
ROTATIONAL EQUILIBRIUM: HOW WEIGHT DECAY
BALANCES LEARNING ACROSS NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Weight decay can significantly impact the optimization dynamics of deep neural
networks. In certain situations the effects of weight decay and gradient updates on
the magnitude of a parameter vector cancel out on average, forming a state known as
equilibrium. This causes the expected rotation of the vector in each update to remain
constant along with its magnitude. Importantly, equilibrium can arise independently
for the weight vectors of different layers and neurons. These equilibria are highly
homogeneous for some optimizer and normalization configurations, effectively
balancing the average rotation—a proxy for the effective learning rate—across
network components. In this work we explore the equilibrium states of multiple
optimizers including AdamW and SGD with momentum, providing insights into
interactions between the learning rate, weight decay, initialization, normalization
and learning rate schedule. We show how rotational equilibrium can be enforced
throughout training, eliminating the chaotic transient phase corresponding to the
transition towards equilibrium, thus simplifying the training dynamics. Finally,
we show that rotational behavior may play a key role in the effectiveness of
AdamW compared to Adam with L2-regularization, the performance of different
normalization layers, and the need for learning rate warmup.

1 INTRODUCTION

transient phase equilibrium

balanced rotation

fast rotation

slow rotation

t

E[
∠
(ω

t
,ω

t+
1
)]

Figure 1: Conceptual figure of the angular
updates of the weight vector ωt for differ-
ent normalized neurons (each line color)
over time t with a constant learning rate.

Modern neural networks are typically deep and struc-
turally diverse compared to their predecessors, contain-
ing a variety of layer types and operations. The training
of such networks requires simultaneously updating pa-
rameters used in many different contexts which poses
additional challenges for optimization. For example, the
gradients and activations must be kept in check to avoid
effects such as vanishing gradients, and exploding acti-
vations. Efficient training intuitively also requires the
learning of different components to be roughly balanced
in some sense. A layer that is updated slowly, perhaps
barely changing through the training process, is unlikely
to contribute optimally to the final model resulting in
worse performance and wasted compute. Conversely, a
rapidly changing layer may cause instability, limiting
the maximum stable learning rate and preventing other
layers from learning effectively. This suggests that sufficiently imbalanced rates are not optimal.
Note however that there is nothing that says that perfectly balanced rates are optimal either, similar to
how the use of a single learning rate across all layers may not be ideal in every case.

In this work we explore how weight decay can balance the updates for the weight vectors (but not
biases) of different layers and neurons, measured in terms of the average relative update or angular
change in each optimization step. This is caused by Spherical Motion Dynamics (Wan et al., 2021)
which arise from the interaction of stochastic gradient updates and weight decay, especially in the
presence of normalization layers like Batch Normalization (Ioffe and Szegedy, 2015). We describe
the underlying mechanisms in more detail in Sections 2 and 3. Figure 1 shows how the average
angular update size E[∠(ωt,ωt+1)] of different weight vectors ω could behave over time for typical

1

Spherical Motion Dynamics. Initially the rotation is somewhat arbitrary and is affected by the initial
weight magnitude and potentially the magnitude of the gradient, depending on the optimizer used.
Over time the weight norm converges to a stable equilibrium value in expectation, although the exact
value can fluctuate between iterations. This causes the average angular update to have a specific
magnitude, a state we call rotational equilibrium. For some setups the rotational equilibrium is
identical for different layers and neurons, resulting in balanced rotation as depicted in Figure 1. Note
that the formation of equilibrium does not require the convergence of the loss and occurs even for a
neural network undergoing a random walk, which serves as the basis for our analysis.

This study expands upon prior investigations into the interactions between weight decay and nor-
malization such as Van Laarhoven (2017); Zhang et al. (2019); Chiley et al. (2019); Li and Arora
(2020), and particularly the Spherical Motion Dynamics (Wan et al., 2021). While we touch upon
certain previous works throughout, please refer to Appendix A for an extended discussion. Earlier
research has primarily focused on the general mechanisms and properties of weight decay and
normalization, especially for plain Stochastic Gradient Descent, sometimes with heavy-ball momen-
tum (Polyak, 1964). We focus on two new directions, rotational equilibrium in other optimizers like
AdamW (Loshchilov and Hutter, 2019), and the importance of balanced rotation in the optimization
of deep neural networks. Our main contributions can be summarized as:

• Presenting a simple and intuitive way to derive approximate expressions for the rotational
equilibrium of the AdamW, Lion and SGD with momentum optimizers.

• Exploring how the weight decay and learning rate interact to form an effective step size
schedule that differs from the standard learning rate schedule.

• Showing that AdamW results in balanced rotation unlike Adam with L2 regularization and
that this could explain the improved performance of AdamW observed in practice.

• Demonstrating that imbalanced rotation can degrade performance in more settings.
• Constructing rotational variants of existing optimizers that enforce balanced rotation, elimi-

nating the transient phases and explicitly controlling the effective step size schedule, while
also relating standard optimizers to relative optimizers like LARS.

2 PRELIMINARIES
2.1 NORMALIZATION AND SCALE-INVARIANCE

We say that a weight vector ω is scale-invariant with respect to the loss L (ω, . . .), which generally
depends on other network parameters too, if scaling it by a positive factor does not affect the loss,
i.e. L (rω, . . .) = L (ω, . . .),∀r > 0. When placed correctly relative to ω, many normalization
operations such as Batch Normalization (Ioffe and Szegedy, 2015), Layer Normalization (Ba et al.,
2016) and more (Huang and Belongie, 2017; Huang et al., 2017; Wu and He, 2018; Qiao et al., 2019)
result in approximate scale-invariance for a given vector. Different forms of normalization can result
in scale-invariance on different granularities, for example whole-layer for Layer Normalization and
per-neuron for Batch Normalization when performed immediately following a given layer. Note that
the concatenation of scale-invariant vectors is also scale-invariant. The gradient ∇ωL (ω, . . .) for a
scale-invariant vector ω has two important properties:

Gradient orthogonality: ∇ωL (ω, . . .) ⊥ ω (1)

Inverse proportionality: ∥∇ωL (ω, . . .)∥ ∝ ∥ω∥−1 (2)

When the weights are centered directly like in Weight Standardization (Qiao et al., 2019), we also
have ∇ωL (ω, . . .) ⊥ 1. See Appendix B for further discussion about normalization and a derivation
of these properties, which have also been described before (Li and Arora, 2020; Wan et al., 2021).

2.2 DEFINING MEASURES OF THE EFFECTIVE UPDATE SIZE

We use ω to denote a weight vector that can achieve rotational equilibrium and refer to such vectors
as rotational weights. They are typically used in dot products e.g. the weights of fully connected and
convolutional layers and are often scale-invariant (but not always, see later sections). We use p for an
arbitrary parameter that is not necessarily rotational. When training with weight decay, we break an
update pt → pt+1 (and analogously ωt → ωt+1) for each parameter into two components:

pt+1 − pt = ∆gpt +∆λpt (3)

2

where ∆gpt comes from the loss gradient, which we denote with g := ∇pL (p, . . .), and ∆λpt

from the weight decay or L2 regularization. Both of these terms can include averaging over time like
in SGD with momentum, causing them to depend on previous parameter and gradient values.

When measuring the size of an update in this work, we focus on the gradient component ∆gpt,
considering the weight decay as a separate process. Note that some scale-sensitive parameters like
biases and gains are often excluded from weight decay, see for example the PyTorch Image Models
(Wightman, 2019) or Hugging Face Transformers (Wolf et al., 2019) libraries. We can measure the
update size of parameters using ∥∆gpt∥ or on average with the root-mean-square (RMS) update size:

ηg :=
√
E[∥∆gp∥2] (4)

For rotational weight vectors, we consider the expected angular update size defined as:

ηr := E[∠(ωt,ωt+1)] = E
[
arccos

(
⟨ωt,ωt+1⟩

∥ωt∥∥ωt+1∥

)]
(5)

where ⟨·⟩ denotes an inner product. Note that for a scale-invariant ω, only the direction ω/∥ω∥
matters since the magnitude ∥ω∥ does not. As a result, ηr is a more natural way to measure the effect
of an update on ω, compared to other metrics such as ηg that are not scale-invariant. We can also
often scale one layer by a constant and undo the effects of this by scaling another parameter or layer
(see e.g. Neyshabur et al. (2015)). In such cases relative metrics like the angular update may still
capture the effect of an update better than ηg , even if ω is not strictly scale-invariant by itself.

In related literature there are multiple definitions of an “effective” learning rate that vary slightly
between works (Van Laarhoven, 2017; Chiley et al., 2019; Wan et al., 2021). We use ηr as a measure
of an effective update size that is closely related to these quantities. However, we want to emphasize
the difference between measuring the size of a single update compared to the change over a longer
time interval. The total weight change over extended periods is affected by both the magnitude of
individual steps (i.e. ηg or ηr) as well as the consistency in the update direction over the period which
is affected by momentum and not captured by these metrics. The longer term change may be a better
measure of an “effective” learning rate, but the step-wise metrics are easier to measure and control.
For a given momentum coefficient they may be roughly proportional (e.g. in a random walk).

3 ANALYSIS

In this section we analyze the rotational equilibrium of a weight vector ω. The main goal is to
obtain simple expressions for the equilibrium magnitude ∥̂ω∥ and the expected angular update in
equilibrium, η̂r. To do this we analyze a simplified setting. Specifically, we assume the loss is in the
form of empirical risk, i.e. L (ω,X) = 1

|X|
∑

x∈X L (ω,x) where X is our training dataset, ω are our
weights and x is a data point. The true noiseless gradient is then gX = ∇ωL (ω,X) and the gradient
for a minibatch B is gB = ∇ωL (ω,B). We can define the noise in the gradient as gN = gB − gX
with EB[gN] = 0 because EB[gB] = gX for a randomly sampled B. Our analysis focuses on the case
when the batch gradient is dominated by the noise component, i.e. gB = gX + gN ≈ gN , resulting in
a random walk for the neural network parameters. Appendix G gives further information and explores
differences between a random walk and real neural network optimization and how they affect the
predictions. In our experiments we find that the final predictions hold well for a variety of networks
despite being derived for this simplified setting.

3.1 GEOMETRIC MODEL FOR EQUILIBRIUM

∥̂ω∥

∥̂ω∥

∆gω

∆λω

Figure 2: Weight norm equilib-
rium where a single expected op-
timizer step is split into compo-
nents ∆gω due to the loss gradi-
ent and ∆λω from weight decay.

In this section we present a simple geometric derivation of the
equilibrium norm ∥̂ω∥ for different optimizers inspired in part
by the analysis in Online Normalization (Chiley et al., 2019).
Equilibrium is an abstract state where the effects of the gradient
component of the update ∆gω and the weight decay compo-
nent ∆λω on the expected weight magnitude balance out on
average. These components typically have different monotonic
dependencies on the weight magnitude, with weight decay being
proportional while the gradient component is either constant or
inversely proportional, depending on the setting. As a result, the
effects of these components can balance out in expectation for a

3

Table 1: Analytical predictions for different optimizers and a parameter p ∈ RC with a gradient g
and g̃ := ∥p∥g. The RMS update size η̂g applies to all parameters, the expected angular update
ηr and equilibrium norm ∥̂ω∥ only apply to a scale-invariant ω in equilibrium.

SGDM (42) AdamW (9) Adam+L2 (75) Lion (54)

η̂g η
√

E[∥g∥2]
1−α2 η

√
C 1−β1

1+β1
η
√

C 1−β1

1+β1
η
√
C

η̂r

√
2ηλ
1+α

√
2ηλ 1−β1

1+β1
3

√
2η2λ

⟨1,
√

E[g̃2]⟩

√
1−β1

1+β1
C

√
πηλ

(
(1− β1)

2 + β2
1
1−β2

1+β2

) 1
2

∥̂ω∥ 4

√
ηE[∥g̃∥2]
2λ·(1−α)

√
ηC
2λ

3

√
η
2λ ·⟨1,

√
E[g̃2]⟩

√
ηC
πλ

(
(1− β1)

2 + β2
1
1−β2

1+β2

)− 1
2

particular magnitude, which we call the equilibrium norm ∥̂ω∥. As shown in Figure 2, the geometry
of this is not necessarily simple. Due to the averaging effects of momentum over time, ∆gω is
not necessarily orthogonal to the weights even in cases where individual gradients are (e.g. for
scale-invariant weights). In the same way, the weight decay (or L2-regularization) component ∆λω
may not be perfectly anti-parallel to the weights with momentum.

∥̂ω∥

∥̂ω∥

E[∥u⊥∥]

E[∥d−u∥∥]

Figure 3: Weight norm equilib-
rium. The loss gradient causes an
update u and the weight decay d.

To simplify the effects of momentum, we instead consider a
different view of equilibrium shown in Figure 3. Here we consider
the total weight change throughout training derived from the
weight and gradient at a given time step, instead of the update that
is applied in that iteration. We thus define u for time step t as the
sum of the contributions of ∇ωL (ωt, . . .) to subsequent updates
ωt → ωt+1, ωt+1 → ωt+2, and so on. Analogously, the weight
decay term d is defined as the total weight change due to the
weight decay or L2-regularization of the weights ωt at iteration t.
Note that without momentum u = ∆gω, d = ∆λω and that if
∆gω and ∆λω balance out on average, then so must u and d.

