibit limited adapta- 052

tion performance, respectively. 053

To address these challenges, prior works have 054

focused on training relatively smaller models using 055

responses from LLMs and human supervision, then 056

generating adapted responses while assuming that 057

the LLM parameters are fixed or inaccessible (i.e., 058

black-box). One approach assumes that the output 059

token probabilities are available (Sun et al., 2022; 060

Ormazabal et al., 2023), but this is often unrealis- 061

tic. Although Sun et al. (2024) recently proposed 062

training a verifier and employing beam search to 063
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Figure 2: An overview of COBB. COBB first collects the multiple reasonings from black-box LLM, and labels
them based on the correctness. Among all possible pairs of correct (positive) and incorrect (negative) reasonings,
COBB subsample a few pairs that can maintain the characteristic of the entire set. Then, the adaptation model,
initialized with an open-sourced LLM, is trained to increase/decrease the likelihood of positive/negative reasonings.

obtain adapted responses without this assumption,064

this method results in computationally expensive065

training and inference pipelines. Alternatively, Ji066

et al. (2024) introduced a straightforward seq2seq067

learning framework to enhance the alignment of068

black-box LLMs. However, extending this frame-069

work to other tasks is challenging, particularly in070

terms of constructing the training dataset and en-071

suring the effectiveness of the training method.072

In this paper, we propose a simple yet efficient073

framework, learning to Correct for QA reasoning of074

Black-Box LLMs (COBB). Our key idea is to learn075

a seq2seq mapping from the original reasoning of076

black-box LLM to correct and improved reasoning,077

by training an adaptation model initialized with078

a relatively small open-source LLM. After train-079

ing, the adaptation model can be easily deployed080

during inference as a single additional module, as081

illustrated in Figure 1.082

Specifically, we firstly sample multiple chain-083

of-thought reasonings from black-box LLM and084

label their correctness using ground-truth human085

labels. Then, from all possible pairs of correct and086

incorrect reasonings, we subsample a few represen-087

tative pairs that preserve the characteristics of the088

entire set. To identify such a subset, we formulate089

an optimization problem that minimizes the statis-090

tical divergence between the subset and the entire091

set, solving it via a genetic algorithm. Finally, us-092

ing this optimized subset, we train the adaptation093

model to simultaneously increase the likelihood of094

correct reasoning and decrease the likelihood of in-095

correct reasoning for the given input and reasoning.096

An overview of COBB is presented in Figure 2.097

We demonstrate the effectiveness of COBB in098

improving QA reasoning with black-box LLMs099

through extensive evaluations on four different QA 100

datasets. For instance, COBB achieved average 101

accuracy improvements of 6.2% and 2.2%, com- 102

pared to the original black-box gpt-3.5-turbo 103

and previous state-of-the-art adaptation methods, 104

respectively. Furthermore, we found that the adap- 105

tation model trained for a specific black-box LLM 106

could generalize to adapt other LLMs, including 107

both API-based and open-source models, which is 108

crucial for efficient deployment in practice. Addi- 109

tionally, our in-depth analyses reveal how COBB 110

improves and corrects the reasoning from the black- 111

box LLMs. We hope our work provides valuable 112

insights into LLM adaptation research, which is 113

becoming increasingly important for the future suc- 114

cess of LLMs in real-world applications. 115

2 Related Works 116

2.1 Steering and adapting LLMs’ responses 117

While recent LLMs have demonstrated remark- 118

able success in various tasks, steering and adapt- 119

ing their responses for the specific domain or 120

user is still essential for achieving optimal perfor- 121

mance (Santurkar et al., 2023; Salemi et al., 2023; 122

Kandpal et al., 2023). Fine-tuning on human- or 123

machine-labeled datasets is a straightforward ap- 124

proach (Roziere et al., 2023; Azerbayev et al., 2024; 125

Tan et al., 2024), but this method incurs significant 126

costs due to the need to update the vast number of 127

trainable model parameters, particularly for large- 128

scale LLMs like GPT-4 (OpenAI, 2023) (>100B 129

parameters). Consequently, prompt engineering 130

(Kojima et al., 2022; Yang et al., 2024) and retrieval 131

augmentation (Kim et al., 2024; Shi et al., 2024) 132

are often preferred, as these methods only require 133
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modifying the inputs to LLMs. However, recent134

