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Abstract

Training deep learning models on
petabyte-scale Earth Observation (EO)
data requires separating compute re-
sources from data storage. However,
standard PyTorch data loaders can-
not keep modern GPUs utilized when
streaming GeoTIFF files directly from
cloud storage. In this work, we bench-
mark GeoTIFF loading throughput from
both cloud object storage and local
SSD, systematically testing different
loader configurations and data parame-
ters. We focus on tile-aligned reads and
worker thread pools, using Bayesian op-
timization to find optimal settings for
each storage type. Our optimized con-
figurations increase remote data loading
throughput by 20× and local through-
put by 4× compared to default settings.
On three public EO benchmarks, mod-
els trained with optimized remote load-
ing achieve the same accuracy as local
training within identical time budgets.
We improve validation IoU by 6–15%
and maintain 85–95% GPU utilization
versus 0–30% with standard configura-
tions. Code is publicly available1.

∗ Corresponding author.
1. https://github.com/microsoft/

pytorch-cloud-geotiff-optimization
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1. Introduction

EO datasets have reached petabyte scale vol-
umes (Wilkinson et al., 2024), yet training
deep learning models on this data faces a fun-
damental bottleneck. When streaming data
directly from cloud storage, multiple factors
introduce latency that leaves GPUs severely
underutilized. The alternative of download-
ing entire datasets locally is impractical at
this scale, as it demands significant storage
capacity and repeated downloads for each ex-
periment.

This bottleneck stems from both data
loading mechanisms and format character-
istics. The PyTorch DataLoader (Paszke,
2019) was originally designed for local train-
ing scenarios with minimal access latency.
Although it offers configuration options like
worker processes, batch sizes, and pre-
fetching to improve throughput, these as-
sume fast local storage. At the same time,
data format choices significantly impact re-
mote access performance. Factors such as
tiling block size, compression type and level,
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and image dimensions all affect how effi-
ciently patches can be extracted from remote
files. When data resides in cloud storage,
the combination of suboptimal loader config-
urations and format characteristics can con-
sume over half of each training epoch (Mo-
han et al., 2020b), leaving GPUs idle while
waiting for the next batch.

The machine learning community has
developed several approaches to address
remote data loading challenges. These
solutions generally follow three patterns:
custom file formats for efficient streaming,
asynchronous loading mechanisms, and
shared caching systems. FFCV (Leclerc
et al., 2023) combines an efficient container
format with asynchronous transfers to im-
prove I/O throughput and GPU utilization.
WebDataset (Aizman et al., 2019) shards
samples into tar archives to support efficient
sequential reads from cloud/object stor-
age and has been used to scale large
vision workloads. GPU-accelerated
preprocessing/data-pipeline frameworks
(e.g., NVIDIA DALI; see (Zolnouri et al.,
2020)) aim to reduce host-side decoding
and augmentation overhead by over-
lapping data preparation with training.
Concurrent/cloud-aware loaders (Svogor
et al., 2022; Mohan et al., 2020a) overlap
network I/O across workers and coordi-
nate caches to avoid redundant reads in
distributed settings. These advances under-
score the impact of optimized data pipelines,
but they largely target natural image and
video corpora.

While general approaches address key re-
mote loading challenges, raster data present
unique characteristics that require special-
ized solutions. Raster imagery is often
stored in large compressed tiles (e.g., ≥
10,000 × 10,000 pixels) from which train-
ing patches must be extracted via windowed
reads or offline preprocessing. EO work-
flows increasingly adopt cloud-native for-

mats such as Cloud Optimized GeoTIFFs
(COG) (cog, 2019) and Zarr (Consortium
et al., 2023), both of which expose inter-
nal tiling/chunking schemes that enable ef-
ficient range requests. In these formats, im-
agery is partitioned into fixed k×k pixel tiles
or chunks (Figure 1). An aligned window
read requires loading and decompressing ex-
actly one tile; a mis-aligned read forces mul-
tiple tiles to be fetched and decompressed,
inflating I/O and CPU costs. GeoTIFF sup-
ports multiple compression methods (e.g.,
DEFLATE, LERC-ZSTD, LZW) that trade trans-
fer size against decode time. Zarr arrays
integrate with the Xarray/Dask ecosystem,
enabling concurrent chunk loading and di-
rect feeding into PyTorch DataLoaders via
tooling such as xbatcher (Jones et al., 2023).