In many cases u is orthogonal to the weights on average due to scale-invariance or randomness, but
otherwise can we split it into orthogonal u⊥ and radial u∥ components. The weight decay term d is
anti-parallel to the weights in every case we consider. If we can obtain an expression for ∥u⊥∥ and
∥d− u∥∥, this allows us to apply the Pythagorean theorem to the dashed triangle in Figure 3:

(∥̂ω∥ − E[∥d− u∥∥])2 + E[∥u⊥∥]2 = ∥̂ω∥2 (6)
We can then solve for ∥̂ω∥ after accounting for the dependency of u and d on the weight norm.

Once we have an expression for ∥̂ω∥, we can compute a prediction for the RMS update size η̂g.
Combining η̂g for the equilibrium magnitude ∥̂ω∥ allows us to compute the expected relative update
size η̂g/∥̂ω∥ which closely approximates ηr in equilibrium. We do this for AdamW in the next
subsection and for SGDM and Lion (Chen et al., 2023) in Appendix C and D. The results for each
optimizer are summarized in Table 1.

3.2 ADAMW EQUILIBRIUM

The standard version of AdamW (Loshchilov and Hutter, 2019) can be written as:
mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)g
2
t (8)

pt = pt−1 − η ·
(

mt/(1−βt
1)√

vt/(1−βt
2)+ε

+ λpt−1

)
(9)

Where pt ∈ RC is a parameter vector at time t, gt = ∇pL (pt, . . .) is the gradient, m is the first
moment and v is the second moment. The learning rate (η ≥ 0), weight decay (λ ≥ 0), moment
coefficients (0 < β1 < 1, 0 < β2 < 1) and ε ≥ 0 are hyperparameters. For simplicity we assume
that ε and the bias correction can be ignored, i.e. that ε, βt

1 and βt
2 are all effectively zero.

Equilibrium magnitude: For a rotational weight ω, we can write u and d from Section 3.1 as:

u = −η
∑∞

k=t β
k−t
1 (1− β1)

gt√
vk

, d = −ηλω (10)

4

We note that due to symmetry, each coordinate of u has a zero-mean distribution in the random walk
setup. Since u is independent from ω, this makes them orthogonal in expectation i.e. E[⟨u,ω⟩] = 0.
When the gradient distribution is not changing over time, it is also reasonable to assume that the
variance of each coordinate remains constant resulting in ∀t, k : E[∥gt/

√
vk∥2] = C (for ω ∈ RC)

and by extension E[∥u∥2] = η2C. Defining ω = ∥ω∥, u = ∥u∥, u∥ = ⟨ω,u⟩/∥ω∥, u2
⊥ = u2 − u2

∥
and d = ∥d∥ we can write a recurrence relation based on Equation (6):

E[ω2
i+1] = E[(ωi − d+ u∥)

2 + u2
⊥] (11)

= E[ω2
i − 2dωi + 2u∥ωi − 2du∥ + d2 + u2

∥ + (u2 − u2
∥)] (12)

= E[ω2
i](1− 2ηλ+ η2λ2) + η2C (13)

where we have used independence, E[u∥] = 0 and E[u] = η2C. The solution is:

E[ω2
i] = E[ω2

0]a
i + η2C

2ηλ−η2λ2 (1− ai), a = (1− 2ηλ+ η2λ2) (14)

The recurrence relation is written in terms of u and d instead of ∆gω and ∆λω. This is thus only an
approximation of how the real system converges to equilibrium over time, but still informative. It
may be a good approximation if ∥ω∥ changes slowly compared to how quickly u is applied (i.e. m
changes) and v is updated. In either case, the limit gives us the equilibrium norm listed in Table 1:

∥̂ω∥ =
√

ηC
2λ−ηλ2 ≈

√
ηC
2λ (for λη ≪ 2) (15)

Update size: We can estimate the RMS update size ηg of ∆gp = ηmt√
vt

as follows:

E[∥∆gp∥2] = E[∥ η√
vt
(1− β1)

∑t−1
k=0 β

t−k
1 gt−k∥2] (16)

= η2(1− β1)
2
∑t−1

k=0 β
2t−2k
1 E[∥gt−k√

vt
∥2] (17)

≈ η2 1−β1

1+β1
C (18)

where we have approximated the geometric sum with its limit t → ∞, used the fact that for the random
walk ∀j ̸= k : E[⟨gj , gk⟩] = 0 as well as our previous assumption ∀t, k : E[∥gt/

√
vk∥2] = C. This

gives us the prediction η̂g ≈ E[
√
∥∆gp∥2] listed in Table 1. Approximating the equilibrium angular

update size with the expected relative update size
√
E[∥∆gω∥2]/∥̂ω∥ gives the η̂r value. This

approximation is good for small relative updates and a relatively small radial component in ∆gω.

3.3 DECOUPLED WEIGHT DECAY VS L2-REGULARIZATION IN ADAM

Loshchilov and Hutter (2019) proposed the use of decoupled weight decay instead of L2-
regularization in Adam (Kingma and Ba, 2015). In their experiments they find that Adam with
decoupled weight decay (i.e. AdamW, see Equation 9) outperforms the L2-regularized form (i.e.
Adam+L2, Equation 75) across a wide range of settings. Since then AdamW has been widely adopted,
but as far as we know the reason for its effectiveness over Adam+L2 is not well understood.

0 10 20 30
Step [×103]

3

5

10

W
ei

gh
t N

or
m

 [×
10

1]

AdamW

0 10 20 30
Step [×103]

Adam

0 10 20 30
Step [×103]

2

5

10

20

An
gu

la
r U

pd
at

e
[×

10
3]

AdamW

0 10 20 30
Step [×103]

Adam

Figure 4: Comparing the equilibrium behavior of AdamW and Adam+L2 in a simplified random
setup for weight norm (left) and angular updates (right). Colors (pink, orange, green, blue) represent
scale-invariant weight vectors of batch normalized neurons with varying gradient norms. Black lines
represent layer-wide averages, and red dashed lines show their equilibrium predictions from Table 1.

5

In Appendix E we analyze the geometric model for Adam+L2, revealing that the both the equilibrium
norm and angular update size depend on the gradient magnitude, unlike AdamW (see Table 1). When
the gradient norm varies between neurons or layers, this results in imbalanced rotation. Figure 4
shows an example of this for a random walk in a simple network described in Appendix F. We
believe the balanced vs imbalanced equilibrium rotation is a key difference between Adam+L2 and
AdamW which may explain why decoupled weight decay is more effective for Adam-like methods.
We explore this further in our experiments.

3.4 ROTATIONAL DYNAMICS OF SCALE-SENSITIVE PARAMETERS

Prior work has primarily focused on the dynamics of scale-invariant weights. Note that any weight
vector can be made scale-invariant by simply applying normalization to it, for example in the form
of Weight Standardization (Qiao et al., 2019). For a random walk the gradient component is always
orthogonal in expectation, but for real tasks scale-sensitive weights sometimes have an average radial
gradient component E[u∥] ̸= 0. In Appendix H we explore how this affects the rotational dynamics
of these weights (for SGDM). We find that a radial component acts like an additional weight decay
λu = −E[⟨u,ω⟩]/(η∥ω∥2) that can be combined with λ to give a new “effective” weight decay
λe = λ+ λu, resulting in dynamics similar to scale-invariant weights with the adjusted value.

4 ROTATIONAL VARIANTS OF OPTIMIZERS (RVS)

In previous sections we have discussed rotational equilibrium in standard optimizers like AdamW.
Training with these optimizers requires the weights to transition towards equilibrium at the start of
training and when hyperparameters such as the learning rate change. This creates transient phases
where rotation can be imbalanced (see e.g. Figure 1) and far away from the equilibrium value, causing
a mismatch between the specified learning rate schedule and the resulting effective step sizes over
time. Standard optimizers also rely on proper normalization to avoid radial gradient components
that can cause imbalanced rotation in equilibrium, see Section 3.4. In this section we create an
experimental tool to study these phenomena. Algorithm 1 shows how we can create rotational
variants of existing optimizers by explicitly controlling the average angular update size, forcing it
to match equilibrium throughout training. This eliminates the transient phases completely and can
balance the rotation of different layers and neurons without relying on normalization. By default we
target the equilibrium dynamics of Weight Standardization (Qiao et al., 2019). We keep the weight
magnitude constant and optionally introduce a learnable gain to compensate, which can matter for
scale-sensitive weights and avoids numerical issues. Further details about the rotational wrapper can
be found in Appendix I. Note that the form of the rotational wrapper closely resembles that of relative
optimizers like LARS (You et al., 2017) and others discussed in Appendix A, revealing a connection
to the equilibrium dynamics of standard optimizers.

Algorithm 1 Our proposed Rotational Wrapper for training with constrained rotational dynamics.
Require: Inner optimizer F, decay factor 0 ≤ β < 1, ε ≥ 0 for numerical stability, iteration count T , set Ω

1: for p in Ω : ▷ For weights we choose to treat as rotational
2: νp ← 0 ▷ Initialize the update RMS tracker
3: np ← ∥p∥ ▷ Save the initial magnitude
4: for t ∈ {1, ..., T} :
5: Perform backpropagation, obtain gradients for all parameters
6: for all p : ▷ For each parameter
7: ∆gp,∆λp← F.get_update(p,∇pL (p, . . .)) ▷ Get update components (Equation (3))
8: if p ∈ Ω : ▷ If p should be treated as rotational
9: ∆gp← ∆gp/η ▷ Remove the effect of the learning rate η used in F

10: ∆gp← ∆gp− ⟨∆gp,p⟩
∥p∥2 p ▷ Remove the projection onto p, making ∆gp ⊥ p

11: νp ← β · νp + (1− β) · ∥∆gp∥2 ▷ Update RMS tracker
12: p← p+ η̂r · np · ∆gp√

νp/(1−βt)+ε
▷ Rotate p by η̂r from Table 1 on average

13: p← np · p−p̄
∥p−p̄∥ ▷ Center and normalize p to the initial magnitude

14: else: ▷ Treat p as non-rotational
15: p← p+∆gp+∆λp ▷ Perform standard update

6

Table 2: Test set performance (mean±std) over three seeds for the baseline optimizer, AdamW, and
its rotational variant (RV). We use the baseline hyperparameters directly for the zero-shot results.
For the best shot results, minor tuning was applied. The final column shows results for Adam+L2

directional updates with a balanced angular update speed η̂r based on AdamW across all neurons.
†The baseline λ is too low, causing an extended transient phase where the RV rotation differs.

Dataset Model Batch Size Metric (↑↓) AdamW RV-AdamW RV-AdamW Wrapped
Baseline Zero Shot Best Shot Adam+L2

CIFAR-10 ResNet-20 128 Top-1 Acc. (↑) 92.2 ±0.11 92.3±0.25 N/A 92.3±0.18
CIFAR-10 ResNet-20 2048 Top-1 Acc. (↑) 91.5 ±0.22 91.2 ±0.21 91.9 ±0.29 91.8±0.15
CIFAR-10 DeiT tiny 64 Top-1 Acc. (↑) 95.9 ±0.07 96.3±0.25 N/A 96.3±0.17
Imagenet-1k DeiT tiny 1024 Top-1 Acc. (↑) 72.1 71.5 72.3 N/A
IWSLT2014 de-en Transformer-S 4096 Bleu (↑) 34.6±0.06 19.9±0.14† 34.7±0.10 34.5±0.04
Wikitext GPT-like 55 Perplexity (↓) 19.6 ±0.07 19.1±0.21 N/A 19.3±0.12

5 EXPERIMENTS

Experimental Setup: We conducted experiments on several well-known datasets and standard
network architectures (details in Appendix K). When using our RVs, we apply rotational updates to
all convolutional and linear layers. For transformers, these layers are not always fully scale-invariant;
the weight norms matter. To address this, we introduced learnable gains as mentioned in Section 4.

Constraining the Rotational Dynamics: We explore the impact of constraining the rotational dynam-
ics by comparing the performance of AdamW and RV-AdamW across various network architectures
and tasks, see Table 2. The RVs achieve comparable performance to the original versions without
any additional hyperparameter tuning (zero-shot) or light tuning (best-shot). This suggests that the
simplified learning dynamics (e.g. no transient phase) with the RVs are sufficient. Although the RVs
have many interesting properties and good performance, we view them primarily as a research tool.

Learning Rate vs Weight Decay: Different combinations of a learning rate η and weight decay λ
with a constant product ηλ result in the same expected angular update η̂ in equilibrium but different
RMS update sizes η̂g (see Table 1). This affects the rotational weights (especially when scale-
invariant) differently than gains and biases (which have λ=0). Figure 5 (left) explores the impact of
this. For small η, biases and gains update slowly since η̂g ∝ η, resulting in accuracy comparable to
freezing them (90.8%). Conversely, large η results in large updates to these parameters, potentially
causing unstable training. We attribute the performance difference between AdamW and the RV to
varying effective update size schedules (see Figure 5 middle and right).

