
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SRENET: SPECTRAL REFINED NETWORK FOR
SOLVING OPERATOR EIGENVALUE PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving operator eigenvalue problems helps analyze intrinsic data structures and
relationships, yielding substantial influence on scientific research and engineer-
ing applications. Recently, novel approaches based on deep learning have been
proposed to obtain eigenvalues and eigenfunctions from the given operator, which
address the efficiency challenge arising from traditional numerical methods. How-
ever, when solving top-L eigenvalues problems, these learning-based methods
ignore the information that could be inherited from other known eigenvectors,
thus resulting in a less-than-ideal performance. To address the challenge, we pro-
pose the Spectral Refined Network (SReNet). Our novel approach incorporates
the power method to approximate the top-L eigenvalues and their corresponding
eigenfunctions. To effectively prevent convergence to previous eigenfunctions,
we introduce the Deflation Projection that significantly improves the orthogonal-
ity of the computed eigenfunctions and enables more precise prediction of multi-
ple eigenfunctions simultaneously. Furthermore, we develop the adaptive filtering
method that dynamically leverages intermediate approximate eigenvalues to con-
struct rational filters that filter out predicted eigenvalues, when predicting the suc-
cessive eigenvalue of the given problem. During the iterative solving, the spectral
transformation is performed based on the filter function, converting the original
eigenvalue problem into an equivalent problem that is easier to converge. Exten-
sive experiments demonstrate that our approach consistently outperforms existing
learning-based methods, achieving state-of-the-art performance in accuracy.

1 INTRODUCTION

The operator eigenvalue problem is a prominent focus in many scientific fields (Elhareef & Wu,
2023; Buchan et al., 2013; Cuzzocrea et al., 2020; Pfau et al., 2023) and engineering applications
(Diao et al., 2023; Chen & Chan, 2000), where eigenvalues are commonly used to analyze the
fundamental geometric structures and relationships within data (Markovsky, 2012; Blum et al.,
2020). Traditional methods that solve operator eigenvalue problems typically involve two steps.
First, they apply numerical discretization methods to transform the operator into a matrix, such as
Finite Element Methods (FEM) (LeVeque, 2002). Then numerical linear algebra techniques are em-
ployed to solve the eigenvalues and eigenvectors of the given matrix, utilizing methods like Krylov-
Shur (Watkins, 2007; Liesen & Strakos, 2013) and the Locally Optimal Block Preconditioned Con-
jugate Gradient (LOBPCG) algorithm (Knyazev, 2001). These methods iteratively generate a sub-
space that approximates the invariant subspace of the matrix, allowing the original problem to be
solved within this subspace. However, traditional numerical methods are constrained by the curse of
dimensionality, as the computational complexity increases quadratically or even cubically with the
size of the matrix (Watkins, 2007). Furthermore, storing the iterative subspaces incurs significant
memory requirements when solving high-dimensional problems (Stewart, 2002).

A promising alternative is using neural networks to approximate eigenfunctions (Pfau et al., 2018).
These approaches replace the matrix representations with parametric nonlinear representations
through neural networks. By designing appropriate loss functions, it updates parameters to approx-
imate the desired operator eigenfunctions. These methods only require sampling specific regions
without designing discretization grids, significantly reducing the algorithm design cost and helping
mitigate unwanted approximation errors (He et al., 2022). Moreover, the parametric representation
of neural networks offers stronger expressive power than linear matrix representations, requiring

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ground Truth

 SReNet

Figure 1: Left: Comparison of the eigenfunctions of the 2D Harmonic operator computed by
SReNet and the Ground Truth. Right: Absolute error comparison of eigenvalues for the Schrödinger
oscillator operator computed using various algorithms, the x-axis represents the operator dimension.

far fewer sampling points for the same problem compared to traditional methods (Nguyen et al.,
2020). The memory overhead for these approaches depends only on the number of samples and the
neural network parameters, eliminating the need for explicit matrix and iterative subspace storage,
which significantly reduces memory costs in high-dimensional problems (Yang et al., 2023). Al-
though these learning-based methods have been proposed to effectively solve operator eigenvalue
problems, the numerical stability of these works is often influenced by the structure of the opera-
tor. The orthogonality of the predicted eigenfunctions and the spectral distribution of the operator
directly determine the convergence rate of the iterations, thereby constraining the reduction of the
loss function and ultimately affecting the accuracy of the solutions (Yang et al., 2023).

Inspired by the power methods (Golub & Van Loan, 2013), we propose a novel method, namely
Spectral Refined Network (SReNet), that uses the neural network to predict the top-L eigenvalues
and their eigenfunctions. SReNet takes the coordinates of sampling points as the input, while the
outputs of SReNet are the eigenvalues and their eigenfunctions. SReNet employs the power method
loss function as the guidance for iterative optimization. To prevent the predicted eigenfunctions
from converging towards known invariant subspaces, we introduce the deflation projection into the
loss function, which enhances the orthogonality and accuracy of the solved eigenfunctions. Fur-
thermore, we develop adaptive filter techniques that utilize intermediate approximate eigenvalues
to construct rational filters for transforming operator forms during the solution process, optimizing
their spectral distribution (eigenvalue distribution) for higher solving efficiency. Extensive exper-
iments demonstrate that SReNet significantly surpasses existing methods based on deep learning,
achieving state-of-the-art performance.

In summary, our contributions are as follows:

• We introduce a novel learning-based method based on power method concepts for solving
the top-L eigenvalues and their eigenfunctions of the differential operator.

• We employ the deflation projection that prevents convergence towards known invariant sub-
spaces, enhancing the multi-eigenvalue problem-solving. We also develop adaptive rational
filter techniques that utilize intermediate eigenvalues to accelerate the solution process and
achieve higher solving efficiency.

• We conduct extensive experiments to evaluate the effectiveness of our proposed methods,
achieving state-of-the-art precision across different operator eigenvalue problems.

2 PRELIMINARIES

2.1 OPERATOR EIGENVALUE PROBLEM

This paper primarily focuses on the eigenvalue problems of differential operators. Mathematically,
an operator L : H1 → H2 is a mapping between two Hilbert spaces, H1 and H2 (Kantorovich
& Akilov, 2014). If L is an operator acting on a Hilbert space H and v(x) ∈ H, the eigenvalue

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

problem can be formulated as:
Lv = λv, (1)

where v(x) is the eigenfunction associated with the eigenvalue λ (Evans, 2022). The primary in-
terest lies in determining the spectrum of operators, i.e., eigenvalues λ, and their corresponding
eigenfunctions v for L.

Partial differential operators are common in operator eigenvalue problems, frequently encountered
across scientific computing and engineering applications. Considering a self-adjoint operator L
defined on a domain Ω ⊂ RD, the operator eigenvalue problem can be expressed in the following
form (Davies, 2007): {

Lv = λv in Ω,

Bv = g on ∂Ω,
(2)

where Ω ⊆ RD serves as the domain, and L and B are differential operators acting within the interior
and on the boundary of Ω, respectively. The eigenpair (v, λ) consists of v(x), the eigenfunction
associated with the operator L, and λ, the corresponding eigenvalue. Typically, it is often necessary
to solve for multiple eigenpairs, (vi, λi), i = 1, . . . , L in applications such as obtaining energy basis
functions from the Hamiltonian operator in quantum chemistry (Kittel & McEuen, 2018; Grosso &
Parravicini, 2013; Hook & Hall, 2013) or modeling multiple acoustic modes (Shang, 1989; Mason,
2013; Thompson et al., 1991).

