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Abstract

While reinforcement learning (RL) has demon-
strated remarkable success in enhancing large lan-
guage models (LLMs), it has primarily focused
on single-turn tasks such as solving math prob-
lems. Training effective web agents for multi-turn
interactions remains challenging due to the com-
plexity of long-horizon decision-making across
dynamic web interfaces. In this work, we present
WEBAGENT-R1, a simple yet effective end-to-
end multi-turn RL framework for training web
agents. It learns directly from online interactions
with web environments by asynchronously gen-
erating diverse trajectories, entirely guided by bi-
nary rewards depending on task success. Experi-
ments on the WebArena-Lite benchmark demon-
strate the effectiveness of WEBAGENT-R1, boost-
ing the task success rate of Qwen-2.5-3B from
6.1% to 33.9% and Llama-3.1-8B from 8.5% to
44.8%, significantly outperforming existing state-
of-the-art methods and strong proprietary mod-
els such as OpenAI o3. In-depth analyses reveal
the effectiveness of the thinking-based prompting
strategy and test-time scaling through increased
interactions for web tasks. We further investigate
different RL initialization policies by introduc-
ing two variants, namely WEBAGENT-R1-ZERO
and WEBAGENT-R1-COT, which highlight the
importance of the warm-up training stage (i.e.,
behavior cloning) and provide insights on incor-
porating long chain-of-thought (CoT) reasoning
in web agents.
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1. Introduction
Reinforcement learning (RL) has emerged as a promising
approach for training large language models (LLMs), as
exemplified by recent advances such as DeepSeek-R1 (Guo
et al., 2025; Team et al., 2025; Yang et al., 2025a). How-
ever, existing works have primarily focused on single-turn,
non-interactive tasks such as mathematical reasoning (Shao
et al., 2024b; Zeng et al., 2025). Their effectiveness in
multi-turn, interactive environments—particularly in com-
plex scenarios requiring long-horizon decision-making and
domain-specific skills, such as web browsing (Zhou et al.,
2024a; He et al., 2024a; Chae et al., 2025; Xue et al., 2025)—
still remains underexplored.

Unlike static environments, web tasks pose unique chal-
lenges for LLM agents due to their dynamic nature and
diverse solution spaces. Early works on web agents primar-
ily relied on prompting-based methods (Wang et al., 2024b;
Sodhi et al., 2024; Fu et al., 2024; Zhang et al., 2025; Yang
et al., 2025b) or behavior cloning (BC), which imitates
demonstrated trajectories via supervised fine-tuning (Yin
et al., 2024; Hong et al., 2024; Lai et al., 2024; He et al.,
2024b; Putta et al., 2024). Despite their initial success,
these methods lack the ability to explore diverse strategies
or learn from trial and error, limiting the generalizability of
web agents. To address this issue, recent works explored
applying RL for better policy training. However, most of
this line of research has heavily relied on offline or iterative
off-policy RL solutions (Peng et al., 2019; Pan et al., 2024;
Qi et al., 2025), which break the end-to-end interaction
between the web agent and environment, and introduce ad-
ditional complexities such as trajectory filtering (Bai et al.,
2024), outcome reward model training (Qi et al., 2025),
or iterative optimization procedures (Zhou et al., 2024b).
These constraints hinder their practicality for real-world
deployment.

Meanwhile, several concurrent works have explored end-to-
end RL with on-policy updates for training LLM agents in
multi-turn interactive scenarios, such as simulated games
and coding environments (Wang et al., 2025; Cao et al.,
2025). Unlike off-policy RL that trains on data generated
by older versions of the agent, on-policy RL collects train-
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ing data directly from the agent’s current behavior. This
ensures that the learning process is better aligned with the
agent’s most recent actions, often leading to more stable
and effective learning (Schulman et al., 2015; 2017). It also
eliminates the need for additional overheads in off-policy
RL (e.g., maintaining a replay buffer and filtering outdated
trajectories), and enables the agent to behave adaptively
based on its own past decisions—a key advantage in inter-
active environments where early decisions can significantly
affect next steps.

These benefits are particularly desirable in online web envi-
ronments, which often involve complex interplay between
tasks due to dynamic changes of the environment. For in-
stance, consider a situation where the agent is first tasked to
log out of a user account and then to edit the user’s profile.
These tasks are inherently interdependent: once the agent
logs out, it loses access to the profile page. If the agent
is trained using off-policy data collected from an earlier
version that never logged out, it has no opportunity to learn
the login behavior and may incorrectly assume continued
access and generate invalid actions, ultimately leading to
task failure. End-to-end RL helps avoid such pitfalls by
allowing the agent to learn proper behaviors in response to
environmental state changes on-the-fly.

In light of this, we propose WEBAGENT-R1, an end-to-end
multi-turn RL framework for training web agents. Specif-
ically, our design addresses several key challenges in this
setting. First, at each step, the environmental observation
(e.g., HTML content) can span thousands of tokens, causing
the accumulated context over long horizons to incur sub-
stantial memory overheads. To mitigate this, we introduce a
dynamic context compression mechanism, which adaptively
adjusts the contexts across turns, ensuring scalability and
preventing out-of-memory issues. Second, existing RL so-
lutions for LLM agents are not well-suited for multi-turn
scenarios. Inspired by group relative policy optimization
(GRPO) (Shao et al., 2024b), we extend it to multi-turn
settings (M-GRPO) and employ an asynchronous trajectory
rollout strategy to further improve training efficiency by
generating multiple trajectories in parallel. These designs
enable efficient RL training and lead to state-of-the-art per-
formance on the WebArena-Lite benchmark, as shown in
Figure 1. Extensive ablations further validate our key de-
sign choices, reveal an effective test-time scaling strategy
for web tasks, and offer insights into the roles of behavior
cloning and long CoT reasoning in RL-based web agent
training.