Scheduling Effects: In Figure 5 (right), there are noticeable deviations between the measurements of
∥ω∥ and ηr and the predictions listed in Table 1 for a cosine decay learning rate schedule and a five
epoch warmup. In the initial phase we observe the transient phase, corresponding to the transition
towards equilibrium, while the fall off in the end phase indicates that the learning rate is too small
for the weights to decay fast enough to maintain equilibrium. The same effective step size schedule
could be achieved by the RV with an adjusted learning rate schedule. See Appendix K for details.

10 5 10 3 10 1 101

Learning Rate

88

89

90

91

92

93

Va
lid

at
io

n
Ac

cu
ra

cy

adamw
rotational

0 20000 40000 60000
Steps

10 1

101

103

0 20000 40000 60000
Steps

10 4

10 3

10 2

(
t,

t+
1)

Figure 5: Left: Validation accuracy for ResNet-20 on CIFAR-10 for different learning rate, weight
decay pairs with a constant product (ηλ = 5·10−4) resulting in a specific η̂r (Table 1). Right: The
weight norm ∥ω∥ and angular update size ηr over time for three (η, λ) pairs corresponding to the
colored circles on the left with predictions in dashed red. Note the difference in the initial/final phase.

7

- -5-4-3-2-1 0 1 2 3 4
L2 Coefficient =10 3 2x

-10

-8

-6

-4

-2

0

Le
ar

ni
ng

 R
at

e
=

10
1

2y Adam

- -2-1 0 1 2 3 4 5 6 7 8 9
Weight Decay =10 2 2x

AdamW

92

92.5

93.0

93.5

94.0

94.5

Va
lid

at
io

n
Ac

cu
ra

cy

0 50 100 150 200
Epoch

10 4

10 3

10 2

10 1

An
gu

la
r U

pd
at

es
 (P

er
 L

ay
er

)

Figure 6: Left: A hyperparameter sweep for the learning rate and L2 regularization / weight decay of
Adam and AdamW on CIFAR-10 ResNet-18. Adam is unable to match the performance of AdamW.
Right: The average angular per-step updates (radians) of each layer over the course of training for
the best configuration of Adam (orange) and AdamW (black). In both cases the updates change with
the learning rate schedule (cosine, no warmup) but for Adam they vary considerably across layers.
The dashed line corresponds to the final fully-connected layer which is scale-sensitive.

Adam vs AdamW: Figure 6 (left) reproduces the performance gap between AdamW and Adam+L2

observed by Loshchilov and Hutter (2019), around 0.5% on the validation set. The right panel shows
that Adam+L2 results in an unbalanced rotation unlike AdamW, confirming our observations from
Section 3.3. To determine whether this contributes to the performance gap, we create a special RV
that combines the update direction ∆gp from Adam+L2 with the η̂r of AdamW, ensuring balanced
angular updates across all neurons and layers. For the experiment in Figure 6, the special RV performs
identically to a standard RV-AdamW, outperforming Adam+L2 by roughly 0.5%. In the final column
of Table 2 we show that this holds for more settings, with the special RV and RV-AdamW performing
similar, roughly matching or outperforming AdamW in all cases.

Imbalanced Rotation: To further quantify the impact of imbalanced rotation we experiment with
artificially scaling ηr for a fraction of the neurons in each layer. Figure 7 shows the result of varying
the fraction (middle) and scale for half the neurons (right), after tuning the learning rate for each
configuration. We observe that even small variations in ηr can significantly affect performance.

Training Poorly Normalized Networks: Layer Normalization can make a whole layer scale-invariant
but not individual neurons (unlike e.g. Batch Normalization). For standard optimizers, this can result
in imbalanced rotation across neurons but Algorithm 1 ensures balanced rotation irrespective of the
normalization. Figure 8 (left) shows that this results in improved performance across learning rates
when training a layer-normalized ResNet-18 on CIFAR-100. We also observed a slight performance
increase for the small GPT-like model in Table 1, potentially for a similar reason.

Need for Learning Rate Warmup: For standard optimizers the initial transient phase can result in
imbalanced and overly fast rotation that does not match the learning rate schedule. We conjecture
that the common practice of learning rate warmup is often beneficial in part by counteracting this
effect. In Figure 8 (right) we train a ResNet-50 on ImageNet for 10 epochs using large batch sizes
and different learning rates without warmup. The RV is more stable and achieves higher accuracy.

r/f r rf
rotation speed

0

p/2

p

1-p

0% 20% 40%
p

93.0

93.5

94.0

94.5

Va
lid

at
io

n
Ac

cu
ra

cy

1x 3x 5x 7x 9x
f

93.0

93.5

94.0

94.5

Va
lid

at
io

n
Ac

cu
ra

cy

Figure 7: Left: Two artificially imbalanced angular update size distributions (black/orange). A
portion p of the neurons is rotating f times slower and/or faster than rest using a modified RV for
ResNet-18 training on CIFAR-10. Middle: Varying p for a fixed f = 10. The performance with
p=50% is comparible to a network half the width (93.5%). Right: Varying f ∈ [1, 10] for p=50%.

8

10 2 10 1 100

Learning Rate

70

72

74

76

Va
lid

at
io

n
Ac

cu
ra

cy Baseline
Rotational

10 1 100 101

Learning Rate

0

20

40

60

Va
lid

at
io

n
Ac

cu
ra

cy

Figure 8: Comparison of the final validation accuracy of runs with different learning rates, using either
SGDM (black) or RV-SGDM (orange). Left: Layer normalized ResNet-18 training on CIFAR-100,
accuracy given as (mean±std of 5 runs). Right: 10 epoch training of ResNet-50 on ImageNet-1k
without a learning rate warmup using large batch sizes (2k solid, 8k dashed, 32k dotted).

6 DISCUSSION & CONCLUSION

We believe rotational dynamics can provide valuable insights into many phenomena in deep learning
optimization. Our analysis shows how the average angular update size ηr in equilibrium and the RMS
gradient size ηg have a different dependency on the learning rate η and weight decay λ (Table 1). In
the common setting where gains and biases are excluded from weight decay, this results in a scaling
of their “effective” update size, ηg, compared to that of the rotational weights, ηr. In equilibrium, η
and λ therefore jointly determine two effective update sizes used for different types of parameters.
Curiously, ηr ∝ √

η while ηg ∝ η, raising questions about the impact of this when varying the
learning rate η with a schedule or scaling the batch size. We do not explore this here but note that this
is not the case in most relative optimizers, such as Nero (Liu et al., 2021) for example.

In our analysis and experiments we found that the equilibrium in Adam with L2 regularization
significantly differs from that of AdamW and other optimizers, as the expected angular update in
equilibrium depends on the gradient magnitude. This results in unbalanced rotation across vectors that
have different gradient norms. Forcing Adam+L2 to have balanced rotation through our rotational
wrapper seems to eliminate most of the performance degradation compared to AdamW.

Normalization can make weights scale-invariant, ensuring the gradients are orthogonal to the weights.
A consistent gradient component parallel to a weight vector results in a faster or slower rotation
in equilibrium (Section 3.4), potentially resulting in unbalanced rotation across different vectors.
Different types of normalization result in different granularity of scale-invariance e.g. layer level
with Layer Normalization and neuron level with Batch Normalization and Weight Standardization.
With more coarse normalization operations this can result in unbalanced equilibrium rotation on the
neuron level. We observe that the use of Rotational Optimizer Variants can improve the performance
of layer normalized ResNets and also the GPT-like model, likely by enforcing balanced rotation. This
could also help explain how Weight Standardization helps aid optimization when applied on top of
Layer Normalization or Group Normalization, i.e. by ensuring scale-invariance on a finer level.

In standard optimizers different weight vectors must converge to equilibrium. Depending on the
initialization weight magnitude, learning rate, weight decay and gradient norm (for SGDM only), this
can result in faster or slower angular updates in the initial transient phase. This causes a mismatch
between the specified learning rate schedule and the resulting angular step sizes over time. A learning
rate warmup may potentially be needed in part to counteract fast initial rotation due to this effect.
Using the rotational optimizer variants (RVs) eliminates this effect, ensuring angular updates follow
the specified learning rate schedule. This may also explain why other relative optimizers like LARS
seem to have a reduced need for learning rate warmup. Although this may not be the sole reason a
warmup is needed in every case, we believe it is an important effect to be aware of.

In this project we have explored the importance of rotational dynamics in deep learning optimization
aiming for a high level understanding. We hope our insights can be of use to practitioners when
debugging or tuning neural network training, and that they may provide a new perspective for theorists.
We see a lot of potential for future work in this area in terms of more formal and rigorous theory as
well as practical application to e.g. optimizer and scheduler design.

9

7 REPRODUCIBILITY

The code used for our experiments is available at https://github.com/fZuDIKrLqR/
rotational-equilibrium. We provide more experimental details in Appendix K includ-
ing hyperparameters not listed in the main body. The analysis for the other optimizers are also
provided in the Appendix, SGDM in Appendix C, Lion in Appendix D and Adam+L2 in Appendix E.
Additional information about the analytical setting used in Section 3 and how it compares to practical
settings can be found in Appendix G.

REFERENCES

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
URL https://arxiv.org/abs/1607.06450.

A. Brock, S. De, and S. L. Smith. Characterizing signal propagation to close the performance gap in
unnormalized resnets. In 9th International Conference on Learning Representations, ICLR, 2021a.
arXiv:2101.08692.

A. Brock, S. De, S. L. Smith, and K. Simonyan. High-performance large-scale image recognition
without normalization. In International Conference on Machine Learning, pages 1059–1071.
PMLR, 2021b. arXiv:2102.06171.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Federico. Report on the 11th IWSLT
evaluation campaign. In Proceedings of the 11th International Workshop on Spoken Language
Translation: Evaluation Campaign, pages 2–17, Lake Tahoe, California, Dec. 4-5 2014. URL
https://aclanthology.org/2014.iwslt-evaluation.1.

X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J. Hsieh,
et al. Symbolic discovery of optimization algorithms. arXiv preprint arXiv:2302.06675, 2023.
URL https://arxiv.org/abs/2302.06675.

V. Chiley, I. Sharapov, A. Kosson, U. Koster, R. Reece, S. Samaniego de la Fuente, V. Subbiah, and
M. James. Online normalization for training neural networks. Advances in Neural Information
Processing Systems, 32, 2019. arXiv:1905.05894.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
arXiv:1512.03385.

B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha. Adamp: Slowing
down the slowdown for momentum optimizers on scale-invariant weights. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=Iz3zU3M316D. arXiv:2006.08217.

E. Hoffer, R. Banner, I. Golan, and D. Soudry. Norm matters: efficient and accurate normalization
schemes in deep networks. Advances in Neural Information Processing Systems, 31, 2018.
arXiv:1803.01814.

L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao. Centered weight normalization in
accelerating training of deep neural networks. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), pages 2803–2811, 2017. URL
https://openaccess.thecvf.com/content_iccv_2017/html/Huang_
Centered_Weight_Normalization_ICCV_2017_paper.html.

X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization.
In Proceedings of the IEEE international conference on computer vision, pages 1501–1510, 2017.
arXiv:1703.06868.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. pmlr,
2015. arXiv:1502.03167.

10

https://github.com/fZuDIKrLqR/rotational-equilibrium
https://github.com/fZuDIKrLqR/rotational-equilibrium
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2101.08692
https://arxiv.org/abs/2102.06171
https://aclanthology.org/2014.iwslt-evaluation.1
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/1905.05894
https://arxiv.org/abs/1512.03385
https://openreview.net/forum?id=Iz3zU3M316D
https://openreview.net/forum?id=Iz3zU3M316D
https://arxiv.org/abs/2006.08217
https://arxiv.org/abs/1803.01814
https://openaccess.thecvf.com/content_iccv_2017/html/Huang_Centered_Weight_Normalization_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Huang_Centered_Weight_Normalization_ICCV_2017_paper.html
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1502.03167

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), San Diega, CA, USA, 2015. arXiv:1412.6980.

M. Kodryan, E. Lobacheva, M. Nakhodnov, and D. P. Vetrov. Training scale-invariant neural networks
on the sphere can happen in three regimes. Advances in Neural Information Processing Systems,
35:14058–14070, 2022. arXiv:2209.03695.

A. Krizhevsky. Learning multiple layers of features from tiny images. self-published, 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Z. Li and S. Arora. An exponential learning rate schedule for deep learning. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rJg8TeSFDH. arXiv:1910.07454.

Z. Li, K. Lyu, and S. Arora. Reconciling modern deep learning with traditional optimization analyses:
The intrinsic learning rate. Advances in Neural Information Processing Systems, 33:14544–14555,
2020. arXiv:2010.02916.

Z. Li, S. Bhojanapalli, M. Zaheer, S. Reddi, and S. Kumar. Robust training of neural networks
using scale invariant architectures. In International Conference on Machine Learning, pages
12656–12684. PMLR, 2022a. arXiv:2202.00980.

Z. Li, T. Wang, and D. Yu. Fast mixing of stochastic gradient descent with normalization
and weight decay. Advances in Neural Information Processing Systems, 35:9233–9248,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/3c215225324f9988858602dc92219615-Abstract-Conference.html.