2.2 POWER METHOD

The power method is commonly used as the iterative algorithm for computing the largest eigen-
value and its corresponding eigenvector of the given matrix, particularly well-suited for large sparse
matrices. The power method employs successive matrix-vector multiplications to progressively con-
verge towards the largest eigenvector (Watkins, 2007). At the beginning, power method starts from a
random and non-zero initial vector x(0), and update the vector through the following iterative steps:

1. Iterative Update: Compute y(k) = Ax(k−1).

2. Normalization: Normalize by setting x(k) = y(k)

∥y(k)∥ .

3. Convergence Check: Repeat the process until x(k) and x(k−1) are close enough, or a pre-
defined number of iterations is reached.

The matrix eigenvalue problem can be considered as the operator eigenvalue problem with a finite-
dimensional linear operator. Assume |λ1| > |λ2| ≥ ... ≥ |λn|, where vi is the eigenvector corre-
sponding to λi. The power method constructs the following sequence:

{x(0),Ax(0),A2x(0), . . . ,Akx(0), . . . }. (3)

If
x(0) = a1v1 + a2v2 + · · ·+ anvn (4)

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 . (5)

This formula indicates several factors that affect the convergence speed of the power method. First,
the eigenvalue λ1 in Akx(0) is crucial. As iterations progress, the vector x(k) increasingly aligns
with v1. Secondly, the convergence rate is influenced by the ratio |λ1|/|λ2|; the larger the ratio, the
faster the convergence. Additionally, the idea of the power method is to iteratively calculate x(k) to
Ax(k), amplifying the impact of the largest eigenvalue λ1 through actions of matrix A, ultimately
solving for (v1, λ1). Our algorithm is derived from this idea. For more details of the power method,
we refer to Appendix B.1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 DEFLATION PROJECTION

The deflation technique plays a critical role in solving eigenvalue problems, particularly when deal-
ing with large-scale matrices or when multiple distinct eigenvalues need to be computed. Deflation
projection is an effective deflation strategy that utilizes known eigenvalues and corresponding eigen-
functions to modify the structure of the matrix, thereby simplifying the computation of remaining
eigenvalues (Saad, 2011; Kressner, 2005; Watkins, 2007; Arbenz et al., 2012).

The essence of deflation projection lies in constructing a projection matrix P , typically v1v
⊤
1 , where

v1 is a known eigenvector. This projection matrix allows to modify the original matrix A to a
new matrix B = A − λ1P . In matrix B, the eigenvalue λ1 corresponding to eigenvector v1 is
effectively removed (or set to zero) from A. We provide more details about deflation projection in
the Appendix B.2.

2.4 FILTERING TECHNIQUE

The filtering technique is employed in numerical linear algebra to accelerate the solution of eigen-
value problems for large matrices (Saad, 2011). The core of this technique involves constructing
suitable filter functions F (A) to achieve a spectral transformation of the matrix A. This spectral
transformation helps optimize the spectral distribution of the matrix without altering the eigenvec-
tors, thereby making the target eigenvalues more prominent in the transformed spectrum and easier
to obtain (Watkins, 2007; Li et al., 2019).

The spectral transformation essentially applies a function transformation to the matrix. These func-
tions, such as polynomials or rational functions, are designed to amplify the important part of the
matrix (the eigenvalues we care about) and suppress the unnecessary ones (Fang & Saad, 2012;
Winkelmann et al., 2019), thus we call it ”filtering”. The filter reduces the influence of irrelevant
eigenvalues, making it easier to converge on the target eigenvalues (Miao, 2019; Miao & Wu, 2021).
We provide more details about filtering technique in the Appendix B.3.

3 METHOD

3.1 PROBLEM FORMULATION

We consider the operator eigenvalue problem for a differential operator L defined on a domain
Ω ⊂ RD. Our goal is to compute the top-L eigenfunctions vi of L, along with their corresponding
eigenvalues λi, satisfying Lvi = λivi, i = 1, 2, . . . , L. We employ neural networks NNL(θi)
parameterized by θi. Each neural network maps the domain Ω into the real space R, approximating
the eigenfunctions vi:

NNL(·; θi) : Ω → R, i = 1, 2, . . . , L. (6)
We discretize the domain by uniform random sampling N point set

S ≡ {xj = (x1j , . . . , x
D
j) | xj ∈ Ω, j = 1, 2, . . . , N}, (7)

which makes up an N × D matrix Xinput. This matrix serves as the input to the neural networks
NNL(θi). The networks output L vectors Yi ∈ RN , representing the approximate values of the
eigenfunctions ṽi(·) = NNL(·; θi) at these sampled points:

ṽi(xj) ≡ Yi(j), i = 1, 2, . . . , L, j = 1, 2, . . . , N. (8)

The eigenvalues λ̃i are obtained by applying the operator L to the computed eigenfunctions ṽi:

λ̃i ≡
ṽ⊤i Lṽi
ṽ⊤i ṽi

, i = 1, 2, . . . , L. (9)

We iteratively update the neural network parameters θi using gradient descent, aiming to minimize
the overall residual. The optimization problem is formulated as:

min
θi∈Θ

1

N

L∑
i=1

N∑
j=1

[ṽi(xj)− vi(xj)]
2, (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Deflation Projection

Filter Function

SReNet

eigenpair

differential operator

sampling points

filter functions

Spectral
Refinement

Network

deflation projection (a) (b)

Figure 2: Overview of the SReNet. (a) Introduction to the inputs and outputs. (b) The SReNet
comprises multiple neural networks, each tasked with predicting distinct eigenfunctions and eigen-
values. By employing filter functions and deflation projection, the algorithm integrates previously
computed eigenfunctions and eigenvalues into the loss function.

where Θ denotes the parameter space of the neural networks. This approach does not require any
training data, as it relies solely on satisfying the differential operator eigenvalue equations over the
domain Ω. However, the vi(xj) is unknown, so we need to generate a ũk+1

i (xj) as the fitting of
vi(xj) by the output of the model and corresponding operator.

3.2 SPECTRAL REFINED NETWORK

SReNet learns to solve the operator eigenvalue problem by iterative optimization, which takes sam-
pled points as the inputs, and outputs the eigenfunction. And the neural network in SReNet param-
eterized by parameters θi predicts the i-th eigenfunction vi. To enhance the convergence speed and
prediction accuracy, SReNet employs Deflation Projection and Filter Function for training, which
are common spectral refinement techniques. Figure 2 shows the overview of SReNet.

Supposing that at the k-th iteration, the output of SReNet is Y k
i (j) as the i-th eigenfunction, where

θki represents the parameters of the neural network at k-th iteration,

ṽki (x) ≡ NNL(x; θ
k
i), x ∈ Ω, ṽki (xj) = NNL(xj ; θ

k
i) = Y k

i (j), xj ∈ S, j = 1, . . . , N. (11)

In particular, SReNet employs the Multi Layer Perceptron (MLP) as NNL(·; θi) for eigenfunction
prediction. Learning the i-th eigenfunction of a given operator requires updating the neural network
to minimize the objection function in (10). Previous works, like (Yang et al., 2023), suggest that
optimizing the loss function derived from the power method helps the eigenfunction prediction. The
derivative loss function is defined as follows:

LossPM
L (xj , θ

k
i) =

1

N

N∑
j=1

[
ṽki (xj)− ũk+1

i (xj)
]2
, ũk+1

i (xj) =
Lṽki (xj)

∥Lṽki (xj)∥
. (12)

For ease of reference, we use PM Loss to indicate the loss function in Eq (12). As suggested in
Eq (12), we update the parameters of SReNet by iterative optimization. This is inspired by the
power method that takes iterative steps to solve the eigenvalue problem. But we uses Automatic
Differentiation (AD) to compute Lṽki (xj), which is the action of the operator L on ṽki . For example,
consider the operator Lu = α∆u + β · ∇u, where α is a constant and β is a constant vector. The
operator L acting on the neural network output ṽki (x) can be expressed as:

Lṽki (x) = α∆NNL(x; θ
k
i) + β · ∇NNL(x; θ

k
i), (13)

where

∇NNL(x; θ
k
i) =

[
∂NNL(x; θ

k
i)

∂x1
, . . . ,

∂NNL(x; θ
k
i)

∂xD

]
, (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

∆NNL(x; θ
k
i) =

D∑
d=1

∂2NNL(x; θ
k
i)

∂xd
2 . (15)

Both the gradient ∇ and the Laplacian ∆ are computed using AD rather than numerical differentia-
tion. This approach allows SReNet to effectively compute the Lṽki (xj).