However, systematic optimization for
GeoTIFF workflows remains unexplored, de-
spite most EO archives storing data in this
format. While streaming optimization for
Zarr has been explored (Jones et al., 2023),
GeoTIFF poses unique challenges due to
significant variability in internal structure,
compression methods, and tiling schemes
across different archives. Classical ap-
proaches are ineffective for GeoTIFF work-
flows. Caching systems fail because geospa-
tial sampling exhibits negligible data reuse–
a consequence of vast spatio-temporal do-
mains and diverse sampling strategies (ran-
dom or spatially distributed) commonly used
in EO model training. Custom file formats
are also impractical due to conversion limita-
tions when using COG, though asynchronous
loading remains applicable.

This paper addresses the gap
through systematic optimization of both
PyTorch DataLoader configurations and
GeoTIFF format characteristics specifically
for remote streaming. Our contributions
include:
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Figure 1: Sentinel-2 image with internal GeoTIFF block structure overlaid as black grid
squares. Colored rectangles show four windowed read patterns and their data
loading behavior (colored backgrounds). (A) shows an aligned read that matches
block boundaries, efficiently loading only the requested data from a single block.
(B) demonstrates a random window read of block size that intersects four blocks,
requiring 4× more data transfer than needed. (C) represents sub-block reads
that still force entire block loading, creating overhead for small requests. (D)
shows large reads spanning multiple blocks, necessitating loading of all intersected
blocks.

• A benchmarking framework using
Bayesian optimization to identify
optimal configurations for GeoTIFF

loading, focusing on tile-aligned reads
and worker thread pools.

• An optimized configuration achieving
20× higher remote throughput over
baseline settings and 4× improvement
for local reads.

• Empirical validation through EO seg-
mentation benchmarks showing opti-
mized remote loading matches local-disk
training accuracy within a fixed time
budget.

2. Experimental setup

2.1. Data preparation

Our goal is to simulate the real-world sce-
nario of streaming raster patches from COGs
hosted in Azure Cloud Storage. Since repli-
cating an entire online archive for differ-
ent compression types and levels is impracti-
cal, we address this by deliberately disabling
caching to simulate fresh patch fetching and
selecting a subset of images for our trans-
forms and experimentation. We use Sentinel-
2 (Drusch et al., 2012) multispectral satel-
lite imagery, which provides global coverage
at 10 meter resolution with a 5 day revisit

3



Zaytar Robinson Tadesse Hacheme Glazer Ortiz Dodhia Ferres

time. This imagery is widely used in envi-
ronmental monitoring (Gorroño et al., 2023),
agriculture (Segarra et al., 2020), and land
cover classification tasks (Phiri et al., 2020),
making it representative of typical EO deep
learning workflows.

We download data through Microsoft’s
Planetary Computer SpatioTemporal Asset
Catalogs API (Source et al., 2022), focusing
on a 168 km2 region centered on Nairobi,
Kenya. We selected imagery from 2024
with cloud cover below 5%, resulting in 10
scenes for our benchmark dataset. From
each scene, we extract four spectral bands
(“B02”, “B03”, “B04”, and “B08”), repre-
senting blue, green, red, and near-infrared,
respectively.

To systematically evaluate how com-
pression affects data loading throughput,
we process each scene into 6 compres-
sion variants: uncompressed (None), LZW

with predictor 2, DEFLATE at three differ-
ent levels (i.e., DEFLATE 1, DEFLATE 6, and
DEFLATE 9), and LERC-ZSTD. These methods
represent different compression philosophies:
LZW and DEFLATE provide varying speed-
compression tradeoffs (where higher DEFLATE
levels achieve better compression at the cost
of slower encoding), while LERC-ZSTD offers
an alternative approach optimized for nu-
merical data. This allowed us to analyze
the tradeoffs between file size and processing
speed across various compression methods.