Our contributions are summarized as follows:

• We implement an end-to-end multi-turn RL framework
for training web agents, with dynamic context compres-
sion and asynchronous trajectory rollout mechanisms
to achieve training efficiency.
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Figure 1. Comparison between existing methods and our
WEBAGENT-R1 on the WebArena-Lite benchmark. Our method
outperforms both strong prompting-based and finetuned baselines,
achieving superior performance across various model sizes.

• Based on the proposed M-GRPO algorithm, our
method substantially improves task success rates of
web agents—boosting Qwen-2.5-3B from 6.1% to
33.9% and Llama-3.1-8B from 8.5% to 44.8%—sur-
passing previous state-of-the-art results on the
WebArena-Lite benchmark.

• Extensive analyses and ablation studies underscore the
crucial role of behavior cloning, validate the effective-
ness of thinking-based prompting and test-time scaling
strategies, and provide actionable insights on incorpo-
rating long-CoT reasoning in web agents.

2. WebAgent-R1
2.1. Problem Formulation

We formulate the web task as a Partially Observable
Markov Decision Process (POMDP), defined by the tuple
(S,A, T ,R). At each time step t, the agent first observes
a state st ∈ S from the environment E , represented as the
text-only HTML content of the current web page. Then, it
generates an action at from a predefined action space A,
which includes commonly used web operations. The envi-
ronment dynamics T (st+1|st, at) represent how the web
page changes in response to actions. The agent interacts
with the environment until either the task is successfully
completed or the maximum number of steps is reached.
At the end, the agent receives a binary outcome reward
rt ∈ {0, 1} from reward functions R.

Following prior work (Qi et al., 2025), we adopt We-
bArena (Zhou et al., 2024a) as the web environment
over other simulated or static environments such as Web-

2



WEBAGENT-R1: Training Web Agents via End-to-End Multi-Turn Reinforcement Learning

 Web: [Task Instruction] + [HTML content]                                                                                                                
 Agent: <think> thinking process </think> <answer> do(‘Scroll Down’) </answer>                                         
 
 Web: [HTML content]                                                                                                                                                
 Agent: <think> thinking process </think> <answer> do(‘Click’, element=‘24’) </answer>                              
 Web: [HTML content]                                                                                                                                               
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Figure 2. (Top): Overview of the end-to-end multi-turn RL training framework used in WEBAGENT-R1. (Bottom): An input/output
example of agent–web interaction at the k-th step. The interaction continues until either the maximum number of steps is reached or the
agent generates an exit() action to signal task completion.

Shop (Yao et al., 2022) or Mind2Web (Deng et al., 2023)
for greater practicality—It provides a realistic, self-hostable
environment for web agents, along with rule-based rubrics
that automatically check for indicators of success in the final
state (e.g., confirmation messages or expected content on
the page). Note that some prior works (Liu et al., 2025;
He et al., 2024a) incorporate web page screenshots as ad-
ditional visual inputs, whereas our work focuses solely on
text-based decision-making over HTML. Other efforts, such
as Yang et al. (2025b), explore optimizing the action space
or prompt design without model fine-tuning. These direc-
tions are orthogonal to our investigated problem and can be
conceptually integrated with our method as future work.

2.2. Behavior Cloning

To initialize the web agent, we first apply behavior cloning
(BC) using a fixed dataset of expert demonstrations D =
{(ht, at)}, where ht denotes the full interaction history up
to time step t, defined as ht = (s1, a1, s2, a2, . . . , st). The
policy πθ is trained via supervised fine-tuning (SFT) to
imitate expert actions conditioned on this history:

LBC = −E(ht,at)∼D [log πθ(at | ht)]

This warm-up stage enables the agent to acquire basic web
interaction skills defined in the action space. As indicated in
our ablation study (§ 3.4), this BC-trained policy provides
a crucial foundation for subsequent reinforcement learning
optimization.
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Table 1. Comparison of different methods for training web agents. Trial-and-Error indicates whether the method supports learning
through interactions with the environment (i.e., reinforcement learning). On-Policy denotes whether the training data is collected from the
current policy. Replay Buffer Free indicates methods that do not require selectively sampling trajectories from a replay buffer, a complexity
common in off-policy RL. Self-Sufficient means no external training signals required (e.g., WebRL trains an additional outcome reward
model to label new data generated by GPT-4). As shown, our method is the only one that enables end-to-end RL with on-policy updates
while avoiding additional complexities such as maintaining a replay buffer and being free from external supervision.

Method Trial-and-Error On-Policy Replay Buffer Free Self-Sufficient

Behavior Cloning (SFT) ✘ ✘ ✓ ✓
AWR (Peng et al., 2019) ✘ ✘ ✘ ✓
DigiRL (Bai et al., 2024) ✓ ✘ ✘ ✓
WebRL (Qi et al., 2025) ✓ ✘ ✘ ✘
WEBAGENT-R1 ✓ ✓ ✓ ✓

2.3. End-to-End Multi-Turn Reinforcement Learning

As illustrated in Figure 2, our end-to-end multi-turn RL
framework trains web agents through online interactions
guided by rule-based outcome rewards. To enable efficient
and scalable training, we implemented two key mechanisms:
dynamic context compression to reduce memory overhead,
and asynchronous trajectory rollout to improve sampling
efficiency. Based on the BC-trained policy, we further fine-
tune the agent using an extension of GRPO (Qi et al., 2025)
in the multi-turn settings, termed M-GRPO. Our implemen-
tation can be viewed as a minimalist approach that supports
efficient multi-turn RL training while maintaining general-
ity, with potential for future extensions (e.g., incorporating
fine-grained reward shaping mechanisms for intermediate
steps).

