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Abstract

CoT (chain of thought) is widely used in reason-001
ing tasks with large language models (LLM).002
In this work, we propose FastCoT, a model-003
agnostic framework to accelerate inference of004
CoT tasks without training or modification.005
FastCoT utilizes parallel decoding and autore-006
gressive decoding simultaneously. Parallel de-007
coding generates multiple approximate tokens008
in a forward, and autoregressive decoding lever-009
ages these preliminary approximate tokens to010
yield one or more refined tokens. Distinct from011
conventional approaches that rely solely on pre-012
cisely generated tokens from autoregressive de-013
coding, FastCoT integrates these approximate014
yet informative tokens in the final response gen-015
eration process. The approximate tokens act016
as a quick glance of the future tokens, which017
could lead to faster generation compared to reg-018
ular autoregressive decoding. Through exten-019
sive experiments, we demonstrate that FastCoT020
accelerates inference by nearly 20% on wide021
models, with only a negligible performance022
drop compared to the regular approach.023

1 Introduction024

The NLP field has undergone a revolution with the025

introduction of large language models (LLMs) con-026

sisting of tens or hundreds of billions of parameters.027

These models are pretrained on large-scale corpora028

using self-supervised training objectives. One no-029

table milestone in this domain is the release of Chat-030

GPT, a powerful AI chatbot that is developed based031

on LLMs and has garnered widespread attention032

from society. Following this breakthrough, several033

other large-scale language models have been intro-034

duced, including Llama (Touvron et al., 2023a,b),035

PaLM (Chowdhery et al., 2022), and Bloom (Scao036

et al., 2022), all of which have achieved remarkable037

success in areas such as language understanding038

and text generation.039

However, several challenging and complex is-040

sues still remain unresolved in the field, including041
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To answer …… , we need to know ……. He wants to go 
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Figure 1: Example of how the glimpse of future work
in CoT reasoning task. In the CoT reasoning task, LLM
is required to completely generate the complete ratio-
nale and finally get the answer based on the rationale.
FastCoT argues that partial generation of the complete
rationale with a glimpse of future is enough. The exam-
ple in this figure comes from our experiment results.

arithmetic, commonsense, and symbolic reason- 042

ing. In order to enhance the performance of LLMs 043

on various tasks, the Chain of Thoughts (CoT) se- 044

ries of work has been proposed. The concept of 045

CoT prompting was first introduced by (Wei et al., 046

2022). This series of work aims to improve the 047

performance of LLMs on a wide range of reason- 048

ing tasks by guiding the model to generate its own 049

rationales, which are a series of intermediate rea- 050

soning steps. Notice that this improvement in per- 051

formance comes at the cost of generating additional 052

rationales. Since the main focus is often on obtain- 053

ing the answers, the extra generation of rationales 054

may be seen as a drawback. Furthermore, most 055

state-of-the-art causal transformers are autoregres- 056

sive models, meaning they can only predict tokens 057

one at a time. This leads to slow inference and 058
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may not fully utilize the capabilities of GPUs(Yang059