Furthermore, as illustrated in Figure 2, we introduce Deflation Projection and Filter Function
Fi(·) into the PM Loss to handle multiple eigenvalues problem and improve convergence speed. It
is achieved by replacing the operator L used for calculating Lṽki (xj) in PM Loss. Specifically, the
PM Loss for the i-th eigenfunction is LossPM

L′
i

, where

L′
i = Fi(Lde

i), (16)

and
Fi(L) ≡ (L − λ̃iI)

−1, Lde
i ≡ L−Qi−1Σi−1Q

⊤
i−1. (17)

Here,Qi and Σi are operators representing the previously computed eigenfunctions and eigenvalues,
I is the identity operator and λ̃i is the current approximation of the i-th eigenvalue. In the following
sections, we will provide a detailed explanation of the implementation of these two components. For
details of SReNet, please see the pseudocode in Appendix C.

3.3 DEFLATION PROJECTION

PM Loss helps the neural networks converge to the eigenfunction associated with the largest eigen-
value of the given operator. However, it does not enforce orthogonality between different eigenfunc-
tions, making it difficult to accurately compute multiple eigenfunctions.

Suppose we have already predicted i−1 eigenvalues λ̃1, λ̃2, . . . , λ̃i−1 and their corresponding eigen-
functions ṽ1, ṽ2, . . . , ṽi−1. To find the i-th eigenfunction, we aim to search within the residual sub-
space orthogonal to the previously computed eigenfunctions. To achieve this, we apply deflation
projection to the operator L:

Lde
i ≡ L−Qi−1Σi−1Q

⊤
i−1, (18)

where
Qi−1 = [ṽ1|ṽ2| . . . |ṽi−1], Σi−1 = diag(λ̃1, λ̃2, . . . , λ̃i−1). (19)

Here, the operator Qi−1 includes previously computed eigenfunctions as its columns and can be
considered a matrix in RN×(i−1). The operator Σi−1 represents a diagonal matrix of corresponding
eigenvalues in R(i−1)×(i−1). This yields the corresponding loss function:

LossPM
Lde

i
(xj , θ

k
i) =

1

N

N∑
j=1

[
ṽki (xj)− ũk+1

i (xj)
]2
, ũk+1

i (xj) =
Lde
i ṽki (xj)

∥Lde
i ṽki (xj)∥

, (20)

By employing the deflation projection, the gradient descent search space of the neural network is
constrained to be orthogonal to the subspace spanned by {ṽ1, ṽ2, . . . , ṽi−1}. This approach prevents
the neural network output NNL(θi) from converging to the invariant subspace formed by known
eigenfunctions, thereby enhancing the orthogonality among the outputs of different neural networks
NNL(θ1), . . . , NNL(θi−1) . On one hand, this reduction in the search space accelerates the con-
vergence toward the eigenfunctions vi; On the other hand, it improves the orthogonality among the
neural network outputs, which reduces the error in predicting the eigenfunction ṽi.

In practice, we use the previously computed eigenvalues and eigenfunctions with the lowest approx-
imation errors to construct the loss with deflation projection. This allows us to adaptively update the
deflation operator, ensuring the method remains effective as more eigenfunctions are computed.

3.4 FILTER FUNCTION

In practice, we are typically interested in eigenvalues within a specific interval rather than solely the
largest eigenvalue. Furthermore, the presence of larger eigenvalues can affect the convergence speed
of the current eigenvalue calculations. These problems encourage us to employ another effective
method, which enables SReNet to predict the eigenvalues we are interested at while suppressing the
effects from large eigenvalues.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The filtering function is one of the choices, as it filters out the eigenvalues we don’t need while
amplifying the eigenvalues we want. In the iterative solving process of SReNet, we can obtain
approximate eigenvalues λ̃i, i = 1, . . . , L. Using these approximate eigenvalues λ̃i, we adaptively
design filter functions Fi(·) to focus the operator’s spectrum around the desired eigenvalue λ̃i. By
amplifying the magnitude of eigenvalue λ̃i, the filter function Fi(·) accelerates the convergence
speed of the neural network toward λ̃i. The filter function Fi(·) can take various forms. In SReNet,
to compute the i-th eigenpair (vi, λi), we adopt the following rational function form:

Fi(L) ≡ (L − λ̃iI)
−1, (21)

where I is the identity operator. If we simultaneously apply deflation projection, the transformed
operator L′

i can be expressed as:

L′
i = Fi(Lde

i) = Fi

(
L −Qi−1Σi−1Q

⊤
i−1

)
=
(
L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI

)−1

.
(22)

However, due to the presence of the inverse of the operator in the filter function Fi(L), the trans-
formed operator L′

i involves inverse computations, making it impossible to directly apply the previ-
ous power method loss template for forward iterations. To address this issue, we design the loss in
the following inverse iteration form:

LossPM
L′

i
(θki) =

1

N

N∑
j=1

[
ṽk−1
i (xj)− ũki (xj)

]2
, (23)

ũki (xj) =
L′
iṽ

k
i (xj)∥∥L′

iṽ
k
i (xj)

∥∥ , L′
i = L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI. (24)

By adaptively adjusting the parameters of the filter function based on known approximate eigenval-
ues, we can improve computational efficiency. This loss function effectively amplifies the eigenval-
ues near λ̃i, which enhances the process of solving for the i-th eigenpair (vi, λi) .

When we do not use deflation projection to optimize the loss, we can also adopt the following form
of the filter function:

Fi(L) =
i−1∏
i0=0

(
L − λ̃i0I

)
·
(
L − λ̃iI

)−1

. (25)

The filter function can be modified according to specific requirements, such as using Chebyshev
polynomial filters. In this paper, we primarily adopt the filter function in Eq (21) for our experiments.

4 EXPERIMENTS

We conducted comprehensive experiments to evaluate SReNet, focusing on:

• Solving top-L operator eigenvalues in the Harmonic eigenvalue problem.

• Solving the principal eigenvalue in the Schrödinger oscillator equation.

• Solving zero eigenvalue in the Fokker-Planck equation.

• The ablation study.

Baselines: For this experiment, we selected three learning-based methods for computing operator
eigenvalues as our baselines: 1. PMNN (Yang et al., 2023); 2. NeuralEF (Deng et al., 2022); 3.
NeuralSVD (Ryu et al., 2024). For introductions to related work, see Appendix A.

Experiment Settings: To ensure consistency, all experiments were conducted under the same com-
putational conditions. For further details on the experimental environment and parameters, please
refer to Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 HARMONIC EIGENVALUE PROBLEM

Harmonic eigenvalue problems are common in fields such as structural dynamics and acoustics, and
can be mathematically expressed as follows (Yang et al., 2023; Morgan & Zeng, 1998):{

−∆v = λv, in Ω,

v = 0, on ∂Ω.
(26)

Here ∆ denotes the Laplacian operator. We consider the domain Ω = [0, 1]D whereD represents the
dimension of the operator, and the boundary conditions are Dirichlet. In this setting, the eigenvalue
problem has analytical solutions, with eigenvalues and corresponding eigenfunctions given by:

λn1,...,nD
= π2

D∑
k=1

n2k, un1,...,nD
(x1, . . . , xk) =

D∏
k=1

sin(nkπxk), nk ≥ 1. (27)

To validate our algorithm’s capability to compute top-L eigenvalues in both low and high-
dimensional settings, our experiments aim to calculate the first four eigenvalues of the Harmonic
operator in 1, 2 and 5 dimensions. Since the PMNN model only computes the principal eigen-
value and cannot compute multiple eigenvalues simultaneously, it is not considered for comparison.
NeuralEF, due to cumulative errors in its iterative orthogonalization process, experiences numerical
instability in 2 and 5 dimensions, thus no data is available for these dimensions.

