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ABSTRACT

Solving operator eigenvalue problems helps analyze intrinsic data structures and
relationships, yielding substantial influence on scientific research and engineer-
ing applications. Recently, novel approaches based on deep learning have been
proposed to obtain eigenvalues and eigenfunctions from the given operator, which
address the efficiency challenge arising from traditional numerical methods. How-
ever, when solving top-L eigenvalues problems, these learning-based methods
ignore the information that could be inherited from other known eigenvectors,
thus resulting in a less-than-ideal performance. To address the challenge, we pro-
pose the Spectral Refined Network (SReNet). Our novel approach incorporates
the power method to approximate the top-L eigenvalues and their corresponding
eigenfunctions. To effectively prevent convergence to previous eigenfunctions,
we introduce the Deflation Projection that significantly improves the orthogonal-
ity of the computed eigenfunctions and enables more precise prediction of multi-
ple eigenfunctions simultaneously. Furthermore, we develop the adaptive filtering
method that dynamically leverages intermediate approximate eigenvalues to con-
struct rational filters that filter out predicted eigenvalues, when predicting the suc-
cessive eigenvalue of the given problem. During the iterative solving, the spectral
transformation is performed based on the filter function, converting the original
eigenvalue problem into an equivalent problem that is easier to converge. Exten-
sive experiments demonstrate that our approach consistently outperforms existing
learning-based methods, achieving state-of-the-art performance in accuracy.

1 INTRODUCTION

The operator eigenvalue problem is a prominent focus in many scientific fields (Elhareef & Wu,
2023; Buchan et al., 2013; Cuzzocrea et al., 2020; Pfau et al., 2023) and engineering applications
(Diao et al., 2023; Chen & Chan, 2000), where eigenvalues are commonly used to analyze the
fundamental geometric structures and relationships within data (Markovsky, 2012; Blum et al.,
2020). Traditional methods that solve operator eigenvalue problems typically involve two steps.
First, they apply numerical discretization methods to transform the operator into a matrix, such as
Finite Element Methods (FEM) (LeVeque, 2002). Then numerical linear algebra techniques are em-
ployed to solve the eigenvalues and eigenvectors of the given matrix, utilizing methods like Krylov-
Shur (Watkins, 2007; Liesen & Strakos, 2013) and the Locally Optimal Block Preconditioned Con-
jugate Gradient (LOBPCG) algorithm (Knyazev, 2001). These methods iteratively generate a sub-
space that approximates the invariant subspace of the matrix, allowing the original problem to be
solved within this subspace. However, traditional numerical methods are constrained by the curse of
dimensionality, as the computational complexity increases quadratically or even cubically with the
size of the matrix (Watkins, 2007). Furthermore, storing the iterative subspaces incurs significant
memory requirements when solving high-dimensional problems (Stewart, 2002).

A promising alternative is using neural networks to approximate eigenfunctions (Pfau et al., 2018).
These approaches replace the matrix representations with parametric nonlinear representations
through neural networks. By designing appropriate loss functions, it updates parameters to approx-
imate the desired operator eigenfunctions. These methods only require sampling specific regions
without designing discretization grids, significantly reducing the algorithm design cost and helping
mitigate unwanted approximation errors (He et al., 2022). Moreover, the parametric representation
of neural networks offers stronger expressive power than linear matrix representations, requiring
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Ground Truth

   SReNet

Figure 1: Left: Comparison of the eigenfunctions of the 2D Harmonic operator computed by
SReNet and the Ground Truth. Right: Absolute error comparison of eigenvalues for the Schrödinger
oscillator operator computed using various algorithms, the x-axis represents the operator dimension.

far fewer sampling points for the same problem compared to traditional methods (Nguyen et al.,
2020). The memory overhead for these approaches depends only on the number of samples and the
neural network parameters, eliminating the need for explicit matrix and iterative subspace storage,
which significantly reduces memory costs in high-dimensional problems (Yang et al., 2023). Al-
though these learning-based methods have been proposed to effectively solve operator eigenvalue
problems, the numerical stability of these works is often influenced by the structure of the opera-
tor. The orthogonality of the predicted eigenfunctions and the spectral distribution of the operator
directly determine the convergence rate of the iterations, thereby constraining the reduction of the
loss function and ultimately affecting the accuracy of the solutions (Yang et al., 2023).

Inspired by the power methods (Golub & Van Loan, 2013), we propose a novel method, namely
Spectral Refined Network (SReNet), that uses the neural network to predict the top-L eigenvalues
and their eigenfunctions. SReNet takes the coordinates of sampling points as the input, while the
outputs of SReNet are the eigenvalues and their eigenfunctions. SReNet employs the power method
loss function as the guidance for iterative optimization. To prevent the predicted eigenfunctions
from converging towards known invariant subspaces, we introduce the deflation projection into the
loss function, which enhances the orthogonality and accuracy of the solved eigenfunctions. Fur-
thermore, we develop adaptive filter techniques that utilize intermediate approximate eigenvalues
to construct rational filters for transforming operator forms during the solution process, optimizing
their spectral distribution (eigenvalue distribution) for higher solving efficiency. Extensive exper-
iments demonstrate that SReNet significantly surpasses existing methods based on deep learning,
achieving state-of-the-art performance.

In summary, our contributions are as follows:

• We introduce a novel learning-based method based on power method concepts for solving
the top-L eigenvalues and their eigenfunctions of the differential operator.

• We employ the deflation projection that prevents convergence towards known invariant sub-
spaces, enhancing the multi-eigenvalue problem-solving. We also develop adaptive rational
filter techniques that utilize intermediate eigenvalues to accelerate the solution process and
achieve higher solving efficiency.

• We conduct extensive experiments to evaluate the effectiveness of our proposed methods,
achieving state-of-the-art precision across different operator eigenvalue problems.

2 PRELIMINARIES

2.1 OPERATOR EIGENVALUE PROBLEM

This paper primarily focuses on the eigenvalue problems of differential operators. Mathematically,
an operator L : H1 → H2 is a mapping between two Hilbert spaces, H1 and H2 (Kantorovich
& Akilov, 2014). If L is an operator acting on a Hilbert space H and v(x) ∈ H, the eigenvalue
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problem can be formulated as:
Lv = λv, (1)

where v(x) is the eigenfunction associated with the eigenvalue λ (Evans, 2022). The primary in-
terest lies in determining the spectrum of operators, i.e., eigenvalues λ, and their corresponding
eigenfunctions v for L.