et al., 2023).060

The nature of autoregressive models imposes sig-061

nificant computational load, which can be limiting062

for certain real-world applications, especially for063

industrial applications that involve large amounts064

of data flow and require high throughput, which065

would lead to high cost and poor user experience.066

Therefore, a natural question arises: can a large067

language model (LLM) benefit from its inner ap-068

proximate reasoning rationale? It is noteworthy069

that humans usually think a lot in mind before get-070

ting started to write down on paper. Although these071

vague ideas or thoughts may not be fully connected072

to form complete sentences, they can still be ben-073

eficial for the reasoning task. As shown in Figure074

1, we argue that word pieces generated by a fast075

but inaccurate decoding strategy are informative to076

generate correct result.077

To validate our arguments, we conducted an ex-078

periment by corrupting the rationale generated by079

the LLM, and lead the LLM infer the answer ac-080

cording to the corrupted rationale instead. More081

details please refer to Section 5.2. A major obser-082

vation is that, even a randomly sampled oracle ra-083

tionale can lead to correct answers, indicating that084

the LLMs are able to make accurate predictions085

without having access to the complete rationale.086

Motivated by this, we propose a method called087

FastCoT, which can utilize approximate rationale088

to find answer faster. This method combines the089

exact tokens obtained through any lossless decod-090

ing methods with the approximate tokens obtained091

through Jacobi decoding. By doing so, we can ob-092

tain the answer to the reasoning task with fewer093

forward inferences of the LLM. Our contributions094

can be summarized in three main aspects:095

1. We first introduce Jacobi decoding into the096

reasoning task, such as CoT, and propose to097

use the by-products of Jacobi decoding, which098

are approximate tokens, as a glimpse of the099

future for LLM in the decoding reasoning pro-100

cess. We demonstrate and analyze how Jacobi101

decoding reduces time overhead in reasoning102

task scenarios from two aspects: The first as-103

pect comes from Jacobi decoding itself, which104

can reduce the number of iterations by gener-105

ating more than one tokens in single forward106

inference with probability. The second aspect107

comes from glimpse into the future through108

approximate tokens, which can help LLM an-109

alyze the final answer in advance without au- 110

toregressively decoding it. 111

2. We conduct extensive experiments on LLMs 112

with different scales and datasets, showing 113

speedups of up to 20% in inference time. In 114

the reasoning task scenario, we analyze the 115

time overhead of each part compared to the 116

most common used lossless method, i.e., au- 117

toregressive decoding. To the best of our 118

knowledge, this is the first study to accelerate 119

inference of CoT task with inaccurate reason- 120

ing steps. 121

3. Third, we have designed a parallel decoding 122

framework to support a widely range of large 123

language models and will release our fram- 124

work to public, with almost no modification 125

to the source code of the language model itself 126

based on the huggingface implementations. 127

2 Related Work 128

XoT Prompt Engineering The Chain-of-Thought 129

(CoT) prompting (Wei et al., 2022; Kojima et al., 130

2022) is proposed to induce large-scale language 131

models to think step-by-step, similar to how hu- 132

mans approach complex questions. A typical few- 133

shot CoT prompt consists of K examples with corre- 134

sponding rationales and answers for the questions. 135

After that, several methods have been proposed to 136

enhance the performance of CoT prompting across 137

various domains and tasks, including Self-Ask 138

(Press et al., 2022), Self-Consistency (Wang et al., 139

2022), Self-Verification (Weng et al., 2022), Maieu- 140

tic Prompting (Jung et al., 2022), Automate-CoT 141

(Shum et al., 2023), MoT (Li and Qiu, 2023), ToT 142

(Long, 2023), and GoT (Besta et al., 2023). Addi- 143

tionally, (Zhang et al., 2022) proposes a clustering- 144

based approach to automatically select questions 145

from different classes to form a CoT Prompt. (Diao 146

et al., 2023) propose using a metric called uncer- 147

tainty to identify the most uncertain problems in 148

LLM and enhance CoT’s performance by provid- 149

ing artificial answers to those questions. These 150

tasks are referred to as XoT. Our work is parallel to 151

these engineering efforts and can be applied to any 152

prompting method related to XoT. In terms of uti- 153

lizing rationale in XoT Prompting, several works, 154

such as (Magister et al., 2022; Hsieh et al., 2023; 155

Li et al., 2023; Wang et al., 2023), attempt to use 156

CoT-generated rationale to improve the task per- 157

formance of student models across diverse datasets 158
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through rationale distillation. These methods are159