Dynamic Context Compression In web tasks, each obser-
vation st often contains thousands of tokens. Across multi-
turn interactions, the accumulated context grows rapidly,
leading to excessive memory usage and potential out-of-
memory issues, making training impractical. To address
this, we propose a dynamic context compression strategy.
As new observations arrive, earlier ones are simplified to
reduce the context length while preserving the complete
action history. Let the interaction history at step t be
ht = (s′1, a1, s

′
2, a2, . . . , st), where each s′i is a simplified

template (e.g., ‘‘Simplified HTML’’) representing
prior observations. When the agent executes an action at
and receives a new observation st+1, the updated history
becomes ht+1 = (s′1, a1, s

′
2, a2, . . . , s

′
t, at, st+1), where st

is replaced by its simplified version s′t. This allows the
agent to maintain a compact yet informative context of past
interactions. Since the context evolves dynamically, we also
update the loss masks accordingly to ensure that the loss
is correctly computed only on the action tokens during the
M-GRPO optimization.

Multi-turn GRPO Inspired by GRPO, we extend its stan-
dard form to multi-turn RL settings and introduce multi-
turn group relative policy optimization (M-GRPO). Specifi-

cally, for each task q, we first sample a group of trajectories
{τ1, τ2, · · · , τG} and then optimize the policy model πθ by
minimizing the following loss:

LM-GRPO(θ) = −
1

G

G∑
i=1

1

|τi|

|τi|∑
j=1

 1

|ai,j |

|ai,j |∑
t=1

[
Ãi,j,t − β DKL(θ)

]

where τi = {ai,1, ai,2, · · · , ai,|τi|} is the sequence
of generated actions in the i-th trajectory, Ãi,j,t =
min{ri,j,t(θ)Ai,j , clip(ri,j,t(θ), 1−ϵ, 1+ϵ)Ai,j} is the ad-
vantage for the t-th token in action ai,j of trajectory τi,
ri,j,t(θ) =

πθ(ai,j,t|q,ai,j,<t)
πold(ai,j,t|q,ai,j,<t)

denotes the importance sam-
pling term, ϵ and β are hyper-parameters, and Ai,j =
ri−mean(r)

std(r) is the group relative advantage, computed us-
ing a group of rewards r = {r1, r2, . . . , rG} produced by
rule-based reward functions.

Asynchronous Trajectory Rollout Generating a group
of trajectories requires repeated interaction with the environ-
ment and can be time-consuming. To address this, we intro-
duce an asynchronous trajectory rollout strategy, where mul-
tiple independent browser instances {E1, E2, · · · , EG} are
instantiated, each maintaining its own context (e.g., cookies).
For each task, all instances are initialized with the same start-
ing page, but the agent interacts with them independently,
resulting in diverse histories and trajectories. This asyn-
chronous design enables efficient trajectory generation in
M-GRPO.

Reward Design We use the default rule-based reward
functions in the web environment, which assign binary
rewards (r=1 for success, r=0 otherwise) based on task-
specific criteria (e.g., reaching a target page). This elimi-
nates the need for outcome reward models (Qi et al., 2025),
ensuring a simple and generalizable training setup.
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Table 2. Task success rate (SR) comparison across different methods on various websites in WebArena-Lite (Liu et al., 2025; Qi et al.,
2025; Zhou et al., 2024a). Baseline performance is reported as the higher value between our reproduced results and those reported in the
literature (Qi et al., 2025). The best scores are highlighted in bold.

Method Reddit GitLab CMS Map Shopping Average SR

Prompting Method
General Model

Qwen2.5-3B 5.3 13.3 5.7 0 4.4 6.1
Llama3.1-8B 5.3 10.0 5.7 15.4 8.9 8.5
Qwen2.5-32B 10.5 20.0 20.0 19.2 17.8 16.9
GPT-4o 10.5 10.0 20.0 20.0 11.1 13.9
GPT-4o-Turbo 10.5 16.7 14.3 36.7 13.3 17.6

Reasoning Model
QwQ-32B 15.8 33.3 25.7 15.4 20.0 22.4
OpenAI-o3 36.8 46.7 45.7 38.5 33.3 39.4
OpenAI-o4-mini 47.4 43.3 45.7 26.9 28.9 36.9

Finetuning Method
Qwen2.5-3B

Behavior Cloning 42.1 16.7 22.9 26.9 11.1 20.0
WEBAGENT-R1 26.3 53.3 48.6 26.9 24.4 33.9

Llama3.1-8B
Behavior Cloning 36.8 6.7 20.0 33.3 17.8 20.6
Filtered BC (Pan et al., 2024) 52.6 20.0 31.4 23.3 8.9 23.0
AWR (Peng et al., 2019) 57.9 26.7 31.4 26.7 17.8 28.5
DigiRL (Bai et al., 2024) 57.9 26.7 37.1 33.3 17.8 30.3
WebRL (Qi et al., 2025) 63.2 46.7 54.3 36.7 31.1 42.4
WEBAGENT-R1 47.4 56.7 57.1 23.1 44.4 44.8

3. Experiments
3.1. Experimental Setup

Web Environment Like prior works (Liu et al., 2025; Qi
et al., 2025), we focus on web agents for real-world scenar-
ios, specifically utilizing WebArena (Zhou et al., 2024a), a
self-hostable and realistic web environment that supports
practical tasks across diverse domains: social forums (Red-
dit), collaborative coding (GitLab), e-commerce content
management systems (CMS), open street maps (Map), and
online shopping (Shopping).

