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Abstract

We address the challenge of quantifying Bayesian
uncertainty and incorporating it in offline use cases
of finite-state Markov Decision Processes (MDPs)
with unknown dynamics. Our approach provides a
principled method to disentangle epistemic and
aleatoric uncertainty, and a novel technique to find
policies that optimise Bayesian posterior expected
value without relying on strong assumptions
about the MDP’s posterior distribution. First, we
utilise standard Bayesian reinforcement learning
methods to capture the posterior uncertainty in
MDP parameters based on available data. We then
analytically compute the first two moments of
the return distribution across posterior samples
and apply the law of total variance to disentangle
aleatoric and epistemic uncertainties. To find
policies that maximise posterior expected value,
we leverage the closed-form expression for value
as a function of policy. This allows us to propose
a stochastic gradient-based approach for solving
the problem. We illustrate the uncertainty quantifi-
cation and Bayesian posterior value optimisation
performance of our agent in simple, interpretable
gridworlds and validate it through ground-truth
evaluations on synthetic MDPs. Finally, we
highlight the real-world impact and computational
scalability of our method by applying it to the AI
Clinician problem, which recommends treatment
for patients in intensive care units and has emerged
as a key use case of finite-state MDPs with offline
data. We discuss the challenges that arise with
Bayesian modelling of larger scale MDPs while
demonstrating the potential to apply our methods
rooted in Bayesian decision theory into the real
world. We make our code available at https:
//github.com/filippovaldettaro/
finite-state-mdps.

1 INTRODUCTION

In safety-critical machine learning applications, accurately
quantifying confidence and uncertainty in decision out-
comes becomes imperative for regulatory and trust reasons
[Chua et al., 2022, Kendall and Gal, 2017]. Uncertainties
that such systems face can stem from limited data avail-
ability (epistemic) or originate from inherent environmental
randomness (aleatoric). Uncertainty quantification is partic-
ularly relevant and challenging in reinforcement learning
(RL) systems as uncertainty in decisions’ outcomes com-
pounds in sequential decision-making.

We utilise inference schemes from classic Bayesian RL to
account for epistemic uncertainty, with an exact-inference
Bayesian dynamics model that assigns posterior probabili-
ties to environments Duff [2002]. Aleatoric uncertainty is
addressed by exploiting the analytic solutions to the linear
equations for higher return distribution moments [Sobel,
1982]. Our contribution on the uncertainty quantification
side is combining these two ingredients to determine overall
aleatoric and epistemic standard deviations. We consider
the computation and accuracy tradeoff of our method with
prior work that does not exploit the tractability of finite-state
MDPs.

On the control under uncertainty side, we propose a novel
stochastic gradient-based method for policy optimisation
that accounts for model dynamics uncertainty by optimis-
ing a policy for value under the environment posterior. In
contrast to previous methods [Delage and Mannor, 2010],
we do not rely on strong assumptions about the posterior
distribution. We empirically demonstrate its performance
and scalability, providing results on gridworlds and syn-
thetic MDPs with varying offline dataset sizes, where we
observe benefits in MDPs with higher uncertainty and lower
data. Finally, our methods finds application in clinical deci-
sion support systems (CDSS), which leverage vast patient
datasets to train RL algorithms for treatment suggestions
[Gottesman et al., 2019, Li et al., 2020]. We analyse a setup
used for sepsis treatment [Komorowski et al., 2018], where
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patients’ condition and treatment options were clustered
into finite states and actions, originally tackled by applying
dynamic programming methods that assume known environ-
ments [Bellman, 1957]. The methods presented enhance this
approach with uncertainty quantification and uncertainty-
aware control. We investigate the scalability of our methods
in such practical environments and investigate the difference
in expected posterior value between ours and the original
policy optimisation method proposed. For this analysis, we
included pessimism in the face of uncertainty, a common
and necessary ingredient in offline RL [Kidambi et al., 2020,
Yu et al., 2020, An et al., 2021] especially when the dataset
does not adequately span the full state-action space [Agar-
wal et al., 2020], in the form of a conservative dynamics
model.

2 RELATED WORK

This section reviews uncertainty treatment in finite-state
MDPs. We focus on epistemic uncertainty in Robust and
Adaptive MDP settings, aleatoric uncertainty for risk-averse
policies, and recent work quantifying both types of uncer-
tainty in finite-state offline decision making contexts.

Robust and Adaptive MDPs. A simple model-based ap-
proach for an MDP uses relative visitation frequencies as
the ground truth transition probabilities. This can introduce
bias and result in policies that generalise poorly [Mannor
et al., 2007, Wiesemann et al., 2013, Chow et al., 2015].
To address this, a Bayesian approach is often employed to
account for uncertainty in ambiguous transition dynamics,
a common method in Bayesian RL [Ghavamzadeh et al.,
2015]. Bayesian dynamics models used in Bayes-Adaptive
MDPs (BAMDPs) [Duff, 2002, Guez et al., 2012, Rigter
et al., 2021] maintain the current belief in transition dy-
namics and enable optimal ‘offline’ planning of adaptable
‘online’ policy rollouts. However, these models may be in-
tractable beyond simple MDPs [Poupart et al., 2006, Lee
et al., 2018, Zintgraf et al., 2021].

In high-risk offline settings, exploration is undesirable. For
instance, in the CDSS developed in [Komorowski et al.,
2018], novel actions are avoided by only considering ac-
tions above a minimum visitation threshold. Therefore, we
focus on optimal memoryless, stationary (non-adaptive) poli-
cies depending only on the state [Delage and Mannor, 2010].
Finding policies that are robust to the worst-case realisation
of uncertain dynamics can often lead to overly conservative
policies, making average value optimization across a dis-
tribution of MDPs a better alternative [Nilim and Ghaoui,
2003, Iyengar, 2005, Xu and Mannor, 2006], and a prin-
cipled one in line with Bayesian decision theory Robert
et al. [2007]. This will be the problem formulation we will
be tackling here, while requiring that our methods scale
to medium-sized (approximately 103 states) MDPs in data
regimes where significant uncertainty is still present, in or-

der for them to be applicable to real-world tasks. Delage
and Mannor [2010] proposes a gradient-based method to op-
timise this objective, but makes the strong assumption that
higher moments of the posterior distribution of transition
parameters are small. Dimitrakakis [2011] proposes an algo-
rithm that provides provably near-Bayes-optimal stationary
policies, but focuses on providing an expected utility bound
with respect to the Bayes-optimal adaptive policy, which in
general has different utility to the optimal offline stationary
policy.