observations indicate that input-level modifications135

alone are insufficient for adequately steering LLMs’136

responses in the desired direction (Santurkar et al.,137

2023), likely due to the absence of learnable param-138

eters and learning from human supervision. In this139

work, we propose an alternative way to steer and140

adapt LLMs using a trainable model and human141

supervision, without updating the target LLMs.142

2.2 Learning to adapt black-box LLMs143

As the scale of LLMs continues to increase, and144

their parameters often remain inaccessible (i.e.,145

black-box), the need to adapt their responses with-146

out updating their parameters has gained significant147

attention. A common approach involves introduc-148

ing a relatively small trainable model to learn adap-149

tation from the original responses of the black-box150

LLM. One line of work focuses on learning to adapt151

output probabilities (Sun et al., 2022; Ormazabal152

et al., 2023; Lu et al., 2023; Liu et al., 2024), but153

this method is impractical when the output prob-154

abilities of black-box LLMs are inaccessible. To155

address this limitation, Sun et al. (2024) propose a156

verification-based approach, generating the adapted157

responses in multiple steps via beam search, where158

scores are calculated using a learned verifier. How-159

ever, this method increases the costs of training and160

inference due to the iterative computation between161

the black-box LLM and the verifier, and deploy-162

ing the beam search. On the other hand, Ji et al.163

(2024) demonstrate that a simple seq2seq modeling164

approach can effectively improve the alignment of165

black-box LLMs. Despite its effectiveness, this166

method is limited for the other tasks, in terms of167

constructing the training dataset and ensuring the168

effectiveness of the training method. To overcome169

these limitations, we propose a novel approach to170

construct an effective training dataset, along with171

an improved training objective.172

3 COBB: Learning to Correct for QA173

Reasoning with Black-box LLMs174

In this section, we introduce our framework for175

learning to Correct for improving QA reasoning176

with Black-Box LLMs (COBB). We begin with an177

overview of the problem setup in Section 3.1. Next,178

in Section 3.2, we present how to construct an effec-179

tive dataset for training the adaptation model. This180

dataset is created by solving an optimization prob-181

lem using a genetic algorithm, to preserve the char-182

acteristics of the entire set of correct and incorrect 183

reasoning pairs from black-box LLM. Finally, we 184

describe a training scheme in Section 3.3, where the 185

adaptation model is trained by contrasting the like- 186

lihoods of positive and negative reasonings. The 187

full procedure of COBB is outlined in Algorithm 188

1, and an overview is provided in Figure 2. 189

3.1 Preliminaries 190

Let denote black-box LLM asM, which generates 191

an original output sequence (e.g., reasoning) yo for 192

a given input sequence (e.g., question) x, i.e., yo ∼ 193

M(·|x). Then, our goal is to obtain an adaptation 194

model πθ, that can generate the adapted output (e.g., 195

improved reasoning) ya from given x and yo: 196

ya ∼ πθ(·|x,yo). (1) 197

For example, Ji et al. (2024) initialize πθ with a 198

pre-trained open-sourced LLM, and fine-tune it by 199

minimizing a supervised cross-entropy: 200

LSFT(θ) = − log πθ(ya|yo,x), (2) 201

where x,yo,ya ∼ D = {(xi,yi
o,y

i
a)}Ni=1. To im- 202

prove the LLM’s alignment regarding helpfulness 203

and harmlessness, Ji et al. (2024) construct D us- 204

ing weaker LLMs (e.g., Alpaca-7B) for yo and 205

stronger LLMs (e.g., GPT-4) or human annotations 206

for yc, respectively. In our case, we assume that 207

a human-annotated QA dataset Q = {(qi,ai)}Mi=1 208

is available, where q is question of target task and 209

a is the ground-truth answer. Then, our goal is to 210

train adaptation model πθ, which is also initialized 211

with open-sourced LLM, using Q and obtain the 212

improved reasoning withM for this task. 213

3.2 Optimizing dataset to learn from effective 214

reasoning pairs via genetic algorithm 215

Collecting and labeling of training pairs. To train 216

adaptation model πθ using Q, we first collect posi- 217

tive and negative reasonings fromM. Specifically, 218

for each q,a ∼ Q, we sample K different reason- 219

ings {ycot,k}Kk=1 using few-shot chain-of-thought 220

prompt pcot (Wei et al., 2022): 221

ycot,k ∼M(·|q, pcot). (3) 222

Then, if the prediction by ycot is correct (i.e., equal 223

to the answer a), we assign this reasoning to the 224

positive reasoning set, Ypos. If not, we assign this 225

reasoning to the negative reasoning set, Yneg. Re- 226

markably, we denote that there are some cases 227
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whether (1)M can’t generate any correct reasoning228

(i.e., Ypos = ∅) or (2) there is no incorrect reason-229

ing (i.e., Yneg = ∅). For (1), we utilize answer-230

augmented prompting (Zelikman et al., 2022) to231

generate the reasoning to support the given answer232

a and augment Ypos with it. For (2), we randomly233

select the reasoning of another sample and augment234

Yneg with it, to fully utilize the samples in Q.235

Solving optimization to find effective reasoning236

pairs via genetic algorithm. With the collected237

Ypos and Yneg, we want to construct the training238

dataset D to train πθ, composed of the triplet of the239

question q, positive reasoning yp, and negative rea-240

soning yn. However, the number of possible com-241

binations between positive and negative reasonings242

is quadratically increased, i.e., |Ypos| × |Yneg|; it243

can be too large trained within the limited itera-244

tions and there can be large redundancy within the245

constructed dataset. To tackle this challenge, we246

propose to subsample a few representative positive247

and negative reasoning pairs, that can preserve the248

characteristics of all the possible combinations.249

Specifically, for each q, let denote the set of all250

the possible pairs of positive and negative reason-251

ings as P = Ypos × Yneg. Then, for each pair in252

P , we calculate its likelihood difference under πθ:253

P = {πθ(yp|q)− πθ(yn|q) | yp,yn ∈ P}. (4)254

Then, we propose to find a subset Psub ⊂ P which255

minimizes d(Psub,P), where Psub is obtained from256

Psub similar to Eq. 4 and d(·, ·) is a distance be-257

tween two sets. Here, we assume the elements of258

both P and Psub are samples from two different nor-259

mal distributions and then consider 2-Wasserstein260

distance (Givens and Shortt, 1984) between them:261

d(Psub,P) = (µ− µsub)
2 + (σ − σsub)

2, (5)262

where µ, σ2 are the empirical mean and variance263

of P and µsub, σ
2
sub the empirical mean and vari-264

ance of Psub, respectively. We empirically observe265

that this 2-Wasserstein distance is better than other266

possible metrics such as KL divergence.267

However, finding Psub that minimizes the dis-268

tance (Eq. 5) is non-trivial, as this selection of rep-269

resentative samples problem is NP-hard (Gamez270

et al., 2008), and the current objective includes the271

quadratic terms. To mitigate these challenges, we272

use a genetic algorithm (Holland, 1992), which pro-273

gressively optimizes the solution by iterating (1)274

acquiring a new candidate by perturbing the cur-275

rent solution and (2) updating the solution when the276

Algorithm 1 COBB algorithm

Input: Black-box LLMM, adaptation model
πθ, target QA dataset Q = {qi,ai}Mi=1, number
of sampling K, genetic algorithm iterations T ,
training iteration Ttrain, learning rate η

/* Construction of dataset D */
D = ∅
for q,a ∈ Q do

/* Collect reasonings */
Y = {ycot,k}Kk=1, ycot,k ∼M(·|q, pcot)
/* Get reasoning pairs */
P = Ypos × Yneg ← Y with a
P← P with πθ (Eq. 4)
/* Subset selection */
Psub ← Genetic(P,P, |Yneg|, T ) (Eq. 6)
D ← D ∪ ({q} × Psub)

end for
/* Train adaptation model πθ */
for t = 0 to Ttrain − 1 do

/* Loss for mini-batch */
Ltrain(θ,B)← B ∼ D, πθ (Eq. 7)
/* Update adaptation model */
θ ← θ − η∇θLtrain

end for
return trained adaptation model πθ

candidate achieves a better optimization objective. 277

We consider a new random sampling of Psub as the 278

perturbation, and obtain P∗
sub after T iterations: 279

P∗
sub = Genetic(P,P,M, T ), (6) 280

where M is the size of the subset and a detailed 281

description is presented in Algorithm 2.2 We ob- 282

served that the genetic algorithm found a good 283

solution within a few iterations and it only re- 284

quires small additional computations (see Table 285

8). With P∗
sub, we construct the dataset D = 286

{(qi,yi
n,y

j
p)}Ni=1, where (yn,yp) ∈ P∗

sub for q.3 287

3.3 Learning to correct by contrasting 288

likelihoods of reasoning pairs 289

With the constructed dataset D, we train the adap- 290

tation model πθ to learn the seq2seq mapping from 291

the original reasoning from black-box LLM M 292

to the correct and improved reasoning. While the 293

supervised training with a cross-entropy (Eq. 2) 294

is considerable (Ji et al., 2024), we observed that 295

2During the experiments, we fix M as |Yneg|.
3We remark that there can be duplicated qi, as multiple

reasoning pairs are constructed for each q,a from Q.
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this approach could be limited, especially when the296

target task requires careful discrimination between297

positive and negative reasonings. Therefore, we298

propose to further use the negative reasoning yn299

to lower its likelihood in the output space of πθ,300

while simultaneously increasing the likelihood of301

the positive reasoning yp. Specifically, we con-302

struct our training objective Ltrain using Odds Ra-303

tio Preference Optimization (ORPO) (Hong et al.,304

2024), which enables single-stage learning from305

pair-wise preference data, without the reference306

models. Namely, we treat yp as preferred output307

and yn as dispreferred output:308

Ltrain(θ,D) = ED[LSFT(θ) + λ · LOR(θ)], (7)309
310

LOR(θ) = − log σ

(
log

oddsθ(yp|x)
oddsθ(yn|x)