capable of yielding more accurate results compared160

to the non-XoT approach. However, they compro-161

mise the speed of inference. To the best of our162

knowledge, we are the first to propose exploiting163

the concept of approximate rationale to expedite164

the completion of XoT-series tasks, and our method165

is orthogonal to the prompt engineering approach.166

Accuracy Lossless Decoding Acceleration167

Many works have proposed various methods for168

accelerating the generation of autoregressive causal169

language models. (Stern et al., 2018) introduced170

Blockwise Parallel Decoding, utilizing K language-171

model-dependent decoding heads to predict K more172

tokens compared to autoregressive decoding. On173

the other hand, (Kasai et al., 2020) proposed using174

a deeper Encoder and fewer layers of Decoder to175

achieve faster speed. (Xia et al., 2022; Leviathan176

et al., 2023; Chen et al., 2023) suggested employing177

a faster but less powerful draft model to assist large178

models in generating multiple tokens in one trans-179

former call. In the field of Machine Translation,180

(Gu et al., 2017; Huang et al., 2022) introduced181

Non-Autoregressive Translation (NAT) models to182

overcome the limitations of autoregressive decod-183

ing. However, the application of NAT models is184

mostly limited to machine translation and related185

domains, and need careful parameter tuning.186

The most closely related work to ours is (San-187

tilli et al., 2023), where they propose the use of188

Jacobi decoding in translation tasks. However, they189

do not leverage any approximate tokens generated190

during Jacobi decoding, and they do not provide191

an implementation that supports batch computa-192

tion. To the best of our knowledge, we are the193

first paper to attempt utilizing these approximate194

tokens. Compared to the methods mentioned ear-195

lier in this section, our framework does not require196

any additional training on either the base pretrained197

language model or a new model.198

3 Preliminary199

3.1 Parallel Jacobi Decoding200

For a trained model with parameters θ, a forward201

inference of the LLM would generate the distribu-202

tion pθ(yi|y1:i−1, x) for the next token based on203

the prompt x and the tokens generated so far y1:i−1.204

In the case of a common greedy autoregressive205

decoding approach without considering any post206

logits processor, the next token would be selected207

by choosing the token with the highest probability208

from the distribution, which can be represented as 209

below. 210

yi ← argmax pθ(yi|y1:i−1, x) (1) 211

In contrast to autoregressive decoding, Jacobi 212

decoding (Santilli et al., 2023) takes into account 213

additional tokens after the generating position, re- 214

sulting in a corresponding increase in the number 215

of outputs. To facilitate the description, we refer 216

to the additional tokens considered during forward 217

inference in this context as the context window, de- 218

noted its size as c. A Jacobi decoding process can 219

be shown as, 220



yi ← argmax pθ(yi|x, y1:i−1)

Ŷ t
i+1 ← argmax pθ(yi+1|x, y1:i−1, Ŷ

t−1
i )

Ŷ t
i+2 ← argmax pθ(yi+1|x, y1:i−1, Ŷ

t−1
i:i+1)

...
Ŷ t
i+c ← argmax pθ(yi+c|x, y1:i−1, Ŷ

t−1
i:i+c−1)

(2) 221

For the simplicity of subsequent formulation, we 222

denote one iteration of the Jacobi Decoding as, 223

yi, Ŷ
t ← JD(x, y<i, Ŷ

t−1, i, c) (3) 224

where i is used to indicate the start position of the 225

Jacobi decoding, and we use y and Ŷ to distin- 226

guish the tokens corresponding to the accuracy- 227

lossless decoding part and the Jacobi decoding part. 228

Variable t is used to differentiate the results pro- 229

duced by each iteration. The yt−1 means iterative 230

solution of previous iteration, which is also the 231

tth iteration’s input to the LLM. We name Ŷ t as 232

approximate tokens due to they cannot pass the 233

verification and therefore cannot be accepted as 234

text generated by lossless decoding, they are con- 235

sidered as by-products of exact parts in previous 236

work. Compared with the previous description of 237

the Jacobi decoding from (Santilli et al., 2023), 238

we specially add the superscript t to highlight the 239

role of approximate tokens generated during the 240

iterative process in our method. 241

Does context window time consuming? Intu- 242

itively, increasing the number of tokens that the 243

model need calculate during inference will lead to 244

an increase in latency. However, we will demon- 245

strate counter-intuitive results through experiments: 246

that is, the context window within a certain limit 247

will not cause an increase of inference latency. We 248

conducted a single inference task to measure the 249
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Figure 2: Time cost with different context window size
c. The time overhead does not increase significantly as
the window size increases. Almost no change in time
consumption from autoregressive decoding (size=0) to
Jacobi decoding with a window size of 38. We apply
Llama2-13B model with single Nvidia A100 GPU.