Table 1: Absolute error comparison for eigenvalues of Harmonic operators across algorithms. The
first row lists the algorithms, the second row lists eigenvalue indexs and the first column lists the
operator dimensions. The most accurate method is in bold.

Method
NeuralEF NeuralSVD SReNet

λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

Dim = 1 1.4e-1 2.9e+1 7.9e+1 1.4e+2 1.0e-1 4.1e+1 1.0e+0 1.4e+2 6.3e-10 1.7e+0 6.3e-1 1.6e+1
Dim = 2 - - - - 5.5e-2 2.1e-1 1.5e-1 2.6e+1 1.0e-5 3.0e-2 6.8e-2 1.0e-1
Dim = 5 - - - - 2.5e-1 2.9e+1 2.9e+1 2.9e+1 2.3e-4 9.5e-5 6.2e-5 1.3e-3

Table 2: Residual comparison for eigenpairs of SReNet and NeuralSVD for solving 5-dimensional
Harmonic operator eigenvalue problems. The first row indicates the eigenpair index.

Index (v1, λ1) (v2, λ2) (v3, λ3) (v4, λ4)

NeuralSVD 5.924e+0 5.920e+0 5.921e+0 5.920e+0
SReNet 4.864e-4 3.060e-3 5.980e-3 4.447e-3

Firstly, as demonstrated in Table 1, SReNet significantly outperforms existing methods across all
tasks, with precision improvements reaching up to nine orders of magnitude. This enhancement pri-
marily stems from the deflation projection. It effectively excludes solved invariant subspaces during
the multi-eigenvalue solution process, thereby preserving the accuracy of multiple eigenvalues. This
strongly validates the efficacy of our algorithm.

Secondly, in 5 dimension, SReNet consistently maintains a precision improvement of at least three
orders of magnitude. As shown in Table 2, this is largely due to the SReNet computed eigenpairs
having smaller residuals (defined as ||Lv − λv||2), indicating that SReNet can effectively solve for
accurate eigenvalues and eigenfunctions simultaneously.

Additionally, Table 1 reveals that in the process of solving multiple eigenvalues, the errors for sub-
sequent eigenvalues tend to be significantly higher than those for earlier ones. NeuralEF and Neu-
ralSVD exhibit relatively stable error change, and But SReNet shows fluctuations (for instance,
errors for λ2 and λ3 at dimension five are smaller than those for λ1). This variability primarily
arises because NeuralEF and NeuralSVD employ a uniform grid to acquire data points, whereas
SReNet uses uniform random sampling. In high-dimensional problems, a uniform grid requires the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

number of sampling points to satisfy an exponential form numD, where num is a grid number per
dimension and D is the operator dimension. However, uniform random sampling does not have this
restriction.

4.2 SCHRÖDINGER OSCILLATOR EQUATION

The Schrödinger oscillator equation is a common problem in quantum mechanics, and its time-
independent form is expressed as follows (Ryu et al., 2024; Griffiths & Schroeter, 2018):

−1

2
∆ψ + V ψ = Eψ, in Ω = [0, 1]D, (28)

where ψ is the wave function, ∆ represents the Laplacian operator indicating the kinetic energy
term, V is the potential energy within Ω, and E denotes the energy eigenvalue. This equa-
tion is formulated in natural units, simplifying the constants involved. Typically, the potential
V (x1, . . . , xd) = 1

2

∑d
k=1 x

2
k characterizes a multidimensional quadratic potential. The principal

eigenvalue and corresponding eigenfunction are given by:

E0 =
d

2
, ψ0(x1, . . . , xd) =

d∏
k=1

(
1

π

) 1
4

e−
x2
k
2 , (29)

To validate our algorithm’s capability in computing the principal eigenvalues in both low and high
dimensions, this experiment focuses on calculating the ground states of the Schrödinger equation in
one, two, and five dimensions, i.e. the smallest principal eigenvalues.

Table 3: Absolute error comparison for the principal eigenvalues of oscillator operators across algo-
rithms. The first column lists the operator dimensions. The most accurate method is in bold.

Method PMNN NeuralEF NeuralSVD SReNet

Dim = 1 1.17e-6 2.57e-2 2.53e-2 3.62e-7
Dim = 2 9.07e-5 7.55e-2 4.01e-1 2.35e-6
Dim = 5 3.92e-1 3.97e-1 4.37e+0 3.23e-1

Firstly, as shown in Table 3, the SReNet algorithm achieves significantly higher precision than ex-
isting algorithms in computing the principal eigenvalues of the oscillator operator. Furthermore, the
accuracy of SReNet surpasses that of PMNN. Both are designed based on the concept of the power
method. When solving for the principal eigenvalue, the deflation projection loss may be considered
inactive. This outcome suggests that the filter function significantly enhances the accuracy.

4.3 FOKKER-PLANCK EQUATION

The Fokker-Planck equation is central to statistical mechanics and is extensively applied across
diverse fields such as thermodynamics, particle physics, and financial mathematics (Yang et al.,
2023; Jordan et al., 1998; Frank, 2005). It can be mathematically formulated as follows:

−∆v − V · ∇v −∆V v = λv, in Ω = [0, 2π]D, (30)

where the potential V (x) = sin
(∑d

i=1 ci cos(xi)
)

is a potential function with each coefficient ci
varying within [0.1, 1], λ the eigenvalue, and v the eigenfunction. When the boundary conditions
are periodic, the smallest eigenvalue is λ = 0, with the associated eigenfunction described by:

v(x) = e−V (x). (31)

The eigenvalue at zero significantly impacts the numerical stability of the algorithm during iterative
processes. To validate our algorithm’s performance when the eigenvalue is zero, we compute the
principal eigenvalues of the one and two dimensional Fokker-Planck equation as cases.

As indicated in Table 4, the SReNet algorithm significantly outperforms existing methods in com-
puting the zero eigenvalues of the Fokker-Planck operator, effectively solving for cases where the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Absolute error comparison for the principal eigenvalues of Fokker-Planck operators across
algorithms. The first column lists the operator dimensions. The most accurate method in bold.

Method PMNN NeuralEF NeuralSVD SReNet

Dim = 1 8.60e-1 5.21e-1 2.73e-1 5.27e-2
Dim = 2 8.30e-1 8.45e-1 2.75e-1 1.03e-1

eigenvalue is zero. It is mainly due to the filter function, which performs a spectral transformation
on the operator, converting the zero eigenvalue into other eigenvalues that are easier to calculate
without changing the eigenvector. However, compared to the experimental results for the Harmonic
and quantum harmonic oscillator equations, the performance with the Fokker-Planck Equation is
less favorable. This is primarily due to the oscillatory nature of the eigenfunctions, which presents
greater challenges for neural network approximation.

4.4 ABLATION EXPERIMENTS

Table 5: Comparison of different settings of SReNet for the 2-dimensional Harmonic eigenvalue
problem. ”*” means SReNet without deflation projection and filter function.