Risk-averse policies. Accounting for inherent environmen-
tal stochasticity is often desirable. Using the distributional
RL framework [Bellemare et al., 2017], policies are of-
ten informed by return distribution properties other than
its mean to select risk-averse actions [Dabney et al., 2018,
Clements et al., 2019]. However, optimal policies for such
statistical functionals are generally neither memoryless nor
time-consistent [Sobel, 1982, Bellemare et al., 2023]. There-
fore, we focus on using the mean of the return distribution
to guide the agent’s policy.

Aleatoric and Epistemic Uncertainty in Finite-state
MDPs. Several recent efforts have tried to model both types
of uncertainties in discrete environments. In a healthcare
context, Joshi et al. [2021] used a Bayesian dynamics model
and Monte Carlo trajectory sampling to estimate uncertain-
ties and determine when to defer treatment. In contrast,
Festor et al. [2021] trained an ensemble of distributional
deep neural networks (DNNs) to learn the return distribu-
tion, effectively learning a ‘distribution over return distribu-
tions’. Neither of these works exploit the benefits of having
a stationary MDP, and we therefore complement them by
directly exploiting the tractability advantages presented by
finite-state MDPs, such as closed-form return distribution
moments and the possibility for exact inference on the envi-
ronment dynamics, with methods leading to computationally
efficient and accurate uncertainty representation.

3 BACKGROUND

Dynamic Programming A Markov Decision Process
M (MDP) [Puterman, 2014] is given by a tuple
(S,A, r, P, γ, ρ), where S and A are the (assumed finite)
state and action spaces respectively, r : S → R is the re-
ward function, P : S ×A → P(S) the transition kernel (P
denoting a probability distribution over the corresponding
set), γ ∈ [0, 1) a discount factor and ρ the distribution over
initial states. Given a policy π : S → P(A), the return of
an episode starting from state s is a random variable given
by Gπ(s) =

∑∞
t=0 γ

tRt, where Rt = r(st), at ∼ π(·|st),
st ∼ P (·|st−1, at−1) given that s0 = s. For simplicity, we
assume reward as known and only dependent on state. This
is a natural modelling step for MDPs where a certain state
is associated with a particular reward and in practice is com-
mon when constructing MDPs. Nonetheless our methods



extend naturally to more general formulations.

The expected value of G is called the value function
V π(s) = EGπ(s), and it can be shown that with this defini-
tion, V satisfies the Bellman equation

V π(s) = r(s) + γ
∑
a,s′

P (s′|s, a)π(a|s)V π(s′). (1)

Dynamic programming methods, such as value iteration,
can evaluate V and provide the policy that optimises V
[Sutton and Barto, 2018]. It can be shown that the value of
any arbitrary policy π is

v(π) = (I− γT(π))−1r, (2)

with v and r being |S|-dimensional vectors with ith element
being V π(si) and r(si) respectively (for s the ith state in
S) and T(π) the policy-dependent transition matrix with
element i, j given by

Ti,j =
∑
a

π(a|si)P (sj |si, a). (3)

The term (I − γT(π))−1 can be interpreted as successor
features, in terms of which the analytic solution for value
has a simple form [Dayan, 1993]. For clarity we have high-
lighted here the dependence of T on π and note that r does
not depend on π as we assumed state-dependent rewards.

Return Distribution Unlike traditional distributional RL
methods [Bellemare et al., 2017, 2023], we focus solely
on the first two moments of the return distribution. This
allows us to bypass the full distributional RL framework, as
closed-form solutions for these moments can be obtained
analytically for a given finite-state MDP.

Methods that solve the Bellman value equation (Eq. 1) can
be extended to determine moments of the return distribution.
For example, it can be shown that the variances of the return
random variable Gπ(s) satisfy an analogous set of linear
Bellman equations, with solution given in vector form by
Sobel [1982]:

var(π) = (I− γ2T(π))−1r(var)(π), (4)

where the vector of variances var has element i correspond-
ing to the variance at state si and r(var) is the vector with
element i being

r(var)
i (π) =

∑
j

Pπ(sj |si)(r(si) + γV π(sj))
2 − V π(si)

2,

(5)
where Pπ(s′|s) =

∑
a π(a|s)P (s′|s, a).

Bayesian Dynamics Model The dynamics model we em-
ploy is standard in Bayesian RL, and is equivalent to the
one used in BAMDPs [Ghavamzadeh et al., 2015, Poupart
et al., 2006] with an unchanging belief and similar to the one

proposed in Joshi et al. [2021], but stationary. By modelling
the belief over the MDP’s dynamics parameters, this line of
work effectively captures the uncertainty due to not being
able to fully narrow down the true underlying MDP: with a
finite number of transitions, there may be several potential
MDPs that could have generated the observations, to which
we can assign posterior probabilities by using Bayes’ rule.
For our purposes, we take the reward function of the MDP
as known (and deterministic), ultimately because in our ap-
plications we will define reward directly as a deterministic
function of state, but treat the dynamics of the world as
unknown.

Let θs
′

s,a be a parameter representing the probability of tran-
sitioning to state s′ given action a at state s, and consider a
dataset of observed transitions (s, a, r, s′) ∈ D. The prob-
ability of transitioning to some next-state follows a multi-
nomial distribution with parameters given by θ, and we
can specify a conjugate Dirichlet prior on these so that for
each state-action the resulting posterior probability is also
Dirichlet. Assuming a symmetric Dirichlet prior (indepen-
dent across different state-actions) with parameter αp, the
posterior distribution satisfies

p({θsis,a|si ∈ S}|D) ∝
∏
j

(θsjs,a)
nj+αp−1, (6)

with nj being the number of times s, a transitioned to state
sj and the proportionality constant is given (in closed form)
by the multivariate Beta function [Kotz et al., 2004].

When the number of possible outcomes, in this case next
states, is large then inference on the Dirichlet parameters
can be very data-inefficient: if a generic maximum-entropy
prior parameter is employed it can assign a disproportionate
amount of posterior probability to unobserved outcomes. To
mitigate this, one may scale the prior parameter inversely
to the number of outcomes, as done in a BAMDP context
in Guez et al. [2012], or induce sparsity in the possible out-
comes by modelling the belief of feasible next states through
a hierarchical Bayesian model [Friedman and Singer, 1998].
We will address this same issue in section 5.3 by employing
a sparse Dirichlet model.