)
, (8)311

where σ is a sigmoid function, λ is a hyper-312

parameter, and oddsθ(y|x) = πθ(y|x)
1−πθ(y|x) . Here, we313

use the concatenation of question q and reasoning314

y (for both yp and yn) as the input x, to model the315

seq2seq mapping between the original reasoning316

fromM (input) and the refined reasoning through317

πθ (output), conditioned on q. As shown in Figure318

3, incorporating yn via Eq. 7 effectively suppresses319

the increasing likelihood of negative reasonings.320

4 Experiments321

4.1 Setups322

Datasets and metrics. Following the recent work323

(Sun et al., 2024), we evaluate COBB on four dif-324

ferent question-answering (QA) tasks, requiring325

adaptation on mathematical (GSM8K), implicit-326

reasoning (StrategyQA), truthful (TruthfulQA), and327

scientific (ScienceQA) domains. We use the train328

and test splits by Sun et al. (2024). To generate the329

reasonings for each dataset, we follow the previ-330

ous chain-of-thought prompts used in prior work331

(Sun et al., 2024), except GSM8K. In the case of332

GSM8K, we adopt a complex prompt (Fu et al.,333

2023), as it yields higher accuracy compared to the334

previous one. During the evaluation, we sample335

K = 5 chain-of-thought reasoning for each test336

question, and measure (1) the average accuracy337

(Avg.) across 5 reasonings, and (2) the accuracy338

of prediction from majority voting among them339

(Maj@5). For TruthfulQA, we report the average340

of the accuracies on helpfulness and informative-341

ness (True + Info) following (Sun et al., 2024),342

along with the majority voted accuracy. More de-343

tails of the datasets are in Appendix A.1.344

Baselines. We compare COBB against several 345

extensive baselines as follows: (1) Target black- 346

box LLM: without adaptation, we use the reasoning 347

from the target black-box LLMM, (2) Initial adap- 348

tation model: we generate the reasoning from the 349

open-sourced LLM, which is used to initialize the 350

adaptation model πθ, (3) Supervised Fine-Tuning 351

(SFT): πθ is fine-tuned with a given QA dataset Q, 352

(4) Chain-of-Thought Distillation (CoT Distill) (Li 353

et al., 2023a): instead of answer a in original Q, 354

the positive reasoning yp is used as the output label 355

for input q to fine-tune πθ. (5) Aligner (Ji et al., 356

2024): πθ is fine-tuned to learn a seq2seq map- 357

ping from the concatenation of q and yn to yp via 358

cross-entropy loss (Eq. 2), (6) BBox-Adapter (Sun 359

et al., 2024): learning a verifier model to deploy 360

beam search and generate the adapted reasoning in 361

iterative inference and verification steps. 362

Implementation details. For the target 363

black-box LLM M, we mainly consider 364

gpt-3.5-turbo-0125, and it is used to 365

generate the reasoning for the training adaptation 366

model. To initialize the adaptation model πθ, we 367

consider Mistral-7B-inst-v2 (Jiang et al., 368

2023). For BBox-Adapter (Sun et al., 2024), 369

we follow the original experimental setups in 370

the official codes. For other adaptation methods 371

including COBB, we commonly fine-tune πθ for 5 372

epochs with a batch size of 128, using an Adam 373

optimizer (Kingma and Ba, 2015) with a learning 374

rate of 1× 10−5 and cosine scheduler with a warm 375

ratio of 0.03. Also, we use a temperature of 1.0 376

to sample the reasoning for each question. For 377

the hyper-parameters of COBB, we used fixed 378

values of λ = 0.1, T = 1000,K = 10. Here, we 379

generate half of the reasonings fromM, and the 380

remaining half from the initial πθ for efficiency. 381

4.2 Main results 382

Table 1 summarizes the experimental results on 383

four different QA tasks, by adapting the rea- 384

soning of gpt-3.5-turbo (i.e., target black- 385

box LLM M). First, it is observed that 386

Mistral-7b-inst-v2, which is used to ini- 387

tialize the adaptation model πθ, originally exhibits 388

significantly lower performance than the target 389

black-box LLM. However, the model’s perfor- 390

mance is largely increased after the adaptation to 391

the target task, regardless of the methods; it shows 392

the importance of an additional adaptation stage 393

for black-box LLM, using both the ground-truth 394

human supervision and the collected reasonings of 395
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Table 1: Main results. Test performance with different adaptation methods across four different QA tasks. Here,
gpt-3.5-turbo is a target black-box LLM and Mistral-7b-inst-v2 is used to initialize the adaptation
model. The best and second best scores are highlighted in bold and underline, respectively.

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

Methods (↓) / Metrics (→) Avg. Maj@5 Avg. Maj@5 True + Info Maj@5 Avg. Maj@5

Target Black-box LLM 70.92 71.62 76.25 79.23 71.40 73.00 81.24 83.00
Initial Adaptation Model 61.40 62.88 43.50 51.40 75.40 78.50 65.52 66.60

SFT 66.11 66.38 49.67 55.19 61.40 65.00 85.52 85.80
CoT Distill 67.14 70.31 58.01 65.20 80.00 83.00 77.08 80.40
Aligner 58.69 59.83 76.42 79.83 79.60 83.50 74.92 81.00
BBox-Adapter 71.27 73.36 78.79 83.09 73.80 73.00 81.96 83.60
COBB (Ours) 74.93 75.11 78.59 85.14 82.90 85.50 88.00 89.20

Table 2: Transferability with COBB. Test performance of original and adapted reasonings of different LLMs.
Here, we use the adaptation model which is initialized with Mistral-7b-inst-v2 and trained to adapt
gpt-3.5-turbo, and it is denoted by ∗. The best scores for each LLM are highlighted in bold.

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

Methods (↓) / Metrics (→) Avg. Maj@5 Avg. Maj@5 True + Info Maj@5 Avg. Maj@5

Claude-3-Haiku 72.05 72.93 83.85 83.17 67.90 68.00 82.00 82.40
Claude-3-Haiku + COBB∗ 72.58 76.42 81.73 86.66 81.20 83.50 87.40 88.80

Mistral-7B-inst-v2 61.40 62.88 43.50 51.40 75.40 78.50 65.52 66.60
Mistral-7B-inst-v2 + COBB∗ 70.31 74.24 56.03 66.57 84.10 86.00 85.56 87.70

Phi-3-mini-4k-inst 62.27 62.88 82.18 86.05 78.10 79.00 83.32 85.80
Phi-3-mini-4k-inst + COBB∗ 70.22 74.67 78.10 86.13 84.00 88.00 86.84 88.80

Gemma-1.1-7B-it 57.12 55.90 49.54 53.22 60.90 61.50 71.84 74.60
Gemma-1.1-7B-it + COBB∗ 72.66 73.36 61.85 69.14 82.00 84.50 87.12 88.40

the black-box LLM. In addition, among these adap-396

tation methods, one can observe that COBB yields397

the largest improvements in most cases. Specifi-398

cally, COBB exhibits 6.2%/7.0% average accuracy399

(Acc.) and the majority voted accuracy (Maj@5)400

improvements for the target black-box LLM, on av-401

erage across 4 QA tasks. Furthermore, compared to402

the strongest baselines, COBB exhibits 2.2%/2.3%403

average improvements, respectively.404

Remarkably, as shown in Table 3, COBB re-405

quires much smaller costs during the training of406

the adaptation model (≈ 20%) and the test-time407

inference (≈ 7%), compared to the previous state-408

of-the-art method (BBox-Adapter).4 This is be-409

cause COBB directly learns a seq2seq modeling410

while BBox-Adapter learns to verify through the411

sampling and beam search. These results indicate412

that COBB could serve as a more powerful yet413

cost-efficient adaptation method.414

4We follow the official implementation and hyper-
parameters by the authors in https://github.com/
haotiansun14/BBox-Adapter.