Dataset and Evaluation Metrics Following Qi et al.
(2025), we use the public 9,460 trajectories for behavior
cloning, and adopt WebArena-Lite, a human-verified ver-
sion of WebArena, for more reliable evaluation. Specifically,
we use 165 verified tasks for evaluation and 647 remaining
tasks for RL training. Task success rate is calculated using
the built-in rule-based rubrics.

Baselines For prompting baselines, we provide a compre-
hensive comparison with both open-source and proprietary
models, including general-purpose models (e.g., Qwen2.5,
Llama3.1, GPT-4) and reasoning-specialized models (e.g.,
QwQ, OpenAI o3 (OpenAI, 2025)), covering various model
sizes. For finetuning methods, we employ Qwen2.5-3B and
Llama3.1-8B as the backbone model.

More details on the environment and implementation are
provided in Appendix A and B. We also provide the prompt
templates and qualitative examples in Appendix D and E.

3.2. Main Results

Most LLMs still struggle with web tasks through prompt-
ing, highlighting the importance of finetuning for web
agents. As shown in Table 2, our experiments reveal the
limitations of off-the-shelf models in web tasks. Despite
their strong general capabilities, state-of-the-art models such
as OpenAI’s o3 achieve only a 39.4% success rate (SR). In
contrast, a finetuned 3B model trained with simple behav-
ior cloning achieves a success rate of 20%, outperforming
proprietary models like GPT-4o. We speculate that the poor
performance of off-the-shelf models is not due to base model
size or capability, but rather to insufficient understanding of
HTML structure and web-specific behaviors, as evidenced
by the observation that both 3B and 8B models achieve com-
parable performance after behavior cloning. These findings
emphasize the necessity of domain-specific training on web
data to develop effective LLM-based web agents.

Reasoning models are better web agents. Compared to
general-purpose LLMs, models equipped with explicit think-
ing capabilities perform significantly better on web tasks,
likely due to their ability to decompose high-level goals
and explicitly lay out dynamic changes in the web interface.
This gap underscores the importance of thinking in web
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Figure 3. Training dynamics during RL, including rewards, trajectory length, and number of interactions. As indicated by the dashed
vertical lines in the figure, the entire process can be broadly divided into three phases: (1) initial skill acquisition, (2) exploration for
policy refinement, and (3) final policy stabilization.

environments, which typically require multi-turn decision-
making and dynamic contextual understanding. Motivated
by this observation, we further explore the integration of
thinking mechanisms into web agents through prompt de-
sign (§ 3.5) and training strategies (§ 3.4), which further
confirms the advantage of thinking ability for web agents.

Reinforcement learning enables stronger performance
for web agents. While behavior cloning via SFT can sig-
nificantly improve LLM’s performance as web agents (e.g.,
boosting Qwen2.5-3B from 6.1% to 20%), applying RL on
top of the SFT-trained policy leads to additional substan-
tial gains (e.g., further boosting Qwen2.5-3B from 20% to
33.9%). We attribute these improvements to RL’s ability
to optimize long-horizon decision-making, explore novel
strategies beyond those seen in the SFT data through trial-
and-error across dynamic web interactions. While prior
RL solutions for web agents, such as DigiRL and WebRL,
have also shown performance gains, our method achieves
even stronger results, highlighting the effectiveness of our
end-to-end multi-turn RL framework.

3.3. Training Dynamics

To understand how the proposed end-to-end reinforcement
learning optimizes the behavior of the web agents, we an-
alyze the training dynamics across three metrics: reward,
trajectory length (i.e., the number of tokens in model re-
sponses across all multi-turn interactions), and number of
interactions. As shown in Figure 3, the learning process can
be broadly divided into three distinct phases, separated by
vertical dashed lines.

Reward. Phase 1 shows a rapid increase in reward, indi-
cating that the agent quickly learns basic skills and begins
to succeed on simpler tasks. In Phase 2, the reward growth
plateaus and slightly fluctuates, suggesting that the agent
is exploring different strategies and refining its policy. In
Phase 3, reward gradually improves again, indicating ex-

ploitation and increased stability.

Trajectory Length. Trajectory length increases sharply
during Phase 1, then stabilizes in Phase 2. In Phase 3, a
modest increase is observed again. This trend suggests that
the agent initially learns to produce more detailed outputs,
followed by a period of consolidation and later refinement
to balance verbosity with task effectiveness.

Number of Interactions. The number of interaction
rounds increases during Phase 1 as the agent becomes more
proactive, followed by a reduction in Phase 2 as it learns to
interact more efficiently. In Phase 3, the interaction count
stabilizes, indicating convergence toward a more consistent
and effective interaction strategy.

These trends highlight a three-phase learning dynamic
commonly observed in RL: (1) initial skill acquisition, (2)
exploration for policy refinement, and (3) final policy stabi-
lization. Interestingly, both Qwen2.5-3B and Llama3.1-8B
follow similar learning patterns, suggesting that our end-
to-end multi-turn RL framework effectively scales across
model sizes and enables stable policy improvement.

3.4. Ablation Study

To validate key design choices in our framework, we con-
duct a set of ablation studies using Qwen2.5-3B as the
backbone model. Specifically, we introduce two variants,
WEBAGENT-R1-ZERO and WEBAGENT-R1-COT, to study
the impact of behavior cloning and long CoT for web agents.
The results are presented in Figure 4.

