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Abstract

How do music large language models (LLMs)
interpret musical concepts? This study investi-
gates the representational abilities of MusicGen,
a transformer-based music LLM, using single
chords to assess how these models process struc-
tured musical entities. We develop a novel probe-
via-intervene approach to enhance our understand-
ing of the model’s internal interpretability. Our
findings indicate that although the model faces
challenges in forming linearly separable repre-
sentations for certain musical concepts such as
chord quality, the integration of directional vec-
tors from other musical concepts into the trans-
former’s residual stream substantially improves
the probing results. Notably, significant enhance-
ments are achieved by intervening in just one head
across all layers. These insights underscore the
differences between human and machine percep-
tion of music and suggest important considera-
tions for future design of music LLMs.

1. Introduction
In the field of computer music, particularly in music gen-
eration and understanding, music large language models
have demonstrated remarkable development. Among them,
MERT (Li et al., 2023c) is a masked language model (MLM)
tailored for music information retrieval (MIR) tasks. while
Jukebox (Dhariwal et al., 2020), MusicLM (Agostinelli
et al., 2023), and MusicGen (Copet et al., 2024) are notable
auto-regressive models designed primarily for music genera-
tion. The success of these models underscores the potential
of AI to not only replicate human-like musical abilities but
also to provide tools that can enhance the creative process
for musicians and producers.
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Figure 1. Overall pipeline including probing and augment-
intervention. The left section illustrates the probing of various
musical concepts (only the chord root probe is shown for sim-
plicity). The right section demonstrates the augment-intervention
process, where chord root directions obtained from the probing
phase are added to the hidden states, enhancing the model’s repre-
sentation of chord quality. PROOT

GT (xl,h) indicates the direction
added is the ground truth root direction of xl,h

Despite the strong capabilities of music large language mod-
els, one persistent issue remains unresolved: can models
that have not been explicitly taught human-centric sum-
maries and understandings of music still extract and utilize
concepts that parallel human comprehension? This study ex-
plores how AI models, through their interaction with music
data, naturally form relationships and between different mu-
sical concepts. By doing so, these models provide us with
unique insights into which concepts are more fundamental
or intrinsic to music as an art form.

Interpretability is often closely linked to linear representa-
tions (Mikolov et al., 2013; Nanda et al., 2023). However,
confirming a model’s mastery of a concept is challenging
if the concept representation is not linearly separable. (Li
et al., 2023a) investigates the nonlinear representation of
board states and has achieved the anticipated outcomes by
intervening using gradient ascent. Yet, for more complex
music LLMs compared to Othello-GPT, this method may
be ineffective. Consequently, we develop a novel approach,
probe-via-intervene, to unlock the potential of certain con-
cept representations that a linear classifier cannot probe, in
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a manner that is interpretable.

We focus on two primary tasks: detecting chord roots and
qualities using probe-via-intervene. Besides the conven-
tional probing for each concept, to demonstrate the inter-
connections among different musical concepts within the
model, we probe the quality concept from the hidden states
of MusicGen after intervention, specifically by introducing
root directions. The result shows that after the intervention,
the linear probing accuracy improved. This suggests that
MusicGen had actually learned something about quality
although it can’t be well probed by linear classifier at first.
Remarkably, even if we only intervene one head from all
transformer layers, the accuracy can improve over 0.2.

Our principal contributions are twofold:

• We introduce a novel method, probe-via-intervene, to
enhance our understanding of whether a model has
learned a specific concept.

• We gain valuable insights into the model’s internal
mechanisms for processing music through our experi-
mental observations.

2. Preliminaries
In this section, we briefly describe about music terminology
chord, and MusicGen-small, the model we probe.

2.1. Chord

Chords, made of multiple simultaneous notes, are crucial in
songs for supporting and guiding the melody. When saying a
chord like C major, we can see two concept that we concern
in the following paper. The chord root C is the fundamental
note on which a chord is built. It is the base note from which
the other notes of the chord are derived. Chord quality
major refers to the specific characteristics of a chord that
define its sound. This is determined by the intervals between
the three notes in the chord. Different chord quality have
different color, even people without music training can tell
major and minor chords for the former is bright and the
latter of sorrow.

2.2. MusicGen

MusicGen (Copet et al., 2024) is a transformer-based gen-
erative music model capable of generating up to 30-second
continuations from an audio or text prompt. In this work,
we only use audio prompt and set the text prompt empty.
We use the small size version of MusicGen, which has 24
transformer decoder layers, where each layer consists of 16
heads, yields a 1024-dimensional hidden state per frame at
a resolution of 75 frames per second.