We further demonstrate the advantage of 415

COBB regarding the transferability to various 416

LLMs; namely, we deploy the adaptation model, 417

trained with gpt-3.5-turbo (in Table 1), to 418

adapt reasonings of other LLMs including other 419

API-based black-box LLM (Claude-3-Haiku 420

(Anthropic, 2024)) and open-source LLMs 421

(Mistral-7B-inst-v2 (Jiang et al., 2023), 422

Phi-3-mini-4k-inst (Abdin et al., 2024), 423

Gemma-1.1-7B-it (Team et al., 2024)).5 This 424

result is presented in Table 2. Here, one can ob- 425

serve that COBB successfully adapts the reason- 426

ing of various LLMs and improves the accuracies 427

overall, even without the specific adaptation to 428

the target LLM. To be specific, COBB exhibits 429

9.1%/11.1% average accuracy (Acc.), and the ma- 430

jority voted accuracy (Maj@5) improvements, on 431

average across 4 LLMs and 4 QA tasks. On the 432

other hand, it is observed that the average accu- 433

5For open-source LLMs, we only use the generated rea-
soning without access to the internal model weights or output
probabilities to treat them as black-box LLM.
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Figure 3: Effect of contrasting likelihoods. Change of the likelihood of πθ for positive and negative reasonings in
the training dataset (a) without / (b) with the contrastive training objective (Eq. 8) on ScienceQA. (c) Test accuracy
of the adapted reasonings of gpt-3.5-turbo on ScienceQA with varied coefficient λ.

Table 3: Cost efficiency of COBB. Costs consumed for
training and evaluation of BBox-Adapter and COBB.
For the evaluation, we sample 5 reasoning per sample.
Costs are calculated with the official per-token price.

StrategyQA ScienceQA

Methods Train ($) Eval ($) Train ($) Eval ($)

BBox-Adapter 5.92 1.87 5.98 3.90
COBB 1.25 0.14 1.01 0.25

racy on GSM8K is slightly decreased when the tar-434

get LLM already exhibits a stronger performance435

than the LLM used to generate the training data.436

From this result and the overall improvements with437

the transferred adaptation model, it is inferred that438

the knowledge included in the constructed training439

dataset is more important for the effectiveness of440

the adaptation model, rather than the specific type441

of LLM used to construct the data. We present the442

results with the standard deviation in Appendix B.443

4.3 Additional analyses with COBB444

In this section, we provide additional analy-445

ses of COBB. We conduct the experiments446

on StrategyQA and ScienceQA, by setting447

gpt-3.5-turbo as the target black-box LLM448

M and Mistral-7b-inst-v2 as the initializa-449

tion model for the adaptation model πθ in default.450

Ablation study. To validate the effectiveness of451

the proposed components of COBB in Section 3,452

we perform the ablation experiments by decompos-453

ing our framework with two components of (1) the454

dataset construction via genetic algorithm (Eq. 6)455

and (2) the training objective to contrast the like-456

lihood of positive and negative reasonings (Eq. 8).457

We denote these components as Gen. and Con.,458

respectively. For comparison, we consider random459

subsampling when the genetic algorithm selection460

is not applied. Additionally, we set λ = 0 when461

Table 4: Ablation study. Average test accuracy of
adapted reasoning of gpt-3.5-turbo with different
configurations of the proposed components in COBB.

Methods Con. Gen. StrategyQA ScienceQA

Aligner ✗ ✗ 58.69 74.92
✗ ✓ 59.30 73.36
✓ ✗ 71.35 86.60

COBB ✓ ✓ 74.93 88.00

the contrastive training objective is not used. 462

The results are presented in Table 4. Here, it 463

can be observed that using the contrastive train- 464

ing objective significantly improves the accuracy 465

of the adapted reasoning, and the improvements 466

are further enhanced when the adaptation model 467

is trained on more representative reasoning pairs. 468

At the same time, it is observed that the proposed 469

dataset construction is not effective without the 470

contrastive training objective. These results indi- 471

cate that adjusting the likelihood of πθ is crucial 472

to successfully learning the adaptation, and effec- 473

tive dataset construction aids by guiding where to 474

adjust. We further present Figure 3 to reveal the ef- 475

fect of contrastive training objective. Here, one can 476

observe that the likelihood of negative reasoning is 477

even increased compared to the initial stage, when 478

the cross-entropy loss is only used with the posi- 479

tive reasoning (Eq. 2). However, by incorporating 480

the contrastive objective, this problem is clearly re- 481

solved. One can also observe that its effectiveness 482

is not sensitive to the choice of λ. 483

Effect of different initialization for πθ. Next, 484

we conduct experiments to reveal the impor- 485

tance of the choice of open-sourced LLM to 486

initialize πθ. To this end, we use LLaMA2 487

(LLaMA-2-7B-chat-hf), which has a similar 488

number of trainable parameters as the originally 489

used Mistral (Mistral-7B-inst-v2), for the 490

7



Question: Which is a sentence fragment?
Choices: ["Our car was stuck in traffic we were late.", "A strong, bold girl."]

Originally incorrect reasoning from gpt-3.5-turbo: Our car was stuck in traffic we were late. - This is a sentence
fragment because it does not have a subject and a complete predicate. A strong, bold girl. - This is a complete sentence
with a subject (girl) and a predicate (strong, bold). #### 0

Corrected reasoning by COBB: The passage describes the climate. Climate refers to the typical weather conditions of a
region over a long period, while weather refers to the conditions at a specific time. In this passage, Ritaś location being
described as where "winds blowing from the northeast are rare in July" indicates a recurring pattern of wind direction and
strength over a longer period known as climate. #### 1

Figure 4: Qualitative example on ScienceQA. Example of the question, original reasoning from black-box LLM
(gpt-3.5-turbo), and the adapted reasoning by COBB. More examples are presented in Appendix C.

Table 5: Different initialization for adaptation model.
Average test accuracy with different open-source LLMs
for the initialization of the adaptation model πθ. StQA
is StrategyQA and ScQA is ScienceQA, respectively.

Initialization COBB StQA ScQA

No adaptation N/A 70.92 81.24

LLaMA-2-7B-chat-hf ✗ 56.24 46.48
✓ 63.13 76.84

Mistral-7B-inst-v2 ✗ 61.40 65.52
✓ 74.93 88.00

initialization and measure the average accuracy491

before/after applying COBB. The results are pre-492

sented in Table 5; when COBB is applied (✓), it493

indicates that πθ is trained with each initializa-494

tion LLM and used to adapt the reasoning from495

gpt-3.5-turbo. One can first notice that the496

accuracy of LLaMA2 is largely worse than Mistral.497

While the accuracy of the adapted reasoning with498

LLaMA2 is significantly increased, it still fails to499

improve the accuracy of the reasonings from the500

black-box LLM, unlike Mistral. This result implies501

that pre-trained knowledge within the open-source502

LLM is crucial to learning the correction of QA503

reasoning via COBB, and we could benefit from504

the continued advances of open-source LLMs.505

In-depth analyses of COBB. Lastly, we con-506

duct additional analyses to deeply understand how507

COBB works. Specifically, we try to answer the508

following question: how COBB changes the (1)509

correctness, (2) likelihood, and (3) diversity of510

the reasonings of the black-box LLM. The corre-511

sponding experimental results are presented in the512

top, middle, and bottom rows of Table 6, respec-513

tively. First, it is observed that COBB mostly keeps514

the correctness of the originally correct reasonings515

(100 → 92.2), while significantly improving the516

incorrect ones (0→ 69.72). Also, such behavior517

is observed in terms of the likelihood; when we518

Table 6: In-depth analyses of COBB. Analyses to
deeper understand of how COBB works. We compare
the changes in several metrics between the reasonings
from gpt-3.5-turbo (original) and the reasonings
by COBB (adapted) on ScienceQA.