Aleatoric and Epistemic Uncertainty In order to quan-
tify and distinguish between epistemic uncertainty due to
ambiguity in MDPsM given limited data and aleatoric un-
certainty in the return G, we use the common decomposition
formula that arises after applying the law of total variance
[Kendall and Gal, 2017, Joshi et al., 2021] to the return G:

VarG(s) = VarMEGM(s)︸ ︷︷ ︸
epistemic

+EMVarGM(s)︸ ︷︷ ︸
aleatoric

, (7)

where we have made clear that the dependence on the re-
turn random variable G is conditioned on the MDPs M,
so that the inner expectations and variances are marginal-
ising over returns for a given MDP and the outer expecta-
tions and variances are marginalising over distributions of



MDPs. The epistemic variance term captures the overall
variance in the expected returns due to ambiguity in the
MDPs and the aleatoric variance term is an estimate of the
intrinsic variance averaged over the posterior MDP distribu-
tion. Eqs. 2 and 4 allow us to determine EGM(s) = VM(s)
and VarGM(s) exactly, while averages and variances over
the MDPs can be approximated through Monte Carlo sam-
pling of the posterior over MDPs. In the limit of infinite
data, the epistemic variance will tend to 0 as the probability
mass of the posterior focuses in on a specificM, but the
aleatoric term will not necessarily behave similarly.

Bayesian Objective Beyond evaluating uncertainty, hav-
ing a belief over the possible range of dynamics that an
MDP can exhibit can allow us to account for this uncertain
belief when carrying out control. Bayesian decision theory
dictates that the optimal decision rule for a given prior be-
lief and observed data is the one that maximises posterior
expected value [Robert et al., 2007]. Thus, we seek to find a
policy that maximises the posterior expected value objective

max
π

∑
s

ρ(s)EM∼p(·|D)V
π
M(s), (8)

where the value of each state EM∼p(·|D)V
π
M(s) has been

marginalised with respect to the initial state distribution ρ.
This approach is consistent with previous literature that
establishes the benefits of optimising this objective for
decision-making in uncertain MDPs [Nilim and Ghaoui,
2003, Iyengar, 2005, Xu and Mannor, 2006]. Thus, this
objective will be one of the performance metrics we will
use to evaluate different algorithms. Delage and Mannor
[2010] addresses finding a policy that performs well on this
objective, but their approach relies on a second-order expan-
sion of the value in terms of the MDP parameters’ posterior
distribution moments, and must thus assume small posterior
uncertainty to be successful.

4 METHODS

4.1 UNCERTAINTY QUANTIFICATION

Some proposed approaches for jointly estimating aleatoric
and epistemic uncertainty in discrete-space MDPs either
overlook uncertainty in the transition model [Festor et al.,
2021] or rely on extensive Monte Carlo sampling [Joshi
et al., 2021]. As a consequence, the former does not scale
consistently with additional data (see Appendix D for em-
pirical evidence for this claim) and we can improve on the
latter in some regimes for the infinite-horizon MDP case by
using closed-form expressions for the first two moments of
the return distribution.

We present in Algorithm 1 a way to estimate posterior value,
aleatoric and epistemic variances in Eq. 7, that exploits
the finite-state stationary nature of the MDPs considered

here. Its computational complexity scales as O(|S|3) due to
requiring an |S| × |S| matrix inversion for each of the NM

dynamics samples. In contrast, methods that rely on Monte
Carlo return samples to estimate aleatoric and epistemic
return will require a larger number of Dirichlet samples and
large simulation trajectory lengths to achieve comparable
accuracy, but no matrix inversion.

We investigate this trade-off quantitatively in Appendix A
and conclude that the larger number of samples required for
a full Monte Carlo-style evaluation (similar to Joshi et al.
[2021]) is not worth the additional sampling overhead for
the MDPs we are considering (γ = 0.999, |S| < 1000). In
particular, we show that for large γ, finding exact solutions
for values using analytic forms will be more computation-
ally efficient as longer rollouts become necessary to have
accurate return samples and more posterior samples become
necessary to decrease the error from Monte Carlo sampling.
In principle one could also use some iterative policy evalua-
tion scheme [Sutton and Barto, 2018] to solve for the first
and second moments of the return distribution, sacrificing
a small amount of accuracy but avoiding a matrix inverse
calculation.

Algorithm 1 Bayesian Value, Epistemic and Aleatoric Un-
certainty Evaluation

Require: Policy π, state si, posterior distribution over tran-
sition parameters p(M|D)
θs

′

sa{1:NM} ← NM matrix samples from p(M|D)
for s ∈ S, s′ ∈ S do
{Tss′}{1:NM} ←

∑
a π(a|s)θs

′

sa {1:NM} ▷ NM

action-marginalised transition matrices
end for
for t = 1 to NM do

vt ← (I− γTt)
−1r ▷ Eq. 2 for samples

for sk ∈ S do
Vk ← element k of vt

end for
for sk ∈ S do

r(var)
k ←

∑
j{Tsksj}t(r(sk) + γVj)

2 − V 2
k

end for
vart ← (I− γ2Tt)

−1r(var) ▷ Equation 4
vt ← element i of vt

vart ← element i of vart
end for
bayes_value← 1

NM

∑NM

t=1 vt

aleatoric_var← 1
NM

∑NM

t=1 vart

epistemic_var← 1
NM−1

∑NM

t=1(vt − bayes_value)2

return bayes_value, aleatoric_var, epistemic_var



4.2 POLICY IMPROVEMENT

Unlike with a single MDP, the objective in Eq. 8 does not
always admit a deterministic optimal policy (we provide
an example in Appendix B where the optimal policy is
stochastic). For this reason, approaches analogous to clas-
sical dynamic programming cannot find an optimal policy.
We suggest a gradient-based approach to optimise this ob-
jective in Algorithm 2. We approach the optimisation by
taking stochastic gradient steps of the value objective with
respect to a parametrised stochastic policy, which is made
possible by the analytic form for value for given parameter
samples. This approach is qualitatively distinct to the classic
policy gradient in RL which estimates policy gradients from
rolled-out trajectories [Sutton and Barto, 2018] . In contrast
to other methods [Komorowski et al., 2018, Dimitrakakis,
2011] this does not introduce bias due to optimising only
with respect to a finite number of transition samples: by
re-sampling from the posterior every gradient step, we re-
move the bias that would occur by picking a smaller finite
sample, and we note that all standard stochastic gradient op-
timisation guarantees regarding computational complexity
or convergence to a local optimum will apply. For example,
one can show that with appropriate learning rate schedul-
ing, this convergence is guaranteed almost surely [Bottou,
1998] (although we empirically found that convergence was
also achieved with a constant learning rate). Note that since
γ < 1, all quantities (values, variances) are bounded, con-
tinuous and differentiable functions of policy parameters.
We also remark that Algorithm 2 can be implemented faster
computationally by reducing the batch size or by resampling
the posterior periodically rather than at every gradient step
(see Appendix C for computational benchmarks).