3. Methodology
3.1. Process of MusicGen Transformer

In the model, the forward pass begins by embedding the
input tokens from the prompt audio into a high-dimensional
space, denoted as x0

1:T , which serves as the initial state of
the residual stream. Subsequently, within the transformer’s
structure, each sublayer l ∈ [1, . . . , L] calculates H self-
attention heads as:

xl,h
1:T = Atthl (x

l
1:T ) (1)

Then, the projection matrix Wl,h and MLP block fuse the
information in this layer to the residual stream.

3.2. Audio Level Feature Extraction

Before projection, we extract features xl,h
1:T ∈ RT×D (D is

the hidden state dimension of each head). By ensuring that
the tonality remains consistent across all data in the dataset,
we can employ mean pooling to define the representation of
the entire audio track at layer l and head h as follows:

xl,h =

∑T
t=1 x

l,h
t

T
(2)

where xl,h ∈ RD .

3.3. Probes

We train different probes of music concept c at each layer l
and head h. For music concept c that requires nc-category
classification, we designate i to represent the i-th category,
where i ranges from 1 to nc, inclusively, denoted as i ∈
[1, . . . , nc]. Our linear probe can be written as P c

i (x) =
Softmax(Wx). When x is a feature that is extracted from
a single head, W ∈ RD×nc . When we probe the whole
layer using all heads in that layer, W ∈ RDH×nc , where
x ∈ RDH , obtaining by simply concatenating all the H
heads’ feature in that layer.

Non-Linear probes are 2-layer MLP models: P c
i (x) =

Softmax(W1 ReLU (W2x)). Where W1 ∈ R512×nc , and
W2 ∈ RDH×512 when probing the whole layer and W2 ∈
RD×512 when just probing a single head.

3.4. Intervene

Inspired by previous works (Li et al., 2023b; Nanda et al.,
2023; Koo et al., 2024), our intervention is done by adding
a vector to the heads before multiplying by the projection
matrix:

x̂l,h
t ← xl,h

t + α · P c,l,h
i (xl,h), ∀t ∈ [1, . . . , T ] (3)

The modified head feature x̂l,h is then passed forward to
the residual stream by projection matrix and feed-forward
blocks. In this function, P c,l,h

i (xl,h) can be considered as
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the direction of category i for the concept c with the given
x, while scale α denote an intervention strength.

Initially, we want to see whether there is some concept A
that can help the model learn a better concept B representa-
tion. To evaluate this, we use method denote as augment-
intervention. The direction i in this case is the ground
truth direction of the concept A. To examine the impact
of augment-intervention, we extract x̂l,h features from the
layers being intervened, and do the probing tasks on the
concept B (probe-via-intervene). We contrast the probing
result of concept B before and after augment-intervention.
Additionally, using the direction of each category derived
from the probes, we can potentially alter music from one cat-
egory to another, a process referred to as shift-intervention,
as discussed in Appendix C.3.

4. Experiment
4.1. Dataset

We construct a synthetic dataset comprising 38,160 audio
clips, each representing a distinct chord with root notes span-
ning C2 to C7. It is important to note that for classification
purposes, root notes in different octaves are grouped into
the same category (e.g., D3 and D5 are both classified under
the root ‘D’). The chords are rendered in root position, first
inversion, or second inversion, and they encompass four
triad types: Major, Minor, Augmented, and Diminished.
Each clip played using one of 53 different instruments, lasts
approximately one second. For more details, please see Ap-
pendix A. The dataset facilitates two main tasks: identifying
the chord root from 12 possible categories and classifying
the chord quality into one of the 4 triad types.

4.2. Probing Analysis

We employ the MusicGen-small model for our experiments,
which consists of 24 layers with 16 attention heads each,
summing up to a total of 384 heads. We initially probe all
layers using both linear and nonlinear methods to assess
their performance. In addition, we set up two comparative
baselines: one using features derived from a randomly ini-
tialized MusicGen model, and another based on a strategy
of random guessing. The outcomes of these analyses are
illustrated in Figure 2.

The figure demonstrates that the overall linear probing ac-
curacy for chord root is higher than that for chord quality,
despite there being more categories for root than for quality.
Additionally, the analysis indicates a consistent, albeit slight,
increase in representational strength in deeper layers for root
detection; however, accuracy for quality detection tends to
decrease in these layers. Moreover, while the probing results
for root detection show similar outcomes with both linear
and nonlinear probes, a significant difference is evident in

Figure 2. Probing accuracy across layers on two tasks

the quality detection results between these probing methods.
This finding contrasts with common perceptions, as quality,
compared to root, is generally considered a simpler concept
for humans to discern.