Y. Liu, J. Bernstein, M. Meister, and Y. Yue. Learning by turning: Neural architecture aware
optimisation. In International Conference on Machine Learning, pages 6748–6758. PMLR, 2021.
arXiv:2102.07227.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7. arXiv:1711.05101.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=Byj72udxe. arXiv:1609.07843.

B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd: Path-normalized optimization in deep
neural networks. Advances in neural information processing systems, 28, 2015. arXiv:1506.02617.

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast,
extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations,
2019. arXiv:1904.01038.

M. Pagliardini. llm-baseline. https://github.com/epfml/llm-baselines, 2023.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019. arXiv:1912.01703.

B. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Com-
putational Mathematics and Mathematical Physics, 4:1–17, 1964. URL https://api.
semanticscholar.org/CorpusID:120243018.

S. Qiao, H. Wang, C. Liu, W. Shen, and A. L. Yuille. Weight standardization. CoRR, abs/1903.10520,
2019. URL http://arxiv.org/abs/1903.10520.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. self-published, 2019. URL https:
//d4mucfpksywv.cloudfront.net/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

11

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2209.03695
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH
https://arxiv.org/abs/1910.07454
https://arxiv.org/abs/2010.02916
https://arxiv.org/abs/2202.00980
https://proceedings.neurips.cc/paper_files/paper/2022/hash/3c215225324f9988858602dc92219615-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/3c215225324f9988858602dc92219615-Abstract-Conference.html
https://arxiv.org/abs/2102.07227
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1506.02617
https://arxiv.org/abs/1904.01038
https://github.com/epfml/llm-baselines
https://arxiv.org/abs/1912.01703
https://api.semanticscholar.org/CorpusID:120243018
https://api.semanticscholar.org/CorpusID:120243018
http://arxiv.org/abs/1903.10520
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

S. Roburin, Y. de Mont-Marin, A. Bursuc, R. Marlet, P. Perez, and M. Aubry. A spherical analysis
of adam with batch normalization. arXiv preprint arXiv:2006.13382, 2020. URL https:
//arxiv.org/abs/2006.13382.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y. arXiv:1409.0575.

T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.
arXiv:1602.07868.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.
1556.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou. Training data-
efficient image transformers & distillation through attention. In M. Meila and T. Zhang, edi-
tors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 10347–10357. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/touvron21a.html. arXiv:2012.12877.

T. Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017. arXiv:1706.05350.

R. Wan, Z. Zhu, X. Zhang, and J. Sun. Spherical motion dynamics: Learning dy-
namics of normalized neural network using sgd and weight decay. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 6380–6391. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf. arXiv:2006.08419.

R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019. arXiv:1910.03771.

Y. Wu and K. He. Group normalization. In Proceedings of the European conference on computer
vision (ECCV), pages 3–19, 2018. arXiv:1803.08494.

Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. URL https://arxiv.org/abs/1708.03888.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer, and C.-J.
Hsieh. Large batch optimization for deep learning: Training bert in 76 minutes. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=Syx4wnEtvH. arXiv:1904.00962.

G. Zhang, C. Wang, B. Xu, and R. Grosse. Three mechanisms of weight decay regularization. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=B1lz-3Rct7. arXiv:1810.12281.

Y. Zhou, Y. Sun, and Z. Zhong. Fixnorm: Dissecting weight decay for training deep neural networks.
arXiv preprint arXiv:2103.15345, 2021. URL https://arxiv.org/abs/2103.15345.

12

https://arxiv.org/abs/2006.13382
https://arxiv.org/abs/2006.13382
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://proceedings.mlr.press/v139/touvron21a.html
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1706.05350
https://proceedings.neurips.cc/paper/2021/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf
https://arxiv.org/abs/2006.08419
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://arxiv.org/abs/1904.00962
https://openreview.net/forum?id=B1lz-3Rct7
https://openreview.net/forum?id=B1lz-3Rct7
https://arxiv.org/abs/1810.12281
https://arxiv.org/abs/2103.15345

A EXPANDED RELATED WORK

In this section we discuss more related works divided into five main categories.

A.1 UNDERSTANDING AND IMPROVING WEIGHT DECAY

We will add the main works in this area as well as promised references in a future revision.

A.2 SCALE-INVARIANCE AND EFFECTIVE LEARNING RATES

Several works have investigated how the scale-invariance results in a certain “effective learning rate”
based on the relative change that varies based on the norm of the weights, often in the form of η/∥ω∥2.
The works in this section do not describe how ∥ω∥ can converge to an equilibrium value that results
in a fixed relative or rotational learning rate. In Weight Normalization, Salimans and Kingma (2016)
point out how normalization can make parameters scale-invariant and that the gradient magnitude
varies based on the weight magnitude. They describe how the gradient can “self-stabilize its norm”,
with larger gradients becoming smaller over time due to growth in the weight magnitude, but do not
consider the effects of weight decay on this process. Zhang et al. (2019) and Hoffer et al. (2018)
empirically find that the regularization effects of weight decay are primarily caused by increases in
the effective learning rate due to decreased weight norms. Li and Arora (2020) show that weight
decay can be replaced by an exponentially increasing learning rate when optimizing scale-invariant
weights with SGDM.

A.3 EQUILIBRIUM

These works also consider the fact that the weight norm converges to a specific value and the resulting
effects on the relative update size. Van Laarhoven (2017) points out the scale-invariance property of
normalization and how it interacts with L2 regularization. They derive the η/∥ω∥2 as the effective
learning rate and also how there exists a fixed point where the weight norms are stable. Their
work does not consider convergence of the weight magnitude as a separate process from the overall
convergence of the loss and weights. In Online Normalization, Chiley et al. (2019) show a simple
derivation of the equilibrium condition in SGD and how it results in a relative update size that is
identical across layers. The Spherical Motion Dynamics (SMD) (Wan et al., 2021) expands on prior
work by proving the convergence of the weight norm and extending the analysis to include momentum.
They also show plots of the weight norm over the course of training, providing empirical evidence
for early convergence of the weight norm and also how it can fall out of equilibrium with sudden
learning rate changes or when the learning rate becomes too small. They also consider the angular
updates, empirically and analytically showing that they converge to an equilibrium value. Li et al.
(2020) analyze the convergence of SGD to equilibrium by modelling it as a stochastic differential
equation, arriving at similar conclusion as the SMD paper (without momentum). This is expanded
upon by Li et al. (2022b).

A.4 PROJECTED OPTIMIZATION

Some existing works are based on projections onto a sphere but do not scale the update to be
proportional to the weight magnitude. Although similar to our Rotational Variants, this has a very
different effect. Instead of rotating all scale-invariant groups at the same rate, they are kept at
different rates based on their magnitude and resulting gradient norm where applicable. AdamP (Heo
et al., 2021) orthogonalizes the update of the Adam and SGDM optimizers by removing the radial
component of ∆gω. The main reason for this is to avoid a rapid increase the weight norm during
the initial phases of training. However, they use low amounts of weight decay if any which can
also prevent the norms from growing as we have shown. Our Rotational Optimizer Variants keep
the relative learning rate at a fixed level and do not suffer from the effect they report. Zhou et al.
(2021) propose keeping the weight magnitude constant, projecting it onto a sphere after every step
and removing the weight decay. Kodryan et al. (2022) analyze training using projections onto the
unit sphere after every optimizer update. They consider the union of all scale-invariant weights and
do not normalize their step sizes so their effective learning rate per group can vary, giving dynamics

13

that are generally quite different from SMD equilibrium. Roburin et al. (2020) analyzes the spherical
projection of the Adam optimization trajectory during standard training.

A.5 RELATIVE OPTIMIZATION

LARS (You et al., 2017) and LAMB (You et al., 2020) are variants of SGDM and AdamW that scale
the update of a weight to be proportional to its norm (sometimes a clamped version of the weight
norm). They apply this to linear and convolutional layer weights, keeping the original update for
weights and biases. LARS and LAMB were proposed for large batch size training and found to work
well there. Although they are not inspired by the Spherical Motion Dynamics, their form is quite
similar to the Rotation Wrapper (Algorithm 1) with a few important distinctions. The default form of
our Rotational Optimizer Variants (RVs) is applied filter-wise, centers the weights and allows the
update magnitude to vary between steps while keeping the average relative update constant. The
RV also doesn’t apply weight decay while LARS and LAMB consider it a part of the update and
take into account when scaling the relative update. Finally the RVs adjust the learning rate based on
the SMD equilibrium value. This makes it more compatible with the underlying optimizer variants
in terms of hyperparameters. One notable difference is the square root dependency on the relative
updates in the SMD, while LARS and LAMB are directly proportional. This means that any learning
rate schedule for these optimizers is more similar to applying a squared version of this schedule to
standard optimizers or the RVs. This does not fully resolve the differences however, because changing
the schedule also affects gains and biases where the update magnitude is directly proportional to the
learning rate for all the optimizers and variants discussed here.

Nero (Liu et al., 2021) is another optimizer that applies relative updates that are directly proportional
to the learning rate and weight magnitude. Like LARS and LAMB, Nero is not inspired by the SMD
and to the best of our knowledge their relationship has not been pointed out before. Like the RVs,
Nero is applied filter-wise and centers the weights. Overall, Nero is similar to the SGDM RV without
momentum and the hyperparameter mapping, but also applies Adam like updates to the gains and
biases, using a separate learning rate. By making the relative updates directly proportional to the
learning rate, it has the same learning rate scheduling differences as LARS and LAMB mentioned
above. Nero lacks momentum which is something that we observed can hurt large batch size training
(exploratory experiments not shown).

Instead of controlling the average relative update size, Brock et al. (2021b) and Li et al. (2022a)
clip the maximum relative update size instead. The Adaptive Gradient Clipping from Brock et al.
(2021b) is applied on a per filter basis and is constant throughout training, i.e. does not vary with the
learning rate or weight decay. The clipping introduced in Li et al. (2022a) scales with the learning
rate and weight decay in a manner inspired by the equilibrium norm for SGD. They seem to apply
this globally (i.e., not per neuron or layer).

B NORMALIZATION AND SCALE-INVARIANCE

Setup: We use Batch Normalization (Ioffe and Szegedy, 2015) as an example of a normalization
operation. Let x = Zω for x ∈ RB×1, ω ∈ RC×1 and Z ∈ RB×C correspond to a single output
feature of a linear layer (i.e. a neuron). We can write the batch normalization of this feature as:

x̂ = N(x) =
x− µ√
σ2 + ε

, µ =
1

B

B∑
i=1

xi, σ2 =
1

B

B∑
i=1

(xi − µ)2 (19)

where x = [x1, . . . , xB]
⊤ ∈ RB is a vector and ε ≥ 0 is a small hyperparameter added for numerical

stability. Backpropagation accurately treats µ and σ as functions of x. When ε is sufficiently small to
be ignored, the output of the normalization is not affected by a positive scaling of the input:

N(rx) = (rx− rµ)/
√
r2σ2 + ε ≈ (x− µ)/

√
σ2 + ε = N(x), r > 0 (20)

If the training loss L does not depend on x in other ways than through N(x), this makes x scale-
invariant with respect to the loss, i.e. L (rω) = L (ω) for r > 0. Note that although we sometimes
write L (ω) for brevity the loss generally depends on other weights and inputs as well, ω is generally
only a portion of the parameters used in the network, and could for example be a particular row in
the weight matrix of a fully connected layer. Some normalization operations like Centered Weight

14

Normlization (Huang et al., 2017) a.k.a. Weight Standardization (Qiao et al., 2019) are performed
directly on the weights instead of activations. This also makes the weight scale-invariant and in case
of the aforementioned methods also makes ∇ωL (ω) ⊥ 1.

Properties: Scale-invariance results in the properties stated in Equations (1) and (2), repeated below:

Gradient orthogonality: ∇ωL (ω) ⊥ ω (21)

Inverse proportionality: ∥∇ωL (ω)∥ ∝ ∥ω∥−1 (22)

Intuition: The first property is a result of the loss surface being invariant along the direction of ω.
Hence the directional derivative of L (ω) in the direction of ω is zero:

⟨∇ωL (ω),
ω

∥ω∥
⟩ = lim

h→0

L (ω + hω/∥ω∥)− L (ω)

h
(23)

= lim
h→0

L (ω)− L (ω)

h
(24)

= lim
h→0

0

h
= 0 (25)

The second property is a result of the backpropagation through N , which scales the gradient by the
factor used on the forward pass 1/

√
σ2 + ε ≈ σ−1 as if it were a constant, and the fact that σ ∝ ∥ω∥.