time overhead for a single forward inference under250

different window sizes, with considering different251

prompt length. Figure 2 illustrates the results, the252

forward time almost remains constant with respect253

to the context length. The primary contributory254

factor underlying this phenomenon is that, when255

the decoding length is comparatively limited, the256

consequent diminutive matrix blocks can not fully257

leverage the computational capabilities of CUDA258

and Tensor cores to their fullest extent. Our find-259

ings suggest that increasing the window size within260

a certain range has only a minimal impact on la-261

tency for Jacobi decoding.262

4 Method263

Stop 
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Figure 3: Overview of FastCoT. The autoregressive
decode get another one exact token, further future’s
approximate token is revealed by Jacobi decoding.

In our research, we interrogate whether Jacobi264

decoding by-products can offer a glimpse of the265

future. Current applications and methods in LLMs,266

such as those employing Jacobi decoding for ma-267

chine translation ((Santilli et al., 2023)), focus ex-268

clusively on precise decoding outcomes, neglecting269

the potential insights from by-products as they can-270

not be verified during forward propagation. We271

thought about whether the by-products part of Ja-272

cobi Decoding could help with certain tasks. Con-273

sidering that by-products mostly consist of tokens274

related to the final generated text, we call it a275

glimpse of the future sentence. We would like276

to emphasize the importance of this glimpse into277

the future, could play an important role in enabling278

faster answer generation in XoT-series scenarios. 279

To begin with, we will briefly introduce the im- 280

portant components of our proposed algorithm. 281

Then, we will introduce how to iterate through 282

approximate tokens through Jacobi decoding. 283

4.1 Overview of FastCoT 284

First, in a manner similar to the original CoT 285

methodology, FastCoT would construct a prompt 286

for the question Q that requires reasoning by LLM. 287

Secondly, FastCoT sequentially retrieves approxi- 288

mate tokens from the Approximate Tokens Buffer 289

to fill the context window. These tokens are then 290

appended subsequent to the tokenized prompt, 291

thereby establishing an initial input for Jacobi de- 292

coding processes. Third, the LLM would conduct 293

the inference call. Subsequent to this step, at least 294

one token precisely matches that which would be 295

produced by autoregressive decoding, thus facilitat- 296

ing the generation of a solution for the subsequent 297

iteration. The newly derived approximate tokens 298

would be used to update the corresponding entries 299

within the Approximate Tokens Buffer. Finally, 300

upon meeting the termination criterion, all gen- 301

erated tokens (including those approximated) are 302

amalgamated with the answer trigger to elicit the 303

final response from the LLM. 304

4.2 Approximate Tokens Buffer 305

In contrast to the original CoT rationales elicited by 306

LLMs in standard settings, the rationales employed 307

in FastCoT consist of two distinct components: a 308

precise segment that is identical to the output gen- 309

erated via any accuracy-lossless decoding, and an 310

ambiguous segment comprising approximate to- 311

kens produced through Jacobi decoding. These 312

approximate tokens, derived from Jacobi decoding, 313

may not precisely match those procured through 314

lossless decoding processes, because of the lack of 315

the verification from language models. In our ap- 316

proach, we use Y to refer the Approximate Tokens 317

Buffer, where Y = [Y t
0:I , Ŷ

t
I:]. Here Y t

0:I means 318

the exact tokens and Ŷ t
I: represents the approxi- 319

mate part. The vector I contains batch-size number 320

of integers indicating the positions of the first ap- 321

proximate tokens in each instance of the batch. As 322

the decoding process iterates, the approximate to- 323

kens in the buffer are gradually transformed into 324

exact tokens. When t = 0, FastCoT initialize I as 325

0. We choose to initialize Y with populating tok- 326

enized token id sequence of question itself based 327

on empirical results for each question. Compared 328
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Figure 4: Overview of a complete iteration of FastCoT.