Algorithm 2 Stochastic Gradient Policy Optimisation

Require: Initial deterministic π, posterior distribution over
transition parameters p(M|D), initial policy softness pa-
rameter η, learning rate α
∀s ∈ S, a ∈ A, zsa ← log(η/(|A| − 1))
∀s ∈ S, zsπ(s) ← log(1− η) ▷ Set initial π params
while not converged do
∀s ∈ S, a ∈ A, letπ(a|s)← exp(zsa)∑′

a exp(zsa′ )

θs
′

sa{1:n} ← n minibatch samples from p(M|D)
for s ∈ S, s′ ∈ S do
{Tss′}{1:NM} ←

∑
a π(a|s)θs

′

sa {1:NM} ▷ NM

action-marginalised transition matrices
end for
v1:NM

← (I− γT1:NM
)−1r ▷ Eq. 2 for samples

L = −
∑

i ρ · vi ▷ Posterior and state marginalised
∀s ∈ S, a ∈ A, zsa ← zsa − α ∂L

∂zsa
▷ Gradient step

end while
∀s ∈ S, a ∈ A, π(a|s)← exp(zsa)∑′

a exp(zsa′ )

return π

5 EXPERIMENTS

Here we apply the proposed method on toy environments
and a real-world clinical dataset. The toy environments
demonstrate the salient features of our methods where
ground-truth MDPs can be easily generated and interpreted,
while the application to clinical data confirms its scalability
to MDPs with practical use. We first examine uncertainty
evaluation on interpretable gridworlds for a specific policy
and then consider policy optimisation on gridworlds and
synthetic MDPs. Finally we apply the same methods to the
MIMIC-III dataset [Johnson et al., 2016], and present re-
sults on the impact that carrying out our approach has on
this dataset’s posterior expected value.

5.1 GRIDWORLD

We consider a gridworld with stochastic transitions: at each
step there is a probability prand of being pushed down re-
gardless of action taken. Otherwise, the agent moves up,
down, left or right by one square determined by the action.
The observed transitions dataset D is generated by repeat-
edly spawning an agent in a non-terminal random state and
carrying out a random action. Experiments are ran on the
gridworld visualised in Fig. 1a. The results presented here
are for datasets of varying sizes, where smaller ones are
always subsets of any larger ones to ensure that the latter
are strictly more informative.

Uncertainty Quantification We consider the policy un-
certainty evaluation problem, comparing how results from
our Bayesian approach differ from others when evaluating
aleatoric and epistemic uncertainty for the policy that is op-
timal under the MLE dynamics parameter estimates. We see
in Fig. 1b that the uncertainty quantification results from ap-
plying Algorithm 1 scale consistently with varying dataset
size (epistemic uncertainty always becomes small with more
data) and intrinsic stochasticity (higher prand corresponds
to higher aleatoric uncertainty). In contrast, we find that
the approach in Festor et al. [2021] always leads to low
epistemic uncertainty at the end of training, as the lack of
knowledge of the underlying MDP is not modelled, and thus
does not scale consistently with data. In Appendix D we
visualise how epistemic uncertainty evolves during training
with different datasets. We adapt their algorithm to carry
out SARSA policy evaluation on the same, fixed policy and
observe that it always tends to be small regardless of how
informative the dataset is by the end of training. Addition-
ally, as discussed in section 4.1, the computation of aleatoric
and epistemic uncertainty through closed-form moments as
in Algorithm 1 does not require averaging samples over
episodic rollouts as in Joshi et al. [2021].

Bayesian Policy Optimisation An optimal memoryless
policy that accounts for the model uncertainty maximises



the posterior expected value given in Eq. 8. We compare
the performance on this objective of four policies: the op-
timal policy when transition probabilities are modelled as
naive visitation frequencies (MLE-optimal policy), the op-
timal policy for the expected or marginalised (referred to
as nominal) MDP (Nominal policy) [Dimitrakakis, 2011,
Delage and Mannor, 2010], the policy derived from the
second-order approximation of value in terms of posterior
moments proposed in Delage and Mannor [2010] (Second
order policy) and ours, described in Algorithm 2 (Gradient
policy). In Algorithm 2 and the second order policy, we
choose the initial policies to be a softened version of the
Nominal policy (η = 0.1). Just like the MLE-optimal pol-
icy, the required amount of computation is one round of
value iteration [Sutton and Barto, 2018] and is therefore a
computationally negligible addition to the algorithm.

A further method that optimises a similar objective is the
Multi-Sample Backwards Induction (MSBI policy) algo-
rithm suggested in Dimitrakakis [2011]. However, this algo-
rithm was originally devised to find a policy that achieves a
near-optimal lower bound on the utility with respect to the
Bayes-adaptive policy, which is a different task to the one
considered here. Nonetheless, for completeness we report
the corresponding results for this method in Appendix E,
and found that it did not outperform ours on any of the
metrics considered.

(a) Gridworld
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Figure 1: Fig. 1a shows the gridworld used in the exper-
iments. The terminal states are the failure F states (cliff)
and the goal G state. The agent can move up, down, left,
or right (or remain stationary if it hits the boundary of the
grid). The transition dynamics have intrinsic stochasticity
controlled by the probability prand, which is the probability
of pushing the agent down regardless of action taken. Of-
fline training datasets were generated by randomly sampling
actions at random non-terminal states. State ⋆ is chosen as
an exemplar state to plot state-dependent uncertainties. In
Fig. 1b, the plot shows the epistemic (blue) and aleatoric
(red) standard deviations as a function of training dataset
size, with different levels of intrinsic stochasticity indicated
by solid, dashed, and dotted lines.

We empirically find that the gradient-optimised policy con-
sistently outperforms the other methods on optimising the
posterior value objectives, especially in lower data regimes
when optimising the Bayesian posterior value objective.
Results from a sample run are presented in Fig. 2a for differ-
ent dataset sizes. The corresponding relative performances
of our method against both MLE-optimal and second or-
der policies on the posterior value objective over 50 sets
of generated datasets are presented in Fig. 2b, 2c and 2d
with error bars (standard deviations), confirming that our
method consistently outperforms the other two in terms
of posterior value maximisation over a larger number of
randomly-generated datasets.

5.2 SYNTHETIC MDPS

While gridworlds are convenient to interpret results relating
to uncertainty disentanglement, they are not adequate for
repeated experimentation and evaluation on multiple ground
truth environments. Therefore, we present here results on
unstructured, synthetic MDPs that allow us to meaningfully
evaluate the ground-truth performance of learned policies
on a large number of MDPs.