Backpropagation: The properties can also be shown using expressions for the backpropagation
through the normalization layers. For completeness we include the learnable affine transformation
that typically follows normalization operations:

y = γx̂+ β (26)

For the backpropagation we have:

∇γL (p) = ⟨x̂,∇yL (p)⟩ (27)
∇βL (p) = ⟨1B ,∇yL (p)⟩ (28)

∇xL (p) = γ√
σ2+ε

·

[
∇yL (p)− 1

B ⟨1B ,∇yL (p)⟩1B − 1
B ⟨x̂,∇yL (p)⟩x̂

]
(29)

Assuming that ε is small gives:

∇xL (p) = γ
σ

[
∇yL (p)− 1

B ⟨1B ,∇yL (p)⟩1B − 1
B ⟨x̂,∇yL (p)⟩x̂

]
(30)

In this case we have:

⟨∇xL (p),1B⟩ = γ
σ

[
⟨1B ,∇yL (p)⟩ − 1

B ⟨1B ,∇yL (p)⟩ ⟨1B ,1B⟩︸ ︷︷ ︸
=B

− 1
B ⟨x̂,∇yL (p)⟩ ⟨x̂,1B⟩︸ ︷︷ ︸

=0

]
= 0 (31)

and similarly:

⟨∇xL (p), x̂⟩ = γ
σ

[
⟨x̂,∇yL (p)⟩ − 1

B ⟨1B ,∇yL (p)⟩ ⟨1B , x̂⟩︸ ︷︷ ︸
=0

− 1
B ⟨x̂,∇yL (p)⟩ ⟨x̂, x̂⟩︸ ︷︷ ︸

=B

]
= 0 (32)

which gives:
⟨∇xL (p),x⟩ = ⟨∇xL (p), σx̂+ µ1B⟩ = 0 (33)

This allows us to obtain the properties of the weight gradient:

∇pL (p) = Z⊤∇xL (p) (34)

15

First we note that:
∥∇pL (p)∥ ∝ ∥∇xL (p)∥ ∝ σ−1 ∝ ∥p∥−1 (35)

where the second proportionality follows from (30) and the final one from (19). This gives the inverse
proportionality listed in Equation (22).

We can also derive the gradient orthogonality in Equation (21) as follows:

⟨∇pL (p),p⟩ = ⟨Z⊤∇xL (p),p⟩ (36)

= p⊤Z⊤∇xL (p) (37)

= x⊤∇xL (p) (38)
= ⟨∇xL (p),x⟩ (39)
= 0 (40)

These properties can also be shown directly from the scale-invariance using calculus theorems as
done in Wan et al. (2021).

C SGDM EQUILIBRIUM

The standard version of SGD with momentum (SGDM) can be written as:

mt = αmt−1 + gt + λpt−1 (41)
pt = pt−1 − η ·mt (42)

Where pt ∈ RC is a parameter vector at time t, gt = ∇pL (pt) is the gradient, m is the first moment
and v is the second moment. The learning rate (η ≥ 0), weight decay (λ ≥ 0), momentum coefficient
(0 < α < 1) are hyperparameters.

We compute the total weight change due to gt, i.e. u in Equation (6) as:

u = −η
∑∞

k=t α
k−tgt =

−η
1−αgt (43)

Analogously, the total weight change due to wt, i.e. d in Equation (6) is:

d = −η
∑∞

k=t α
k−tλpt =

−ηλ
1−αpt (44)

Combining (43) and (44), this allows us to solve (6) for a scale-invariant weight vector ω. Here we
assume scale-invariance since it slightly changes the resulting expression due to the dependency of
∥u∥ on ∥ω∥. It also simplifies the math a bit, with u ⊥ ω, not just in expectation. We get:

∥̂ω∥2 = E
[
(∥̂ω∥ − ∥d∥)2 + ∥u∥2

]
(45)

= E
[(

∥̂ω∥ − ηλ
1−α ∥̂ω∥

)2

+
(

η
1−α

∥g̃∥
∥̂ω∥

)2
]

(46)

Where we define g̃t = gt∥ωt∥ using ∥gt∥ ∝ ∥ωt∥−1 due to the inverse proportionality of the
gradient magnitude, see Equation (2) or (22). We can interpret g̃t as the gradient for weights of unit
norm ∥ωt∥ = 1.

Solving for ∥̂ω∥ and assuming that ηλ ≪ 2 · (1− α) gives:

∥̂ω∥ = 4

√
ηE[∥g̃∥2]

2λ · (1− α)− ηλ2
≈ 4

√
ηE[∥g̃∥2]

2λ · (1− α)
(47)

To obtain the absolute size of an update, we further assume that E[∥gt∥2] can be approximated
as a constant E[∥g∥2] when computing the size of mt, and that successive gradients are roughly
orthogonal giving mt−1 ⊥ gt in expectation. For the random walk setting, the first is reasonable
when the norm is stable e.g. around equilibrium and the second always holds. The average square

16

size of an update is then:

E[∥∆gp∥2] = η2E
[
∥αmt−1 + gt∥2

]
(48)

= η2E
[
∥αmt−1∥2

]
+ E

[
∥gt∥2

]
(49)

= η2
∑t

k=0 E[
(
αt−k∥gk∥

)2
] (50)

≈ η2 E[∥g∥2]
1−α2 (51)

where (49) comes from the orthogonality, (50) by recursively writing out m in terms of g, and (51)
from assuming that t is high enough to approximate the sum of the geometric series as an infinite
sum.

Simplifying, we get the ηg =
√
E[∥∆gp∥2] and ηr =

√
E[∥∆gω∥2]/∥̂ω∥ in Table 1. We note that

the derived rates are consistent with the ones derived in the Spherical Motion Dynamics (Wan et al.,
2021) and Online Normalization (Chiley et al., 2019) (when α = 0).

D LION EQUILIBRIUM

The standard version of Lion (Chen et al., 2023) can be written as:

vt = sign(β1mt−1 + (1− β1)gt) (52)
mt = β2mt−1 + (1− β2)gt (53)
pt = pt−1 − η · (vt + λpt−1) (54)

Where pt ∈ RC is a parameter vector at time t, gt = ∇pL (pt) is the gradient, m is the first moment
and v is the update velocity. The learning rate (η ≥ 0), weight decay (λ ≥ 0), moment coefficients
(0 < β1 < 1, 0 < β2 < 1).

In our analysis we look at the arguments of the sign function which we define as:

nt := β1mt−1 + (1− β1)gt, vt = sign(nt) (55)

To obtain an estimate of the magnitude ∥nt∥, we assume that the gradient magnitude E[∥gt∥2] can
be approximated as a constant E[∥g∥2] and that successive gradients are roughly orthogonal giving
mt−1 ⊥ gt in expectation. For the random walk setting, the first is reasonable when the norm is
stable e.g. around equilibrium and the second always holds. This gives:

E[∥nt∥2] = E
[
∥β1mt−1 + (1− β1)gt∥2

]
(56)

= β2
1E

[
∥β2mt−1 + (1− β2)gt−1∥2

]
+ (1− β1)

2E
[
∥gt∥2

]
(57)

= β2
1(1− β2)

2
k=t−1∑
k=0

βt−1−k
2 E[∥gk∥2] + (1− β1)

2E
[
∥gt∥2

]
(58)

≈ β2
1(1− β2)

2
∞∑
k=0

βk
2E[∥g∥2] + (1− β1)

2E
[
∥g∥2

]
(59)

=

(
(1− β1)

2 + β2
1

1− β2

1 + β2

)
E[∥g∥2] (60)

where we have used the gradient orthogonality and constant magnitude and approximated the
geometric sum as extending to infinity.

To compute the gradient contribution ∥u∥ in Equation (6), we first need to model how the sign
non-linearity affects the magnitude and direction of the update. We note that for pt ∈ RC :

∥vt∥ =
√
C (61)

so the sign function has an average scaling effect:

∥vt∥
∥nt∥

=

√√√√ C(
(1− β1)2 + β2

1
1−β2

1+β2

)
E[∥g∥2]

(62)

17

The sign function will also rotate nt resulting in two components, one parallel to nt and the other
orthogonal. We will assume that the orthogonal one cancels out on average without significantly
affecting equilibrium and focus on the parallel component. This component depends on the average
angle between nt and sign(nt) which is determined by the distribution and correlation between
the elements. In the random walk setting, we can assume the components of nt = [n1, . . . , nC]
are normally distributed with mean zero. However, the expression for the average angle is still
complicated unless the components are independent and identically distributed (i.i.d.) so we make
this assumption for this step with nk ∼ N (0, σ2) i.i.d. for all k. Then we can use the known expected
absolute value for a centered normal distribution to get:

E[⟨nt, sign(nt)⟩] = C · E[|nk|] = C ·
√

2σ2

π
=

√
2

π
· ∥nt∥ · ∥ sign(nt)∥ (63)

Note that the angle is still bounded regardless of the distribution but will result in a different factor in
the range that ∥n∥1/(

√
C∥n∥2) can take, i.e. [C− 1

2 , 1] instead of
√
2/π.

Based on the preceding analysis we will model the sign function for the computation of ∥u∥ as:

sign(nt) ≈
√

2

π

∥vt∥
∥nt∥

nt =

√√√√ 2C

E[∥g∥2] · π ·
(
(1− β1)2 + β2

1
1−β2

1+β2

)nt (64)

which gives:

E[∥u∥2] = 2ηC

E[∥g∥2] · π ·
(
(1− β1)2 + β2

1
1−β2

1+β2

)E
∥∥∥∥∥(1− β1)g + β1(1− β2)

∞∑
k=0

βk
2g

∥∥∥∥∥
2
 (65)

=
2ηC

π ·
(
(1− β1)2 + β2

1
1−β2

1+β2

) (66)

Combined with d = −ηλωt−1, this allows us to solve (6) for a scale-invariant weight vector ω:

∥̂ω∥2 = E
[
(∥̂ω∥ − ∥d∥)2 + ∥u∥2

]
(67)

= (∥̂ω∥ − ηλ∥̂ω∥)2 + E[∥u∥2] (68)

= (1− 2ηλ+ η2λ2)∥̂ω∥2 + 2ηC

π

(
(1− β1)

2 + β2
1

1− β2

1 + β2

)−1

(69)

Solving for ∥̂ω∥ and assuming ηλ ≪ 1 gives:

∥̂ω∥ =
√

2ηC
π·(2λ−ηλ2)

(
(1− β1)

2 + β2
1
1−β2

1+β2

)− 1
2 ≈

√
ηC
πλ

(
(1− β1)

2 + β2
1
1−β2

1+β2

)− 1
2

(70)

Combined with ∥vt∥ =
√
C for ω,p ∈ RC we get:

η̂g =
√
E[∥∆gp∥2] = η

√
C (71)

η̂r =
√
E[∥∆gω∥2]/∥̂ω∥ =

√
πηλ ·

(
(1− β1)

2 + β2
1

1− β2

1 + β2

) 1
2

(72)

E ADAM+L2 EQUILIBRIUM

In this section we apply a modified form of the geometric model from Section 3.1 to Adam (Kingma
and Ba, 2015) with L2 regularization (Adam+L2 for short) to gain some insight into how the rotational
equilibrium differs from that of Adam with decoupled weight decay (AdamW, see Section 3.2).

E.1 ADAM+L2 FORMULATION

18

φ
∥̂ω∥

∥̂ω∥

E[∥u∥]
E[∥d∥]

Figure 9: Weight norm equilibrium. The loss gradient causes an update u and the weight decay d.

We will write the Adam+L2 update as follows:

mt = β1mt−1 + (1− β1)(gt + λpt−1) (73)

vt = β2vt−1 + (1− β2)(gt + λpt−1)
2 (74)

pt = pt−1 − η ·
(

mt/(1−βt
1)√

vt/(1−βt
2)+ε

)
(75)

Similar to AdamW, pt ∈ RC is a parameter vector at time t, gt = ∇pL (pt) is the gradient, and
all operations (e.g. division, squaring) are performed elementwise. In Adam+L2, both the first
and second moment of the gradient (m and v) include an L2 regularization term. This differs
from AdamW (see Equation 9) where the L2 regularization (or weight decay) does not affect m
and v. The learning rate (η ≥ 0), L2 regularization coefficient (λ ≥ 0), moment coefficients
(0 < β1 < 1, 0 < β2 < 1) and ε ≥ 0 are hyperparameters similar to AdamW. Like before, we use ω
to denote a weight vector p that can form rotational equilibrium (e.g. dot product weights, not biases
etc).

E.2 SIMPLIFICATIONS

The rotational dynamics of Adam+L2 are more complicated than those of AdamW. The main
difference is that the strength of the “weight decay” is affected by the gradient norm. As we will see,
this makes the equilibrium norm and angular update depend on the gradient magnitude. Furthermore,
the weight decay can be scaled differently for each coordinate of the weight vector as the gradient
distribution may vary between them. This complicates the analysis, forcing us to treat each coordinate
separately.

Our analysis is based on the random walk setup introduced in Section 3 and described in Appendix G.
We further make several assumptions and simplifying approximations that allow us to obtain simpler
expressions for the cases of interest:

1. We assume the rotational equilibrium exists as a steady state where hyperparameters are
fixed (not varying over time), the expected weight norm

√
E[∥ωt∥2] = ∥̂ω∥ is constant, and

the second moment of the gradient E[g2
t] is constant over time. For simplicity we will drop

the t subscript.

2. We focus on the case where the weights are scale-invariant, defining g̃ = ∥ω∥g as the
gradient corresponding to a unit weight norm based on the inverse proportionality from
Equation 2.

3. We will assume that ε and the bias correction can be ignored, i.e. that ε, βt
1 and βt

2 are all
effectively zero.