with the commonly used initialization method, i.e.,329

initializing using special token [PAD], our method330

would provide a more diverse initial solution for331

early stage’s Jacobi decoding.332

4.3 Approximate Rationale Generation333

We will divide the explanation into three parts as334

show in Figure 4.335

FastCoT Inference: During the iterative inference336

process, lossless decoding and Jacobi decoding337

are performed in parallel within a single forward,338

leveraging the causal attention mask used in causal339

language models. The expression is as follow:340

yI , Ŷ
t+1
I+1:I+c+1 ← PD(x, y<I , Ŷ

t
I:I+c, I, c) (4)341

Verification: In contrast to autoregressive decod-342

ing, where only one exact token is generated during343

each inference step, Jacobi decoding has the ability344

to generate more simultaneously. So we have to345

determine the index of the last exact token within346

the approximate tokens buffer by figuring out,347

K ← argmax
K

(Y t+1
I:I+K = Y t

I:I+K) (5)348

as shown in the Figure 4’s Verification part, validate349

one by one until the incorrect one is identified. This350

index I represents the position up to which the351

tokens can be considered as exact, while any tokens352

beyond that index are approximate (Although they353

also could correct after further verification).354

Cache Update: After the verification process is355

completed, we update all the results obtained in this356

iteration’s forward inference to the Approximate357

Tokens Buffer. The tokens located within It +358

K would be accepted as the verified exact token359

solution, while the excluded tokens must remain360

as approximate tokens. These approximate tokens361

will enter the next iteration’s forward inference as362

iterative solutions or serve as the vague rationale363

for the final CoT answer. After that, It would be 364

updated to It+1 + K, where K is calculated by 365

Equation 5. 366

4.4 Iteration Stop Condition 367

Because the performance of the CoT task will grad- 368

ually converge with the iterative process of Jacobi 369

decoding, we have designed different iteration ter- 370

mination conditions to determine when to terminate 371

under various circumstances. Once any of these 372

conditions is met, the iteration will be terminated. 373

1. For large dataset, we randomly select a small 374

portion of it as Scal and perform the CoT task 375

within this subset for each iteration. We cal- 376

culate the minimum number of iterations re- 377

quired to achieve a certain performance loss 378

threshold, and use this value as the upper 379

bound for iterations. 380

2. EOS (End Of Sentence): EOS has been veri- 381

fied or decoded by accuracy-lossless decoding 382

indicates the end of text generation. 383

Trigger Answer Relying solely on vague ratio- 384

nales may not be sufficient to prompt the LLM to 385

generate answers in advance due to LLM would 386

generate tokens continually. To address this, we 387

have designed a specific prompt called answer trig- 388

ger. The answer trigger serves as a prompt that 389

explicitly instructs the LLM to output the answer 390

to the question. This trigger remains consistent 391

if this part exists in prompt, such as in few-shot 392

setting prompts. And when the iteration termina- 393

tion condition triggered, we combine the complete 394

prompt, along with all generated tokens and include 395

the answer trigger, to instruct the LLM generate 396

the final answer directly. 397

5 Experiment 398

5.1 Experiments Settings 399

Datasets and Language Models We use three 400

widely used datasets for reasoning tasks, includ- 401

ing CSQA (Talmor et al., 2018), StrategyQA (Geva 402

et al., 2021), AQuA (Ling et al., 2017). During 403

evaluations, the official test split for each dataset is 404

used. And we conduct experiments on the follow- 405

ing models: Llama2-13B, Llama2-7B, Llama-13B, 406

Llama-7B (Touvron et al., 2023b). 407

Evaluation Performance evaluation is bifurcated 408

into two key metrics: accuracy and efficiency. Ac- 409

curacy is gauged by the proportion of correct re- 410

sponses, while efficiency is discerned through the 411
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metrics of wall-clock time and iteration count. Our412