We store all variants as COGs with consis-
tent internal tiling structure (512×512 pixel
blocks). The resulting dataset consists of 60
GeoTIFF files (10 scenes × 6 compression
variants). We upload all dataset variants
to Azure Blob Storage while maintaining an
identical local copy for comparative bench-
marking. This setup enables direct compar-
ison between cloud and local storage perfor-
mance across different compression configu-
rations.

2.2. Compute environment

We conduct all experiments on an Azure
Standard NC96ads A100 v4 instance, fea-
turing 96 AMD EPYC 7V13 vCPUs, 866 GB
RAM, and an NVIDIA A100 80GB GPU in
the West US 3 region. For local storage
benchmarks, we use Azure temporary stor-
age with a single 250 GB disk formatted
with the ext4 filesystem. For remote stor-
age experiments, we use Azure Blob Storage
with Standard LRS in the Hot tier, located
in West US 2, resulting in approximately
164 ms cross-region latency.

3. Methods

We aim to maximize the data loading
throughput delivered to the training loop un-
der different hyperparameter configurations.
Throughput is measured in megabytes per
second (MB/s ) and represents how much im-
age data the pipeline can process per unit
time. To calculate throughput, we time the
complete data loading process. We count the
total number of processed pixels and convert
it to bytes. The throughput is then com-
puted as the total data volume processed di-
vided by the elapsed wall-clock time. This
measurement captures the end-to-end perfor-
mance of the data loading pipeline.

3.1. Internal tile sampling

We introduce a binary hyperparameter
blocked ∈ {True, False} that enforces
read alignment in the DataLoader. When
blocked = True, the sampler chooses a ran-
dom k×k tile, then–if the window size is p×p
and p ≤ k–we jitter the window to a ran-
dom position that stays wholly inside that
tile (Figure 1 (C)); otherwise the window
starts at the tile origin. Any window that
fits in one tile is thus served by a single block
read, cutting I/O by up to 4×.
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3.2. Worker thread pools

We introduce an intra-worker thread pool of
width num threads ∈ {1, 2, . . . , 32}. Each
worker issues up to num threads concurrent
range requests, hiding the ≈164 ms round-
trip latency of Azure Blob Storage behind
computation already in flight. This approach
aims to increase throughput without spawn-
ing more workers.

3.3. Bayesian search

The search space is in the order of 104 config-
urations, making exhaustive search impracti-
cal. We employ Optuna (Akiba et al., 2019)
with the Tree-structured Parzen Estima-
tor (Bergstra et al., 2011), which builds prob-
ability models of good and bad configura-
tions to select candidates with high expected
improvement. We explore: compression,
patch size, number of workers, thread pool
size, block alignment and batches preloaded
per worker (prefetch factor) as shown in
Table 1. Each trial measures throughput
(MB/s ) over 5 epochs, with each epoch
streaming 1024 patches. We conduct 100 tri-
als without early stopping criteria, monitor-
ing both throughput and average GPU uti-
lization.

Table 1: Experimental configurations ex-
plored in the data loading pipeline.

Parameter Values

Compression None,
deflate{1,6,9},
lzw, lerc-zstd

patch size {128, 256, 512, 1024}
num workers (w) {1, 2, 4, 8, 16, 32, 64}
num threads {1, 2, 4, 8, 16}
blocked {True, False}
prefetch factor {1, 2, 4, 8, 16}

3.4. Grid search

While Bayesian optimization quickly finds
promising regions in the hyperparameter
space, it may miss important interactions be-
tween specific hyperparameter pairs. To ad-
dress this, we implement 2D grid search that
explores the cross-product of values for se-
lected hyperparameter pairs. For each com-
bination, we run 5 data loading simulations
and calculate the mean and standard devia-
tion of throughput.

We focus our grid search on hyperparam-
eter pairs with the highest feature impor-
tance scores derived from our Bayesian opti-
mization results, maintaining consistent ex-
perimental conditions and setting optimal
values for the fixed hyperparameters. This
approach creates detailed visualizations of
the performance landscape that reveal how
different hyperparameter combinations influ-
ence data loading performance.