Behavior cloning is crucial for training web agents with
RL. WEBAGENT-R1-ZERO skips the behavior cloning
stage and starts RL directly from an off-the-shelf model,
with an initial success rate of only 6.1%. Surprisingly, the
model’s performance even deteriorates slightly after RL. We
hypothesize that this is due to the lack of knowledge about
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Figure 4. Ablation study on RL initialization policy by comparing WEBAGENT-R1 (R1) with two variants: WEBAGENT-R1-ZERO

(R1-Zero), initialized from an off-the-shelf model without SFT, and WEBAGENT-R1-COT (R1-CoT), initialized from an SFT model
trained with long chain-of-thought (CoT) data during behavior cloning. The comparison includes task success rate, single-turn response
length, and number of interactions, evaluated both before and after applying RL.

web tasks since the model tends to produce incomplete or
ill-formed actions (e.g., missing required arguments) and
rarely obtains positive rewards during RL. This severely
hampers effective exploration and learning, highlighting
that behavior cloning is essential for initializing web agents
and enabling successful subsequent RL.

Incorporating long-CoT data into behavior cloning leads
to more performant web agents. We first augment the
behavior cloning (BC) data by generating long-CoT traces
using a strong reasoning model (see Appendix C for details),
and then apply SFT to obtain a long-CoT SFT model (i.e.,
the WEBAGENT-R1-COT variant before RL). Compared to
the SFT model trained on standard BC data, the long-CoT
SFT model achieves a much higher task success rate (24.5%
vs. 20%), demonstrating the effectiveness of long-CoT
reasoning for web agents.

Limited gains from RL for long-CoT SFT model. While
RL shows promising improvements for both the vanilla SFT
and long-CoT SFT models, it is interesting that the gain is
notably smaller for the latter. Specifically, WEBAGENT-R1
improves from 20% to 33.9%, whereas WEBAGENT-R1-
COT improves from 24.5% to only 30.3%. We hypothe-
size that this is because the deterministic reasoning patterns
learned during long-CoT BC may constrain the model’s
exploration space during RL, limiting its ability to discover
novel strategies compared to standard SFT models with
more flexible exploratory behaviors.

3.5. Analysis

Prompting with thinking format unleashes the potential
of LLMs as web agents. As shown in Table 3, using the
thinking format significantly improves task success rates
across models, particularly for stronger ones (e.g., o4-mini
improves from 15.9% to 36.9%). Interestingly, while the
average single-turn response length remains similar (e.g.,
139 → 142 tokens for Qwen2.5-3B), the number of interac-

Table 3. Analysis of prompting design. We report the average
success rate (SR), single-turn response length, and number of
interactions. The result reveals a novel test-time scaling paradigm
by increasing the number of interactions for web tasks.

Method SR Length # of Interactions

W/o thinking format
Qwen2.5-3B 3.2 139 6
Llama3.1-8B 4.8 43 7
o4-mini 15.9 56 5

With thinking format
Qwen2.5-3B 6.1 142 17
Llama3.1-8B 8.5 39 11
o4-mini 36.9 57 10

tions increases substantially (e.g., 6 → 17) with the thinking
format. This observation suggests a novel test-time scaling
strategy for web tasks—rather than producing longer single-
turn responses, the web agent can become more effective by
engaging in deeper multi-turn interactions.

Test-time scaling through increased interactions leads to
better performance on web tasks. Building on the above
finding, we further investigate how increasing the number
of interactions between the web agent and the environment
affects performance. As shown in Figure 5, allowing more
interaction turns consistently improves success rates across
prompting-based, SFT, and RL-based methods. We hypoth-
esize that this form of test-time scaling facilitates deeper
exploration and yields longer trajectories, potentially en-
abling the agent to iteratively refine its actions and make
more informed decisions through extended interactions.

4. Related Works
4.1. LLM-based Agents

LLMs have demonstrated promising agentic capabilities,
such as breaking down complex tasks into manageable sub-
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Figure 5. Analysis of test-time scaling with increased max number
of interactions. Allowing more interactions enables the web agent
to produce longer trajectories and consistently improves the suc-
cess rate.

goals and reasoning over long horizons (Zhou et al., 2022;
Huang et al., 2022; Madaan et al., 2022; Li et al., 2023a;b;
Wu et al., 2024; Chu et al., 2025; Shen et al., 2024; Shao
et al., 2024a; Xu et al., 2024). Building on these capabilities,
LLM-based agents have been applied to a variety of real-
world interactive tasks, including web navigation (Nakano
et al., 2021; Yao et al., 2022; Ma et al., 2023; Gur et al.,
2024; Abuelsaad et al., 2024; Lutz et al., 2024; Patel et al.,
2024; Putta et al., 2024; Shen et al., 2025), general computer
use (Li et al., 2020; Deng et al., 2023; Yang et al., 2024), and
embodied environments (Puig et al., 2018; Shridhar et al.,
2020; Toyama et al., 2021; Fan et al., 2022; Huang et al.,
2022). Specifically, our work focuses on text-based web
agents that operate in browser-based environments purely
based on HTML content, which requires agentic capabilities
such as tool use, memory, and decision-making under partial
observability (Zhou et al., 2024a; Qi et al., 2025). Comple-
mentary to this line of work, GUI agents leverage additional
multimodal inputs such as screenshots, enabling visual-
guided interactions with the environment (Lee et al., 2023;
Shaw et al., 2023; Zheng et al., 2024; He et al., 2024a;b;
Koh et al., 2024; Kil et al., 2024; Lei et al., 2025; Liu et al.,
2025; Niu et al., 2025). For a comprehensive overview, we
refer readers to recent surveys (Wang et al., 2024a; Hu et al.,
2025; Ning et al., 2025).