4. We will assume the second moment tracker vt is dominated by the gradient component,
i.e. that g2 ≫ λ2ω2, and that it perfectly tracks the expected value, i.e. that E[v] = E[g2].
This is a non-trivial approximation based on the geometry of equilibrium when the angular
updates are small. For a small φ in Figure 9 we can can approximate:

E[∥u∥] = ∥̂ω∥ · tan(φ) ≈ ∥̂ω∥ · φ (76)

E[∥d∥] = ∥̂ω∥ · (1− cos(φ)) ≈ ∥̂ω∥ · φ
2

2
(77)

19

As a result E[∥u∥] ≫ E[∥d∥]. For Adam+L2 we have u = −ηgt/
√
v and

d = −ηλωt−1/
√
v. As long as v is relatively homogeneous across coordinates, we there-

fore have E[∥g∥] ≫ E[λ∥ω∥]. We assume this holds roughly coordinate wise as well, giving
g2 ≫ λ2ω2. We note that this fourth assumption is not strictly necessary but significantly
simplifies the resulting expressions, giving us an interpretable closed form solution.

E.3 EQUILIBRIUM NORM

The total weight change due to the gradient gt, i.e. u in Equation (6) is given by:

u = −η
∑∞

k=t β
k−t
1 (1− β1)

gt√
v
= −η gt√

v
(78)

Similarly the total change due to the weight decay is:

d = −η

∞∑
k=t

βk−t
1 (1− β1)

λωt−1√
v

= −η
λωt−1√

v
(79)

Due to the coordinate-wise differences in the weight decay we analyze a single element ωk at
coordinate k in ω with corresponding elements dk, uk, gk, vk in d, u, g, v, respectively. Although
the geometric model is not well defined coordinate-wise, we can still use the concept of orthogonality
as defined for random variables. This gives us:

E[ω2
k] = E[(ωk − dk)

2 + u2
k] (80)

= (1− ηλ√
vk
)2E[ω2

k] + η2
E[g2

k]
vk

(81)

= (1− 2ηλ√
vk

+ η2λ2

vk
)E[ω2

k] + η2(1− λ2E[ω2
k]

vk
) (82)

= (1− 2ηλ√
vk
)E[ω2

k] + η2 (83)

where we have used the fact that vk = E[g2k] + λ2E[ω2
k].

Since we are targeting the scale-invariant case (Assumption 2) we can write:

E[g2k] = E[g̃2k]E[∥ω∥2]−1 (84)

where g̃k corresponds to an element of the unit norm weight gradient g̃. Accordingly we can write:

vk = E[g̃2k]E[∥ω∥2]−1 + λ2E[ω2
k] ≈ E[g̃2k]E[∥ω∥2]−1 (85)

where we used Assumption 4.

Plugging this form of v into Equation (83), squaring and simplifying gives:

E[ω2
k] =

η

2λ

√
E[g̃2k]

E[∥ω∥2]
(86)

We can now write an expression for the equilibrium norm:

∥̂ω∥
2
= E[∥ω∥2] =

C∑
k=1

E[ω2
k] =

η

2λ

C∑
k=1

√
E[g̃2k]

E[∥ω∥2]
(87)

which gives:

∥̂ω∥ = 3

√
η

2λ
·⟨1,

√
E[g̃2]⟩ (88)

where ⟨·, ·⟩ denotes an inner product. Note that when the elements of g have the same second moment,
e.g. when they are identically distributed, we can write ⟨1,

√
E[g̃2]⟩ = E[∥g̃∥2]. Also note how this

behavior differs from that of AdamW, here the equilibrium norm depends on the gradient magnitude.
Finally we note that without scale-invariance we would get a square root instead of a cube root.

20

E.4 EQUILIBRIUM ANGULAR UPDATE

To obtain the absolute size of an update for ω in equilibrium, we use the fact that in the random walk
successive gradients are orthogonal in expectation.

Similar to AdamW, we can then write the average square size of an update as:

E[∥∆gω∥2] = η2(1− β1)
2
∑t

k=0 β
2t−2k
1 E

[∥∥gk

v

∥∥2] (89)

≈ η2 1−β1

1+β1
C (90)

where we approximated the geometric sum with its limit and used v ≈ E[g2] based on Assumption 4.
Note that the use of Assumption 4 gives the same result as for AdamW.

We can then approximate the expected angular update in equilibrium as:

η̂r =

√
E[∥∆gω∥2]

∥̂ω∥
= 3

√
2η2λ

⟨1,
√
E[g̃2]⟩

√
1− β1

1 + β1
C (91)

Note that the average angular update depends on the gradient magnitude unlike for other optimizers.
Also note the different dependency on η and λ, here the angular update depends on the product η2λ,
not ηλ like for other optimizers. Finally there is an odd dependency on C that is not present in the
other optimizers. Without scale-invariance the first cube root would be replaced by a square root and
the gradient dependency on C would cancel the C in the second root.

F SIMPLE SYSTEM FOR RANDOM WALKS

Definition: We define the simple system as:

f(X) = γout ⊙N
(
W (γin ⊙X)

)
(92)

where X ∈ RC×B , W ∈ RK×C , γin ∈ RC×1, γout ∈ RK×1 and N is a batch normalization
function (see Equation 19) applied to each feature independently. The only learnable parameters
are the weights W , the gammas γin and γout are kept constant. We initialize the weights using the
default initialization for a linear layer in PyTorch (Paszke et al., 2019) i.e. each element is sampled
independently and uniformly from the interval [− 1√

C
, 1√

C
]. The gammas are initialized with elements

independent and identically distributed (i.i.d.) following a standard normal distribution. The inputs
are also sampled i.i.d. from a standard normal distribution at each iteration. The gradients of f(X),
which are used to compute other gradients via the chain-rule or backpropagation, are sampled i.i.d.
from a normal distribution with standard deviation 1

KB where the B simulates the typical averaging of
the loss over a batch and the K gives a scale more similar to the derivatives of softmax-cross-entropy
(the difference of two vectors with an L1-norm of 1 each). We can also scale the initial gradients
further with a loss scale to obtain different gradient norms (especially important for Adam).

Rationale: We use this system to study a random walk in a neural network as described in Section 3,
which serves as a simplified model of a real optimization problem. The gammas give different
variances for each input and output channel, causing the second gradient moment in Adam/AdamW
to vary between elements of W like they may in real neural network training due to the rest of
the network. The normalization ensures that the system is scale-invariant for each row of W . The
randomly sampled inputs and initial gradients ensure that everything is orthogonal in expectation.
Compared to a real neural network training, the dynamics of this system are simplified with no loss
converging over time and steady input / gradient distributions. Other complicated effects such as
dead ReLUs do also not happen in this system. This makes this simple system a good setting to study
the equilibrium dynamics in a controlled manner.

Details of Figure 4: Here we use B = 32, C = K = 128. We use the default hyperparameters
for Adam and AdamW from PyTorch 2.0 (Paszke et al., 2019), except for the L2-regularization
coefficient of Adam which is zero by default but we use λ = 10−3. For reference the other values are:
learning rate η = 10−3, first moment coefficient β1 = 0.9, second moment coefficient β2 = 0.999,
epsilon ε = 10−8, weight decay λ = 10−1 (AdamW only). We do not use an additional loss scale
for to scale the gradient norms. The experiments run for 30k steps, the plots are downsampled by a
factor of 100x without averaging.

21

0 10000 20000 30000 40000 50000 60000 70000 80000

2.5

0.0

2.5

(
t

1,
g t

)

1e 6

0 10000 20000 30000 40000 50000 60000 70000 80000

0.1

0.0

(g
t,m

t
1)

1 (B)
2 (B)

baseline
prediction

0 20000 40000 60000 80000

100

200

300

g t v t
+

0 20000 40000 60000 80000

0.1

0.0

0.1

u/
0 20000 40000 60000 80000

50

100

0 20000 40000 60000 80000

0.005

0.010

(
t,

t+
1)

epoch

Figure 10: Measurement how closely the random walk model approximates the training dynamics of
two convolutional filters of a ResNet-20 trained on CIFAR-10 with a constant learning rate.

G DIFFERENCES BETWEEN REAL NETWORKS AND A RANDOM WALK

The random walk model we use in our analysis lets us make a variety of simplifications that would
not strictly hold for real neural network optimization problems. For the real networks we therefore
effectively make several approximations that can affect the accuracy of the predictions. In this section,
we begin by discussing the random walk model introduced in Section 3. Subsequently, we present
measurements to evaluate the accuracy of the approximations and outline the differences for real
neural networks.

Random Walk Setup: The random walk setup models training dynamics, where the batch gradient
is dominated by the noise component. Of course this does not hold exactly in practice but may be a
reasonable approximation for stochastic gradient descent with sufficiently small mini-batches. In this
case the equilibrium dynamics may closely approximate that of the random walk.

In Section 3, we established our main simplification for the random walk setup: gB = gX + gN ≈ gN
with EB[gN] = 0. In practice, this setup can be simulated by independently sampling inputs and
gradients for the network outputs at each step from a zero-mean normal distribution. The parameter
gradients are computed via backpropagation, i.e. by using the chain rule starting from the randomly
sampled output gradients. Due to the linearity of backpropagation, the gradient of each parameter
coordinate will be a weighted sum of the output gradients. As a result these gradients remain zero-
mean and are independent between steps, but they will accurately capture effects such as gradient
orthogonality (Equation 1) and inverse proportionality (Equation 2). Additionally, because we are
randomly sampling the inputs and gradients for the network outputs from the same distribution over
time, the distribution of these gradients does not change over time. This is in contrast to standard
optimization with a non-random loss, where we do not expect gradient independence between steps
and the distribution may change over time in a non-trivial manner.

Normalized Setup: We present measurements how closely the random walk model approximates the
training dynamics of an original ResNet-20 trained on CIFAR-10 with a constant learning rate of
η = 0.01 and a weight decay of λ = 0.01 in Figure 10. This standard ResNet has its convolutional
layers followed by Batch Normalization, ensuring that the network is well-normalized. Consequently,
we expect the convolutional weights to be scale-invariant.

22

Consistent with the expectation for this network, the angle between the gradient gt and the weights
ωt−1 is close to zero. This is evident from the first row. The second row suggests that ∀j ̸= k :
E[⟨gj , gk⟩] = 0, which in average holds in random walk scenarios, also roughly holds here. We use
mt−1 ⊥ gt as a measurement for this. It gives us information about the orthogonality of gt and the
previous update directions.

In the third row, we assess the simplifications related to the scaled gradient ũt = gt/(
√
v + ε), an

approximation of u with constant v. The left panel depicts how E[∥ũt∥] evolves over time. Our
observations indicate that it closely aligns with our approximation

√
C in this setup.

We further measure the weight decay component of the scaled gradient λu by projecting it on the
weight vector ω, λu = ⟨ω, ũt⟩/∥ω∥2. We take this approach to relate the weight decay component of
the scaled gradient with the weight decay denoted as λ. The right panel of the third row illustrates this
measurement. Notably, the gradient’s weight decay component is relatively small, staying roughly
within 10% of the weight decay.

Finally, in the fourth row, we compare the observed weight norms ∥ωi∥ and angular updates ηr with
our predictions from Table 1. We find that the predictions closely match the measurements after the
initial transient phase in this setup.

0 2000 4000 6000 8000 10000 12000 14000

0.005

0.000

(
t

1,
g t

)

0 2000 4000 6000 8000 10000 12000 14000

0.2

0.1

0.0

(g
t,m

t
1)

1 (B)
2 (B)

baseline
prediction

0 2500 5000 7500 10000 12500 15000

1200

1400

g t v t
+

0 2500 5000 7500 10000 12500 15000

1

0

u/

0 2500 5000 7500 10000 12500 15000

10

20

30

0 2500 5000 7500 10000 12500 15000

0.0050

0.0075

0.0100

(
t,

t+
1)

epoch

Figure 11: Measurement how closely the random walk model approximates the training dynamics of
two linear layers for a GPT-like model trained on wikitext.

Poorly Normalized Setup: In this section, we evaluate how closely the random walk model
approximates the training dynamics of a GPT-like model trained on Wikitext with learning rate
η = 0.0005 and weight decay λ = 0.5 in Figure 11. The architecture does not incorporate Layer
Normalization immediately after the linear layers. As a result, we do not expect the weight vectors ω
to be fully scale-invariant. The measurements in the first row supports this. For the angle between the
gradient gt and the weights ωt−1 we measure a small bias in average opposed to the measurements
of the normalized setup in Figure 10.

It is therefore not surprising that the scaled gradient ũt, projected on the weight vector ω has a more
significant contribution in this setup, as evident in the right panel of the third row. As a consequence
of the additional negative weight decay of the scaled gradient component—reducing the effective
weight decay—our equilibrium norm prediction tends to underestimate the measured weight norm

23

∥ω∥ and over-estimate the expected angular update ηr. By defining the error as a scaling factor of λ
(represented as λerr =

λe

λ), we observe the following impact on our prediction

ηr ≈

√
2η(λ · λerr)

1− β1

1 + β1
= η̂r ·

√
λerr (93)

∥ω∥ ≈

√
ηC

2(λ · λerr
) = ∥̂ω∥ · 1√

λerr
(94)

At the same time we can see from the left panel in row three, that our prediction over-estimates
the scaled gradient norm. This means we tend to over-estimate the equilibrium norm with our
prediction, but not the expected angular update η̂r. For η̂r the scaled gradient norm cancels out. For
the equilibrium norm and error estimate Cerr, ∥g̃∥ = C · Cerr, we have:

∥ω∥ ≈
√

η(C · Cerr)

2λ
= ∥̂ω∥ ·

√
Cerr (95)

Interestingly, we observe in the last row that for ω1 these effects on the equilibrium weight norm
seem to cancel out and our prediction ∥̂ω∥ holds roughly for ∥ω1∥. For ω2 we do under-estimate the
equilibrium norm but note that the error is only a few percent.