4. Results

Our Bayesian optimization search revealed
distinct optimal configurations for local ver-
sus remote storage scenarios, as shown in
Table 2. Local storage achieved peak
throughput of 1285 ± 29 MB/swith uncom-
pressed imagery and block-aligned patch size
reads, while remote storage reached 849 ±
51 MB/s using 64 workers and LERC-ZSTD

compression. This significant difference in
optimal configurations highlights the need
for storage-specific optimization approaches.
Feature importance in Table 3 tells the same
story, showing different optimization priori-
ties between storage types. For local storage,
compression type (35.24%) and num threads

(32.46%) dominate performance factors. In
contrast, remote storage performance is pri-
marily determined by num workers (28.08%)
and num threads (26.06%), with compres-
sion type contributing only 8.59% to perfor-
mance variation.
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Table 2: Bayesian optimization search: throughput improvement over baseline configura-
tions. Optimization achieved dramatic speedups of 4.1× for local storage
(1285 vs 313 MB/s ) and 20.5× for remote storage (849 vs 41 MB/s ), with remote
storage benefiting more from worker scaling and local storage from eliminating
compression overhead.

Storage Compression patch size blocked num workers Throughput Speedup

Local
DEFLATE 6 256 False 4 313±12 MB/s -

None 512 True 4 1285±29 MB/s 4.1x

Remote
DEFLATE 6 256 False 4 41±1 MB/s -
LERC-ZSTD 1024 True 64 849±51 MB/s 20.5x

Compression strategies showed context-
dependent effectiveness. As Table 4 demon-
strates, uncompressed data consistently out-
performed all compression methods for local
storage, with throughput advantages of 1.3-
1.6× (974 MB/s for LERC-ZSTD vs. 1286
MB/s for uncompressed at optimal worker
counts). For remote storage, LERC-ZSTD
compression balanced network transfer effi-
ciency with reasonable decompression over-
head, making it the optimal choice despite
compression being less important overall.

Tables 5 and 6 consistently show max-
imum throughput at 1024-pixel patches
across both local and remote storage. No-
tably, this value represents our hyperparam-
eter search’s upper bound, suggesting po-
tential for further optimization (although
limited by GPU memory). The 1024-pixel
patches align efficiently with model process-
ing by fetching 2× 2 tiles of 512 pixels each,
enabling complete utilization without wasted
computation.

Worker-thread interactions showed
counter-intuitive results in Table 7. Multi-
worker setups with minimal threading
achieved higher throughput. Two key
limitations likely account for these results:
cloud provider rate-limiting when too many

worker-thread concurrent requests are
made, and our thread pool implementation
requiring all requests to complete before
returning data, causing a single slow request
to degrade overall performance.

For remote storage, block-aligned sam-
pling substantially outperformed random ac-
cess. Table 6 shows this advantage grow-
ing dramatically with patch size–from 45%
improvement at 128 pixels (32 MB/s vs. 22
MB/s ) to 79% at 1024 pixels (810 MB/s vs.
453 MB/s ). This confirms that respecting
tile boundaries significantly reduces unneces-
sary data transfers, with benefits compound-
ing at larger scales. Remote storage loading
also benefited from prefetching, converging
on factor of 8 to mask the higher network
latency. This difference reflects the funda-
mental need to hide connection latency when
streaming from cloud storage.

Based on our findings, we recommend
the following practices for training on cloud
raster imagery: match the patch size to
the underlying tile structure of your
GeoTIFF files (typically 256 or 512 pix-
els), use block-aligned sampling to pre-
vent inefficient partial tile reads, prioritize
high worker counts (32–64) over threads,
consider LERC-ZSTD compression to bal-
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Table 3: Feature-importance rankings for the hyperparameters. Importance scores calcu-
lated using functional ANOVA with a random forest surrogate model to decompose
variance in the objective function attributable to each hyperparameter. Parameter
importance varies significantly between storage types: local performance depends
primarily on compression (35%) while remote performance is dominated by worker
count (28%), reflecting different bottlenecks in each scenario.