4.2. Reinforcement Learning for LLMs

Recent advances like DeepSeek-R1 (Guo et al., 2025) high-
light the strong potential of RL in enhancing LLMs. How-
ever, most prior work focuses on single-turn tasks such
as math problems (Shao et al., 2024b; Zhu et al., 2025),
with limited exploration in multi-turn settings (Zhou et al.,
2024b; 2025). Recent efforts have made some progress in
this direction, such as training LLM agents to repeatedly use
search engines (Jin et al., 2025; Sun et al., 2025; Chen et al.,
2025; Song et al., 2025), but typically constrain actions to

simple API calls without real environment interaction. A
few concurrent works, such as RAGEN (Wang et al., 2025)
and SkyRL (Cao et al., 2025), have applied RL to more
dynamic settings like simulated games and coding environ-
ments (Jimenez et al., 2024). However, real-world web
environments remain largely underexplored. Our work fills
this gap by providing a practical framework and offering
actionable insights for training web agents with end-to-end
RL.

5. Conclusion
This work introduces WEBAGENT-R1, an end-to-end multi-
turn RL framework for training web agents. We extend the
standard GRPO to multi-turn settings, termed M-GRPO,
and implement dynamic context compression and asyn-
chronous trajectory rollout mechanisms for efficient training.
Empirically, WEBAGENT-R1 achieves new state-of-the-art
results on the WebArena-Lite benchmark. Our findings
underscore the critical role of behavior cloning in initializ-
ing web agents, providing a strong foundation for effective
RL. We further analyze training dynamics and explore the
effects of thinking-based prompting and test-time scaling
strategies, showing that increasing interaction depth consis-
tently enhances web agents. Future work includes exploring
multi-modal inputs and extending our approach to broader
GUI-based tasks beyond web environments, such as com-
puter use.

Impact Statement
Our work aims to enhance the capabilities of language mod-
els as agents for multi-turn decision-making in interactive
web environments, a growing area of interest in the ma-
chine learning and language modeling communities. While
WEBAGENT-R1 does not introduce new ethical risks be-
yond those already associated with LLM agents, it is crucial
to deploy such agents responsibly, with careful attention to
issues such as fairness, bias, and potential misuse.
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A. Web Environment
WebArena-Lite WebArena (Zhou et al., 2024a) is a realistic, self-hostable web environment for developing LLM-based
agents. It comprises 812 real-world web tasks spanning diverse domains, including social forum (Reddit), collaborative
coding (GitLab), e-commerce content management system (CMS), open street map (Map), and online shopping (OneStop-
Shop). WebArena-Lite (Liu et al., 2025) is a curated version of WebArena designed for more reliable evaluation. It selects
165 representative tasks for human verification as the evaluation set and uses the remaining 647 tasks for training. It also
provides 9,460 trajectories automatically annotated by program-based solvers for behavior cloning. For each website, the
authors (Liu et al., 2025) summarize the core functionalities and valid items and construct a set of task prototypes and
manually implement rule-based solvers using Playwright scripts for each prototype. The corresponding solvers are executed
on the websites to collect ground-truth trajectories. In total, this produces 1,186 valid training samples comprising 9,460
trajectories, released under the Apache License 2.0.

Action Space Agents interact with the environment through a set of predefined actions, including:

• Click: simulates a left mouse click on a webpage element.

• Right Click: performs a right-click on a specified element.

• Type: inputs a text string into an input field.

• Search: enters a search query and triggers a search operation.

• Hover: moves the cursor over a specific element to reveal tooltips or hidden menus.

• Scroll Up / Scroll Down: scrolls the page vertically.

• Press Enter: simulates pressing the Enter key, typically after typing.

• Switch Tab: changes the current browser tab.

• Select Dropdown Option: selects an option from a dropdown menu.

• Wait: pauses the agent’s interaction for a brief period.

• Exit: terminates the current session with a final message.

• Go Backward / Go Forward: navigates backward or forward in the browser history.

Rule-based Metrics In real-world web tasks, there are typically no closed-form solutions, and multiple trajectories may
lead to successful task completion. Therefore, we evaluate agents solely based on whether the final goal is achieved and
calculate the Success Rate (SR), which indicates whether a task is successfully completed according to the following
rule-based evaluation metrics:

• String Match: The agent must provide an answer string that matches the expected output.

• URL Match: The agent is required to navigate to a specific webpage. Success is determined by comparing the final
URL to a reference URL.

• Program Execution: The agent must modify webpage content or configuration. Evaluation is performed by executing
a rule-based script to extract and verify the final state of the page.

Each task in WebArena is associated with one of these evaluation metrics, along with the corresponding reference answer,
target URL, or validation script when applicable. This diverse rule-based metric design ensures consistent evaluation across
a wide range of web tasks, while accommodating different task objectives and output formats.
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B. Implementation Details
We implement our method using Qwen2.5-3B and Llama3.1-8B as the backbone models. By default, we use the instruction-
tuned version for both prompting and fine-tuning methods. The reinforcement learning (RL) initialization policy is derived
from the supervised fine-tuning (SFT) checkpoint obtained via behavior cloning. Since WebRL leverages additional GPT-4
generated data to train Llama3.1-8B, we ensure a fair comparison by initializing our RL policy with their publicly released
checkpoint and applying our end-to-end RL using only the original 647 training tasks, without introducing any extra data.