Finally, the second row suggests that the approximation ∀j ̸= k : E[⟨gj , gk⟩] = 0, measured by
mt−1 ⊥ gt does not strictly hold in this case. In fact it seems that consequent updates point slightly
in opposite directions. This means that we expect additional negative terms in Equation (17) and thus
to over-estimate the approximated RMS update size ηg in Equation (18).

Even though, we notice that the random walk model is only an approximation, our predictions hold
fairly well, as evident from the last row.

H ROTATIONAL DYNAMICS OF SCALE-SENSITIVE PARAMETERS

Most neural network architectures have some scale-sensitive parameters. This commonly includes
gains and biases as well as a final fully connected layer that is typically not followed by normalization.
In networks without normalization, with infrequent normalization, or poorly placed normalization,
most weight vectors can be scale-sensitive. The original, un-normalized, VGG (Simonyan and
Zisserman, 2015) architecture is a good example of this, it consists of a series of convolutional layers
with ReLUs and occasional pooling layers between them and series of fully connected layers towards
the end. In this section we use it to investigate the rotational dynamics of scale-sensitive weights.

First we would like to note that the magnitude of scale-sensitive weights can also be largely arbitrary.
Although they can’t be scaled directly without affecting the loss, we can often scale two of them
without affecting the network output. Consider two successive layers with a ReLU between them:

f(X,W1,W2, b1, b2) = ReLU(XW1 + b1)W2 + b2 (96)

where W1,W2 ∈ RC×C are weight matrices, b1, b2 ∈ R1×C are vectors, X ∈ RB×C are inputs
and we broadcast the operations. Note that the ReLU is positively homogeneous, so for a positive
scalar r > 0 we have:

f(X, rW1, r
−1W2, rb1, b2) = ReLU(XW1r+b1r)W2r

−1+b2 = f(X,W1,W2, b1, b2) (97)

Assuming the weights are scaled in-place (i.e. we don’t modify the computation graph, only the
weight values), this type of rescaling operation scales the relative update of W1 by r−2 and W2 by r2

when optimizing using SGD. This can significantly affect the learning dynamics as studied in e.g.
Path-SGD (Neyshabur et al., 2015).

For a scale-sensitive weight ω, the gradient orthogonality (1) and inverse scaling (2) do not necessarily
hold. The inverse scaling holds in terms of rescaling operations like the ones mentioned above if they
are applicable. Generally, the gradient has some radial component in the direction of the weight. The
expected magnitude of this component depends on the average angle between the gradient and the
weight as well as the expected gradient magnitude itself. If we separate the gradient into radial and
perpendicular components and view the radial component as a modification of the weights decay, we

24

0

2

4

(
t,

t+
1)

×10 3 features.layer_05.conv.weight features.layer_09.conv.weight

0.0

0.5

1.0

0 25 50 75 100 125 150 175 200
Epoch

4

2

0

u

×10 4

0 25 50 75 100 125 150 175 200
Epoch

Figure 12: Measured (solid) and predicted equilibrium values (dashed) when training unnormalized
(blue) and weight standardized (orange) variants of VGG-13 on CIFAR-10. The blue predictions
account for the modified “effective” weight decay caused by the radial component of the gradient.

have a very similar setup to the one we analyzed for scale-invariant weights. If a stable equilibrium
exists, this could give rise to rotational dynamics which may vary from weight to weight based on the
“effective weight decay” for each one.

We explore this with VGG-13 training on CIFAR-10 using SGDM. We compare two versions, a stan-
dard unnormalized one and a variant where weight standardization is applied to every convolutional
and fully connected layer. For each one, we measure the angular updates, the weight norms and the
relative radial gradient magnitude:

λu = E[⟨ω,∇ωL ⟩/∥ω∥2] = E[cos (∠ (ω,∇ωL)) · ∥∇ωL ∥/∥ω∥] (98)

Note that we have written this in the case of no momentum by using −η∇ωL instead of u, but for
the standard implementation of SGDM the momentum magnifies both this version of λu and the
standard “weight decay” (L2 regularization) term the same way so they are comparable. The λu

term can therefore be viewed as modifying the weight decay, the effective weight decay parameter is
λe = λ+ λu and accounts for the entire radial portion of a weight update. We replace the standard λ
with λe when showing predicted values for the unnormalized network.

The results can be seen in Figure 12 for two weights. For the first one on the left, λu is relatively
small compared to λ = 5 · 10−4 and the weight behaves similarly in both setups, showing “standard”
Spherical Motion Dynamics in the unnormalized setup. The equilibrium predictions match well early
in training after the initial transition phase but the weight falls out of equilibrium towards the end
when it can’t decay fast enough to keep up with the equilibrium weight magnitude. For the second
weight shown on the right, λu is large causing a significant difference between the scale-invariant and
scale-sensitive setups. The modified equilibrium predictions using λe capture the behavior well in the
middle phase of training, after the initial transition before the weight falls out of equilibrium towards
the end. We note that in the unnormalized setup λu changes over the course of training, starting out
around 0 corresponding to an orthogonal gradient and growing larger in the later phases. This is
likely due to the cross-entropy loss used, which is minimized with large (infinite) output magnitudes
once the network has learned to accurately classify (overfit) the training data.

Our results for VGG13 suggest that scale-sensitive weights can also have rotational dynamics in real
neural networks. The dynamics are less regular than in the normalized setup, with weights rotating
at different speeds depending on the size of the radial gradient component. The weight magnitude
can also not vary freely like for scale-invariant weights, where we can trade off the weight decay
and learning rate without affecting the dynamics much (once equilibrium is achieved). Using large

25

amounts of weight decay in unnormalized networks can bring the weight norms out of balance,
resulting in issues like vanishing gradients or activations. In unnormalized networks the magnitude
of one weight matrix also affects the gradient magnitude of all others layers, further complicating
the effect of weight decay. Our rotational optimizer variants constrain the dynamics to match the
equilibrium dynamics of weight standardized networks throughout training, eliminating some of
these effects.

I ROTATIONAL OPTIMIZER WRAPPER

In this section, we provide further details on the algorithmic design choices used in our rotation
optimizer wrapper, as shown in Algorithm 1. Note that the method can act as a wrapper around any
given existing optimizer F with a known η̂r. In cases where the true value is unknown or undesirable,
we can also specify some different value of our choice.

Rotational and Non-Rotational Updates: We use Ω to specify weights we apply rotational updates
to, so a parameter p is treated differently based on whether p ∈ Ω or not. Note that we can choose the
scale of the weights in Ω as well, e.g. each filter can be considered on its own or as a part of a larger
group such as the whole layer. The rotational wrapper leaves the update of non-rotational parameters
unchanged. Rotational parameters are rotated by η̂r on average and their magnitude is kept constant.
In practice, we may choose to treat some scale-sensitive weights as rotational, constraining their
magnitude. Since their magnitude can actually matter for efficient learning, we optionally introduce a
learnable gain to allow the network to learn the right magnitude for these weights. This gain can be
absorbed into the weights for inference.

Keeping the weight magnitude constant: Alternatively, we could vary the weight magnitude
according to our derived value for the equilibrium norm. However, with a learning rate schedule
this value can become arbitrarily small causing numerical issues. For scale-invariant weights the
magnitude doesn’t matter so we simply keep it constant. This has the added benefit of removing the
inverse scaling effect of the weight norm on the gradient magnitude (2), potentially making it a more
meaningful metric.

Controlling the rotation instead of the relative update: The rotation of a scale-invariant weight ω
is generally caused by both ∆gω and ∆λω as can be seen in Figure 2 and 3. In equilibrium, the sum
of these components is roughly orthogonal to the weight vector. We want to avoid having to apply
the weight decay and our constrained magnitude is generally not equal to the equilibrium magnitude.
We therefore project ∆gp to be orthogonal to p and control the average size of this projected version
of ∆gp instead of the original p. This lets us explicitly control the angular update, regardless of any
radial component in ∆gp that the weight decay would eliminate on average. If we apply rotational
updates to scale-sensitive weights, performing Line 11 after Line 10 prevents any radial component
in the gradient from affecting the rotational speed.

Centering the weights: Different normalization setups can result in slightly different SMD prop-
erties. Layer Normalization typically makes an entire weight matrix scale-invariant whereas Batch
Normalization makes individual filters (i.e., rows or columns) independent. The default form of the
rotational wrapper corresponds to the rotational equilibrium dynamics obtained with Weight Standard-
ization (Qiao et al., 2019) also known as Centered Weight Normalization (Huang et al., 2017), where
each filter is scale and shift invariant. We remove the mean p̄ = 1

C

∑C
i=1 pi of p = [p1, . . . , pC]

since it is irrelevant in this setup. This removal was also found to be beneficial in NF-Nets (Brock
et al., 2021a;b).

Hyperparameters: The algorithm requires an ε value for numerical stability but otherwise only adds
one hyperparameter, a decay factor β similar to those in Adam. It determines the rate at which we
update our estimate of the average update magnitude (Line 11). This in turn controls how much we
let the rotation vary between steps. We could potentially derive an analytical value for β based on the
convergence speed towards equilibrium. For example β should perhaps be roughly equal to

√
a from

Equation (14) for AdamW, when trying to match the dynamics exactly. However, this rate may not
be optimal and generally depends on the learning rate (which may be scheduled). We use a default of
β = 0.99 which should keep the expected angular update close to the equilibrium value over time,
while still allowing some variation from step to step. There is likely batch size dependence in the
optimal value of β, with larger batches potentially benefiting from smaller values since balancing the

26

10 4 10 3 10 2 10 1

Learning Rate

18

19

20

21

22

Va
lid

at
io

n
Pe

rp
le

xi
ty

(
)

adamw
rotational

Figure 13: Validation perplexity for GPT-like model on Wikitext for different learning rate, weight
decay pairs with a constant product (ηλ = 2.5·10−3) resulting in a specific η̂r (Table 1).

Table 3: Test set performance for baseline optimizers SGDM and Lion and their RVs. Zero shot
results for RVs use the baseline hyparparameters, the best shot is lightly tuned.

Dataset Model Optimizer Batch Size Metric (↑↓) Baseline Zero Shot Best Shot
CIFAR-10 ResNet-20 SGD 128 Top-1 Acc. (↑) 92.7 ±0.10 92.6 ±0.18 N/A
CIFAR-10 ResNet-20 SGD 2048 Top-1 Acc. (↑) 92.0 ±0.14 91.9 ±0.11 92.1 ±0.42
CIFAR-10 ResNet-20 Lion 128 Top-1 Acc. (↑) 92.1 ±0.12 91.7 ±0.13 N/A
CIFAR-10 ResNet-20 Lion 2048 Top-1 Acc. (↑) 91.8 ±0.22 91.5 ±0.12 91.6 ±0.30
Imagenet-1k ResNet-50 SGD 256 Top-1 Acc. (↑) 77.4 77.3 N/A

average rotation within in each step could be sufficient in these cases. An Adam-like bias correction
is applied to the average update magnitude when it is used (Line 12).

Resource Requirements: We need to keep track of two scalars νp and np for each rotational
parameter. Since p is generally a vector, such as a row in a weight matrix, the memory requirement
is negligible compared to quantities like momentum that store a scalar for every element of p. The
computational requirements in terms of floating-point operations are also relatively small, linear in
the number of network (scalar) parameters like standard optimizers. However, the rotational variants
are not applied fully elementwise, making efficient (parallel) implementations slightly harder.

J ADDITIONAL EXPERIMENTS

Learning Rate vs Weight Decay for a Transformer model: In this section, we replicate the
experiment previously described using a GPT-like model trained on Wikitext. The outcomes are
illustrated in Figure 13. Unlike the ResNet-20 model trained on CIFAR-10, for transformers, linear
layers are not fully scale-invariant; the weight norms matters. Thus, as mentioned before, we
introduce a learnable gain for these layers when training with our RVs. Varying the learning rate
affects the updates to biases and gains in the RV. Thus we expect the performance of this network
to be more sensitive to changes in the learning rate. Again, we believe the noticeable performance
difference between AdamW and RV is primarily attributed to differences in their effective step size
schedules.

Constraining the Rotational Dynamics: In this section, we examine the performance of our RV of
SGDM and Lion. Table 3 confirms the results we have seen with AdamW for both SGDM and Lion.
Without any additional hyperparameter tuning (zero-shot) or light tuning (best-shot), our RVs closely
match the performance of the original variants. This supports the idea that we can simplify deep
neural network (DNN) training by standardizing the update size to ηr and skipping the initial phase.