inference environment includes a server with 32-413

core CPU, 64 GiB host memory, and a A100-414

SXM(80G) GPU. We implemented our framework415

based on the transformers library of Huggingface1416

For CoT prompt, we remain consistent with the417

settings in the active prompt paper. Regarding slid-418

ing window size control, we keep the context win-419

dow length fixed throughout the iteration. In our420

experiments, we use the following sentence as an-421

swer trigger, "So the answer is". In the experiment,422

we will answer the following questions:423

• Q1: Whether the approximate rationales help424

the reasoning task get correct answer?425

• Q2: Whether FastCoT can achieve a fast in-426

ference speed?427

• Q3: What is the difference between FastCoT428

decoding time composition and autoregressive429

decoding?430

• Q4: How context window influence the down-431

stream CoT task during the iteration process?432

Comparison Methods To answer the above ques-433

tions, we have designed the following baseline and434

experiments:435

• Vanilla CoT, using the autoregressive decod-436

ing method(The abbreviation is AR).437

• FastCoT(w/o by-products), autoregressive de-438

coding but truncate generated rationale to iter-439

ation number. The generation of CoT Answer440

would based on original prompt and the trun-441

cated rationales. Compared with FastCoT, the442

only thing FastCoT(w/o by-products) not have443

is the approximate part tokens, so we regard444

it as a very strong baseline due to this reason.445

• FastCoT, differs from FastCoT (w/o by-446

products) in that, given an equal number of447

iterations, FastCoT maintains the same count448

of exact tokens but adds an additional num-449

ber of approximate tokens proportional to the450

window size.451

5.2 Corrupting Rationale Experiment452

We design an experiment utilizing partially cor-453

rupted rationales, to verify our argument that in454

many reasoning tasks in various fields, complete455

1https://huggingface.co/
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Figure 5: Reasonable overlap ratio would lead to a
saturated accuracy.

rationales are not necessary and having some key- 456

words or key information instead can be sufficient 457

to guide the LLM in obtaining the correct answer. 458

In this experiment, we initially conducted the 459

Vanilla CoT task to elicit the corresponding ratio- 460

nale for each question. To simulate partial infor- 461

mation scenarios, we introduced a predefined ra- 462

tio of [PAD] tokens to substitute original tokens 463

within the rationale. We employed two distinct ran- 464

dom patterns for this substitution, each occurring 465

with equal likelihood. The first pattern involved 466

sequentially masking tokens from the rationale’s 467

end towards the beginning, a method intended to 468

emulate partial generation as depicted in Figure 469

1. The second pattern randomly and uniformly 470

obscured tokens across the rationale, designed to 471

mimic the outcomes of Jacobi decoding. We iter- 472

ated this masking process using 100 distinct ran- 473

dom seeds to create a variety of corrupted rationales 474

for the identical question. Subsequently, we fused 475

the original prompt with each corrupted rationale 476

and presented it as input to the same LLM to derive 477

an answer informed by the corrupted rationale. 478

As shown in the Figure 5, a reasonable overlap 479

ratio would lead to a saturated accuracy. For in- 480

stance, when only 40% of the rationale generated 481

by autoregressive decoding is revealed in Strate- 482

gyQA dataset, the performance is already saturated. 483

5.3 Performance Analysis 484

First of all, to study in detail the performance of 485

FastCoT with iterations, we truncate FastCoT(w/o 486

by-products) and FastCoT in each iteration and 487

conduct downstream CoT task experiments with 488

an additional answer trigger. The main experiment 489

results is shown in Figure 6. Since approximate 490

tokens is the only thing FastCoT has more than 491

FastCoT(w/o by-products), a comparison between 492

the two during the iterative process reveals that 493
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Figure 6: Multiple results of different models