Partial differential operators are common in operator eigenvalue problems, frequently encountered
across scientific computing and engineering applications. Considering a self-adjoint operator L
defined on a domain Ω ⊂ RD, the operator eigenvalue problem can be expressed in the following
form (Davies, 2007): {

Lv = λv in Ω,

Bv = g on ∂Ω,
(2)

where Ω ⊆ RD serves as the domain, and L and B are differential operators acting within the interior
and on the boundary of Ω, respectively. The eigenpair (v, λ) consists of v(x), the eigenfunction
associated with the operator L, and λ, the corresponding eigenvalue. Typically, it is often necessary
to solve for multiple eigenpairs, (vi, λi), i = 1, . . . , L in applications such as obtaining energy basis
functions from the Hamiltonian operator in quantum chemistry (Kittel & McEuen, 2018; Grosso &
Parravicini, 2013; Hook & Hall, 2013) or modeling multiple acoustic modes (Shang, 1989; Mason,
2013; Thompson et al., 1991).

2.2 POWER METHOD

The power method is commonly used as the iterative algorithm for computing the largest eigen-
value and its corresponding eigenvector of the given matrix, particularly well-suited for large sparse
matrices. The power method employs successive matrix-vector multiplications to progressively con-
verge towards the largest eigenvector (Watkins, 2007). At the beginning, power method starts from a
random and non-zero initial vector x(0), and update the vector through the following iterative steps:

1. Iterative Update: Compute y(k) = Ax(k−1).

2. Normalization: Normalize by setting x(k) = y(k)

∥y(k)∥ .

3. Convergence Check: Repeat the process until x(k) and x(k−1) are close enough, or a pre-
defined number of iterations is reached.

The matrix eigenvalue problem can be considered as the operator eigenvalue problem with a finite-
dimensional linear operator. Assume |λ1| > |λ2| ≥ ... ≥ |λn|, where vi is the eigenvector corre-
sponding to λi. The power method constructs the following sequence:

{x(0),Ax(0),A2x(0), . . . ,Akx(0), . . . }. (3)

If
x(0) = a1v1 + a2v2 + · · ·+ anvn (4)

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 . (5)

This formula indicates several factors that affect the convergence speed of the power method. First,
the eigenvalue λ1 in Akx(0) is crucial. As iterations progress, the vector x(k) increasingly aligns
with v1. Secondly, the convergence rate is influenced by the ratio |λ1|/|λ2|; the larger the ratio, the
faster the convergence. Additionally, the idea of the power method is to iteratively calculate x(k) to
Ax(k), amplifying the impact of the largest eigenvalue λ1 through actions of matrix A, ultimately
solving for (v1, λ1). Our algorithm is derived from this idea. For more details of the power method,
we refer to Appendix B.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 DEFLATION PROJECTION

The deflation technique plays a critical role in solving eigenvalue problems, particularly when deal-
ing with large-scale matrices or when multiple distinct eigenvalues need to be computed. Deflation
projection is an effective deflation strategy that utilizes known eigenvalues and corresponding eigen-
functions to modify the structure of the matrix, thereby simplifying the computation of remaining
eigenvalues (Saad, 2011; Kressner, 2005; Watkins, 2007; Arbenz et al., 2012).

The essence of deflation projection lies in constructing a projection matrix P , typically v1v
⊤
1 , where

v1 is a known eigenvector. This projection matrix allows to modify the original matrix A to a
new matrix B = A − λ1P . In matrix B, the eigenvalue λ1 corresponding to eigenvector v1 is
effectively removed (or set to zero) from A. We provide more details about deflation projection in
the Appendix B.2.

2.4 FILTERING TECHNIQUE

The filtering technique is employed in numerical linear algebra to accelerate the solution of eigen-
value problems for large matrices (Saad, 2011). The core of this technique involves constructing
suitable filter functions F (A) to achieve a spectral transformation of the matrix A. This spectral
transformation helps optimize the spectral distribution of the matrix without altering the eigenvec-
tors, thereby making the target eigenvalues more prominent in the transformed spectrum and easier
to obtain (Watkins, 2007; Li et al., 2019).

The spectral transformation essentially applies a function transformation to the matrix. These func-
tions, such as polynomials or rational functions, are designed to amplify the important part of the
matrix (the eigenvalues we care about) and suppress the unnecessary ones (Fang & Saad, 2012;
Winkelmann et al., 2019), thus we call it ”filtering”. The filter reduces the influence of irrelevant
eigenvalues, making it easier to converge on the target eigenvalues (Miao, 2019; Miao & Wu, 2021).
We provide more details about filtering technique in the Appendix B.3.

3 METHOD

3.1 PROBLEM FORMULATION

We consider the operator eigenvalue problem for a differential operator L defined on a domain
Ω ⊂ RD. Our goal is to compute the top-L eigenfunctions vi of L, along with their corresponding
eigenvalues λi, satisfying Lvi = λivi, i = 1, 2, . . . , L. We employ neural networks NNL(θi)
parameterized by θi. Each neural network maps the domain Ω into the real space R, approximating
the eigenfunctions vi:

NNL(·; θi) : Ω → R, i = 1, 2, . . . , L. (6)
We discretize the domain by uniform random sampling N point set

S ≡ {xj = (x1j , . . . , x
D
j ) | xj ∈ Ω, j = 1, 2, . . . , N}, (7)

which makes up an N × D matrix Xinput. This matrix serves as the input to the neural networks
NNL(θi). The networks output L vectors Yi ∈ RN , representing the approximate values of the
eigenfunctions ṽi(·) = NNL(·; θi) at these sampled points:

ṽi(xj) ≡ Yi(j), i = 1, 2, . . . , L, j = 1, 2, . . . , N. (8)

The eigenvalues λ̃i are obtained by applying the operator L to the computed eigenfunctions ṽi:

λ̃i ≡
ṽ⊤i Lṽi
ṽ⊤i ṽi

, i = 1, 2, . . . , L. (9)

We iteratively update the neural network parameters θi using gradient descent, aiming to minimize
the overall residual. The optimization problem is formulated as:

min
θi∈Θ

1

N

L∑
i=1

N∑
j=1

[ṽi(xj)− vi(xj)]
2, (10)
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Deflation Projection
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eigenpair 

differential operator 
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deflation projection (a) (b)

Figure 2: Overview of the SReNet. (a) Introduction to the inputs and outputs. (b) The SReNet
comprises multiple neural networks, each tasked with predicting distinct eigenfunctions and eigen-
values. By employing filter functions and deflation projection, the algorithm integrates previously
computed eigenfunctions and eigenvalues into the loss function.

where Θ denotes the parameter space of the neural networks. This approach does not require any
training data, as it relies solely on satisfying the differential operator eigenvalue equations over the
domain Ω. However, the vi(xj) is unknown, so we need to generate a ũk+1

i (xj) as the fitting of
vi(xj) by the output of the model and corresponding operator.