The MDPs we consider have 5 states, 5 actions and are
generated by sampling the ground-truth transition probabili-
ties independently for each state-action from a flat Dirichlet
prior (with any state being a valid next state). To break the
symmetry between states, we sample the state-dependent
reward from a normal Gaussian and keep these constant
throughout all experiments. The datasets are generated by
sampling the outcome of visiting each state-action between
1 and 10 times, resulting in different dataset sizes. For each
dataset size, we generate 250 different MDPs and datasets
and train the various policies on these datasets. Finally, we
roll out the policies and evaluate them on the ground-truth
MDP that generated the data (for 1k steps and with η = 0.5).
Similarly to the previous section, the intrinsic ‘luck’ associ-
ated with MDPs generated can affect the maximum value
that each policy is able to achieve, so we focus on the dif-
ference in performance between methods for each MDP. In
Fig. 3, we display the ground-truth relative performance of
the various policies compared to ours. For all ground-truth
results, we display standard error of the mean rather than
standard deviation as we are interested in average perfor-
mance across prior MDP samples rather than the variability
over each individual sample. We also report the performance
on the posterior expected value, as with the gridworlds, in
Fig. 4. In Appendix F, we present the same results in Figs. 3
and 4 with the y-values rescaled to reflect fractional im-
provements rather than absolute values.

We notice that our stochastic gradient/based method consis-
tently outperforms the others in the low data regimes, both
for ground truth performance as well as optimisation perfor-
mance. MLE and Nominal policies can be very sub-optimal
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(d) Gradient vs Second order

Figure 2: Fig. 2a shows the average posterior expected return (‘Value’) as a function of dataset size for a single set of
generated datasets, as in the objective in Eq. 8. The example gridworld has prand = 0.25. As value will be dataset-dependent,
we show the average and standard deviation between the pairwise difference in posterior values between ours and the other
methods in Figs. 2b, 2c and 2d, where values above the red dashed line signify an improvement. These plots report the
average and standard deviation across 50 generated datasets for each dataset size.
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(c) Gradient vs Second order

Figure 3: Ground truth pairwise difference in average performance (and shaded standard error of the mean) on the policies
found by each method and rolled out on the ground-truth synthetic MDP. Regions above the red line correspond to improved
performance with our method.
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(c) Gradient vs Second order

Figure 4: Average and standard deviation (shaded) of posterior expected value difference achieved by our method. Regions
above the red line correspond to improved objective optimisation with our method.



in the low data regime and then significantly improve with
more data, suggesting that with more data the gradient-based
optimisation may not be necessary, whereas the second or-
der policy is consistently slightly sub-optimal compared to
ours.

5.3 CLINICAL DATA

We apply Algorithm 2 to the MIMIC-III dataset, as in Ko-
morowski et al. [2018] and Festor et al. [2021], using the
same clustering of 752 states and 25 actions. Two terminal
states represent patient recovery and death, with reward 1 for
a patient’s recovery and 0 for death. Thus value corresponds
to probability of survival when γ ≈ 1 (γ = 0.999). As in
Komorowski et al. [2018], actions at any state with fewer
than 5 visits in the dataset are excluded. We address here
two main points. First we confirm that our method can scale
computationally to real-world MDPs and datasets. Secondly,
we investigate the impact on the posterior expected value
when employing our policy compared to the MLE-optimal
one as in the original work.

Fig. 5 shows the posterior expected value of the two policies
under two different choices of dynamics prior. Fig. 5a corre-
sponds to a symmetric Dirichlet prior chosen via Bayesian
model selection. The posterior probability mass over tran-
sition parameters still has a high entropy causing the agent
to believe transitions are essentially random. In Fig. 5b, we
employ a conservative sparse dynamics model that only in-
cludes the death state and any observed next states in the
dataset as possible next-state outcomes for each state-action.
Here, we notice that the posterior expected value can be
significantly increased by using our policy optimisation al-
gorithm, suggesting that we are in a data regime where the
choice of algorithm for policy selection is important. We de-
fer more detailed discussion and a visualisation of resulting
uncertainties to Appendix G.

6 LIMITATIONS

Our methods are investigated for a specific category of
Markov Decision Processes (MDPs) with finite states and
known reward structures. While our method is well-suited
for the lower data regimes, we empirically observe that it can
be slightly suboptimal compared to the classical dynamic
programming baselines, in particular the “Nominal” policy,
in higher data regimes where uncertainty in the underlying
transitions is low. Nonetheless, in practice this can be de-
tected by comparing the Bayesian objective of the nominal
policy to the posterior expected value achieved by the policy
after our stochastic gradient optimisation and choose the
one with the better posterior expected value. We have shown
our approach can handle moderately-sized MDPs that carry
practical real-world application possibilities in section 5.3).
However, it relies on matrix inversion (O

(
|S|3

)
complex-
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Figure 5: Posterior of each state (blue dots) under our policy
and the MLE-optimal policy in the clinical MDP. Points
above the diagonal indicate superior performance of our
policy on the posterior expect value. The left plot (a) demon-
strates the impact of policy choice on performance when
employing Bayesian model selection with an optimal pa-
rameter of αp = 0.072. The right plot (b) shows the same
result when using a prior selected through a conservative
sparse dynamics model.

ity) so it cannot directly scale to much larger MDPs. In
Appendix C we show empirical results on how our method
scales to larger state-spaces on the computational side. One
key limitation of our proposed methods towards real-world
application is the sensitivity of the resulting policy and in-
ferred values on the dynamics model prior used, especially
when data is inadequate for effective inference across all
dynamics priors. For example, we observe that the effects
of having a sparse or evidence-optimised model can be
significant on both the inferred policy and the associated
posterior values (see Fig. 5) and exactly how to best include
or combine these elements to select a prior that achieves
consistently good performance on real-world MDPs is an
important question and one that we defer to future work.

7 CONCLUSION

We have proposed methods to estimate Bayesian aleatoric
and epistemic uncertainty in the outcome of finite-state
space policies and to maximise posterior expected value.
We offer a real-world example application of our method in
a prominent case of discrete-state offline RL [Komorowski
et al., 2018] in clinical decision support systems. In contrast
to previous approaches that estimate such uncertainties in
MDPs with finite states, we directly exploit the tractability
of stationary MDPs to avoid potentially computationally
expensive or inaccurate episodic rollouts (necessary in non-
stationary MDPs [Joshi et al., 2021]) or employing ensem-
ble of model-free approaches that may overlook dynamics
uncertainty [Clements et al., 2019, Festor et al., 2021].