the roles played by approximate tokens in different494

tasks and different models are not entirely consis-495

tent. In terms of models, FastCoT almost always496

performs better than FastCoT (w/o by-products)497

on the CSQA data set and StrategyQA data set for498

Llama-13B, Llama-7B. However, for the Llama2-499

13B and Llama2-7B models, the increasing trend500

of the curve is not perfect, and the performance501

of FastCoT and FastCoT (w/o by-products) has502

its own advantages and disadvantages with itera-503

tion. But overall, FastCoT’s performance is still504

better than FastCoT (w/o by-products). It is worth505

noting that when the Llama2-13B model executes506

StrategyQA question, whether it is FastCoT or Fast-507

CoT (w/o by-products), there is a phenomenon that508

the accuracy decreases as the number of precise509

rationale tokens increases within some iteration510

range. We believe that this phenomenon may also511

be related to the faithfulness of CoT(Lanham et al.,512

2023; Radhakrishnan et al., 2023).513

5.4 Time Analysis514

5.4.1 Wall Clock time515

We conduct time overhead measurements on our516

method and the Vanilla CoT. The measurement re-517

sults is shown in Table 1. In the IS/TI column of 518

the Table 1, we show the number of iterations saved 519

by Jacobi decoding token hits and the total number 520

of iterations. On most models and datasets, Fast- 521

CoT achieves a significant improvement in terms 522

of time varying from 3% to 21.80% at the cost of 523

negligible performance drop within 3%. 524

5.4.2 Time Composition 525

We perform a further detailed analysis of the time 526

cost of our method and compare it with the cor- 527

responding part of autoregressive decoding. The 528

results are shown in Table 2. We can see that if we 529

only consider the time occupied by the GPU, which 530

is the Inference time shown in the table. Since our 531

method adds almost no additional overhead, but we 532

can get the corresponding logits at the approximate 533

tokens and the chance to save iteration cycles, the 534

infer time was reduced by almost 30%. However, 535

calculating the approximate token in the context 536

window after inference takes more 5.42s than AR 537

decoding without this step. Moreover, due to the 538

presence of Jacobi decoding, the positions of pre- 539

cise tokens within the same batch are almost always 540

different, which results in varying storage lengths 541

for the past key-value (KV) cache, necessitating 542

additional padding to facilitate batch processing. 543

To address this, we designed two types of padding 544

mechanisms to cope with different scenarios as 545

shown in Figure 7. The respective time costs for 546

Type1 and Type2 Padding are 5.33 seconds and 547

0.84 seconds, both negligible compared to the time 548

spent on inference. Equally imperative within Fast- 549

CoT is the handling of the key-value (KV) cache 550

generated by the model’s computation, and we call 551

this procedure as Strip KV, which consumes 18.58 552

seconds(about 5.6%for total time) to extract the 553

precise segment from cache and retrieve it for sub- 554

sequent iteration. 555

5.5 Context Window Length 556

In this section, we discuss the influence of the 557

length of the Jacobi decoding Context Window on 558

the performance of the reasoning task. As shown 559

in Figure 8. We analyze the performance across 560

multiple iteration stages. Initially, from iteration 561

0 to iteration 20, we observe that a longer context 562

window correlates with poorer performance. A de- 563

tailed analysis suggests that at the beginning of the 564

iterations, the tokens decoded by Jacobi decoding 565

may not be highly relevant to the question and can 566

even have a negative impact. However, after it- 567
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Model Dataset FastCoT Time CoT Time Save Time Time Ratio PL IS/TI

Llama2-13b
CSQA 326.93s 365.20s 38.27s 10.47% 1.27% 896/14684
AQUA 402.90s 502.38s 99.48s 19.80% 2.66% 1742/18640
StrategyQA 313.43s 330.38s 16.95s 5.13% 1.47% 906/13992

Llama2-7b
CSQA 184.98s 242.47s 57.49s 23.71% 1.50% 877/12866
AQUA 228.04s 257.46s 29.42s 11.42% 2.24% 1400/15358
StrategyQA 233.19s 256.05s 22.86s 8.92% 2.21% 1163/8958

Llama1-13b
CSQA 366.15s 420.59s 54.44s 13.00% 1.84% 986/16904
AQUA 460.99s 589.44s 128.45s 21.80% 2.50% 1773/21674
StrategyQA 293.38s 372.71s 79.33s 21.29% 1.67% 959/13036

Llama1-7b
CSQA 286.30s 297.13s 10.83s 3.64% 1.23% 1216/18662
AQUA 348.87s 388.48s 39.64s 10.20% 2.24% 1807/23126
StrategyQA 293.72s 303.05s 9.63s 3.20% 2.01% 1069/19216

Table 1: Wall clock time of the FastCoT. PL is the short for Performance Loss.