3.2 SPECTRAL REFINED NETWORK

SReNet learns to solve the operator eigenvalue problem by iterative optimization, which takes sam-
pled points as the inputs, and outputs the eigenfunction. And the neural network in SReNet param-
eterized by parameters θi predicts the i-th eigenfunction vi. To enhance the convergence speed and
prediction accuracy, SReNet employs Deflation Projection and Filter Function for training, which
are common spectral refinement techniques. Figure 2 shows the overview of SReNet.

Supposing that at the k-th iteration, the output of SReNet is Y k
i (j) as the i-th eigenfunction, where

θki represents the parameters of the neural network at k-th iteration,

ṽki (x) ≡ NNL(x; θ
k
i ), x ∈ Ω, ṽki (xj) = NNL(xj ; θ

k
i ) = Y k

i (j), xj ∈ S, j = 1, . . . , N. (11)

In particular, SReNet employs the Multi Layer Perceptron (MLP) as NNL(·; θi) for eigenfunction
prediction. Learning the i-th eigenfunction of a given operator requires updating the neural network
to minimize the objection function in (10). Previous works, like (Yang et al., 2023), suggest that
optimizing the loss function derived from the power method helps the eigenfunction prediction. The
derivative loss function is defined as follows:

LossPM
L (xj , θ

k
i ) =

1

N

N∑
j=1

[
ṽki (xj)− ũk+1

i (xj)
]2
, ũk+1

i (xj) =
Lṽki (xj)

∥Lṽki (xj)∥
. (12)

For ease of reference, we use PM Loss to indicate the loss function in Eq (12). As suggested in
Eq (12), we update the parameters of SReNet by iterative optimization. This is inspired by the
power method that takes iterative steps to solve the eigenvalue problem. But we uses Automatic
Differentiation (AD) to compute Lṽki (xj), which is the action of the operator L on ṽki . For example,
consider the operator Lu = α∆u + β · ∇u, where α is a constant and β is a constant vector. The
operator L acting on the neural network output ṽki (x) can be expressed as:

Lṽki (x) = α∆NNL(x; θ
k
i ) + β · ∇NNL(x; θ

k
i ), (13)

where

∇NNL(x; θ
k
i ) =

[
∂NNL(x; θ

k
i )

∂x1
, . . . ,

∂NNL(x; θ
k
i )

∂xD

]
, (14)
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∆NNL(x; θ
k
i ) =

D∑
d=1

∂2NNL(x; θ
k
i )

∂xd
2 . (15)

Both the gradient ∇ and the Laplacian ∆ are computed using AD rather than numerical differentia-
tion. This approach allows SReNet to effectively compute the Lṽki (xj).

Furthermore, as illustrated in Figure 2, we introduce Deflation Projection and Filter Function
Fi(·) into the PM Loss to handle multiple eigenvalues problem and improve convergence speed. It
is achieved by replacing the operator L used for calculating Lṽki (xj) in PM Loss. Specifically, the
PM Loss for the i-th eigenfunction is LossPM

L′
i

, where

L′
i = Fi(Lde

i ), (16)

and
Fi(L) ≡ (L − λ̃iI)

−1, Lde
i ≡ L−Qi−1Σi−1Q

⊤
i−1. (17)

Here,Qi and Σi are operators representing the previously computed eigenfunctions and eigenvalues,
I is the identity operator and λ̃i is the current approximation of the i-th eigenvalue. In the following
sections, we will provide a detailed explanation of the implementation of these two components. For
details of SReNet, please see the pseudocode in Appendix C.

3.3 DEFLATION PROJECTION

PM Loss helps the neural networks converge to the eigenfunction associated with the largest eigen-
value of the given operator. However, it does not enforce orthogonality between different eigenfunc-
tions, making it difficult to accurately compute multiple eigenfunctions.

Suppose we have already predicted i−1 eigenvalues λ̃1, λ̃2, . . . , λ̃i−1 and their corresponding eigen-
functions ṽ1, ṽ2, . . . , ṽi−1. To find the i-th eigenfunction, we aim to search within the residual sub-
space orthogonal to the previously computed eigenfunctions. To achieve this, we apply deflation
projection to the operator L:

Lde
i ≡ L−Qi−1Σi−1Q

⊤
i−1, (18)

where
Qi−1 = [ṽ1|ṽ2| . . . |ṽi−1], Σi−1 = diag(λ̃1, λ̃2, . . . , λ̃i−1). (19)

Here, the operator Qi−1 includes previously computed eigenfunctions as its columns and can be
considered a matrix in RN×(i−1). The operator Σi−1 represents a diagonal matrix of corresponding
eigenvalues in R(i−1)×(i−1). This yields the corresponding loss function:

LossPM
Lde

i
(xj , θ

k
i ) =

1

N

N∑
j=1

[
ṽki (xj)− ũk+1

i (xj)
]2
, ũk+1

i (xj) =
Lde
i ṽki (xj)

∥Lde
i ṽki (xj)∥

, (20)

By employing the deflation projection, the gradient descent search space of the neural network is
constrained to be orthogonal to the subspace spanned by {ṽ1, ṽ2, . . . , ṽi−1}. This approach prevents
the neural network output NNL(θi) from converging to the invariant subspace formed by known
eigenfunctions, thereby enhancing the orthogonality among the outputs of different neural networks
NNL(θ1), . . . , NNL(θi−1) . On one hand, this reduction in the search space accelerates the con-
vergence toward the eigenfunctions vi; On the other hand, it improves the orthogonality among the
neural network outputs, which reduces the error in predicting the eigenfunction ṽi.

In practice, we use the previously computed eigenvalues and eigenfunctions with the lowest approx-
imation errors to construct the loss with deflation projection. This allows us to adaptively update the
deflation operator, ensuring the method remains effective as more eigenfunctions are computed.