We further conduct a detailed examination of all heads
across each layer. The results show considerable variation
among the heads within each layer for the chord root con-
cept, with some heads effectively capturing root information
and others not. Conversely, the variance among heads for
quality detection is notably lower. The visualization of this
result can be seen in Figure 6. This suggests that we can
inject concept c into only a portion of heads that have a good
understanding of that concept in the following experiments.

4.3. Intervention

4.3.1. ROOT INFORMATION IMPACT ON QUALITY
DETECTION

During the augment-intervention phase, we utilize a Top−
K strategy, intervening only in the K heads with the highest
accuracy for predicting musical concepts. A grid search
is performed to optimize K, scale α, and the intervention
layers L. For the parameter details, see Appendix C.1

To make the result clear, we only present probe-via-
intervene results of quality at layer 23 with one group of
settings (Figure 3).

Initially, the features extracted from layer 23 achieved an
accuracy of 0.51 in the quality detection task. After the
augment-intervention, the model demonstrates improved
linear representation for quality detection. This information
indicates that, although Music LLMs struggle to form lin-
early separable representations of quality, the concept of
quality is still embedded within its representations. It can
be activated by root information.

Remarkably, intervening on top-1 head across all layers re-
sults in the best outcome. This suggests that the model is
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Figure 3. Linear probing accuracy at layer 23 after augment-
intervention with settings (Start-Layer = 4, Intervention-Mode
= 2).

Figure 4. Linear probing accuracy after augment-intervention with
the setting (Start-Layer = 12, Intervention-Mode = 1, Top-K = 16,
Scale = 1.0). The grid score represents accuracy, with the color
indicating accuracy relative to the baseline. Red signifies improved
accuracy compared to the baseline, while blue signifies a decrease,
with deeper hues indicating greater deviation from the baseline.

sensitive to root information, and demonstrates the poten-
tial for achieving better representations through relatively
lightweight interventions.

4.3.2. INFLUENCE OF OTHER MUSICAL INFORMATION
ON QUALITY DETECTION

We conduct several experiments to explore whether root
information uniquely contributes to the model’s ability to
learn the quality concept. We investigate the effects of di-
rections related to third note, lowest note and the instrument
on the model’s performance, the result is shown in Figure 4.
(For detailed illustration about terminology third note and
lowest note, please see Appendix A.) The probing results
before augment-intervention of all related tasks are shown
in Table B.1.

The third note in a chord, which is a third interval above the
root, plays a crucial role in determining whether the chord is
major or minor given a root. Note that we does not use root
directions along with third note direction, thus not offering

the direct intervals among the triad to provide explicit hints.
Our findings indicate that the direction corresponding to the
third note also facilitates the model’s learning of the quality
concept, with improvements comparable to those observed
with root information.

The lowest note in a chord varies depending on the chord’s
inversion. Our experiments demonstrate that incorporating
directions for the lowest note into the hidden states does not
enhance the model’s ability to discern quality. Moreover,
instrument direction also doesn’t help the model to learn a
better quality features, even if the linear probing accuracy
of instrument classification is over 90 %.

Additionally, we conduct two baseline experiments for com-
parative analysis. The first baseline involves adding direc-
tions representing alternative roots that do not correspond to
the actual chord (random selection), which adversely affects
the model’s quality representation. The second baseline
introduces a random vector (random) matching the distribu-
tion of the directions, which slightly deteriorates the model’s
quality detection capabilities.

These findings reveal the intriguing logic models use to de-
tect musical concepts. The success in using roots and third
notes as augmentation directions indicates that chord com-
ponents information can enhance each other. Conversely,
the failure in using the lowest note as an augmentation direc-
tion suggests that the model assesses chord quality beyond
superficial audio information. Instead, it likely integrates
musical knowledge acquired from various pretrained data
sources.

5. Conclusion
In this study, we employ a probe-via-intervene method to
closely examine the representations from music LLM. We
demonstrate that a better chord quality representation can
emerge with the help of other music concepts like chord
root, even by only intervening 1 head in the transformer.
We also show the relationship of music concepts from the
perspective of model.

In a higher level, the results and the comparison of success
and failure case from augment-intervention experiments
give insights that can assist researchers in aligning model
perception with human understanding and in designing next
generation music models with enhanced performance.