Time Type FastCoT AR
Inference 274.08s 358.15s
Type1 Padding 5.33s 0s
Type2 Padding 0.84s 0s
Decode 1.20s 3.06s
Context Decode 5.42s 0s
Strip KV 18.58s 0s
Other 21.48s 3.99s
Total 326.93s 365.20s

Table 2: Time Composition

batch index 1

batch index 3

batch index 2

Type 1 Padding

batch index 1

batch index 3

batch index 2

Past KV Cache Past KV Cache

Type 2 Padding

batch index 1

batch index 3

batch index 2

batch index 1

batch index 3

batch index 2

Past KV Cache Past KV CacheInput IDs Input IDs

Figure 7: Two padding methods. Type1 Padding is em-
ployed to handle disparities in the lengths of historical
KV caches. Type2 Padding is used to address inconsis-
tencies in the number of tokens within Jacobi windows.

eration 10, with a sufficient number of iterations,568

the quality of the iterative solutions gradually im-569

proves, and the context window size begins to have570

a positive effect on the performance in the CoT571

task. During this phase, a larger context window572

is associated with better performance, but there is573

no significant difference observed for context win-574

dows larger than 20. By the time it reaches iteration575

65, the performance gap between different context576

window sizes gradually diminishes.577

As conclusion, lower context window size works578

0 10 20 30 40 50 60 70
Iteration

52%

54%

56%

58%

60%

62%

64%

66%

Ac
cu
ra
cy CW=0

CW=5
CW=10
CW=15
CW=20
CW=25

Figure 8: The performance of reasoning task with dif-
ferent context window through iterations

better than higher one in the early stages of the it- 579

erations, we attribute this reason to the fact that the 580

quality of the approximate tokens in the Jacobi con- 581

text window decreases with position in the context 582

window. But after about 10-20 iterations, Jacobi de- 583

coding would generate enough informative tokens 584

beneficial to downstream CoT tasks. 585

6 Conclusion 586

In conclusion, this paper introduces FastCoT, a 587

model-agnostic framework that leverages Jacobi 588

decoding to improve the efficiency of the CoT rea- 589

soning task. By providing the language model 590

with approximate tokens as a glimpse of the fu- 591

ture, FastCoT reduces the time overhead associ- 592

ated with autoregressive decoding. Through exten- 593

sive experiments, it is demonstrated that FastCoT 594

achieves a significant reduction in inference time, 595

up to 20%, with only a negligible drop in perfor- 596

mance compared to the regular approach. This 597

study also presents one of the first attempts to intro- 598

duce speedups in the CoT reasoning tasks, explor- 599

ing accelerating the execution of reasoning class 600

tasks from a generation perspective. We believe we 601

pave the way for a deeper future research. 602
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7 Limitations603

Since our method involves modifying the text gen-604

eration process by the model, it cannot be applied605

to black-box large language models. Furthermore,606

the choice of Context Window size is pre-defined607

and affected by the GPU and language model. Al-608

though we did not discuss it in our work, we believe609

that the process of controlling the context window610

throughout the iteration can be seen as a Markov611

Decision Process. It would be an intriguing prob-612

lem to utilize reinforcement learning algorithms to613

regulate the context window size during the itera-614

tion, while defining appropriate rewards. Another615

possible future work is how to accelerate large lan-616

guage model ’s Jacobi decoding. Since Jacobi De-617

coding does not pursue completely consistent re-618

sults with lossless decoding in most iterations, we619

can quickly conduct iterations by using a relatively620

smaller model for some iterations or Jacobi itera-621

tive tokens at positions to obtain better acceleration622

effects. Designing an algorithm in which the iter-623

ation of the Jacobi decoding part and the iteration624

of the lossless decoding part are not synchronized625

would also be a very interesting research direction.626

8 Ethical Considerations627

We utilized publicly available datasets to validate628

the accelerated application of our method in the629

CoT (Chain of Thought) scenarios. We adhered to630

the policies of the datasets used, without infring-631

ing on any copyright issues. And we believe that632

our research does not raise any additional ethical633

considerations.634
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