3.4 FILTER FUNCTION

In practice, we are typically interested in eigenvalues within a specific interval rather than solely the
largest eigenvalue. Furthermore, the presence of larger eigenvalues can affect the convergence speed
of the current eigenvalue calculations. These problems encourage us to employ another effective
method, which enables SReNet to predict the eigenvalues we are interested at while suppressing the
effects from large eigenvalues.
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The filtering function is one of the choices, as it filters out the eigenvalues we don’t need while
amplifying the eigenvalues we want. In the iterative solving process of SReNet, we can obtain
approximate eigenvalues λ̃i, i = 1, . . . , L. Using these approximate eigenvalues λ̃i, we adaptively
design filter functions Fi(·) to focus the operator’s spectrum around the desired eigenvalue λ̃i. By
amplifying the magnitude of eigenvalue λ̃i, the filter function Fi(·) accelerates the convergence
speed of the neural network toward λ̃i. The filter function Fi(·) can take various forms. In SReNet,
to compute the i-th eigenpair (vi, λi), we adopt the following rational function form:

Fi(L) ≡ (L − λ̃iI)
−1, (21)

where I is the identity operator. If we simultaneously apply deflation projection, the transformed
operator L′

i can be expressed as:

L′
i = Fi(Lde

i ) = Fi

(
L −Qi−1Σi−1Q

⊤
i−1

)
=
(
L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI

)−1

.
(22)

However, due to the presence of the inverse of the operator in the filter function Fi(L), the trans-
formed operator L′

i involves inverse computations, making it impossible to directly apply the previ-
ous power method loss template for forward iterations. To address this issue, we design the loss in
the following inverse iteration form:

LossPM
L′

i
(θki ) =

1

N

N∑
j=1

[
ṽk−1
i (xj)− ũki (xj)

]2
, (23)

ũki (xj) =
L′
iṽ

k
i (xj)∥∥L′

iṽ
k
i (xj)

∥∥ , L′
i = L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI. (24)

By adaptively adjusting the parameters of the filter function based on known approximate eigenval-
ues, we can improve computational efficiency. This loss function effectively amplifies the eigenval-
ues near λ̃i, which enhances the process of solving for the i-th eigenpair (vi, λi) .

When we do not use deflation projection to optimize the loss, we can also adopt the following form
of the filter function:

Fi(L) =
i−1∏
i0=0

(
L − λ̃i0I

)
·
(
L − λ̃iI

)−1

. (25)

The filter function can be modified according to specific requirements, such as using Chebyshev
polynomial filters. In this paper, we primarily adopt the filter function in Eq (21) for our experiments.

4 EXPERIMENTS

We conducted comprehensive experiments to evaluate SReNet, focusing on:

• Solving top-L operator eigenvalues in the Harmonic eigenvalue problem.

• Solving the principal eigenvalue in the Schrödinger oscillator equation.

• Solving zero eigenvalue in the Fokker-Planck equation.

• The ablation study.

Baselines: For this experiment, we selected three learning-based methods for computing operator
eigenvalues as our baselines: 1. PMNN (Yang et al., 2023); 2. NeuralEF (Deng et al., 2022); 3.
NeuralSVD (Ryu et al., 2024). For introductions to related work, see Appendix A.

Experiment Settings: To ensure consistency, all experiments were conducted under the same com-
putational conditions. For further details on the experimental environment and parameters, please
refer to Appendix D.

7
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4.1 HARMONIC EIGENVALUE PROBLEM

Harmonic eigenvalue problems are common in fields such as structural dynamics and acoustics, and
can be mathematically expressed as follows (Yang et al., 2023; Morgan & Zeng, 1998):{

−∆v = λv, in Ω,

v = 0, on ∂Ω.
(26)

Here ∆ denotes the Laplacian operator. We consider the domain Ω = [0, 1]D whereD represents the
dimension of the operator, and the boundary conditions are Dirichlet. In this setting, the eigenvalue
problem has analytical solutions, with eigenvalues and corresponding eigenfunctions given by:

λn1,...,nD
= π2

D∑
k=1

n2k, un1,...,nD
(x1, . . . , xk) =

D∏
k=1

sin(nkπxk), nk ≥ 1. (27)

To validate our algorithm’s capability to compute top-L eigenvalues in both low and high-
dimensional settings, our experiments aim to calculate the first four eigenvalues of the Harmonic
operator in 1, 2 and 5 dimensions. Since the PMNN model only computes the principal eigen-
value and cannot compute multiple eigenvalues simultaneously, it is not considered for comparison.
NeuralEF, due to cumulative errors in its iterative orthogonalization process, experiences numerical
instability in 2 and 5 dimensions, thus no data is available for these dimensions.

Table 1: Absolute error comparison for eigenvalues of Harmonic operators across algorithms. The
first row lists the algorithms, the second row lists eigenvalue indexs and the first column lists the
operator dimensions. The most accurate method is in bold.

Method
NeuralEF NeuralSVD SReNet

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

Dim = 1 1.4e-1 2.9e+1 7.9e+1 1.4e+2 1.0e-1 4.1e+1 1.0e+0 1.4e+2 6.3e-10 1.7e+0 6.3e-1 1.6e+1
Dim = 2 - - - - 5.5e-2 2.1e-1 1.5e-1 2.6e+1 1.0e-5 3.0e-2 6.8e-2 1.0e-1
Dim = 5 - - - - 2.5e-1 2.9e+1 2.9e+1 2.9e+1 2.3e-4 9.5e-5 6.2e-5 1.3e-3

Table 2: Residual comparison for eigenpairs of SReNet and NeuralSVD for solving 5-dimensional
Harmonic operator eigenvalue problems. The first row indicates the eigenpair index.

Index (v1, λ1) (v2, λ2) (v3, λ3) (v4, λ4)

NeuralSVD 5.924e+0 5.920e+0 5.921e+0 5.920e+0
SReNet 4.864e-4 3.060e-3 5.980e-3 4.447e-3

Firstly, as demonstrated in Table 1, SReNet significantly outperforms existing methods across all
tasks, with precision improvements reaching up to nine orders of magnitude. This enhancement pri-
marily stems from the deflation projection. It effectively excludes solved invariant subspaces during
the multi-eigenvalue solution process, thereby preserving the accuracy of multiple eigenvalues. This
strongly validates the efficacy of our algorithm.

Secondly, in 5 dimension, SReNet consistently maintains a precision improvement of at least three
orders of magnitude. As shown in Table 2, this is largely due to the SReNet computed eigenpairs
having smaller residuals (defined as ||Lv − λv||2), indicating that SReNet can effectively solve for
accurate eigenvalues and eigenfunctions simultaneously.