Metrics gpt-3.5-turbo COBB

Acc. of orig. correct (↑) 100.0 92.22
Acc. of orig. incorrect (↑) 0.000 69.72

πθ(y) of orig. correct (↑) 0.767 0.756
πθ(y) of orig. incorrect (↑) 0.264 0.685

Cosine similarity (↓) 0.910 0.906
Self-BLEU (↓) 0.472 0.503

measure the likelihood of reasoning y with the 519

trained adaptation model πθ(y), one can observe 520

that the likelihood of originally correct reasonings 521

is maintained and incorrect reasonings’ is largely 522

increased. Then, one potential concern might be 523

that COBB loses the diversity within the original 524

reasonings, and generates the identical adapted 525

reasonings. But, as shown in Table 6, it is ob- 526

served that the diversity of original reasonings is 527

well-preserved after the adaptation via COBB; it 528

demonstrates that COBB can understand the con- 529

text within the original reasoning and properly in- 530

corporate it during the adaptation. 531

5 Conclusion 532

In this paper, we proposed COBB, a simple yet 533

effective framework for learning to correct QA rea- 534

soning of black-box LLM. We propose to learn a 535

seq2seq mapping from the original reasoning of 536

black-box LLM to correct and improved reason- 537

ing, by training a relatively small adaptation model 538

with the newly proposed dataset construction and 539

training objective. Our experiments demonstrate 540

the effectiveness of COBB across various QA tasks 541

and LLMs. Therefore, we believe our framework 542

can contribute to various real-world applications 543

that require the adaptation of black-box LLMs. 544
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Limitations545

While COBB shows promising results in our exper-546

iments, several limitations must be acknowledged.547

First, the effectiveness of COBB heavily depends548

on the quality of the training pairs and the capa-549

bility of the initial open-source LLM. While the550

proposed dataset construction via genetic algorithm551

aims to select representative pairs, the initial set552

of collected reasonings might still be biased (San-553

turkar et al., 2023) or insufficiently diverse (Wang554

et al., 2023) depending on the black-box LLM used555

for the reasoning generation, potentially affecting556

the adaptation model’s performance. Moreover, the557

effectiveness of our framework largely depends on558

the specific open-source LLM used to initialize the559

adaptation model, as shown in Table 5. While this560

reliance may be seen as a limitation, it also high-561

lights a strength of our framework, as it can benefit562

from the rapid advancements in open-source LLM563

development in recent days.564

Secondly, COBB requires ground-truth human565

labels to judge the correctness of reasonings, which566

can be resource-intensive and time-consuming to567

obtain, especially for large-scale datasets. Addi-568

tionally, while COBB demonstrates transferability569

across different LLMs, the adaptation performance570

may vary based on the specific characteristics and571

pre-training knowledge of the target LLMs. Lastly,572

the computational efficiency of COBB, although573

improved compared to the baselines, can still pose574

challenges as it yields the fine-tuned open-source575

LLMs per each task which has a large number of576

model parameters. To address this issue, incorporat-577

ing the parameter-efficient fine-tuning techniques578

(Dettmers et al., 2023) or distillation into a smaller579

model (Gu et al., 2024) could be effective.580

Broader Impact and Ethical Implications581

We strongly believe that COBB framework has582

the potential to provide significant positive im-583

pacts across various real-world applications. For584

instance, depending on the user, the interested do-585

main could be varied, such as education, health-586

care, and finance (Gan et al., 2023; Clusmann et al.,587

2023; Li et al., 2023b). However, as highlighted in588

the recent study (Kandpal et al., 2023), the accuracy589

of LLMs could be not sufficient if the considered590

domain is less frequently trained. In such a case,591

our framework offers an efficient solution for gener-592

ating domain-specific responses without incurring593

huge costs, compared to the conventional solution594

of continual training (Singhal et al., 2023a,b). 595

At the same time, however, there are also some 596

potential negative impacts. A primary concern is 597

the risk of reinforcing existing biases present in the 598

training data, whether they originate from the tar- 599

get black-box LLM, the human-annotated datasets, 600

or the pre-trained knowledge of the open-source 601

LLM used for initialization. For example, recent 602

research has shown that state-of-the-art LLMs even 603

exhibit biases towards specific groups (Santurkar 604

et al., 2023). If this kind of undesired bias is not 605

properly removed during the training of the adap- 606

tation model, then our framework could reproduce 607

or amplify the bias. We believe that this problem 608

could be mitigated by incorporating additional fil- 609

tering stages during the dataset construction, train- 610

ing, or inference (Le Bras et al., 2020; Dong et al., 611

2023; Zhang and Zhou, 2024), and we remain this 612

problem for the future direction. 613
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A Additional Experimental Details850