Local Remote

Rank Parameter Importance (%) Parameter Importance (%)

1 compression 35.24 num workers 28.08
2 num threads 32.46 num threads 26.06
3 patch size 25.63 patch size 17.95
4 num workers 4.22 Blocked 11.11
5 prefetch factor 1.97 compression 8.59

ance transfer and decompression, and im-
plement aggressive pre-fetching (factor
of 8).

5. Impact of optimized loading on
training

We evaluate loading configurations on model
training using three standard semantic seg-
mentation benchmarks. The ISPRS Vaihin-
gen dataset (International Society for Pho-
togrammetry and Remote Sensing (ISPRS),
2014) contains 33 high-resolution (9 cm)
aerial scenes of urban areas in Vaihingen,
Germany, with three spectral bands (near-
infrared, red, green) and digital surface mod-
els. The Potsdam dataset (International So-
ciety for Photogrammetry and Remote Sens-
ing (ISPRS), 2014) provides 38 tiles of 6000×
6000 pixels at 5 cm resolution with four spec-
tral bands (RGB plus near-infrared). Both
datasets feature six manually-labeled land
cover classes (impervious surfaces, build-
ings, low vegetation, trees, cars, and clut-
ter/background). The IEEE GRSS DFC-22
dataset (Hänsch et al., 2022) offers RGB im-
agery from 19 French urban areas at 50 cm

resolution with approximately 2000 × 2000
pixel images, featuring 14 land cover classes
for more complex segmentation tasks.

To systematically evaluate the impact
of storage format and loader configura-
tion on training performance, we create
three dataset versions for each bench-
mark. The default version converts
original GeoTIFF files to COGs using
DEFLATE compression (zlevel 6) with
512 × 512 tiles. The local-optimal

version uses uncompressed data, while
remote-optimal applies LERC-ZSTD com-
pression based on our Bayesian optimiza-
tion results for cloud storage. We up-
load default and remote-optimal version
copies to Azure Blob Storage to test re-
mote training scenarios. Each dataset
version uses storage-specific loader config-
urations: default employs standard Py-
Torch settings (4 workers, 256-pixel patches),
local-optimal uses 4 workers with 512-
pixel patches, and remote-optimal uses 64
workers with 8× prefetch factor and block-
aligned reads.

We train a UNet (Ronneberger et al.,
2015) segmentation model with a ResNet-
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Figure 2: Training on Azure Cloud Storage. Top row: Validation IoU over time
shows optimal configurations (dashed lines) consistently outperforming default
ones (solid lines) across Vaihingen (blue, 0.6 vs 0.45), Potsdam (red, 0.6 vs 0.5),
and DFC-22 (green, 0.18 vs 0.12) datasets. Bottom row: GPU utilization demon-
strates sustained high usage (85–95%) for optimal configurations versus intermit-
tent, low utilization (≤ 30%) for default settings.

18 (He et al., 2016) encoder using AdamW
(Loshchilov and Hutter, 2017) optimization
with a learning rate of 10−3 and standard
data augmentation techniques (flips, rota-
tions). We employ a fixed 5-minute train-
ing time budget for each configuration, as
“speed-runs” are good for measuring how
data loading efficiency impacts training dy-
namics (Coleman et al., 2017; Mattson et al.,
2020) before performance curves saturate.
We measure validation IoU and GPU utiliza-
tion throughout the process. GPU utiliza-
tion was sampled at 1-second intervals us-
ing NVIDIA Management Library in a sepa-
rate thread running concurrently with train-
ing. To ensure fair comparison, we use iden-
tical model architecture, hyperparameters,
and validation data across all configurations,
isolating the impact of data loading strate-
gies.