Additionally, Table 1 reveals that in the process of solving multiple eigenvalues, the errors for sub-
sequent eigenvalues tend to be significantly higher than those for earlier ones. NeuralEF and Neu-
ralSVD exhibit relatively stable error change, and But SReNet shows fluctuations (for instance,
errors for λ2 and λ3 at dimension five are smaller than those for λ1). This variability primarily
arises because NeuralEF and NeuralSVD employ a uniform grid to acquire data points, whereas
SReNet uses uniform random sampling. In high-dimensional problems, a uniform grid requires the
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number of sampling points to satisfy an exponential form numD, where num is a grid number per
dimension and D is the operator dimension. However, uniform random sampling does not have this
restriction.

4.2 SCHRÖDINGER OSCILLATOR EQUATION

The Schrödinger oscillator equation is a common problem in quantum mechanics, and its time-
independent form is expressed as follows (Ryu et al., 2024; Griffiths & Schroeter, 2018):

−1

2
∆ψ + V ψ = Eψ, in Ω = [0, 1]D, (28)

where ψ is the wave function, ∆ represents the Laplacian operator indicating the kinetic energy
term, V is the potential energy within Ω, and E denotes the energy eigenvalue. This equa-
tion is formulated in natural units, simplifying the constants involved. Typically, the potential
V (x1, . . . , xd) = 1

2

∑d
k=1 x

2
k characterizes a multidimensional quadratic potential. The principal

eigenvalue and corresponding eigenfunction are given by:

E0 =
d

2
, ψ0(x1, . . . , xd) =

d∏
k=1

(
1

π

) 1
4

e−
x2
k
2 , (29)

To validate our algorithm’s capability in computing the principal eigenvalues in both low and high
dimensions, this experiment focuses on calculating the ground states of the Schrödinger equation in
one, two, and five dimensions, i.e. the smallest principal eigenvalues.

Table 3: Absolute error comparison for the principal eigenvalues of oscillator operators across algo-
rithms. The first column lists the operator dimensions. The most accurate method is in bold.

Method PMNN NeuralEF NeuralSVD SReNet

Dim = 1 1.17e-6 2.57e-2 2.53e-2 3.62e-7
Dim = 2 9.07e-5 7.55e-2 4.01e-1 2.35e-6
Dim = 5 3.92e-1 3.97e-1 4.37e+0 3.23e-1

Firstly, as shown in Table 3, the SReNet algorithm achieves significantly higher precision than ex-
isting algorithms in computing the principal eigenvalues of the oscillator operator. Furthermore, the
accuracy of SReNet surpasses that of PMNN. Both are designed based on the concept of the power
method. When solving for the principal eigenvalue, the deflation projection loss may be considered
inactive. This outcome suggests that the filter function significantly enhances the accuracy.

4.3 FOKKER-PLANCK EQUATION

The Fokker-Planck equation is central to statistical mechanics and is extensively applied across
diverse fields such as thermodynamics, particle physics, and financial mathematics (Yang et al.,
2023; Jordan et al., 1998; Frank, 2005). It can be mathematically formulated as follows:

−∆v − V · ∇v −∆V v = λv, in Ω = [0, 2π]D, (30)

where the potential V (x) = sin
(∑d

i=1 ci cos(xi)
)

is a potential function with each coefficient ci
varying within [0.1, 1], λ the eigenvalue, and v the eigenfunction. When the boundary conditions
are periodic, the smallest eigenvalue is λ = 0, with the associated eigenfunction described by:

v(x) = e−V (x). (31)

The eigenvalue at zero significantly impacts the numerical stability of the algorithm during iterative
processes. To validate our algorithm’s performance when the eigenvalue is zero, we compute the
principal eigenvalues of the one and two dimensional Fokker-Planck equation as cases.

As indicated in Table 4, the SReNet algorithm significantly outperforms existing methods in com-
puting the zero eigenvalues of the Fokker-Planck operator, effectively solving for cases where the
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Table 4: Absolute error comparison for the principal eigenvalues of Fokker-Planck operators across
algorithms. The first column lists the operator dimensions. The most accurate method in bold.

Method PMNN NeuralEF NeuralSVD SReNet

Dim = 1 8.60e-1 5.21e-1 2.73e-1 5.27e-2
Dim = 2 8.30e-1 8.45e-1 2.75e-1 1.03e-1

eigenvalue is zero. It is mainly due to the filter function, which performs a spectral transformation
on the operator, converting the zero eigenvalue into other eigenvalues that are easier to calculate
without changing the eigenvector. However, compared to the experimental results for the Harmonic
and quantum harmonic oscillator equations, the performance with the Fokker-Planck Equation is
less favorable. This is primarily due to the oscillatory nature of the eigenfunctions, which presents
greater challenges for neural network approximation.

4.4 ABLATION EXPERIMENTS

Table 5: Comparison of different settings of SReNet for the 2-dimensional Harmonic eigenvalue
problem. ”*” means SReNet without deflation projection and filter function.

Index λ Absolute Error Residual

SReNet

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

SReNet∗
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e+1 7.09e-3
(v3, λ3) 2.97e+1 1.09e-2

We conducted ablation experiments further to validate the performance of deflation projection and
filter function. The results of the ablation experiments are shown in Table 5. The results indicate
that the absence of deflation projection and projection has a significant impact on the prediction
of eigenvalues. Without them, SReNet∗ is unable to eliminate the influence of previously solved
eigenfunctions, resulting in the calculation being limited to the first eigenpair only. The residuals
indicate that the second and third eigenpairs computed by SReNet∗ are actually identical to the first.
In addition, experiments detailing the performance of SReNet as a function of model depth, model
width, and the number of points can be found in Appendix E.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced SReNet, a learning-based method designed for solving operator eigen-
value problems. Our experiments demonstrate that SReNet achieves the highest accuracy compared
to existing algorithms across a variety of operator eigenvalue problems. For future works, there are
several key areas worth mentioning: 1. Algorithm optimization for specific operator structures, such
as selecting more suitable deflation projections and filter functions based on the structure of the op-
erator. 2. Designing better point distribution strategies, for example, adapting point placement based
on boundary conditions and residual distribution. 3. Integrating other computational mathematics
techniques to optimize the iterative process, such as incorporating matrix preconditioning technolo-
gies. We believe that neural network-based algorithms for solving operator eigenvalue problems
hold tremendous potential for real-world applications and represent a crucial direction for future
development.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 CODE OF ETHICS AND ETHICS STATEMENT

This paper adheres to the ICLR Code of Ethics. The study aims to develop a more accurate learning-
based method for solving operator eigenvalue problems. It does not involve human subjects, per-
sonal data, or sensitive information that could raise concerns regarding privacy, security, or fairness.
Additionally, no potential conflicts of interest, legal compliance issues, or harmful applications were
identified in this research.