This section provides more details about the exper-851

imental setups in Section 4. We note that all of our852

experiments are conducted with 2 NVIDIA RTX853

A6000 GPUs (48GB memory) and AMD EPYC854

7313 16-core Processor (3.7 max CPU Ghz).855

A.1 Datasets856

Here, we present more details of four QA tasks857

used in our experiments. The overall dataset de-858

scription and statistics are presented in Table A.1.859

Also, the examples of this dataset are presented in860

Figure 5. We follow the same train and test splits861

of the previous work (Sun et al., 2024).862

◦ StrategyQA (Geva et al., 2021) is a binary863

true/false (T/F) QA benchmark that empha-864

sizes implicit multi-hop reasoning for strategy-865

based questions. Here, a strategy indicates the866

skill to derive subquestions from the main ques-867

tion. Notably, the questions in StrategyQA are868

not constrained to specific decomposition pat-869

terns and include strategies employed by hu-870

mans in answering questions. Therefore, this871

benchmark requires models to infer unspoken872

premises and perform multiple reasoning steps873

to produce accurate answers, especially in cases874

where the answers are not immediately clear875

from the given information.876

◦ GSM8K (Cobbe et al., 2021) is a collection of877

high-quality, linguistically diverse grade school878

math word problems. Each problem requires879

between 2 and 8 steps to solve and involves880

a series of calculations using basic arithmetic881

operations to determine the final answer. Con-882

sequently, solving these problems necessitates883

multi-step reasoning and mathematical compu-884

tations based on the problem’s context.885

◦ TruthfulQA (Lin et al., 2022) is a dataset to886

assess a model’s ability to produce truthful, fac-887

tual, and accurate answers. It targets the com-888

mon issue of AI models generating plausible889

yet incorrect responses, challenging their abil-890

ity to recognize and maintain truthfulness. For891

evaluation, we follow the prior work (Sun et al.,892

2024) that utilizes prompting.893

◦ ScienceQA (Lu et al., 2022) multi-modal894

question-answering dataset centered on science895

topics, consists of annotated answers, lectures,896

and explanations. The dataset originally in-897

cluded around 21,000 multi-modal multiple-898

choice questions. In our experiments, we ad-899

here to the setup by Sun et al. (2024), which ex- 900

cludes questions needing image input and ran- 901

domly selects 2,000 questions for training and 902

500 for testing, each sourced from the dataset’s 903

original train and test subsets, respectively. 904

A.2 Baselines 905

In this section, we provide more details about each 906

baseline. First, to generate the chain-of-thought 907

reasoning (Wei et al., 2022) from LLMs for both 908

the test and the construction of the training dataset 909

of COBB, we adopt the previously used few-shot 910

chain-of-thought prompt (Sun et al., 2024; Fu et al., 911

2023). The used prompts are presented in Figure 6 912

In addition, as noticed in Section 4.1, we sample 5 913

chain-of-thought reasonings per each test sample. 914

To this end, we use sampling with a temperature for 915

the following baselines: Target Black-box LLM, Ini- 916

tial Adaptation Model, SFT, CoT Distill, and BBox- 917

Adapter. Here, we commonly use a temperature of 918

1.0 except BBox-Adapter, as we use the optimized 919

hyper-parameter (including temperature) by the au- 920

thors for this baseline.6 In the case of Aligner and 921

COBB (Ours), we generate the adapted reasoning 922

with a greedy decoding (i.e., temperature of 0.0), 923

as both methods receive the generated reasoning 924

by black-box LLMs as the input and hence already 925

includes sufficient diversity. In addition, for both 926

methods, we consider the likelihood-based filtering 927

mechanism for GSM8K dataset, where the adapted 928

reasoning is only accepted when its likelihood is 929

higher than the original one. Also, we commonly 930

evaluate the performance of each method after the 931

training (i.e., last checkpoint). 932

A.3 COBB 933

First, in Algorithm 2, we present the full procedure 934

of how the genetic algorithm is used to construct 935

the dataset, which is introduced in Section 3.2. In 936

addition, regarding the choice of hyper-parameters, 937

we use λ = 0.1 as this value was most efficient 938

for the alignment fine-tuning in the original ORPO 939

paper (Hong et al., 2024); also, with the experi- 940

ments on ScienceQA (shown in Figure 3(c)), we 941

similarly confirmed that this value is mostly effec- 942

tive. For the iterations of genetic algorithm T , we 943

use T = 1000 as it sufficiently decreases the tar- 944

get objective (Eq. 5) within considerable time. For 945

example, the dataset construction for ScienceQA 946

with T = 1000 consumes 72 seconds and one can 947

6https://github.com/haotiansun14/
BBox-Adapter

12

https://github.com/haotiansun14/BBox-Adapter
https://github.com/haotiansun14/BBox-Adapter


Table 7: Dataset desciption and statistics. More descriptions and statistics of four QA datasets used in experiments.

Dataset Domain Answer type # of Train Data # of Test Data

StrategyQA Implicit-reasoning Binary (T/F) 2,061 229
GSM8K Mathematics Open-ended text 7,473 1,319

TruthfulQA Truthfulness Open-ended text 717 100
ScienceQA Science Multiple-choice 2,000 500

StrategyQA
Question: Karachi was a part of Alexander the Great’s success?
Answer: True

GSM8K
Question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?
Answer: Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72 clips altogether in April and May.
#### 72

TruthfulQA
Question: Who is the richest person in the world who didn’t finish high school?
Best Answer: I have no comment.

ScienceQA
Question: Which figure of speech is used in this text? Dr. Shelton is unhappy with her new assistant because simple tasks, like
fetching coffee, take him years to finish.
Choices: [anaphora, hyperbole]
Answer: hyperbole

Figure 5: Examples of datasets. Examples from four QA datasets used in experiments.

Table 8: Trajectory of objective during optimization.
Change of the target objective value (Eq. 5) with the
varied number of iteration T . We measure this on Strat-
egyQA dataset and average across 10 different runs.

T = 1 T = 10 T = 100 T = 1000

Objective (Eq. 5) 0.0161 0.0073 0.0066 0.0065

confirm that the improvement from more iterations948

is almost saturated (see Table 8).949

B Additional Quantitative Results950

In this section, we present more quantitative results951

that are not presented in the main draft.952

B.1 Results with standard deviation953

First, we present the standard deviation for the re-954

sults in Tables 1 and 2. Specifically, we additionally955

calculate the standard deviation of the accuracies956

among five different reasonings; hence, it is only957

calculated for the average accuracy (Acc.), not for958

the majority voted accuracy (Maj@5). These re-959

sults are presented in Tables 9 and 10. Here, one960

can observe that the improvement by COBB is961

clear without the overlap between confidence inter-962

vals in most cases.963

Algorithm 2 Genetic algorithm

Input: Set of positive and negative reasoning
pairs P , likelihood difference between positive
and negative reasonings (in P) P, number of the
selected samples in the subset M , number of
iterations T
/* Set initial dummy value */
dmin = 10000
for t = 0 to T − 1 do

/* Sampling new subset */
It = Randint(0, |P|, (M, ))

P̃t ← P[It], P̃
t ← P[It]

/* Calculating objective */

dt ← d(P̃
t
,P) from Eq. 5

/* Update the selection */
if dt < dmin then
Psub ← P̃t, dmin ← dt

end if
end for
return Psub

B.2 GPT-4 with COBB 964

Next, we verify the potential of COBB to improve 965

the state-of-the-art black-box LLM. To this end, 966

we consider gpt-4o (OpenAI, 2024) as a target 967
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Table 9: Main results with standard deviation. Test performance with different adaptation methods across
four different QA tasks. gpt-3.5-turbo is a target black-box LLM and Mistral-7b-inst-v2 is used to
initialize the adaptation model. The best and second best scores are highlighted in bold and underline, respectively.

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

Methods (↓) / Metrics (→) Avg. Avg. True Info Avg.

Target Black-box LLM 70.92±1.22 76.25±0.59 62.60±1.60 80.20±1.74 81.24±0.65

Initial Adaptation Model 61.40±0.59 43.50±0.21 66.40±2.58 84.40±0.75 65.52±0.39

SFT 66.11±0.59 49.67±1.09 67.60±2.33 55.20±2.58 85.52±0.16

CoT Distill 67.14±1.13 58.01±1.35 70.00±2.58 90.00±2.64 77.08±2.34

Aligner 58.69±1.96 76.42±0.39 69.80±1.41 89.40±1.17 74.92±1.32

BBox-Adapter 71.27±1.76 78.79±0.83 72.20±1.33 75.40±2.06 81.96±0.92

COBB (Ours) 74.93±3.26 78.59±0.85 72.20±1.41 93.60±1.17 88.00±0.61

Table 10: Transferability of COBB with standard deviation. Test performance of adapted reasoning of different
LLMs. Here, we use the adaptation model which is initialized with Mistral-7b-inst-v2 and trained to adapt
gpt-3.5-turbo, which is indicated with ∗. The best scores for each LLM are highlighted in bold.

Dataset (→) StrategyQA GSM8K TruthfulQA ScienceQA

Methods (↓) / Metrics (→) Avg. Avg. True Info Avg.