The results visualized in Figure 2 and Fig-
ure 3 show that data-loading configuration

has the greatest impact when training di-
rectly from cloud storage. In the remote
case (Figure 2), the remote-optimal con-
figuration sustains high GPU utilization and
reaches validation IoU comparable to local
training across all three datasets, whereas
the default remote configuration exhibits
highly erratic utilization that can drop to
0% and yields substantially lower final IoU:
Vaihingen 0.6 vs 0.45, Potsdam 0.6 vs 0.5,
and DFC-22 0.18 vs 0.12. Because the
model, hyperparameters, and training bud-
get are held constant, these accuracy gaps
are attributable to data loading configura-
tion. By contrast, when training from lo-
cal storage (Figure 3), default and opti-
mal runs converge to similar validation IoU
across all datasets (with only a marginal gain
on Vaihingen); the main difference is GPU
utilization, where the optimal configuration
maintains much higher usage (80–100% vs
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Figure 3: Training on SSD. Top row: Validation IoU over time shows optimal configura-
tions (dashed lines) achieving marginal improvements over default configurations
(solid lines) for Vaihingen (blue, 0.6 vs 0.5), while reaching similar final per-
formance for Potsdam (red, 0.6) and DFC-22 (green, 0.17) datasets. Bottom
row: GPU utilization reveals the key advantage of optimal configurations, which
maintain consistent high utilization (90%) across all datasets compared to default
configurations’ variable utilization.

30–60%), indicating faster time-to-accuracy
even when end-of-run accuracy is similar.

These results highlight the critical impor-
tance of data format and loading configura-
tions in EO deep learning. Properly aligned
reads, optimal worker counts, and appropri-
ate compression formats directly translate to
higher GPU utilization and better perfor-
mance. Most importantly, our experiments
demonstrate that with optimized configura-
tions, models can train directly on cloud-
stored data without performance penalty,
eliminating the need for costly local storage.

6. Limitations

Our approach has several practical limita-
tions. Public archives like Microsoft Plan-
etary Computer use fixed data formats that
cannot be modified, restricting our optimiza-
tions to data loading rather than storage for-

mat improvements. While we could trans-
form and re-store data on-the-fly, this would
add infrastructure complexity. Some opti-
mization choices may negatively impact deep
learning workflows. For example, tile-aligned
reads prevent random cropping during train-
ing, potentially reducing model performance.
Our investigation also focuses exclusively on
lossless compression methods within stan-
dard PyTorch DataLoader configurations.
We do not explore lossy compression trade-
offs, which could offer different performance
characteristics depending on imagery spatial
resolution and downstream tasks. Addition-
ally, we do not account for GDAL environ-
ment variables that can affect read perfor-
mance. Finally, our evaluation assumes re-
mote data access across different data centers
(Azure West US 2 and 3). Co-locating data
and compute would reduce latency and may
change our optimization recommendations.
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7. Future work

As cloud-hosted EO datasets continue to
grow in scale, traditional epoch-based train-
ing becomes increasingly impractical. Hence,
we propose replacing epochs with infi-
nite samplers that continuously fetch data
patches using asynchronous, non-blocking
frameworks. This eliminates artificial epoch
boundaries and samples according to defined
probability distributions. These training sys-
tems must handle network failures gracefully
through retry mechanisms, placeholder ten-
sors, and data replication to maintain batch
sizes when network issues occur. Beyond
training, we need systematic studies com-
paring streaming efficiency across data for-
mats beyond COG, including Zarr, cover-
ing chunking strategies, compression meth-
ods, and access patterns for each format.
In parallel, data providers can make EO
archives more “training-friendly” by publish-
ing cloud-native rasters with tiles aligned to
common ML patch sizes (e.g., 512×512), ex-
posing efficient concurrent byte-range access,
using lossless yet high-throughput compres-
sion, and supplying machine-readable meta-
data (e.g., STAC) that surfaces tile layout
and nodata masks so loaders can issue block-
aligned reads. Finally, the EO community
should establish standardized performance
benchmarks similar to DAWNBench (Cole-
man et al., 2017) and MLPerf (Mattson
et al., 2020) to drive discovery of efficient
training practices for cloud imagery and en-
able fair comparisons across methods.