7 REPRODUCIBILITY

To ensure reproducibility, we have included essential codes in the supplementary materials, covering
dataset generation, the algorithm’s source code, and performance evaluation scripts. However, it
should be noted that the current version of the code lacks proper structure. If this paper is accepted,
we are committed to reorganizing the code for better clarity. Additionally, Appendix C contains
pseudocode for our algorithm. Furthermore, Appendix D contains a detailed description of our
experimental setups.
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A RELATED WORK

Recent advancements in applying neural networks to eigenvalue problems have shown promising
results. Innovations such as Spectral Inference Networks (SpIN) (Pfau et al., 2018), which models
eigenvalue problems as kernel problem optimizations solved via neural networks. Neural Eigenfunc-
tions (NeuralEF) (Deng et al., 2022), which significantly reduces computational costs by optimizing
the costly orthogonalization steps, are noteworthy. Neural Singular Value Decomposition (Neu-
ralSVD) employs truncated singular value decomposition for low-rank approximation to enhance
the orthogonality required in learning functions (Ryu et al., 2024).

Another class of algorithms originates from optimizing the Rayleigh quotient. The Deep Ritz
Method (DRM) utilizes the Rayleigh quotient for computing the smallest eigenvalues, demonstrating
significant potential (Yu et al., 2018). Several studies have employed the Rayleigh quotient to con-
struct variation-free functions, achieved through Physics-Informed Neural Networks (PINNs) (Ben-
Shaul et al., 2023; 2020). Extensions of this approach include enhanced loss functions with reg-
ularization terms to improve the learning accuracy of the smallest eigenvalues (Jin et al., 2022).
Additionally, Han et al. (2020) reformulate the eigenvalue problem as a fixed-point problem of the
semigroup flow induced by the operator, solving it using the diffusion Monte Carlo method. The
Power Method Neural Network (PMNN) integrates the power method with PINNs, using an iter-
ative process to approximate the exact eigenvalues (Yang et al., 2023) closely. While PMNN has
proven effective in solving for a single eigenvalue (Yang et al., 2023), it has yet to be developed for
computing multiple distinct eigenvalues simultaneously.

Furthermore, in the field of computational chemistry, research on specialized model architec-
tures for specific operators, such as the Hamiltonian, focuses on developing novel neural network
ansatzes (Carleo & Troyer, 2017; Schütt et al., 2017; Choo et al., 2020; Pfau et al., 2020; Hermann
et al., 2020; Gerard et al., 2022; Hermann et al., 2023). These architectures are designed to embed
physical inductive biases better, enhancing expressivity. Additionally, there are studies employing
neural networks for Quantum Monte Carlo (QMC) methods to tackle related problems in quantum
chemistry (Cuzzocrea et al., 2020; Entwistle et al., 2023; Pfau et al., 2023). Operators in specific
scientific domains often exhibit unique structures and are associated with prior knowledge. One
of our future research directions is to optimize our algorithm based on this information to achieve
better performance in these tasks.

B BACKGROUND KNOWLEDGE AND RELEVANT ANALYSIS

B.1 CONVERGENCE ANALYSIS OF THE POWER METHOD

Suppose A ∈ Rn×n and V −1AV = diag(λ1, . . . , λn) with V = [v1 · · · vn]. Assume that
|λ1| > |λ2| ≥ · · · ≥ |λn|. The pseudocode for the power method is shown below (Golub &
Van Loan, 2013):

Algorithm 1: Power method for finding the largest principal eigenvalue of the matrix A

1 Given A ∈ Rn×n an n× n matrix, an arbitrary unit vector x(0) ∈ Rn, the maximum number
of iterations kmax, and the stopping criterion ϵ.

2 for k = 1, 2, . . . , kmax do
3 Compute y(k) = Ax(k−1).

4 Normalize x(k) = y(k)

∥y(k)∥ .

5 Compute the difference δ = ∥x(k) − x(k−1)∥.
6 if δ < ϵ then
7 Record the largest principal eigenvalue using the Rayleigh quotient,

λ(k) =
⟨x(k),Ax(k)⟩
⟨x(k),x(k)⟩

.

The stopping criterion is met, the iteration can be stopped.
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Let us examine the convergence properties of the power iteration. If

x(0) = a1v1 + a2v2 + · · ·+ anvn

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 .

Since x(k) ∈ span{Akx(0)}, we conclude that

dist
(

span{x(k)}, span{v1}
)
= O

((
λ2
λ1

)k
)
.

It is also easy to verify that

|λ1 − λ(k)| = O

((
λ2
λ1

)k
)
.

Since λ1 is larger than all the other eigenvalues in modulus, it is referred to as the largest princi-
pal eigenvalue. Thus, the power method converges if λ1 is the largest principal and if x(0) has a
component in the direction of the corresponding dominant eigenvector x1 (Parlett & Poole, 1973;
Wilkinson, 1965).

In practice, the effectiveness of the power method largely depends on the ratio |λ2|/|λ1|, as this ratio
determines the convergence rate. Therefore, applying specific spectral transformations to the matrix
to increase this ratio can significantly accelerate the convergence of the power method.

B.2 DEFLATION PROJECTION DETAILS

Consider the scenario where we have determined the largest modulus eigenvalue, λ1, and its cor-
responding eigenvector, v1, utilizing an algorithm such as the power method. These algorithms
consistently identify the eigenvalue of the largest modulus from the given matrix along with an as-
sociated eigenvector. We ensure that the vector v1 is normalized such that ∥v1∥2 = 1. The task
then becomes computing the subsequent eigenvalue, λ2, of the matrix A. A traditional approach to
address this is through what is commonly known as a deflation procedure. This technique involves
a rank-one modification to the original matrix, aimed at shifting the eigenvalue λ1 while preserving
all other eigenvalues intact. The modification is designed in such a way that λ2 emerges as the
eigenvalue with the largest modulus in the adjusted matrix. Consequently, the power method can be
reapplied to this updated matrix to extract the eigenvalue-eigenvector pair λ2,v2.

When the invariant subspace requiring deflation is one-dimensional, consider the following Propo-
sition 1. The propositions and proofs below are derived from Saad (2011) P90.
Proposition 1. Let v1 be an eigenvector of A of norm 1, associated with the eigenvalue λ1 and let
A1 ≡ A − σv1v

H
1 . Then the eigenvalues of A1 are λ̃1 = λ1 − σ and λ̃j = λj , j = 2, 3, . . . , n.