Index λ Absolute Error Residual

SReNet

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

SReNet∗
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e+1 7.09e-3
(v3, λ3) 2.97e+1 1.09e-2

We conducted ablation experiments further to validate the performance of deflation projection and
filter function. The results of the ablation experiments are shown in Table 5. The results indicate
that the absence of deflation projection and projection has a significant impact on the prediction
of eigenvalues. Without them, SReNet∗ is unable to eliminate the influence of previously solved
eigenfunctions, resulting in the calculation being limited to the first eigenpair only. The residuals
indicate that the second and third eigenpairs computed by SReNet∗ are actually identical to the first.
In addition, experiments detailing the performance of SReNet as a function of model depth, model
width, and the number of points can be found in Appendix E.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced SReNet, a learning-based method designed for solving operator eigen-
value problems. Our experiments demonstrate that SReNet achieves the highest accuracy compared
to existing algorithms across a variety of operator eigenvalue problems. For future works, there are
several key areas worth mentioning: 1. Algorithm optimization for specific operator structures, such
as selecting more suitable deflation projections and filter functions based on the structure of the op-
erator. 2. Designing better point distribution strategies, for example, adapting point placement based
on boundary conditions and residual distribution. 3. Integrating other computational mathematics
techniques to optimize the iterative process, such as incorporating matrix preconditioning technolo-
gies. We believe that neural network-based algorithms for solving operator eigenvalue problems
hold tremendous potential for real-world applications and represent a crucial direction for future
development.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 CODE OF ETHICS AND ETHICS STATEMENT

This paper adheres to the ICLR Code of Ethics. The study aims to develop a more accurate learning-
based method for solving operator eigenvalue problems. It does not involve human subjects, per-
sonal data, or sensitive information that could raise concerns regarding privacy, security, or fairness.
Additionally, no potential conflicts of interest, legal compliance issues, or harmful applications were
identified in this research.

7 REPRODUCIBILITY

To ensure reproducibility, we have included essential codes in the supplementary materials, covering
dataset generation, the algorithm’s source code, and performance evaluation scripts. However, it
should be noted that the current version of the code lacks proper structure. If this paper is accepted,
we are committed to reorganizing the code for better clarity. Additionally, Appendix C contains
pseudocode for our algorithm. Furthermore, Appendix D contains a detailed description of our
experimental setups.

REFERENCES

Peter Arbenz, Daniel Kressner, and DME Zürich. Lecture notes on solving large scale eigenvalue
problems. D-MATH, EHT Zurich, 2(3):377, 2012.

Amartya S Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E Pask. Chebyshev polynomial fil-
tered subspace iteration in the discontinuous galerkin method for large-scale electronic structure
calculations. The Journal of chemical physics, 145(15), 2016.

Ido Ben-Shaul, Leah Bar, and Nir Sochen. Solving the functional eigen-problem using neural net-
works. arXiv preprint arXiv:2007.10205, 2020.

Ido Ben-Shaul, Leah Bar, Dalia Fishelov, and Nir Sochen. Deep learning solution of the eigenvalue
problem for differential operators. Neural Computation, 35(6):1100–1134, 2023.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science. Cambridge
University Press, 2020.

AG Buchan, CC Pain, F Fang, and IM Navon. A pod reduced-order model for eigenvalue problems
with application to reactor physics. International Journal for Numerical Methods in Engineering,
95(12):1011–1032, 2013.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

Q Chen and YW Chan. Integral finite element method for dynamical analysis of elastic–viscoelastic
composite structures. Computers & Structures, 74(1):51–64, 2000.

Kenny Choo, Antonio Mezzacapo, and Giuseppe Carleo. Fermionic neural-network states for ab-
initio electronic structure. Nature communications, 11(1):2368, 2020.

Alice Cuzzocrea, Anthony Scemama, Wim J Briels, Saverio Moroni, and Claudia Filippi. Variational
principles in quantum monte carlo: The troubled story of variance minimization. Journal of
chemical theory and computation, 16(7):4203–4212, 2020.

E Brian Davies. Linear operators and their spectra, volume 106. Cambridge University Press, 2007.

Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep neural networks.
In International Conference on Machine Learning, pp. 4976–4992. PMLR, 2022.

Huaian Diao, Hongjie Li, Hongyu Liu, and Jiexin Tang. Spectral properties of an acoustic-elastic
transmission eigenvalue problem with applications. Journal of Differential Equations, 371:629–
659, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mohamed H Elhareef and Zeyun Wu. Physics-informed neural network method and application to
nuclear reactor calculations: A pilot study. Nuclear Science and Engineering, 197(4):601–622,
2023.

Michael T Entwistle, Zeno Schätzle, Paolo A Erdman, Jan Hermann, and Frank Noé. Electronic
excited states in deep variational monte carlo. Nature Communications, 14(1):274, 2023.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Haw-Ren Fang and Yousef Saad. A filtered lanczos procedure for extreme and interior eigenvalue
problems. SIAM Journal on Scientific Computing, 34(4):A2220–A2246, 2012.

Till Daniel Frank. Nonlinear Fokker-Planck equations: fundamentals and applications. Springer
Science & Business Media, 2005.

Leon Gerard, Michael Scherbela, Philipp Marquetand, and Philipp Grohs. Gold-standard solutions
to the schrödinger equation using deep learning: How much physics do we need? Advances in
Neural Information Processing Systems, 35:10282–10294, 2022.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

David J Griffiths and Darrell F Schroeter. Introduction to quantum mechanics. Cambridge university
press, 2018.

Giuseppe Grosso and Giuseppe Pastori Parravicini. Solid state physics. Academic press, 2013.

Jiequn Han, Jianfeng Lu, and Mo Zhou. Solving high-dimensional eigenvalue problems using deep
neural networks: A diffusion monte carlo like approach. Journal of Computational Physics, 423:
109792, 2020.

Cuiyu He, Xiaozhe Hu, and Lin Mu. A mesh-free method using piecewise deep neural network
for elliptic interface problems. Journal of Computational and Applied Mathematics, 412:114358,
2022.

Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
schrödinger equation. Nature Chemistry, 12(10):891–897, 2020.

Jan Hermann, James Spencer, Kenny Choo, Antonio Mezzacapo, W Matthew C Foulkes, David
Pfau, Giuseppe Carleo, and Frank Noé. Ab initio quantum chemistry with neural-network wave-
functions. Nature Reviews Chemistry, 7(10):692–709, 2023.

John R Hook and Henry Edgar Hall. Solid state physics. John Wiley & Sons, 2013.

Henry Jin, Marios Mattheakis, and Pavlos Protopapas. Physics-informed neural networks for quan-
tum eigenvalue problems. In 2022 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE, 2022.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Leonid Vitalevich Kantorovich and Gleb Pavlovich Akilov. Functional analysis. Elsevier, 2014.

Charles Kittel and Paul McEuen. Introduction to solid state physics. John Wiley & Sons, 2018.

Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541,
2001.

Walter Kohn. Nobel lecture: Electronic structure of matter—wave functions and density functionals.
Reviews of Modern Physics, 71(5):1253, 1999.

Daniel Kressner. Structured eigenvalue problems. Numerical Methods for General and Structured
Eigenvalue Problems, pp. 131–214, 2005.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Randall J LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge univer-
sity press, 2002.

Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues slicing library (evsl):
Algorithms, implementation, and software. SIAM Journal on Scientific Computing, 41(4):C393–
C415, 2019.

Jörg Liesen and Zdenek Strakos. Krylov subspace methods: principles and analysis. Numerical
Mathematics and Scie, 2013.

Ivan Markovsky. Low rank approximation: algorithms, implementation, applications, volume 906.
Springer, 2012.

Warren P Mason. Physical acoustics: principles and methods. Academic press, 2013.