For future research, we intend to conduct a more in-depth
investigation into the underlying mechanisms driving this
phenomenon and identify additional related concept pairs.
Moreover, it is important to further explore the interpretabil-
ity of music LLMs in both the audio and symbolic domains.
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A. Music Theory of Chord

Figure 5. Positions of each note on the piano keys, where each pair of adjacent keys, whether black or white, differs by a semitone

There are four types of triads. In this work, they correspond to the four chord qualities:

A major chord, characterized by its bright and happy sound, consists of three notes: the root, a major third (four semitones
above the root), and a perfect fifth (seven semitones above the root).
A minor chord, which sounds more somber, also comprises three notes: the root, a minor third (three semitones above the
root), and a perfect fifth.
An augmented chord, with its mysterious and unsettled tone, consists of the root, a major third, and an augmented fifth
(eight semitones above the root).
A diminished chord, known for its tense and dissonant quality, includes the root, a minor third, and a diminished fifth (six
semitones above the root).

Inversions of these chords provide different voicings by rearranging the order of the notes. The root position has the root
note as the lowest note, the first inversion places the third as the lowest note, and the second inversion positions the fifth
as the lowest note. These inversions offer varying harmonic textures while maintaining the chord’s fundamental structure
including roots and qualities. The table below uses chords based on the root note C to demonstrate its four qualities and
the arrangement of notes after each inversion. The third note mentioned in 4.3.2 is marked in blue, and the lowest note is
underlined. As shown, for a chord with a fixed root and quality, the third note remains unchanged regardless of the inversion,
but the lowest note changes with each inversion.

Quality
Inversion

Root Position First Inversion Second Inversion

Major Chord C - E - G E - G - C G - C - E
Minor Chord C - E♭ - G E♭ - G - C G - C - E♭

Augmented Chord C - E - G♯ E - G♯ - C G♯ - C - E
Diminished Chord C - E♭ - G♭ E♭ - G♭ - C G♭ - C - E♭
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Figure 6. Linear probing result of individual attention head on root (left) and quality (right)

B. Results: Linear Probing on Different Heads of Chord Root and Quality
B.1. Probing Results before Augment-intervention

Task Layer 0 Layer 3 Layer 6 Layer 9 Layer 12 Layer 15 Layer 18 Layer 21

Root 0.309 0.615 0.711 0.712 0.766 0.723 0.752 0.727
Quality 0.253 0.479 0.659 0.624 0.643 0.652 0.570 0.532
Instrument 0.536 0.932 0.941 0.945 0.935 0.942 0.934 0.938
Lowest Note 0.243 0.415 0.554 0.521 0.626 0.602 0.648 0.565
Third Note 0.292 0.640 0.708 0.723 0.748 0.742 0.753 0.743

C. Intervention Details
C.1. Grid Search Parameters

The grid search parameters of intervention is as follows:

• Intervention-Mode: {0, 1, 2}
• Start-Layer: {4, 8, 12, 16, 20}
• Top-K: {1, 4, 8, 16, 32, 64, 128, 256, All, All*}
• Scale: {1.0, 2.0, 5.0, 10.0, 20.0, 50.0}
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C.2. Details of Different Intervention Modes

In Intervention-Mode 0, the intervention is applied to just one layer, leveraging the fact that instructions are propagated
through all timesteps in the residual stream, thereby affecting all subsequent xl,h

t in all following layers. Alternatively, in
Intervention-Mode 1 , we do the intervention from the Start-Layer to the final layer of transformer layer by layer. In this two
mode, the range of Top-K is restricted to {1, 4, 8, 16, All*}, where All* denotes intervening the whole layer’s feature xl,
while All pertains to intervening in every head-specific xl,h. Intervention-Mode 2, derived from prior research (Li et al.,
2023b; Koo et al., 2024), involves intervening in the top-K best-performing heads across all layers.

C.3. Case Study of Shift-Intervention

We utilize quality directions after root augment-interventions to intervene in the model’s hidden states. In this part, our goal
is shift-intervention rather than augment-intervention, specifically altering a major chord to a minor one by adding a minor
direction, and vice versa. (We do not attempt augmented or diminished triads due to the lack of support from our rule-based
chord recognition tool for result evaluation). Here are two cases that successfully changed the root quality.

In Audio 1, a G minor chord is changed to C major, while in Audio 2, an A major chord is changed to F minor. (The results
are verified both by ear and the recognition tool).

Steering on the directions easily makes the texture of the audio become noisy and disrupts the accuracy of the recognition
tool. We hypothesize that adding directions cannot ensure that the features remain within the music subspace, which is a
potential area for future improvement in this work.

Figure 7. Spectorgrams of two audios before and after intervention
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