Moreover, the Schur vectors associated with λ̃j , j = 1, 2, 3, . . . , n are identical with those of A.

Proof. Let AV = V R be the Schur factorization of A, where R is upper triangular and V is
orthonormal. Then we have

A1V =
[
A− σv1v

⊤
1

]
V = V R− σv1e

⊤
1 = V [R− σe1e

⊤
1 ].

Here, e1 is the first standard basis vector. The result follows immediately.

According to Proposition 1, once the eigenvalue λ1 and eigenvector v1 are known, we can define
the deflation projection matrix P1 = I − λ1v1v

⊤
1 to compute the remaining eigenvalues and eigen-

vectors.

When deflating with multiple vectors, let q1, q2, . . . , qj be a set of Schur vectors associated with the
eigenvalues λ1, λ2, . . . , λj . We denote by Qj the matrix of column vectors q1, q2, . . . , qj . Thus,
Qj ≡ [q1, q2, . . . , qj ] is an orthonormal matrix whose columns form a basis of the eigenspace
associated with the eigenvalues λ1, λ2, . . . , λj . An immediate generalization of Proposition 1 is the
following (Saad, 2011) P94.
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Proposition 2. Let Σj be the j × j diagonal matrix Σj = diag(σ1, σ2, . . . , σj), and Qj an
n × j orthogonal matrix consisting of the Schur vectors of A associated with λ1, . . . , λj . Then the
eigenvalues of the matrix

Aj ≡ A−QjΣjQ
⊤
j ,

are λ̃i = λi − σi for i ≤ j and λ̃i = λi for i > j. Moreover, its associated Schur vectors are
identical with those of A.

Proof. Let AU = UR be the Schur factorization of A. We have

AjU =
[
A−QjΣjQ

⊤
j

]
U = UR−QjΣjE

⊤
j ,

where Ej = [e1, e2, . . . , ej ]. Hence

AjU = U
[
R−EjΣjE

⊤
j

]
and the result follows.

According to Proposition 2, if A is a normal matrix and the eigenvalues λ1, . . . , λj along with
their corresponding eigenvectors v1, . . . ,vj are known, we can construct the deflation projection
matrix Pj = I − VjΣjV

⊤
j to compute the remaining eigenvalues and eigenvectors. Here, Σj =

diag(σ1, σ2, . . . , σj) and Vj = [v1,v2, . . . ,vj ].

B.3 FILTERING TECHNIQUE

The primary objective of filtering techniques is to manipulate the eigenvalue distribution of a matrix
through spectral transformations (Saad, 2011). This enhances specific eigenvalues of interest, facil-
itating their recognition and computation by iterative solvers. Filter transformation functions, F (x),
typically fall into two categories:

1. Polynomial Filters, expressed as P (x), such as the Chebyshev filter (Miao & Wu, 2021;
Banerjee et al., 2016).

2. Rational Function Filters, often denoted as P (x)/Q(x), such as the shift-invert
method (Van Beeumen, 2015; Watkins, 2007). Below we describe this strategy in detail.

Shift-Invert Strategy The shift-invert strategy applies the transformation (A−σI)−1 to the matrix
A, where σ is a scalar approximating a target eigenvalue, termed as shift. This operation transforms
each eigenvalue λ ofA into 1

λ−σ , amplifying those eigenvalues close to σ in the transformed matrix,
making them larger and more distinguishable (Watkins, 2007).

For instance, consider the power method, where the convergence rate is primarily governed by the
ratio of the matrix’s largest modulus eigenvalue to its second largest. Suppose matrix A has three
principal eigenvalues: λ1 = 10, λ2 = 3, and λ3 = 2. Our objective is to compute λ1, the largest
eigenvalue. In the original matrixA, the convergence rate of the power method hinges on the spectral
gap ratio, defined as:

Spectral Gap Ratio =
λ1
λ2

≈ 3.33

Applying the shift-invert transformation with σ = 9.5 strategically selected close to λ1, the new
eigenvalues µ are recalculated as:

µi =
1

λi − σ

This results in transformed eigenvalues:

µ1 = 2, µ2 ≈ −0.133, µ3 ≈ −0.125

Under this transformation, µ1 = 2 emerges as the dominant eigenvalue in the new matrix, with the
other eigenvalues significantly smaller. Consequently, the new spectral gap ratio escalates to:

New Spectral Gap Ratio =
2

0.133
≈ 15.04

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

This enhanced spectral gap notably accelerates the convergence of the power method in the new
matrix configuration.

Filtering techniques are often synergized with techniques like the implicit restarts of Krylov algo-
rithms (Watkins, 2007; Golub & Van Loan, 2013), employing matrix operation optimizations to
minimize the computational demands of evaluating matrix functions. These methods enable more
precise localization and computation of multiple eigenvalues spread across the spectral range, par-
ticularly vital in physical (Salas et al., 2015; Banerjee et al., 2016) and materials science (Kohn,
1999) simulations where these eigenvalues frequently correlate with the system’s fundamental prop-
erties (Winkelmann et al., 2019).
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C ALGORITHM PSEUDOCODE

Algorithm 2: Spectral Refined Network
1 Given: N (number of sampling points), L (number of eigenvalues/eigenfunctions to compute),

learning rate η, convergence threshold ϵ, maximum iterations Kmax, PDE operator L over
domain Ω ⊂ RD.

2 Randomly sample N points {xj}Nj=1 in Ω to form dataset S.
3 Initialize computed eigenvalues list Λ̃ = [ ], eigenfunctions matrix Q = [ ] and set iteration

counter k = 0.
4 Set Qi = [ ],Σi = [ ], λ̃i = 0, i = 0, . . . , L− 1.
5 Randomly initialize neural network parameters θ0i .
6 while not converged and k < Kmax do
7 For each xj ∈ S, compute neural network output:

ṽki (xj) = NNL(xj ; θ
k
i ), i = 1, . . . , L.

8 For each xj ∈ S, compute the update vector:

ũki (xj) =
L′
iṽ

k
i (xj)∥∥L′

iṽ
k
i (xj)

∥∥ , L′
i = L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI, i = 1, . . . , L.

9 Compute loss function:

LossPM
L′ (θki ) =

1

N

N∑
j=1

[
ṽk−1
i (xj)− ũki (xj)

]2
, i = 1, . . . , L.