Cun-Qiang Miao. Filtered krylov-like sequence method for symmetric eigenvalue problems. Nu-
merical Algorithms, 82(3):791–807, 2019.

Cun-Qiang Miao and Wen-Ting Wu. On relaxed filtered krylov subspace method for non-symmetric
eigenvalue problems. Journal of Computational and Applied Mathematics, 398:113698, 2021.

Ronald B Morgan and Min Zeng. Harmonic projection methods for large non-symmetric eigenvalue
problems. Numerical linear algebra with applications, 5(1):33–55, 1998.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

Beresford N Parlett and William G Poole, Jr. A geometric theory for the qr, lu and power iterations.
SIAM Journal on Numerical Analysis, 10(2):389–412, 1973.

David Pfau, Stig Petersen, Ashish Agarwal, David GT Barrett, and Kimberly L Stachenfeld. Spectral
inference networks: Unifying deep and spectral learning. arXiv preprint arXiv:1806.02215, 2018.

David Pfau, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. Ab initio
solution of the many-electron schrödinger equation with deep neural networks. Physical review
research, 2(3):033429, 2020.

David Pfau, Simon Axelrod, Halvard Sutterud, Ingrid von Glehn, and James S Spencer. Natural
quantum monte carlo computation of excited states. arXiv preprint arXiv:2308.16848, 2023.

J Jon Ryu, Xiangxiang Xu, HS Erol, Yuheng Bu, Lizhong Zheng, and Gregory W Wornell. Operator
svd with neural networks via nested low-rank approximation. arXiv preprint arXiv:2402.03655,
2024.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

Pablo Salas, Luc Giraud, Yousef Saad, and Stéphane Moreau. Spectral recycling strategies for the
solution of nonlinear eigenproblems in thermoacoustics. Numerical Linear Algebra with Appli-
cations, 22(6):1039–1058, 2015.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

EC Shang. Ocean acoustic tomography based on adiabatic mode theory. The Journal of the Acous-
tical Society of America, 85(4):1531–1537, 1989.

Gilbert W Stewart. A krylov–schur algorithm for large eigenproblems. SIAM Journal on Matrix
Analysis and Applications, 23(3):601–614, 2002.

Michael Thompson, Arlin L Kipling, Wendy C Duncan-Hewitt, Ljubinka V Rajaković, and Bil-
jana A Čavić-Vlasak. Thickness-shear-mode acoustic wave sensors in the liquid phase. a review.
Analyst, 116(9):881–890, 1991.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Roel Van Beeumen. Rational krylov methods for nonlinear eigenvalue problems, 2015.

David S Watkins. The matrix eigenvalue problem: GR and Krylov subspace methods. SIAM, 2007.

James Hardy Wilkinson. Convergence of the lr, qr, and related algorithms. The Computer Journal,
8(1):77–84, 1965.

Jan Winkelmann, Paul Springer, and Edoardo Di Napoli. Chase: Chebyshev accelerated subspace it-
eration eigensolver for sequences of hermitian eigenvalue problems. ACM Transactions on Math-
ematical Software (TOMS), 45(2):1–34, 2019.

Qihong Yang, Yangtao Deng, Yu Yang, Qiaolin He, and Shiquan Zhang. Neural networks based on
power method and inverse power method for solving linear eigenvalue problems. Computers &
Mathematics with Applications, 147:14–24, 2023.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Recent advancements in applying neural networks to eigenvalue problems have shown promising
results. Innovations such as Spectral Inference Networks (SpIN) (Pfau et al., 2018), which models
eigenvalue problems as kernel problem optimizations solved via neural networks. Neural Eigenfunc-
tions (NeuralEF) (Deng et al., 2022), which significantly reduces computational costs by optimizing
the costly orthogonalization steps, are noteworthy. Neural Singular Value Decomposition (Neu-
ralSVD) employs truncated singular value decomposition for low-rank approximation to enhance
the orthogonality required in learning functions (Ryu et al., 2024).

Another class of algorithms originates from optimizing the Rayleigh quotient. The Deep Ritz
Method (DRM) utilizes the Rayleigh quotient for computing the smallest eigenvalues, demonstrating
significant potential (Yu et al., 2018). Several studies have employed the Rayleigh quotient to con-
struct variation-free functions, achieved through Physics-Informed Neural Networks (PINNs) (Ben-
Shaul et al., 2023; 2020). Extensions of this approach include enhanced loss functions with reg-
ularization terms to improve the learning accuracy of the smallest eigenvalues (Jin et al., 2022).
Additionally, Han et al. (2020) reformulate the eigenvalue problem as a fixed-point problem of the
semigroup flow induced by the operator, solving it using the diffusion Monte Carlo method. The
Power Method Neural Network (PMNN) integrates the power method with PINNs, using an iter-
ative process to approximate the exact eigenvalues (Yang et al., 2023) closely. While PMNN has
proven effective in solving for a single eigenvalue (Yang et al., 2023), it has yet to be developed for
computing multiple distinct eigenvalues simultaneously.

Furthermore, in the field of computational chemistry, research on specialized model architec-
tures for specific operators, such as the Hamiltonian, focuses on developing novel neural network
ansatzes (Carleo & Troyer, 2017; Schütt et al., 2017; Choo et al., 2020; Pfau et al., 2020; Hermann
et al., 2020; Gerard et al., 2022; Hermann et al., 2023). These architectures are designed to embed
physical inductive biases better, enhancing expressivity. Additionally, there are studies employing
neural networks for Quantum Monte Carlo (QMC) methods to tackle related problems in quantum
chemistry (Cuzzocrea et al., 2020; Entwistle et al., 2023; Pfau et al., 2023). Operators in specific
scientific domains often exhibit unique structures and are associated with prior knowledge. One
of our future research directions is to optimize our algorithm based on this information to achieve
better performance in these tasks.

B BACKGROUND KNOWLEDGE AND RELEVANT ANALYSIS

B.1 CONVERGENCE ANALYSIS OF THE POWER METHOD

Suppose A ∈ Rn×n and V −1AV = diag(λ1, . . . , λn) with V = [v1 · · · vn]. Assume that
|λ1| > |λ2| ≥ · · · ≥ |λn|. The pseudocode for the power method is shown below (Golub &
Van Loan, 2013):

Algorithm 1: Power method for finding the largest principal eigenvalue of the matrix A

1 Given A ∈ Rn×n an n× n matrix, an arbitrary unit vector x(0) ∈ Rn, the maximum number
of iterations kmax, and the stopping criterion ϵ.

2 for k = 1, 2, . . . , kmax do
3 Compute y(k) = Ax(k−1).

4 Normalize x(k) = y(k)

∥y(k)∥ .

5 Compute the difference δ = ∥x(k) − x(k−1)∥.
6 if δ < ϵ then
7 Record the largest principal eigenvalue using the Rayleigh quotient,

λ(k) =
⟨x(k),Ax(k)⟩
⟨x(k),x(k)⟩

.

The stopping criterion is met, the iteration can be stopped.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Let us examine the convergence properties of the power iteration. If

x(0) = a1v1 + a2v2 + · · ·+ anvn

and v1 ̸= 0, then

Akx(0) = a1λ
k
1

v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k

vj

 .

Since x(k) ∈ span{Akx(0)}, we conclude that

dist
(

span{x(k)}, span{v1}
)
= O

((
λ2
λ1

)k
)
.

It is also easy to verify that

|λ1 − λ(k)| = O

((
λ2
λ1

)k
)
.

Since λ1 is larger than all the other eigenvalues in modulus, it is referred to as the largest princi-
pal eigenvalue. Thus, the power method converges if λ1 is the largest principal and if x(0) has a
component in the direction of the corresponding dominant eigenvector x1 (Parlett & Poole, 1973;
Wilkinson, 1965).