Our models are trained on a single node of 8 NVIDIA A100 GPUs with 80GB memory via full-parameter fine-tuning. To
optimize GPU utilization, we adopt DeepSpeed (Rajbhandari et al., 2020) for distributed training with ZeRO-3 offload, along
with gradient checkpointing, FlashAttention-2 (Dao, 2024), and bf16 mixed precision training enabled for computation
efficiency. For SFT, we use a learning rate of 5e-5 and a batch size of 128, with a cosine LR scheduler for 5% warmup steps.
For RL training, we use a constant learning rate of 1e-6 with a batch size of 16. The KL divergence regularization coefficient
β and the clip ratio ϵ are set to 0.001 and 0.2, respectively. The maximum context length and number of new tokens are set
to 16,384 and 1024. For efficient LLM rollouts during M-GRPO, we use vLLM (Kwon et al., 2023) with a tensor parallel
size of 1 and a GPU memory utilization ratio of 0.7. Rollout sampling is done with both the temperature and top-p set to 1.0.

C. Data Augmentation for Behavior Cloning (BC) with long-CoT Traces
As introduced in the ablation study (§ 3.4), we augment the original BC data by generating long-CoT traces using QwQ-32B.
We then apply SFT to obtain a long-CoT SFT model, followed by RL training to obtain WEBAGENT-R1-COT. As shown in
Table 5, WEBAGENT-R1-COT is able to generate more detailed thinking compared to WEBAGENT-R1.

Table 4. Prompt used for long-CoT data augmentation, with example fill-ins for the fields user intent, action history, current observation,
next action, and remarks, all of which are available in the original behavior cloning data.

Long-CoT Data Augmentation Prompt

You are an expert in explaining the behaviors of web agents. The agent is designed to help a human user navigate the website to
complete a task. Given the user’s intent, the agent’s action history, the current HTML content of the web page, and the agent’s next
action associated with optional remarks, your goal is to explain the decision-making process from the agent’s perspective using
first-person narrative (as if the decision is being made in real time).
User Intent: Establish a new discussion platform called ‘VirtualRealityVanguard’. It should
serve as a cutting-edge forum where VR aficionados can engage in conversations about the
newest trends, games, and applications in the virtual reality realm. Please ensure the
sidebar features the following tags: virtual reality, technology, trends, gaming.
Action History:

[
{
"round": "0",
"observation": "** Simplified html **",
"remarks": "# Element: the ’Forums’ link at the top center",
"action": "do(action="Click", element="1")"
},
{
"round": "1",
"observation": "** Simplified html **",
"remarks": "# Element: the ’Create forum’ button next to the ’List of forums’ title",
"action": "do(action="Click", element="17")"
},
{
"round": "2",
"observation": "** Simplified html **",
"remarks": "# Element: the ’Name’ field at the top of the page",
"action": "do(action="Type", argument="VirtualRealityVanguard", element="12")"
}

]

Current Observation: <html> ... </html>
Next Action: do(action="Type", argument="VirtualRealityVanguard", element="14")
Remarks: # Element: the ‘Title’ input field in the middle of the page
Now, please explain the agent’s thinking process using a first-person narrative.
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Table 5. Comparison of model outputs from WEBAGENT-R1 and WEBAGENT-R1-COT. We present successful trajectories from both
models on the same task (“What are the top-3 best-selling products in Jan 2023?”), showing only the first two steps for clarity (a full
trajectory is shown in Figure 6 for additional context). Compared to WEBAGENT-R1, the long-CoT variant WEBAGENT-R1-COT
exhibits a more detailed thinking process.

Model Model Output

WEBAGENT-R1
(Step 1)

<think> # Element: the ‘REPORTS’ section on the left sidebar.
</think>
<answer> do(action="Click", element="7") </answer>

WEBAGENT-R1
(Step 2)

<think> # Element: the ‘Bestsellers’ report option under the
‘Products’ section in the ‘REPORTS’ </think>
<answer> do(action="Click", element="27") </answer>

WEBAGENT-R1-COT
(Step 1)

<think> I need to find the top-3 best-selling products for
January 2023. Let me look at the current dashboard. The left
sidebar has a "Reports" section (element 7) which is critical for
accessing sales data. The dashboard’s main content shows a table
with a product ("Sprite Yoga Strap 6 foot") and quantity (6), but
this appears to be static local sales data rather than a report.
Since the user needs a specific monthly ranking, the Reports
section is the logical path to business intelligence tools that
can aggregate and sort data by time period. Clicking "Reports"
will likely reveal options for sales analytics, performance
tracking, or product rankings required to identify top-selling
items in January 2023. </think>
<answer> do(action="Click", element="7") </answer>

WEBAGENT-R1-COT
(Step 2)

<think> Alright, let’s break down my thought process here. The
user wants the top-3 best-selling products for January 2023.
I previously clicked the "Reports" menu (element 7) to access
analytical sections. Now, analyzing the current HTML structure:
1. **Locating the Reports Hierarchy**:
The Reports section’s dropdown (div data-bbox="88,92,1072,720")
contains nested menus. Under the "Products" subsection
(span data-text="Products"), I see options like "Views",
**"Bestsellers"**, "Low Stock", etc.
2. **Identifying the Target Element**:
The element with id="27" is explicitly labeled "Bestsellers",
which directly matches the user’s request. This is the most
logical path to access sales performance data.
3. **Ruling Out Distractors**:
Other options like "Orders" or "Tax" under the Sales section
don’t specifically target product performance. The "Bestsellers"
report is tailored to rank products by sales volume, making it
the correct choice.
4. **Next Step Justification**:
Clicking "Bestsellers" (element 27) will likely load a report
listing products by sales quantity or revenue. From there, I can
extract the top-3 entries for January 2023.
**Decision**: Proceed to click element 27 to access the
Bestsellers report, which is the most direct route to fulfill the
user’s query. </think>
<answer> do(action="Click", element="27") </answer>

D. Prompt Templates
The prompt used for data augmentation is shown in Table 4. We define the action space in the system prompt, which is
presented in Table 6. By default, we use the version with the thinking format.