Impact statement

Our work addresses the efficiency bottlenecks
in EO deep learning by optimizing Cloud-to-
GPU data streaming. Our approach removes
a key barrier to experimentation, enabling
faster iteration in geospatial machine learn-
ing. As EO data volumes continue growing
and geospatial foundation models emerge, ef-

ficient data streaming becomes critical for
scalable model development. Our optimiza-
tions reduce computational waste, lower de-
velopment costs, and enable more efficient re-
source utilization across the research commu-
nity. The primary societal benefit is faster
insight generation for environmental mon-
itoring and decision making. Researchers
can now train models directly on expand-
ing satellite archives, facilitating timely in-
corporation of new observations for dynamic
systems like vegetation change, urban de-
velopment, and natural disasters. This im-
proved accessibility has the potential to ac-
celerate progress on pressing environmental
challenges.
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Appendix A. Grid search results

Table 4: Local Throughput: Num Workers vs. Compression. Uncompressed data
consistently outperforms all compression methods by 1.3-1.6×, achieving
peak performance of 1286 MB/swith 8 workers, demonstrating that compression
overhead outweighs benefits for local storage access. Values: MB/s± std. (under-
lined: column best; bold underlined: overall best)

Compression

num workers DEFLATE 1 DEFLATE 6 DEFLATE 9 LERC-ZSTD LZW None

1 268 (11) 268 (15) 270 (03) 388 (08) 295 (07) 610 (05)
2 491 (17) 496 (02) 475 (04) 685 (13) 525 (21) 981 (17)
4 764 (42) 748 (19) 746 (14) 974 (14) 806 (67) 1244 (48)
8 786 (18) 761 (12) 747 (16) 867 (61) 796 (40) 1286 (22)

16 782 (22) 753 (16) 720 (11) 856 (53) 818 (45) 1242 (26)
32 765 (45) 750 (20) 730 (22) 876 (73) 773 (50) 1200 (33)
64 705 (71) 719 (29) 711 (14) 857 (101) 690 (61) 1184 (14)

Table 5: Local Throughput: Num. Workers vs. Patch Size. Larger patch sizes con-
sistently yield higher throughput, with 1024-pixel patches achieving opti-
mal performance (1298 MB/s at 8 workers) by efficiently utilizing GPU memory
through 2 × 2 tiles of 512 pixels each. Values: MB/s± std. (underlined: column
best; bold underlined: overall best)

patch size

num workers 128 256 512 1024

1 127 (06) 297 (07) 592 (12) 674 (31)
2 229 (05) 510 (15) 946 (09) 1058 (20)
4 340 (18) 701 (31) 1147 (40) 1269 (40)
8 323 (17) 738 (40) 1124 (33) 1298 (26)

16 310 (08) 719 (16) 1148 (08) 1297 (37)
32 279 (11) 682 (10) 1105 (24) 1273 (09)
64 211 (10) 617 (10) 1055 (21) 1217 (50)

13



Zaytar Robinson Tadesse Hacheme Glazer Ortiz Dodhia Ferres

Table 6: Remote Throughput: Sampler vs. Patch Size. Block-aligned sampling dra-
matically outperforms random access, with advantages growing from 45% at
128 pixels to 79% at 1024 pixels (810 vs 453 MB/s ), confirming that respect-
ing tile boundaries minimizes unnecessary data transfers. Values: MB/s± std.
(underlined: column best; bold underlined: overall best)

patch size

Blocked 128 256 512 1024

False 22 (8) 83 (20) 254 (79) 453 (81)
True 32 (1) 117 (9) 401 (4) 810 (57)

Table 7: Remote Throughput: Workers vs. Threads. Counter-intuitively, fewer threads
with more workers achieve higher throughput (817 MB/swith 16 workers, 1
thread), likely due to cloud provider rate-limiting and thread pool synchroniza-
tion bottlenecks that cause slow requests to degrade overall performance. Values:
MB/s± std. (underlined: column best; bold underlined: overall best)

Number of Threads

num workers 1 2 8 32

1 112 (03) 187 (16) 359 (08) 362 (19)
2 213 (10) 340 (09) 486 (38) 402 (20)
4 412 (12) 560 (17) 497 (38) 356 (41)
8 600 (52) 729 (58) 511 (11) 372 (37)

16 817 (61) 669 (118) 487 (30) 375 (11)
32 773 (113) 666 (119) 496 (20) 371 (27)
64 761 (180) 686 (85) 474 (60) 381 (19)
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