In practice, the effectiveness of the power method largely depends on the ratio |λ2|/|λ1|, as this ratio
determines the convergence rate. Therefore, applying specific spectral transformations to the matrix
to increase this ratio can significantly accelerate the convergence of the power method.

B.2 DEFLATION PROJECTION DETAILS

Consider the scenario where we have determined the largest modulus eigenvalue, λ1, and its cor-
responding eigenvector, v1, utilizing an algorithm such as the power method. These algorithms
consistently identify the eigenvalue of the largest modulus from the given matrix along with an as-
sociated eigenvector. We ensure that the vector v1 is normalized such that ∥v1∥2 = 1. The task
then becomes computing the subsequent eigenvalue, λ2, of the matrix A. A traditional approach to
address this is through what is commonly known as a deflation procedure. This technique involves
a rank-one modification to the original matrix, aimed at shifting the eigenvalue λ1 while preserving
all other eigenvalues intact. The modification is designed in such a way that λ2 emerges as the
eigenvalue with the largest modulus in the adjusted matrix. Consequently, the power method can be
reapplied to this updated matrix to extract the eigenvalue-eigenvector pair λ2,v2.

When the invariant subspace requiring deflation is one-dimensional, consider the following Propo-
sition 1. The propositions and proofs below are derived from Saad (2011) P90.
Proposition 1. Let v1 be an eigenvector of A of norm 1, associated with the eigenvalue λ1 and let
A1 ≡ A − σv1v

H
1 . Then the eigenvalues of A1 are λ̃1 = λ1 − σ and λ̃j = λj , j = 2, 3, . . . , n.

Moreover, the Schur vectors associated with λ̃j , j = 1, 2, 3, . . . , n are identical with those of A.

Proof. Let AV = V R be the Schur factorization of A, where R is upper triangular and V is
orthonormal. Then we have

A1V =
[
A− σv1v

⊤
1

]
V = V R− σv1e

⊤
1 = V [R− σe1e

⊤
1].

Here, e1 is the first standard basis vector. The result follows immediately.

According to Proposition 1, once the eigenvalue λ1 and eigenvector v1 are known, we can define
the deflation projection matrix P1 = I − λ1v1v

⊤
1 to compute the remaining eigenvalues and eigen-

vectors.

When deflating with multiple vectors, let q1, q2, . . . , qj be a set of Schur vectors associated with the
eigenvalues λ1, λ2, . . . , λj . We denote by Qj the matrix of column vectors q1, q2, . . . , qj . Thus,
Qj ≡ [q1, q2, . . . , qj] is an orthonormal matrix whose columns form a basis of the eigenspace
associated with the eigenvalues λ1, λ2, . . . , λj . An immediate generalization of Proposition 1 is the
following (Saad, 2011) P94.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proposition 2. Let Σj be the j × j diagonal matrix Σj = diag(σ1, σ2, . . . , σj), and Qj an
n × j orthogonal matrix consisting of the Schur vectors of A associated with λ1, . . . , λj . Then the
eigenvalues of the matrix

Aj ≡ A−QjΣjQ
⊤
j ,

are λ̃i = λi − σi for i ≤ j and λ̃i = λi for i > j. Moreover, its associated Schur vectors are
identical with those of A.

Proof. Let AU = UR be the Schur factorization of A. We have

AjU =
[
A−QjΣjQ

⊤
j

]
U = UR−QjΣjE

⊤
j ,

where Ej = [e1, e2, . . . , ej]. Hence

AjU = U
[
R−EjΣjE

⊤
j

]
and the result follows.

According to Proposition 2, if A is a normal matrix and the eigenvalues λ1, . . . , λj along with
their corresponding eigenvectors v1, . . . ,vj are known, we can construct the deflation projection
matrix Pj = I − VjΣjV

⊤
j to compute the remaining eigenvalues and eigenvectors. Here, Σj =

diag(σ1, σ2, . . . , σj) and Vj = [v1,v2, . . . ,vj].

B.3 FILTERING TECHNIQUE

The primary objective of filtering techniques is to manipulate the eigenvalue distribution of a matrix
through spectral transformations (Saad, 2011). This enhances specific eigenvalues of interest, facil-
itating their recognition and computation by iterative solvers. Filter transformation functions, F (x),
typically fall into two categories:

1. Polynomial Filters, expressed as P (x), such as the Chebyshev filter (Miao & Wu, 2021;
Banerjee et al., 2016).

2. Rational Function Filters, often denoted as P (x)/Q(x), such as the shift-invert
method (Van Beeumen, 2015; Watkins, 2007). Below we describe this strategy in detail.

Shift-Invert Strategy The shift-invert strategy applies the transformation (A−σI)−1 to the matrix
A, where σ is a scalar approximating a target eigenvalue, termed as shift. This operation transforms
each eigenvalue λ ofA into 1

λ−σ , amplifying those eigenvalues close to σ in the transformed matrix,
making them larger and more distinguishable (Watkins, 2007).

For instance, consider the power method, where the convergence rate is primarily governed by the
ratio of the matrix’s largest modulus eigenvalue to its second largest. Suppose matrix A has three
principal eigenvalues: λ1 = 10, λ2 = 3, and λ3 = 2. Our objective is to compute λ1, the largest
eigenvalue. In the original matrixA, the convergence rate of the power method hinges on the spectral
gap ratio, defined as:

Spectral Gap Ratio =
λ1
λ2

≈ 3.33

Applying the shift-invert transformation with σ = 9.5 strategically selected close to λ1, the new
eigenvalues µ are recalculated as:

µi =
1

λi − σ

This results in transformed eigenvalues:

µ1 = 2, µ2 ≈ −0.133, µ3 ≈ −0.125

Under this transformation, µ1 = 2 emerges as the dominant eigenvalue in the new matrix, with the
other eigenvalues significantly smaller. Consequently, the new spectral gap ratio escalates to:

New Spectral Gap Ratio =
2

0.133
≈ 15.04

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

This enhanced spectral gap notably accelerates the convergence of the power method in the new
matrix configuration.

Filtering techniques are often synergized with techniques like the implicit restarts of Krylov algo-
rithms (Watkins, 2007; Golub & Van Loan, 2013), employing matrix operation optimizations to
minimize the computational demands of evaluating matrix functions. These methods enable more
precise localization and computation of multiple eigenvalues spread across the spectral range, par-
ticularly vital in physical (Salas et al., 2015; Banerjee et al., 2016) and materials science (Kohn,
1999) simulations where these eigenvalues frequently correlate with the system’s fundamental prop-
erties (Winkelmann et al., 2019).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ALGORITHM PSEUDOCODE

Algorithm 2: Spectral Refined Network
1 Given: N (number of sampling points), L (number of eigenvalues/eigenfunctions to compute),

learning rate η, convergence threshold ϵ, maximum iterations Kmax, PDE operator L over
domain Ω ⊂ RD.

2 Randomly sample N points {xj}Nj=1 in Ω to form dataset S.
3 Initialize computed eigenvalues list Λ̃ = [], eigenfunctions matrix Q = [] and set iteration

counter k = 0.
4 Set Qi = [],Σi = [], λ̃i = 0, i = 0, . . . , L− 1.
5 Randomly initialize neural network parameters θ0i .
6 while not converged and k < Kmax do
7 For each xj ∈ S, compute neural network output:

ṽki (xj) = NNL(xj ; θ
k
i), i = 1, . . . , L.

8 For each xj ∈ S, compute the update vector:

ũki (xj) =
L′
iṽ

k
i (xj)∥∥L′

iṽ
k
i (xj)

∥∥ , L′
i = L −Qi−1Σi−1Q

⊤
i−1 − λ̃iI, i = 1, . . . , L.