On the control side, we introduced a stochastic gradient-
based method to optimise posterior expected value [Xu and
Mannor, 2006] that, unlike previous approaches [Delage



and Mannor, 2010], does not make strong assumptions on
the posterior’s distribution and does not introduce bias from
having a finite number of posterior samples [Dimitrakakis,
2011]. Through numerical simulations, we have shown that
our method consistently improves on the posterior value
objective as well as performance on ground-truth MDPs,
particularly in low data regimes, when these are unknown
and sampled from a given prior. Our method can be extended
to optimise value over any distribution of MDPs that can be
sampled from, including those with uncertain or more ex-
pressive rewards (of the form R(s, a, s′)) as these also have
differentiable closed-form expressions for value in terms
of policy [Sobel, 1982]. We apply our method to a clinical
dataset, confirming its computational scalability, and notice
that the resulting policy significantly improves the posterior
expected values compared to that in the original approach
[Komorowski et al., 2018]. We suggested domain-specific
conservatism in the dynamics model as a potential solution
to new challenges that arise in this task and a starting point
for further work towards finding offline policies with robust
ground-truth performance in finite-state MDPs.
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A PROBABILISTIC EVALUATION BOUNDS

Here we provide a quantitative investigation into the choice of method to evaluate the quantities of interest for a given
policy, including a comparison of the probabilistic bounds on the errors due to finite numbers of samples. We compare the
efficiency required to achieve an evaluation within a certain accuracy ε with a minimum probability 1− δ for methods that
(i) carry out Monte Carlo sampling for every evaluation step and (ii) (ours, Algorithm 1) carry out an exact calculation of the
return distribution moments and then Monte Carlo evaluation with samples from the dynamics posterior. The quantity we
investigate in detail is the Bayesian value at a given state for a given policy (appearing in Eq. 8 for a given policy and state),
and since aleatoric and epistemic uncertainties are calculated in very similar fashion, the conclusions regarding Bayesian
value estimation will also carry through to the uncertainty quantification case.

A.1 EXACT MOMENTS

The quantity of interest we wish to approximate is

V̂ = EM(VM(s)), (9)

where the expectation is taken over the Dirichlet posterior of MDP dynamics parameters. For a given set of dynamics
parametersM, we have access to the closed form expression for the first moment of the return distribution VM(s) (in terms
of policy, dynamics and reward) as presented in Eq. 2.

We assume a bounded reward |r| ≤ rmax and employ the well-known form of the Hoeffding inequality Hoeffding [1994]
valid for the random variable Sn =

∑n
i=1 Xi with Xi bounded and i.i.d. such that E(Sn) = µ:

P(|Sn − µ| ≤ ϵ) ≥ 1− 2 exp

(
− 2ϵ2

n∆2

)
(10)

with ∆ being the size of the interval on which X can take values.

In context, we take Xi =
1

NM
Vi as the closed-form expression for the value of the ith of the NM dynamics samples, so

µ = V̂ . From the boundedness assumption on the reward, we can also bound |Vi| ≤ rmax
1−γ = Vmax and ∆ ≤ 2Vmax/NM . We

require enough samples so that with probability at least 1− δ the error in our approximation of V̂ is within ϵ of the true
value. By the Hoeffding inequality, we can ensure this is the case by choosing NM such that

δ ≤ 2 exp

(
−NM ϵ2

2V 2
max

)
, (11)

which corresponds to the smallest integer NM such that

NM ≥ log

(
2

δ

)(
2V 2

max

ϵ2

)
. (12)

A.2 MONTE-CARLO SAMPLING

The alternative method to using closed-form expressions for the moments of the return distribution given an MDP sample
would be to in turn approximate these through Monte Carlo samples, as done in Joshi et al. [2021]. To do so, given the
infinite horizon nature of the MDPs we are considering, we would have to accumulate rewards over a roll-out with a finite
number of steps T , thus incurring in some error, which can be bounded above by γTVmax. Note that the tightness of this
bound will depend entirely on the reward structure of the MDP, and that this is not a source of error that can be reduced
by repeatedly sampling transitions. For the purposes of the analysis presented, we will be generous in mostly ignoring
the computational cost associated with sampling trajectories for a given MDP. In practice, sampling from a categorical
distribution (i.e. sampling the trajectories for a given MDP) is significantly faster than sampling from a Dirichlet distribution
(i.e. sampling the transition matrix), so we incorporate the overall computational cost of trajectory sampling into the modest
condition that T cannot be arbitrarily large, but assume infinite trajectory sampling capability otherwise. This assumption
allows us to determine the value for the ith given MDP arbitrarily accurately up to this error, so that the distance between the
true value Vi to the accumulated finite sum of rewards V ′

i will be bounded by |Vi − V ′
i | ≤ γTVmax.



Thus, we can consider the distance∣∣∣∣∣V̂ − 1

NM
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∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+
∣∣∣∣∣ 1
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∑
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Vi

∣∣∣∣∣+ γTVmax, (14)

so that if ∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+ γTVmax ≤ ϵ, (15)

with probability at least 1− δ, then the distance to the original estimate also satisfies∣∣∣∣∣V̂ − 1

NM

∑
i

V ′
i

∣∣∣∣∣ ≤ ϵ. (16)

with at least probability 1− δ.

As such, we apply the Hoeffding inequality in the form

P

(∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣ ≤ ϵ− γTVmax

)
≥ 1− 2 exp

(
−N2

M (ϵ− γTVmax)
2

2V 2
max

)
. (17)

Note that this also imposes a minimum horizon truncation of T > log(ϵ/Vmax)/ log γ. Explicitly including the probability
threshold δ now corresponds to finding an NM such that

δ ≤ 2 exp

(
−N2

M (ϵ− γTVmax)
2

2V 2
max

)
, (18)

so

NM ≥ log

(
2

δ

)
2V 2

max

(ϵ− γTVmax)2
. (19)

This bound corresponds to a worsening by a factor of (1−γTVmax/ε)
−2 in the number of samples required to get comparable

accuracy to the method that uses exact moments. For example, for the gridworld setup considered (γ = 0.999, rmax = 1
and positing ϵ = 0.001) would require an order of magnitude of T ≈ 105 for every rolled out trajectory, (of which we
are assuming to be able to carry out an arbitrarily large number to obtain this bound) at which point the contribution of
the trajectory sampling to the bottleneck would be severe and require a completely different bound to take it into account.
Thus, for the regime we consider, choosing to compute exact moments does save computation towards the computational
bottleneck of taking samples from a Dirichlet posterior.