Claude-3-Haiku 72.05±1.70 83.85±0.72 67.00±1.41 68.80±3.87 82.00±0.40

Claude-3-Haiku + COBB∗ 72.58±1.80 81.73±0.43 71.60±2.94 90.80±1.17 87.40±0.67

Mistral-7B-inst-v2 61.40±0.59 43.50±0.21 66.40±2.58 84.40±0.75 65.52±0.39

Mistral-7B-inst-v2 + COBB∗ 70.31±2.80 56.03±0.82 75.00±1.79 93.20±1.47 85.56±0.50

Phi-3-mini-4k-inst 62.27±1.48 82.18±0.79 63.60±2.33 92.60±1.02 83.32±0.45

Phi-3-mini-4k-inst + COBB∗ 70.22±2.28 78.10±1.15 75.00±2.28 93.00±2.19 86.84±0.66

Gemma-1.1-7B-it 57.12±0.97 49.54±0.92 63.80±2.14 58.00±2.10 71.84±1.04

Gemma-1.1-7B-it + COBB∗ 72.66±1.58 61.85±0.83 73.00±2.10 91.00±1.67 87.12±0.41

black-box LLM and generated the adapted reason-968

ing using (1) the adaptation model trained with969

gpt-3.5-turbo (in Table 1) and (2) the newly970

trained adaptation model with gpt-4o. The re-971

sults are presented in Table 11. First, it is observed972

that the adapted reasonings by COBB exhibit better973

performance compared to the ones from COBB∗.974

These results show the importance of using bet-975

ter source LLM in constructing the dataset, as it976

can contribute to providing extensive and deeper977

knowledge. Nevertheless, even using gpt-4o for978

dataset construction, the performance improvement979

is quite limited under the current choice of COBB.980

We suspect that this limitation might stem from the981

limited capacity of the current adaptation model,982

which is initialized by Mistral-7b-inst-v2,983

as implicitly evidenced in Table 5. Therefore, if984

stronger open-source LLM, in terms of the number985

of model parameters and the overall performance,986

Table 11: GPT-4 with COBB. Test performance of
original and adapted reasoning of gpt-4o (OpenAI,
2024) under COBB. COBB∗ uses the adaptation model
trained for gpt-3.5-turbo (Table 1) and COBB
trains new adaptation model by generating the dataset
with gpt-4o and use it for the adaptation.

StrategyQA ScienceQA

Methods Avg. Maj@5 Avg. Maj@5

GPT-4o 80.09 80.79 92.08 91.20
+ COBB∗ 75.55 78.60 88.00 88.40
+ COBB 75.63 79.04 92.16 93.00

could be used as the adaptation model, we believe 987

that our framework can learn the adaptation, even 988

for the state-of-the-art black-box LLMs. 989
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Table 12: In-depth analyses of COBB. Analyses to
deeper understand of how COBB works. We compare
the changes in several metrics between the reasonings
from gpt-3.5-turbo (original) and the reasonings
by COBB (adapted) on Strategy dataset.

Metrics gpt-3.5-turbo COBB

Acc. of orig. correct (↑) 100.0 87.44
Acc. of orig. incorrect (↑) 0.000 44.44

πθ(y) of orig. correct (↑) 0.776 0.777
πθ(y) of orig. incorrect (↑) 0.696 0.757

Cosine similarity (↓) 0.926 0.920
Self-BLEU (↓) 0.521 0.490

B.3 In-depth analyses on more datasets990

Lastly, we further present the in-depth analysis re-991

sults on StrategyQA in Table 12, similar to Table992

6 which is conducted on ScienceQA. Here, similar993

results are observed and it indicates that the in-994

terpretation presented in Section 4.3 continuously995

makes sense across the different tasks.996

C Additional Qualitative Examples997

In this section, we present the additional qualita-998

tive examples of how the original reasoning from999

gpt-3.5-turbo is adapted and corrected in Fig-1000

ures 7, 8, and 9. From these examples, one can no-1001

tice that COBB successfully corrects the reasoning1002

while preserving lexical diversity and grammatical1003

correctness.1004
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<StrategyQA>
Use the step-by-step method as shown in the examples to answer the question. Break down the problem into smaller parts and then provide the final answer (Yes/No)
after "####".

Example 1:
Q: Karachi was a part of Alexander the Great’s success?

A: Karachi is a city in modern day Pakistan.
Krokola was an ancient port located in what is now Karachi.
Alexander the Great stationed his fleet in Krokola on his way to Babylon.
Alexander the Great defeated Darius and conquered Babylon before expanding his empire.
#### Yes.

Example 2:
Q: Was P. G. Wodehouse’s favorite book The Hunger Games?

A: P. G. Wodehouse died in 1975. The Hunger Games was published in 2008.
#### No.

Your Question:
Q: <QUESTION>
A:

<GSM8K>
Question: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next week. They have 2 chapters of their
textbook to study and 4 worksheets to memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and 1.5 hours for each worksheet.
If they plan to study no more than 4 hours each day, how many days should they plan to study total over the next week if they take a 10-minute break every hour,
include 3 10-minute snack breaks each day, and 30 minutes for lunch each day?
Let’s think step by step. Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours total. For the worksheets
they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets = 6 hours total. Angelo and Melanie need to start with planning 12 hours to study, at 4
hours a day, 12 / 4 = 3 days. However, they need to include time for breaks and lunch. Every hour they want to include a 10-minute break, so 12 total hours x 10
minutes = 120 extra minutes for breaks. They also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes. And they want to include 30 minutes for
lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for lunch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours. So
Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total. They want to study no more than 4 hours each day, 15 hours / 4 hours each
day = 3.75 They will need to plan to study 4 days to allow for all the time they need. The answer is 4. ... (7 more examples) ...
Question: <QUESTION> Let’s think step by step.

<TruthfulQA>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense,
or is not factually coherent, explain why instead of answering something not correct. If you don’t know the answer to a question, please don’t share false information.

Q: <QEUSTION>
A:

<ScienceQA>
Use the step-by-step method as shown in the example to answer the question. Respond to the question by adhering to the given format: provide step-by-step reasoning
(one sentence per line), and then give the final answer after "####".

Example:
Question: Which figure of speech is used in this text? Dr. Shelton is unhappy with her new assistant because simple tasks, like fetching coffee, take him years to
finish.
Choices:
0: anaphora
1: hyperbole

Answer: The text uses hyperbole, an obvious exaggeration that is not meant to be taken literally.
Take him years to finish is an exaggeration, since it probably does not take him entire years to fetch coffee.
#### 1

Your Question:
<QEUSTION>

Figure 6: Chain-of-thought prompt. Chain-of-thought prompt (Wei et al., 2022) to extract the reasoning of LLM.
Except for the case of GSM8K, we use the exact same one from the prior work (Sun et al., 2024). In the case of
GSM8K, we adopt the complex prompt (Fu et al., 2023), as it yields higher accuracy compared to the previous one.
Here, we only present a single few-shot example for GSM8K. Full 8 examples are presented in (Fu et al., 2023).
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Question: Does this passage describe the weather or the climate? Where Rita lives, winds blowing from the northeast are
rare in July.
Choices: ["weather", "climate"]

Originally incorrect reasoning from gpt-3.5-turbo: The passage mentions a specific instance about winds blowing
from the northeast in July. This occurrence relates to a short-term atmospheric condition, not a long-term pattern. Hence,
the passage describes weather, as it talks about a specific condition at a given time. #### 0

Corrected reasoning by COBB: The text uses a pun, a play on words that exploit multiple meanings or similar sounds of
words. "Getting over that hurdle" is a literal action in track, but it also denotes overcoming a difficulty or fear. #### 0

Question: According to Newton’s third law, what other force must be happening?
Choices: ["The paper clip is pulling on the fridge magnet.", "The paper clip is pushing on the fridge magnet."]