9 Compute loss function:

LossPM
L′ (θki) =

1

N

N∑
j=1

[
ṽk−1
i (xj)− ũki (xj)

]2
, i = 1, . . . , L.

10 Update neural network parameters using gradient descent:

θk+1
i = θki − η∇θiLoss, i = 1, . . . , L.

11 for i = 1 to L do
12 if LossPM

L′ (θki) < lossmini then
13

lossmini = LossPM
L′ (θki).

14 Update approximate eigenfunction and eigenvalue:

ṽi = ṽki , λ̃i =
(ṽki)

⊤Lṽki
(ṽki)

⊤ṽki
, i = 1, . . . , L.

15 if lossmini < ϵ, i = 1, . . . , L then
16 Convergence achieved. Break the loop.
17 Else Update deflation projection and filter function

Qi = [ṽ1, ṽ2, . . . , ṽi], Σi = diag(λ̃1, λ̃2, . . . , λ̃i), i = 1, . . . , L− 1.

18 Set k = k + 1 and continue.
19 if k < Kmax then
20 Output: eigenvalues diagonal matrix Λ̃ = [λ̃1, λ̃2, . . . , λ̃L] and eigenfunctions matrix

Q = [ṽ1, ṽ2, . . . , ṽL] .
21 else
22 Output: The maximum number of iterations has been reached, and the solution has not

converged and failed .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D DETAILS OF EXPERIMENTAL SETUP

D.1 EXPERIMENTAL ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uni-
form computing environments. Specifically, the environments used are detailed as follows:

• CPU: 72 vCPU AMD EPYC 9754 128-Core Processor
• GPU: NVIDIA GeForce RTX 4090D (24GB)

D.2 EXPERIMENTAL PARAMETERS

• Neuralsvd and Neuralef:
– Optimizer: rmsprop with a learning rate scheduler.
– Learning rate: 1e-4, batch size: 128
– Neural Network Architecture: layers = [128,128,128]
– Laplacian regularization set to 0.01, with evaluation frequency every 10000 iterations.
– Fourier feature mapping enabled with a size of 1024 and scale of 0.1.
– Neural network structure: hidden layers of 128,128,128 using softplus as the activa-

tion function.
– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 itera-

tions. For the 2-dimensional problem, the number of points is 40, 000 = 200 × 200,
also with 400, 000 iterations. For the 5-dimensional problem, the number of points is
59, 049 = 95, with 500, 000 iterations.

• SReNet
– Optimizer: Adam
– Learning rate: 1e-4
– Neural Network Architecture: Assuming d is the dimension of the problem. For d =

1 or 2, layers = [d, 20, 20, 20, 20, 1] (For Harmonic operator d=2, layers = [d, 20, 20,
20, 1]). For d=5, layers = [d, 40, 40, 40, 40, 1]. For else case, layers = [d, 40, 40, 40,
40, 1].

– For the 1-dimensional problem, the number of points is 20, 000, with 400, 000 itera-
tions. For the 2-dimensional problem, the number of points is 40, 000 = 200 × 200,
also with 400, 000 iterations. For the 5-dimensional problem, the number of points is
59, 049 = 95, with 500, 000 iterations.

D.3 ERROR METRICS

• Absolute Error:
We employ absolute error to estimate the bias of the output eigenvalues of the model:

Absolute Error = |λ̃− λ|. (32)

Here λ̃ represents the eigenvalue predicted by the model, while λ denotes the true eigen-
value.

• Residual Error:
To further analyze the error in eigenpair (ṽ, λ̃) predictions, we use the following metric:

Residual Error = ||Lṽ − λ̃ṽ||2. (33)

Here, ṽ represents the eigenfunction predicted by the model. When λ̃ is the true eigenvalue
and ṽ is the true eigenfunction, the Residual Error equals 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E ANALYSIS OF HYPERPARAMETERS

Model Depth:

Table 6: Consider the 2-dimensional Harmonic problem, with the fixed layer width of 20, and
compare the performance of SReNet at different model layers. Other experimental details are the
same as Appendix D.2.

Layer Index λ Absolute Error Residual

(v1, λ1) 1.02e-5 4.56e-3
(v2, λ2) 3.04e-2 2.56e+1
(v3, λ3) 6.76e-2 6.99e+13

(v4, λ4) 1.00e-1 2.12e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+14

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 4.36e-6 4.12e-3
(v2, λ2) 8.63e-1 3.12e+1
(v3, λ3) 1.98e+0 1.58e+35

(v4, λ4) 8.94e+1 2.09e+3

(v1, λ1) 1.06e-5 9.56e-3
(v2, λ2) 8.21e-1 2.00e+1
(v3, λ3) 1.17e+0 9.90e+36

(v4, λ4) 3.81e+1 7.53e+4

Model Width:

Table 7: Consider the 2-dimensional Harmonic problem, with the fixed layer depth of 3, and com-
pare the performance of SReNet at different model widths. Other experimental details are the same
as Appendix D.2.

Width Index λ Absolute Error Residual

(v1, λ1) 1.68e-6 1.26e-3
(v2, λ2) 3.82e-1 2.36e+0
(v3, λ3) 7.54e-1 1.20e+210

(v4, λ4) 1.71e-1 2.49e+3

(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+120

(v4, λ4) 2.00e+1 2.17e+5

(v1, λ1) 3.26e-5 2.25e-2
(v2, λ2) 1.50e+0 2.10e+1
(v3, λ3) 1.59e+0 8.21e+330

(v4, λ4) 3.52e+2 2.77e+5

(v1, λ1) 1.57e-5 2.06e-2
(v2, λ2) 2.67e+0 5.03e+1
(v3, λ3) 7.93e+1 5.76e+340

(v4, λ4) 1.50e+2 1.47e+4

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The Number of Points:

Table 8: Consider the 2-dimentional Harmonic problem and compare the performance of SReNet at
different number of points. Other experimental details are same Appendix D.2.

Number Index λ Absolute Error Residual

20000
(v1, λ1) 1.11e-5 3.19e-3
(v2, λ2) 1.25e+0 3.22e+0
(v3, λ3) 1.61e+0 1.27e+2

30000
(v1, λ1) 4.40e-5 7.09e-3
(v2, λ2) 3.58e-1 2.71e+0
(v3, λ3) 1.70e-1 5.62e+1

40000
(v1, λ1) 1.42e-5 4.12e-3
(v2, λ2) 2.96e-1 1.24e+1
(v3, λ3) 4.17e-1 1.43e+1

50000
(v1, λ1) 4.94e-6 6.63e-3
(v2, λ2) 2.53e-1 2.46e+1
(v3, λ3) 3.73e-1 1.50e+3

The influence of model depth, model width, and the number of points on SReNet is illustrated in
Tables 6, 7, and 8, respectively. Experimental results indicate that SReNet is relatively unaffected
by changes in model depth and model width. However, it is significantly influenced by the number
of points, with performance improving as more points are used.

22

	Introduction
	Preliminaries
	Operator Eigenvalue Problem
	Power Method
	Deflation Projection
	Filtering Technique

	Method
	Problem Formulation
	Spectral Refined Network
	Deflation Projection
	Filter Function

	Experiments
	Harmonic Eigenvalue Problem
	Schrödinger Oscillator Equation
	Fokker-Planck Equation
	Ablation Experiments

	Conclusions and Future Work
	Code of Ethics and Ethics Statement
	Reproducibility
	Related Work
	Background Knowledge and Relevant Analysis
	Convergence Analysis of the Power Method
	Deflation Projection Details
	Filtering Technique

	Algorithm Pseudocode
	Details of Experimental Setup
	Experimental Environment
	Experimental Parameters
	Error Metrics

	Analysis of Hyperparameters