Note that aleatoric and epistemic uncertainty will behave similarly: aleatoric variance is an analogous expectation over the
second instead of first moment (which we again can have in closed-form or can estimate through Monte Carlo samples) and
the bound will be analogous. Similarly, for epistemic variance the error in return due to truncated trajectories will compound
when calculating the variance over expected returns, and again we expect a similarly greater number of samples for NM .

B STOCHASTIC OPTIMAL POLICY

Here we provide an illustrative example of how the Bayesian objective Eq. 8 for expected value when MDPs are sampled
from some distribution may not have a deterministic optimal policy.

Consider the following ‘casino’ MDP with three states. State s corresponds to the player being in the casino, where the
possible actions are to play or leave. Being in state s costs the player 1 unit of currency every time that state s is visited. The
outcome of leaving is to deterministically transition to a terminal state with no further rewards. On the other hand, playing
has a stochastic outcome, with a probability θ of losing, in which case the player remains in state s, and a probability 1− θ
of winning, in which case the player transitions to state w, where they receive a payout of R units and then deterministically
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Figure 6: Plot of average value across a distribution of casino MDPs as a function of policy.

transition to the terminal state with no further rewards. Thus, each realisation of θ corresponds to a slightly different MDP
with different probabilities of winning and therefore different optimal policies.

For a policy that plays with probability π and leaves with probability 1− π, the Bellman equation for value of state s, V ,
under this policy is

V = −1 + γ(πθV + π(1− θ)R). (20)

Solving for V gives the value starting from state s for a specific MDP:

V =
−1 + γπ(1− θ)R

1− γπθ
. (21)

We now consider the expected value when θ is sampled from some distribution. For example, if θ is sampled from a Bernoulli
distribution with parameter p = 1

2 , the expected value of π over this distribution of MDPs is

V =
1

2

(
−1 + γπR− 1

1− γπ

)
. (22)

We visualise this value as a function of π in Fig. 6 for R = 10, γ = 0.99. The maximum value is not achieved at π = 0 or
π = 1, but rather at π ≈ 0.69. A policy that never plays achieves a value of 1, a policy that always plays a value of −45.55
and the optimal (stochastic) policy a value of about 1.34. Thus, we have an example where there is no deterministic optimal
policy.

C COMPUTATIONAL SCALABILITY

We present in Fig.7 empirical results with regards to scaling our method to larger state-spaces. The experiment we benchmark
is the one on synthetic MPDs, as carried out in section 5.2 but with varying state-space sizes for two different posterior
sample batch sizes. We also consider both the case where the posterior is resampled every gradient step (as in the synthetic
MDP experiments) as well as the case where the posterior is only sampled once at the start of training. While the latter is not
suggested in practice, the resulting copmutation time bounds the compute time that can be saved by resampling periodically
between gradient steps rather than at every step during training.
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Figure 7: Computation time required to run Algorithm 2 for 1000 gradient steps. We display results for batches of sizes
8 and 256, for the case where the posterior is sampled before each gradient step (resampling) or only once at the start of
training (no resampling).

D POLICY UNCERTAINTY EVALUATION

The policy we present and compare results for is the policy that optimises the maximum likelihood estimate (MLE) of the
transition dynamics MDP, where transition probability is taken to be the relative frequency of observed transitions, which
we refer to as the MLE-optimal policy.

Running SARSA policy evaluation on the methods proposed in Festor et al. [2021] explicitly shows that the epistemic
uncertainty in the dynamics transition is not captured by the ensemble method used. Fig. 8 shows that with this setup,
epistemic uncertainty correlates with loss but is independent of amount of data observed. This is visible as the curves
collapse to small epistemic uncertainty values irrespective of data set size even though the amount of data in the smallest
data set size (25) is smaller than the total number of transitions of the MDP (80). This is because it captures information on
parametric training uncertainty but not of the dynamics model uncertainty.

E MULTI SAMPLE BACKWARD INDUCTION

We apply here a variant of the method MSBI presented in Dimitrakakis [2011], which outputs a policy that is near-optimal
with respect to the Bayes-adaptive optimal policy under some assumptions. The main assumption is that the belief change
between timesteps is bounded, and the authors show that a backwards induction greedy algorithm can yield a policy that
has Bayesian utility which lower bounds the adaptive Bayes-optimal utility within an error term proportional to this bound.
This optimal adaptive utility will, however, in general be different to the posterior value expectation that we are aiming to
maximise with our policy, so the algorithm’s purpose is not entirely aligned with ours. Nonetheless, in practice the proposed
algorithm involves carrying out an analogous version of value iteration where at each timestep the iterative value is given by
also marginalising over MDPs. This is also possible to implement and test in our setting so we provide here the relevant
results for completeness, although we emphasise that the theoretical foundations and guarantees of near-optimality don’t
apply to our specific case. For a fairer comparison to the gradient-based methods, we also use the nominal policy as the
starting policy in this algorithm.

Gridworld The work suggests a number of posterior samples of the order of (ϵ(1− γ))
−3 ≈ 1014 using γ = 0.999

and an error tolerance on the value of ϵ = 0.01, which is a computationally intractable number of samples to store and
process for transition matrices. Thus, we use a number of samples (NM = 32768) and maximum number of iterations
(2000) that roughly match the computation time of the gradient-optimised policy (30-60s depending on dataset without
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Figure 8: Plot of the epistemic uncertainty and loss as a function of training timestep demonstrating that epistemic is
not accurately tracked by previous methods. Epistemic standard deviation (top row, red data) is quantified here over 10k
time steps, corresponding to the agent carrying out transitions over many episodes. The corresponding ensemble quantile
regression loss (bottom row, blue data) at each training timestep is shown below. Here we show as examplar the results
for fixed policy using ensemble methods with a MLE-dynamics model for different number of observed transitions in the
dataset generated by the gridworld with prand = 0.5. The value that the epistemic standard deviation converges to is always
small for all visited states and independent of dataset size as the only notion of uncertainty captured in this setup is one of
parametric uncertainty and not MDP uncertainty.
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(a) Gradient vs MSBI gridworld posterior
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(b) Gradient vs MSBI synthetic MDP
ground truth performance (shaded stan-
dard error of the mean)
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(c) Gradient vs MSBI synthetic MDP pos-
terior expected value

Figure 9: Relative performance of MSBI on gridworld posterior expected value objective over 50 runs (Fig. 9a) and synthetic
MDP ground truth performance (Fig. 9b, with shaded standard error of the mean) and posterior value objective (Fig. 9c)
over 250 runs.
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(a) Gradient vs MLE-optimal
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(b) Gradient vs Nominal
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(c) Gradient vs Second order

Figure 10: Ground truth pairwise difference in average performance (and shaded standard error of the mean) normalised by
average performance of the Gradient (ours) method for each dataset. Regions above the red line correspond to improved
performance with our method.