10 Update neural network parameters using gradient descent:

θk+1
i = θki − η∇θiLoss, i = 1, . . . , L.

11 for i = 1 to L do
12 if LossPM

L′ (θki ) < lossmini then
13

lossmini = LossPM
L′ (θki ).

14 Update approximate eigenfunction and eigenvalue:

ṽi = ṽki , λ̃i =
(ṽki )

⊤Lṽki
(ṽki )

⊤ṽki
, i = 1, . . . , L.

15 if lossmini < ϵ, i = 1, . . . , L then
16 Convergence achieved. Break the loop.
17 Else Update deflation projection and filter function

Qi = [ṽ1, ṽ2, . . . , ṽi], Σi = diag(λ̃1, λ̃2, . . . , λ̃i), i = 1, . . . , L− 1.

18 Set k = k + 1 and continue.
19 if k < Kmax then
20 Output: eigenvalues diagonal matrix Λ̃ = [λ̃1, λ̃2, . . . , λ̃L] and eigenfunctions matrix

Q = [ṽ1, ṽ2, . . . , ṽL] .
21 else
22 Output: The maximum number of iterations has been reached, and the solution has not

converged and failed .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D DETAILS OF EXPERIMENTAL SETUP

D.1 EXPERIMENTAL ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uni-
form computing environments. Specifically, the environments used are detailed as follows:

• CPU: 72 vCPU AMD EPYC 9754 128-Core Processor
• GPU: NVIDIA GeForce RTX 4090D (24GB)

D.2 EXPERIMENTAL PARAMETERS

• Neuralsvd and Neuralef:
– Optimizer: rmsprop with a learning rate scheduler.
– Learning rate: 1e-4, batch size: 128
– Neural Network Architecture: layers = [128,128,128]
– Laplacian regularization set to 0.01, with evaluation frequency every 10000 iterations.
– Fourier feature mapping enabled with a size of 1024 and scale of 0.1.
– Neural network structure: hidden layers of 128,128,128 using softplus as the activa-

tion function.
– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 itera-

tions. For the 2-dimensional problem, the number of points is 40, 000 = 200 × 200,
also with 400, 000 iterations. For the 5-dimensional problem, the number of points is
59, 049 = 95, with 500, 000 iterations.

• SReNet
– Optimizer: Adam
– Learning rate: 1e-4
– Neural Network Architecture: Assuming d is the dimension of the problem. For d =

1 or 2, layers = [d, 20, 20, 20, 20, 1] (For Harmonic operator d=2, layers = [d, 20, 20,
20, 1]). For d=5, layers = [d, 40, 40, 40, 40, 1]. For else case, layers = [d, 40, 40, 40,
40, 1].

– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 itera-
tions. For the 2-dimensional problem, the number of points is 40, 000 = 200 × 200,
also with 400, 000 iterations. For the 5-dimensional problem, the number of points is
59, 049 = 95, with 500, 000 iterations.

D.3 ERROR METRICS

• Absolute Error:
We employ absolute error to estimate the bias of the output eigenvalues of the model:

Absolute Error = |λ̃− λ|. (32)

Here λ̃ represents the eigenvalue predicted by the model, while λ denotes the true eigen-
value.

• Residual Error:
To further analyze the error in eigenpair (ṽ, λ̃) predictions, we use the following metric:

Residual Error = ||Lṽ − λ̃ṽ||2. (33)

Here, ṽ represents the eigenfunction predicted by the model. When λ̃ is the true eigenvalue
and ṽ is the true eigenfunction, the Residual Error equals 0.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E ANALYSIS OF HYPERPARAMETERS

Model Depth:

Table 6: Consider the 2-dimensional Harmonic problem, with the fixed layer width of 20, and
compare the performance of SReNet at different model layers. Other experimental details are the
same as Appendix D.2.

Layer Index λ Absolute Error Residual

(v1, λ1) 1.02e-5 4.56e-3
(v2, λ2) 3.04e-2 2.56e+1
(v3, λ3) 6.76e-2 6.99e+13

(v4, λ4) 1.00e-1 2.12e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+14

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 4.36e-6 4.12e-3
(v2, λ2) 8.63e-1 3.12e+1
(v3, λ3) 1.98e+0 1.58e+35

(v4, λ4) 8.94e+1 2.09e+3

(v1, λ1) 1.06e-5 9.56e-3
(v2, λ2) 8.21e-1 2.00e+1
(v3, λ3) 1.17e+0 9.90e+36

(v4, λ4) 3.81e+1 7.53e+4

Model Width:

Table 7: Consider the 2-dimensional Harmonic problem, with the fixed layer depth of 3, and com-
pare the performance of SReNet at different model widths. Other experimental details are the same
as Appendix D.2.

Width Index λ Absolute Error Residual

(v1, λ1) 1.68e-6 1.26e-3
(v2, λ2) 3.82e-1 2.36e+0
(v3, λ3) 7.54e-1 1.20e+210

(v4, λ4) 1.71e-1 2.49e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+120

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 3.26e-5 2.25e-2
(v2, λ2) 1.50e+0 2.10e+1
(v3, λ3) 1.59e+0 8.21e+330

(v4, λ4) 3.52e+2 2.77e+5

(v1, λ1) 1.57e-5 2.06e-2
(v2, λ2) 2.67e+0 5.03e+1
(v3, λ3) 7.93e+1 5.76e+340

(v4, λ4) 1.50e+2 1.47e+4
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The Number of Points:

Table 8: Consider the 2-dimentional Harmonic problem and compare the performance of SReNet at
different number of points. Other experimental details are same Appendix D.2.

Number Index λ Absolute Error Residual

20000
(v1, λ1) 1.11e-5 3.19e-3
(v2, λ2) 1.25e+0 3.22e+0
(v3, λ3) 1.61e+0 1.27e+2

30000
(v1, λ1) 4.40e-5 7.09e-3
(v2, λ2) 3.58e-1 2.71e+0
(v3, λ3) 1.70e-1 5.62e+1

40000
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

50000
(v1, λ1) 4.94e-6 6.63e-3
(v2, λ2) 2.53e-1 2.46e+1
(v3, λ3) 3.73e-1 1.50e+3

The influence of model depth, model width, and the number of points on SReNet is illustrated in
Tables 6, 7, and 8, respectively. Experimental results indicate that SReNet is relatively unaffected
by changes in model depth and model width. However, it is significantly influenced by the number
of points, with performance improving as more points are used.
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