Best-Shot Sweep: In practice, we have observed, that the difference between the initial learning
rate, when the baseline optimizer has not yet transitioned to equilibrium, can provide a good starting
point for best shot hyper-parameter tuning. Figure 14 depicts the tracked angular updates for the first
40 epochs of the DeiT tiny experiment on Imagenet-1k, as reported in Table 4. We can see that at
beginning of training the learning rate of the baseline is approximately 2 times higher than for the
updates of the RV. Using Table 2 and 4, we can confirm that a 2 times higher effective relative update
allows the RV to match performance of the original optimizer.

Hyperparameter Sensitivity: The RVs introduce one hyperparameter, i.e., the decay rate β. Further,
we can decide whether to enable (y) or disable (n) centering of the weights (zero-mean) and whether

27

to enable scale-invariance on tensor (t) or filter (c) level. In this section we study the sensitivity of
these choices in two different setups. We train a ResNet-18 on a random train split of CIFAR-10
with the RV of SGDM and a GPT-like model on Wikitext with the RV of AdamW. The results are
shown in Figure 15. They indicate that the performance of the RVs remains relatively stable when the
hyperparameters are varied. In our Adam experiments, using a special RV that combines the update
direction ∆gp from Adam+L2 with the η̂r of AdamW, we have observed that varying β noticeably
affects the effective step size schedule and thus required slight tuning to increase performance.

K EXPERIMENTAL DETAILS

We perform our experiments on several popular datasets, i.e., CIFAR-10/100 (Krizhevsky, 2009)
and Imagenet-1k (Russakovsky et al., 2015) for image classification, IWSLT2014 (Cettolo et al.,
2014) for German-English translation, and Wikitext (Merity et al., 2017) for language modelling.
Our code utilizes the TIMM library (Wightman, 2019) for vision tasks and FairSeq (Ott et al., 2019)
for translation.

We train commonly used architectures, namely ResNet-20, ResNet-18, ResNet-50 (He et al., 2016),
DeiT tiny (Touvron et al., 2021), a small transformer, and a small GPT-like network (Radford et al.,
2019) from scratch.

General Setup: For all experiments trained with SGDM we use a momentum of 0.9, for experiments
trained with AdamW we used β1 = 0.9 and β2 = 0.999 and for experiments trained with our RVs
we used β = 0.99, unless otherwise stated. For Lion we used β1 = 0.9 and β2 = 0.999 exclusively.
The experiments on Imagenet-1k have been run on a single V100-SXM2-32GB GPU. All other
experiments are run on a single NVIDIA A100-SXM4-40GB GPU.

Note that we used default architectures for the baseline experiments, but used a learnable gain
for DeiT trained on Imagenet-1k, Transformer-S trained on IWSLT2014 de-en and the GPT-like
architecture on Wikitext. As mentioned in Section 4 this was necessary because for transformers the
layers are not fully scale-invariant and the norm of the weights matters in practice.

Here we list additional details referenced in the details-column in Table 4 and 5:

D-1 We pre-process the data by normalizing it with mean (0.49140.48220.4465) and std
(0.20230.19940.2010). For training we used simple data augmentation from He et al.
(2016).

D-2 We use the standard data augmentation from He et al. (2016) for Imagenet.

D-3 Analogously to Touvron et al. (2021) we apply strong data augmentation. We use color jitter
brightness up to 0.3, auto-augmentation, random erase with probability 0.25, drop path with
probability 0.1, mixup with probability 0.8 and cutmix with probability 1.0. Additionally,
we use label smoothing of 0.1.

0 5 10 15 20 25 30 35 40
epoch

0.001

0.002

0.003

(
t,

t+
1)

 (B)
 (RV)

prediction

blocks.2.mlp.fc1.weight

Figure 14: ηr measured for the first 40 epochs of a DeiT tiny trained on Imagenet-1k. Before AdamW
transitions to equilibrium we observe a difference of roughly two times higher learning rate compared
to its rotational variant.

28

Dataset Model Zero Mean Invariance

CIFAR-10 ResNet-18 94.6±0.19 (yc) 94.6±0.19 (yc)
94.9±0.10 (nc) 94.6±0.47 (yt)

Wikitext GPT-like 18.5 ±0.42 (yc) 18.5±0.42 (yc)
18.5 ± 0.42 (nc) 18.4±0.15 (yt)

10 5 0
log10(1 -)

94

95

Va
lid

at
io

n
Ac

cu
ra

cy CIFAR-10 -sensitivity

10 5 0
log10(1 -)

18

19

Va
lid

at
io

n
Pe

rp
le

xi
ty Wikitext -sensitivity

Figure 15: Experimental results for hyperparameter sensitivity. We report perplexity (↓) on Wikitext
validation dataset and top-1 Acc. (↑) on a random validation split on CIFAR-10. In the default set up
weight centering (y) and per filter (c) scale-invariance is enabled.

Table 4: Experimental set up (include training set and test set definition).

Dataset Model Optimizer Batch Size zero shot best shot Wrapped details lr warmup epochs (e)/ train precisionAdam+L2 schedule iteration (it) duration

CIFAR-10 ResNet-20 SGD 128 wd=1e−4 N/A N/A (D-1) cosine lr=1e−6 200 (e) 35min float32lr=0.5 5 epochs

CIFAR-10 ResNet-20 SGD 2048 wd=1e−4 wd=1e−4 N/A (D-1) cosine lr=1e−6 200 (e) 35min float32lr=4.8 lr=16 5 epochs

CIFAR-10 ResNet-20 AdamW 128 wd=1e−2 N/A β = 0.9 (D-1) cosine lr=1e−6 200 (e) 35min float32lr=5e−2 5 epochs

CIFAR-10 ResNet-20 AdamW 2048 wd=1e−2 wd=1e−2
β = 0.0 (D-1) cosine lr=1e−6 200 (e) 35min float32lr=1.6e−1 lr=0.8 5 epochs

CIFAR-10 ResNet-20 Lion 128 wd=1.0 N/A N/A (D-1) cosine lr=1e−6 200 (e) 35min float32lr=5e−4 5 epochs

CIFAR-10 ResNet-20 Lion 2048 wd=1.0 wd=1.0 N/A (D-1) cosine lr=1e−6 200 (e) 35min float32lr=1.6e−2 lr=8e−2 5 epochs

Imagenet-1k ResNet-50 SGD 256 wd=1e−4 N/A N/A (D-2) cosine lr=1e−6 90 (e) 30h float16lr=1e−1 5 epochs

Imagenet-1k DeiT tiny AdamW 1024 wd=5e−2 wd=1e−1 N/A (D-3) cosine lr=1e−6 300 (e) 70h float16lr=5e−4 lr=5e−4 5 epochs

CIFAR-10 DeiT tiny AdamW 64 wd=5e−2 N/A β = 0.99 (D-3) cosine lr=1e−6 600 (e) 16h float16lr=5e−4 5 epochs

IWSLT2014 de-en Transformer-S AdamW 4096
wd=1e−4 wd=2e−1

β = 0.99 (D-4) cosine 4000 (it) 22021 (it) 50min float16lr=5e−4 lr=5e−4
β2 = 0.98 β2 = 0.98

Wikitext GPT-like AdamW 55 wd=0.5
N/A β = 0.9 (D-5)

cosine
2e−2 (%) 15000 (it) 3h bfloat16lr=5e−3 div_f=1e2

β2 = 0.95 final_div_f=1e4

Note that we used image up-scaling when DeiT tiny is trained on CIFAR-10 because DeiT
tiny is designed for Imagenet images.

D-4 We use standard FairSeq library (Ott et al., 2019) with dropout probability 0.3.
Note that additionally to using weight standardization with learnable gain, we set the weight
decay to 0 for scale-sensitive weights. This is done by default for the vision tasks in TIMM
library (Wightman, 2019), but not by FairSeq library (Ott et al., 2019) we used for this
task. We observed no difference in performance for the baseline model, yet this adjustment
allowed to tune the effective learning rate for the scale-invariant weights, without affecting
the learning rate of the scale-sensitive weights significantly.

D-5 For this experiment we use the llm-baseline library library (Pagliardini, 2023). For the
GPT-like architecture, we use vocabulary size of 50304, sequence length of 512, embedding
size of 768. The model features 12 repeated blocks, each comprising a self-attention block
followed by a two-layer MLP block with hidden dimension 3072. This results in a total of
124 million parameters. For the drop out layers we use a probability of 0.2.

Constraining the Rotational Dynamics: The experimental details for the experiments reported in
Table 2 and 3 can be found in Table 4. Note that for the Wrapped Adam+L2 experiments we used
the best shot settings. For these experiments, we have observed that varying β noticeably affects the
effective step size schedule. Thus we used minimal hyperparameter tuning for β. The parameter
configuration is shown in the respective column of Table 4.

Learning Rate vs Weight Decay: For the ResNet-20 experiment on CIFAR-10 and language model
task on Wikitext with a GPT-like model we use the best shot (zero shot) setting reported in Table 4 as

29

Table 5: Experimental details for hyperparameter senstivity study.

Dataset Model Optimizer training validation hyper- details lr warm up epochs (e)/ train precisiondataset dataset parameters schedule iterations (it) duration

CIFAR-10 ResNet-18 SGD 90% Train 10% Train wd=1e−4 (D-1) cosine lr=1e−6 200 (e) 35min float32lr=0.5 5 epochs

Wikitext GPT-like AdamW Train Validation
wd=0.5

(D-5)
cosine

2e−2 (%) 15000 (it) 3h bfloat16lr=4e−3 div_f=1e2
β2 = 0.95 final_div_f=1e4

default. We then sweep over the learning rate keeping ηλ = 5·10−4, ηλ = 2.5·10−3 respectively,
constant.

Scheduling Effects: In the experiment described in the preceding paragraph, we monitored ∥ω∥,
∠(ωt,ωt+1) during training for one of the runs with the chosen learning rates: 1·10−4, 8.3·10−3,
and 3·10−1.

Adam vs AdamW: For the sweep we train a ResNet-18 on a 90/10 train/val split from the original
train set. We use a step-wise cosine schedule and train for 200 epochs without warmup. In this
sweep we try to reproduce the results in Figure 2 from Loshchilov and Hutter (2019), albeit with
a slightly different network and training for 200 epochs instead of 100. The best configuration for
Adam was η = 7.813 · 10−4, λ = 1.250 · 10−4 resulting in a validation set accuracy of 93.919. The
best configuration for AdamW was η = 1.25 · 10−2, λ = 8.0 · 10−2 with a validation accuracy
of 94.319. On the test set we run each configuration over 5 different seeds, using the AdamW
hyperparameters for both RV-AdamW and the special wrapped Adam+L2 RV. The results were
Adam+L2 94.08± 0.16, AdamW 94.74± 0.14, RV-AdamW 94.57± 0.12 and the special wrapped
Adam+L2 94.55± 0.07. Note that the performance of the two RVs is almost identical and higher
than standard Adam+L2, but slightly lower than AdamW which is not surprising for a zero-shot
transfer of a well tuned baseline and likely due to scheduling effects.

Imbalanced Rotation: We trained a ResNet-18 on a 90/10 train/val split from the original train
set with weight decay λ = 0.01 and varying learning rates η ∈ {2.7·10−3, 8.3·10−3, 2.5·10−2, 5·
10−2, 1·10−1, 3·10−1, 0.9·10−1, 4.5}). For each rotation speed scaling f and portion p we report the
best performance of this sweep. All other settings are equivalent to the settings reported in Table 4.

Training Poorly Normalized Networks: We train a ResNet-18 with layer normalization on CIFAR-
100 using the same augmentation, learning rate schedule and base hyperparameters as for the ResNet-
20 on CIFAR-10 experiments, unless otherwise noted below. We train on a random subset containing
90% of the train set and use the remaining 10% for validation which we report. The inputs are nor-
malized for mean (0.5071, 0.4867, 0.4408) and std (0.2675, 0.2565, 0.2761).
We use a weight decay of 5 · 10−4 and a batch size of 256. The layer normalization is implemented
with a Group Normalization (Wu and He, 2018) using a single group.

Need for Learning Rate Warmup: These experiments follow the same base setup as we report in
Table 4. We train for a total of 10 epochs using a cosine decay schedule (applied stepwise) and no
warmup. We use local accumulation on top of batches of size 256 to emulate larger batch sizes.

Hyperparameter Sensitivity: The experimental details for the experiments reported in Figure 15
can be found in Table 5.

30

	Introduction
	Preliminaries
	Normalization and Scale-Invariance
	Defining Measures of the Effective Update Size

	Analysis
	Geometric Model For Equilibrium
	AdamW Equilibrium
	Decoupled Weight Decay vs L2-Regularization in Adam
	Rotational Dynamics of Scale-Sensitive Parameters

	Rotational Variants of Optimizers (RVs)
	Experiments
	Discussion & Conclusion
	Reproducibility
	Expanded Related Work
	Understanding and Improving Weight Decay
	Scale-invariance and Effective Learning Rates
	Equilibrium
	Projected Optimization
	Relative Optimization

	Normalization and Scale-Invariance
	SGDM Equilibrium
	Lion Equilibrium
	Adam+L2 Equilibrium
	Adam+L2 Formulation
	Simplifications
	Equilibrium Norm
	Equilibrium Angular Update

	Simple System for Random Walks
	Differences between Real Networks and a Random Walk
	Rotational Dynamics of Scale-Sensitive Parameters
	Rotational Optimizer Wrapper
	Additional Experiments
	Experimental Details