GPU acceleration for the gridworld experiments). In Fig. 9a we show the performance of MSBI on the relative posterior
expected value objective for the same gridworld as in section 5.1 over 50 runs, where regions above the red line correspond
to improved posterior value maximisation with our algorithm. As may be expected from the gap between the algorithm’s
original intention and our application, MSBI consistently underperforms with the exception of high data regimes, where the
probability mass collapses on one MDP and the algorithm essentially reduces to value iteration.

Synthetic MDPs We also apply MSBI to synthetic MDPs as presented in section 5.2 and report results in Figs.9b and 9c.
Once again, due to the large number of experiments ran (250 runs each for each of the 10 different dataset sizes) we had to
reduce the number of posterior samples to be NM = 2048 and fix the maximum number of iterations to 500.

F SYNTHETIC MDPS RELATIVE PERFORMANCE

We display in Figs. 10 and 11 results corresponding to those presented in Figs. 3 and 4 but with the y-axis scaled by the
value achieved by our method (resulting in a different scaling value for each dataset size), so that the new resulting plot can
be interpreted as a fractional relative improvement.
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(a) Gradient vs MLE-optimal
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(b) Gradient vs Nominal
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(c) Gradient vs Second order

Figure 11: Average and standard deviation (shaded) of posterior expected value normalised by average performance of the
Gradient (ours) method for each dataset. Regions above the red line correspond to improved performance with our method.

G CLINICAL DATA DISCUSSION

G.1 GENERAL DISCUSSION

Bayesian inference with Dirichlet distributions with a large number of possible outcomes (next states) is problematic, as
mentioned in section 3 [Friedman and Singer, 1998], and careful thought must be given to what prior to employ. First we
consider a Bayesian model selection approach: we assume all possible states are reachable and symmetric. This allows us to
optimise the model evidence with respect to the unique parameter αp of the prior, in the hope that specifying a prior which is
more in line with the observations will lead to better inference (see Appendix G.2 for details). As expected, the optimal αp

is found to be much smaller than 1, αp = 0.072, giving less weight after inference to the prior than the maximum-entropy
αp = 1 prior does. However, this approach still fails to accurately model our belief, which can be seen by considering
the following scenario: suppose the patient is in a bad state and has two options, namely (a) try a treatment that has been
attempted many times with rare success or (b) try a treatment that has always gone wrong, but has been tried a small number
of times so has high uncertainty in the outcome. Option (b) is clearly not appealing, but the agent’s posterior will still place
significant probability mass on unobserved states in the presence of a small number of transitions, thus highly encouraging
the agent to take the less visited action and assigning it a disproportionately high value. Upon inspection, this is exactly
what is happening in the outlier state in Fig. 5a (at approximate coordinates (0.6, 0.8)), and the value given by this Bayesian
posterior is likely unreasonable.

To address this, we introduce conservatism by considering only observed states and the death state as next possible states,
thus ensuring a more conservative prior. Inducing conservatism in offline RL with datasets that do not adequately cover the
full state-action space is in line with literature [Agarwal et al., 2020, Kumar et al., 2019], and conservative MDP models
have found success in continuous offline RL by modulating reward [Yu et al., 2020, Kidambi et al., 2020] or dynamics [Guo
et al., 2022], somewhat analogously to what is being proposed here. By only including observed or negative outcomes, the
agent is unable to place probability mass on unsupported next-states and therefore use high uncertainty to inflate the value of
poorly visited actions in bad states. The scarcity of outcomes allows for meaningful inference using a maximum-entropy
prior with αp = 1, and a high-entropy prior is favorable from a conservatism standpoint. It encourages the agent to select
actions that have sufficient support to offset the high prior probability mass assigned to the death state. The Bayesian values
inferred with this setup are presented in Fig. 5b. Fig. 5 shows the possible improvement, according to the Bayesian posterior
value, of employing the Bayesian gradient-optimised policy compared to the MLE-optimal policy used in Komorowski et al.
[2018], resulting in higher probability of survival (according to the dynamics model). In particular, we note that employing
the gradient-optimised policy improves the value, and therefore corresponding approximate probability of survival, by
about 2.1% when averaged across states, with a maximum improvement on a particular state of 17.8%, according to the
conservative Bayesian dynamics model.

In Fig. 12 we show how the MIMIC-III states aleatoric and epistemic uncertainties are related. The values are computed
using the same conservative dynamics model of Fig. 5b.

As expected for the particular reward structure of the MDP considered, aleatoric uncertainty and average Bayesian value are
strongly related: since the return variable is approximately binomial (approximately 1 for success and 0 for failure) its mean
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Figure 12: States plotted according to their epistemic and aleatoric standard deviations. Each dot represents a state, with its
colour corresponding to its average value according to the Bayesian posterior.

and variance are related straightforwardly. Note this will not be true for MDPs with more general reward structures.

G.2 BAYESIAN MODEL SELECTION

To determine the prior that for the dynamics model with results presented in Fig. 5a, we carry out Bayesian model selection
by minimising the negative log-marginal likelihood of the data with respect to the parameter αp. To remain consistent with
the limitation that only actions observed at least 5 times in the data should be employed at each state, we only use the data
for such state-action transitions when determining the optimal αp.

For each state-action, the full form of the Dirichlet prior in terms of αp is Friedman and Singer [1998]

p({θsjs,a|si ∈ S}) =
Γ(|S|αp)

Γ(αp)|S|

∏
j

(θsjs,a)
αp−1, (23)

where Γ is the gamma function. The likelihood is

p(D|θ) =
∏
j

(θsjs,a)
nj , (24)

with nj being the number of observed transitions from state-action s, a to state sj . Hence, the model evidence is

p(D) =
∫

dθp(D|θ)p(θ) (25)

=
Γ(|S|αp)

Γ(αp)|S|

∏
j Γ(αp + nj)

|S|

Γ(|S|αp +Ns,a)
, (26)

with Ns,a being the number of observed transitions from state-action s, a. Since transitions are independent across state-
actions, taking the negative logarithm of this quantity and summing across all state-actions results in the overall negative
log-marginal likelihood for the dataset in terms of αp. The resulting function of αp is visualised in Fig.13 and attains a
minimum value at approximately αp = 0.072.
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Figure 13: Negative log-marginal likelihood for clinical data dynamics model against parameter αp of the prior.
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