E. Qualitative Examples
In Figures 6–10, we present a real-world successful trajectory generated by WEBAGENT-R1 for each of the five websites
(i.e., CMS, Map, Shopping, GitLab, Reddit) in WebArena.
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Table 6. System prompt for web agents. By default, we use the version with the thinking format (highlighted in gray). For the variant
without the thinking format (discussed in § 3.5), the gray part is simply removed.

System Prompt

You are a professional web browsing agent assistant that can fulfill user’s high-level instructions. Given simplified html of the browsed
webpage at each step, you plan operations in python-style pseudo code using provided functions.

You should first think about the reasoning process as an internal monologue and then decide an action. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., responding in the
following format: <think> ... </think> <answer> ... </answer>.

More details about the code action: Your action should be readable, simple. Please generate **ONLY ONE ACTION** in one round.
Predefined functions are as follows:

def do(action, argument, element):
"""A single browsing operation on the webpage.
Args:

:param action: one of the actions from ["Click", "Right Click", "Type", "Search",
"Hover", "Scroll Up", "Scroll Down", "Press Enter", "Switch Tab",

"Select Dropdown Option", "Wait"].
:param argument: optional. Only for "Type", "Search", "Switch Tab", and

"Select Dropdown Option", indicating the content to type in, page number
(start from 0) to switch, or key to press. "Search" action is equivalent to
"Type" action plus "Enter".

:param element: optional. Only for "Click", "Right Click", "Type", "Search",
"Select Dropdown Option", "Hover". Should be specific element id in the HTML.

Returns:
None. The webpage will be updated after executing the action.

"""
def exit(message):

"""Ending the browsing process if the assistant think it has fulfilled the goal.
Args:

:param message: optional. If user’s instruction is a question, return
assistant’s answer in the message based on the browsing content.

Returns:
None.

"""
def go_backward():

"""Go back to the previous page."""
def go_forward():

"""Go forward to the next page."""

Examples:
• <think> # Element: the ’REPORTS’ section on the left sidebar </think>
<answer> do(action="Click", element="7") </answer>

• <think> # Element: the ’Period’ dropdown, middle center </think>
<answer> do(action="Select Dropdown Option", argument="Day", element="20") </answer>

REMEMBER:
• You can generate **ONLY ONE ACTION** in one round.
• If you have multiple potential actions to explore, you should generate other actions in separate rounds.
• Don’t generate an operation element that you do not see in the screenshot.
• Use "# Element" to describe the element you choose in the HTML.
• Use "# Note" to record information useful to answer the instruction if needed.
• If you find yourself fallen into some sort of loop, try to use another method or change your action.
• If you think a page is still loading or still playing animation and you want to wait a while, use "Wait" action
• You are acting in a real world, try your best not to reject user’s demand. Solve all the problem you encounter.
• If you think you didn’t get expected webpage, you should try using more precise and locative description of the element.
• You should **NEVER** try to use the browser’s address bar at the top of the page to navigate.
• Your answer shouldn’t be in a code snippet format. Just write the function name and its arguments.
• If you use do function to perform "Click", "Right Click", "Type", "Search", "Select Dropdown Option",

and "Hover", the param element must not be None.
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do(action="Click", element="7")

Step 1

do(action="Click", element="27") do(action="Type", argument="01/01/2023", 
element="22")

do(action=“Type", argument="01/31/2023", 
element="25")

do(action="Select Dropdown Option", 
argument="Month", element="20") do(action="Click", element="16")

do(action="Scroll Down") exit(message="Top-3 best-selling products in 
January 2023 are Impulse Duffle, Overnight 
Duffle, and Hawkeye Yoga Short-32-Blue")

Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8

Figure 6. A real-world example of a successful trajectory generated by WEBAGENT-R1 on the CMS task: “What are the top-3 best-selling
products in Jan 2023?”.
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do(action="Click", element="15") do(action="Type", argument="Homewood Suites 
Southpointe", element="13") 

do(action="Type", argument="PPG Paints Arena", 
element="14") 

do(action="Click", element=“16”) exit(message="The estimated driving time from 
Homewood Suites Southpointe to PPG Paints 

Arena is 34 minutes.")

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 7. A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Map task: “From my stay at Homewood
Suites Southpointe, what’s the estimated driving time to reach PPG Paints Arena?”.

do(action=“Hover”, element=“14”) do(action=“Hover”, element=“16”) do(action="Click", element=“17”)

do(action="Select Dropdown Option", 
argument="Price", element="36") do(action="Click", element=“37”) exit(message="The living room furniture 

category is now listed by descending price.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 8. A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Shopping task: “List products from living
room furniture category by descending price”.
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do(action=“Click”, element=“17”) do(action=“Click”, element=“21”) do(action="Click", element=“30”)

do(action="Scroll Down") do(action="Click", element=“66”) exit(message="TMN_bBn9Z48qVbUFZV45")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 9. A real-world example of a successful trajectory generated by WEBAGENT-R1 on the GitLab task: “Get me my RSS feed token”.

do(action="Search", argument="Star Trek 
Starfleet Academy", element="4") do(action=“Click”, element=“22”) do(action="Type", argument="Every watch makes 

me feel like a kid again", element="16")

do(action="Scroll Down") do(action="Click", element=“8”) exit(message="The post on Star Trek Starfleet 
Academy series has been edited successfully, 

adding the line 'Every watch makes me feel like a 
kid again' to the body of the post.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 10. A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Reddit task: “Edit my post on Star Trek
Starfleet Academy series by adding a line to the body that says ”Every watch makes me feel like a kid again””.
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