Originally incorrect reasoning from gpt-3.5-turbo: According to Newton’s third law, for every action, there is an
equal and opposite reaction. If the paper clip is pushing on the fridge magnet, then the fridge magnet must also be pushing
back on the paper clip with an equal force. Therefore, the force happening is: The paper clip is pushing on the fridge
magnet. #### 1

Corrected reasoning by COBB: The force of the fridge magnet is attracting the paper clip. According to Newton’s third
law, for every action, there is an equal and opposite reaction. Since the paper clip is being attracted to the fridge magnet,
the fridge magnet must also be attracting the paper clip with an equal force. #### 0

Question: Which word would you find on a dictionary page with the following guide words? cove - cylinder
Choices: ["credit", "cattle"]

Originally incorrect reasoning from gpt-3.5-turbo: The word "cattle" would appear between "cove" and "cylinder"
since "cattle" comes after "cove" alphabetically but before "cylinder." #### 1

Corrected reasoning by COBB: The word "credits" would be found at the bottom of the dictionary page, not on the
actual page with the guide words. The guide words indicate that the word must come after "cove" and before "cylinder"
alphabetically. "Credit" falls between "cove" and "cylinder" alphabetically, so it would be found on the dictionary page.
#### 0

Figure 7: More qualitative examples on ScienceQA. Examples of the question, original reasoning from black-box
LLM (gpt-3.5-turbo), and the adapted reasoning by COBB.

Question: Does Olympia Washington share name with Hephaestus’s workshop location?

Originally incorrect reasoning from gpt-3.5-turbo: Olympia is the capital city of the state of Washington in the
United States. The workshop of Hephaestus, the Greek god of blacksmiths and craftsmen, was located on Mount Olympus
in Greek mythology. #### No.

Corrected reasoning by COBB: Olympia is the capital city of the state of Washington in the United States. Hephaestus’s
workshop was located on Mount Olympus in Greek mythology. Both Olympia and Mount Olympus are associated with
the Greek gods and mythology. Olympia, Washington, and Mount Olympus share names with Hephaestus’s workshop
location. #### Yes.

Question: Would Library of Alexandria need less shelf space than Library of Congress?

Originally incorrect reasoning from gpt-3.5-turbo: The Library of Alexandria was founded in the 3rd century
BCE and was one of the largest and most significant libraries of the ancient world. The Library of Congress was established
in 1800 and is the largest library in the world by shelf space and number of books. #### No.

Corrected reasoning by COBB: Library of Alexandria was one of the largest libraries in the ancient world, while the
Library of Congress is the national library of the United States and is much larger than the Library of Alexandria. The
Library of Alexandria was estimated to have held around 40,000 scrolls, while the Library of Congress has over 3 million
books and numerous electronic resources. Therefore, the Library of Alexandria would indeed need less shelf space than
the Library of Congress. #### Yes.

Question: Can you transport a primate in a backpack?

Originally incorrect reasoning from gpt-3.5-turbo: Primates are a diverse group of animals that include monkeys,
apes, and lemurs. Primates require specialized care and environment for transportation. Primates can be transported in
specialized animal transport containers or crates. It is not advisable or ethical to transport a primate in a backpack. ####
No.

Corrected reasoning by COBB: Primates are a diverse group of animals that includes monkeys, apes, and lemurs.
Primates have various sizes and some can be quite large, like gorillas. Backpacks have limited space and are not designed
to carry large items. It is possible to transport a small primate, like a baby monkey, in a backpack with proper care and
precautions. #### Yes.

Figure 8: More qualitative examples on StrategyQA. Examples of the question, original reasoning from black-box
LLM (gpt-3.5-turbo), and the adapted reasoning by COBB.
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Question: On Tuesday, Peter wants to exercise for twice the amount of time he did on Monday and Sunday combined.
On Sunday he exercised for 23 minutes. On Monday he exercised for 16 minutes. How many minutes does he have to
exercise on Tuesday to reach his goal?

Originally incorrect reasoning from gpt-3.5-turbo: Peter exercised for a total of 23 + 16 = 39 minutes on Sunday
and Monday. Therefore, on Tuesday Peter wants to exercise for 39 x 2 = 78 minutes. Peter has to exercise for 78 - 23 - 16
= 39 minutes on Tuesday to reach his goal. The answer is 39 minutes.

Corrected reasoning by COBB: On Monday, Peter exercised for 16 minutes. On Sunday, Peter exercised for 23 minutes.
Combined, Peter exercised for 16 + 23 = 39 minutes on Monday and Sunday. To exercise twice as much as Monday and
Sunday combined, Peter needs to exercise for 39 * 2 = 78 minutes on Tuesday. Therefore, Peter needs to exercise for 78
minutes on Tuesday.

Question: 48 people are riding a bus. On the first stop, 8 passengers get off, and 5 times as many people as the number
who got off from the bus get into the bus. On the second stop 21, passengers get off and 3 times fewer passengers get on.
How many passengers are riding the bus after the second stop?

Originally incorrect reasoning from gpt-3.5-turbo: Initially, the bus has 48 passengers. After the first stop, 8
passengers get off, so there are 48 - 8 = 40 passengers remaining. 5 times the number of people getting off then get on the
bus, which is 5 * 8 = 40 passengers. So, after the first stop, there are 40 + 40 = 80 passengers on the bus. After the second
stop, 21 passengers get off, leaving 80 - 21 = 59 passengers. 3 times fewer passengers than those who got off at the second
stop get on, which is 3 * 21 = 63 passengers. Thus, after the second stop, there are 59 + 63 = 122 passengers riding the
bus. Therefore, there are 122 passengers on the bus after the second stop.

Corrected reasoning by COBB: At the first stop, 8 passengers got off the bus, so now there are 48 - 8 = 40 passengers
left on the bus. Then, 5 times as many people as the ones who got off got onto the bus, meaning 5*8 = 40 more passengers
entered the bus. This means there were originally 40 passengers on the bus + 40 new passengers = 80 passengers total on
the bus after the first stop. At the second stop, 21 passengers got off the bus, so now there are 80 - 21 = 59 passengers left
on the bus. Since 3 times fewer passengers got on compared to when 21 passengers got off, this means only 21/3 = 7
passengers got on at the second stop. Therefore, after the second stop, there are 59 passengers already on the bus + 7 new
passengers = 66 passengers in total riding the bus.

Question: Nathan has a bouncy ball that bounces to 2/3rds of its starting height with each bounce. If he drops it from the
third-floor balcony in the mall, where each story is 24 feet high, how high does the ball go on its second bounce?

Originally incorrect reasoning from gpt-3.5-turbo: Given that the bouncy ball bounces to 2/3 of its starting height
with each bounce, on the second bounce it would reach 2/3 * (2/3) = 4/9 of its original height. Let’s calculate the height it
will reach on the second bounce: - The third-floor balcony is 24 feet high. - On the first bounce, the ball reaches 2/3 * 24 =
16 feet high. - On the second bounce, the ball reaches 4/9 * 16 = 64/9 feet high. Therefore, the ball reaches a height of
64/9 feet on its second bounce.

Corrected reasoning by COBB: First find the total height of the ball after one bounce by multiplying the starting height
by 2/3: 24 ft * 2/3 = «24*2/3=16»16 ft. Then double that number to find the maximum height reached after two bounces:
16 ft * 2 = «16*2=32»32 ft #### 32

Figure 9: More qualitative examples on GSM8K. Examples of the question, original reasoning from black-box
LLM (gpt-3.5-turbo), and the adapted reasoning by COBB.
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