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Abstract

Variational autoencoders (VAEs) model high-dimensional data by positing low-dimensional latent
variables that are mapped through a flexible, implicit distribution parametrized by a neural network.
Unfortunately, VAEs often suffer from posterior collapse: the posterior of the latent variables is
equal to its uninformative prior, which renders the latent variables useless in producing meaningful
representations. In this paper, we consider posterior collapse as a problem of identifiability. We prove
that posterior collapses if and only if the latent variable is non-identifiable in the generative model.
This result implies that posterior collapse is not a phenomenon specific to the use of neural networks
or variational inference. Rather, it can occur in classical probabilistic models (e.g. Gaussian mixture
models) even with exact inference, which we also demonstrate. Based on these insights, we propose
a class of identifiable VAEs, which is as flexible as classical VAE while identifiable. This model
class resolves the latent variable non-identifiability by leveraging the existence and uniqueness of
monotone transport maps and parameterizing them with input convex neural networks. Across four
datasets, we show that the identifiable VAEs mitigates posterior collapse.

1. Introduction

Variational autoencoders (VAEs) are a class of powerful generative model for high-dimensional
data (Diederik et al., 2014; Rezende et al., 2014). Its key idea is to combine the inference principles
of probabilistic modeling and the flexibility of neural networks (Johnson et al., 2016). In a VAE,
each datapoint is independently generated by a low-dimensional latent variable drawn from a prior
distribution, and then mapped through a flexible implicit distribution parametrized by a neural
network. A VAE then employs variational inference to infer the posterior of these per-data-point
latent variables. For each latent variable, it posits a variational approximating family (e.g. a Gaussian
distribution) whose parameters are a neural network mapping of the corresponding datapoint. It then
approximates the exact posterior by finding the member within this family that is closest to the exact
posterior in Kullback-Leibler (KL) divergence.

Unfortunately, VAEs often suffer from posterior collapse, a phenomenon where the posterior of the
latent variables is equal to their (pre-specified) prior (Bowman et al., 2016; Hoffman & Johnson,
2016; Sønderby et al., 2016; Kingma et al., 2016; Chen et al., 2016; Zhao et al., 2018; Yeung et al.,
2017; Alemi et al., 2017; Lucas et al., 2019; Fu et al., 2019; Asperti, 2019; Li et al., 2019; Seybold
et al., 2019; Dai et al., 2019; Zhao et al., 2020; Havrylov & Titov, 2020; Dieng et al., 2018; He et al.,
2019; Kim et al., 2018; Razavi et al., 2019; Shu, 2016; Tomczak & Welling, 2017). This phenomenon
is also know as latent variable collapse, KL vanishing, and over-pruning. Posterior collapse renders
the VAEs—a latent variable model—useless in producing meaningful representations. The reason
is that the per-data-point latent variables can no longer convey meaningful information about their
corresponding data-points; all of them have the exact same posterior. Posterior collapse is commonly
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observed in the VAEs whose generative model is highly flexible (Dai et al., 2019; Dieng et al., 2018;
Bowman et al., 2016; Sønderby et al., 2016; Kingma et al., 2016; Chen et al., 2016; Zhao et al., 2018;
Yeung et al., 2017).

Why does posterior collapse occur? Is it because the VAEs involve flexible neural networks? Is
it because the VAEs performs variational inference? Can we avoid posterior collapse? In this
paper, we answer these questions by considering posterior collapse as a problem of latent variable
identifiability.

By appealing to the recent results in Bayesian non-identifiability (San Martın & González, 2010;
Raue et al., 2013, 2009; Xie & Carlin, 2006; Poirier, 1998), we show that posterior collapse occurs
if and only if the latent variable is non-identifiable in the generative model. Here is the intuition.
Consider a dataset X and a latent variable Z. Loosely, a latent variable is non-identifiable (Poirier,
1998) when the likelihood of the generative model p(x | z) does not depend on this latent variable Z,
i.e. p(x | z)∝ f (x) for some function f . Then, by the Bayes rule, its (exact) posterior is proportional
to the product of the prior and the likelihood

p(z |x)∝ p(z) · p(x | z)∝ p(z) · f (x)∝ p(z).

Therefore, the posterior must be equal to the prior because the likelihood is not dependent on Z.

This connection between posterior collapse and non-identifiability implies that posterior collapse
is not a phenomenon specific to the use of neural networks or variational inference. Rather, it can
occur in classical probabilistic models fitted with exact inference methods. As an example, the
latent variables in Gaussian mixture model can be non-identifiable and suffer from posterior collapse
when the model has more components than the true data generating model. Figure 1 illustrates
such a Gaussian mixture model suffering from posterior collapse even with (near-)exact inference.
Moreover, we show that VAEs suffer from posterior collapse for the same reason: the per-data-point
latent variable is non-identifiable in VAEs.

Connecting posterior collapse to non-identifiability results in a natural solution to mitigating posterior
collapse in VAEs: one must make the generative model identifiable. We propose a class of identifiable
VAEs, which is as flexible as classical VAEs while also being identifiable. This model class resolves
the latent variable non-identifiability by leveraging monotone transport maps (Peyré et al., 2019;
McCann et al., 1995) and parameterizing them with input convex neural networks (Amos et al.,
2017; Makkuva et al., 2019). Across four datasets, we show that the identifiable VAEs mitigates
posterior collapse; see Section 1 for an example. (The supplementary material includes software that
reproduces the studies.)

Contributions. We consider posterior collapse as a problem of latent variable non-identifiability.
We show that posteriors collapse if and only if the latent variable in non-identifiable. It implies that
posterior collapse is neither specific to flexible VAEs nor because of its variational approximation.
Rather, it pertains to the structure of the generative model. We then propose a class of flexible
and identifiable VAEs and demonstrate that it mitigates posterior collapse across four datasets.
Appendix A discusses how these contributions situate among the related works.
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Figure 1: When a latent variable is non-identifiable (non-ID) in a model, its likelihood function is a
constant function and its posterior is equal to the prior, i.e. its posterior collapses. (a)-(b) Consider
a Gaussian mixture model with two clusters x ∼ α ·N (µ1,σ2

1)+ (1−α) ·N (µ2,σ2
2), treating the

mixture weight α as the latent variable and others as parameters. Fit the model to datasets generated
respectively by one Gaussian cluster (α non-identifiable), two overlapping Gaussian clusters (α
nearly non-identifiable), and two non-overlapping Gaussian clusters (α identifiable). Under optimal
parameters, the likelihood function p(x |α) is (close to) a constant when the latent variable α is (close
to) non-identifiable; its posterior is also (close to) the prior. Otherwise, the likelihood function is
non-constant and the posterior is peaked. (c)-(d) Fit a Gaussian mixture VAE (Shu, 2016; Kingma
et al., 2014; Dilokthanakul et al., 2016) with five clusters to the pinwheel dataset (Johnson et al.,
2016). Each data-point is colored by the category predicted by its corresponding latent variable.
The categorical latent variables are non-identifiable (non-ID) in the vanilla Gaussian mixture VAE
(GMVAE). Therefore, their posteriors collapse; they predict that all data-points belong to the same
category. In Section 2.2, we propose an identifiable variant of the GMVAE. The posteriors of its
latents do not collapse and produce a meaningful categorization of the data points.

2. Variational autoencoders, posterior collapse, and non-identifiability

Consider a dataset of n independent data-points X = (X1, . . . , Xn); each data-point is m-dimensional.
Positing n latent variables Z = (Z1, . . . , Zn), a variational autoencoder (VAE) assumes that each data-
point X i is generated by a K-dimensional latent variable Zi:

Zi ∼ p(zi), X i |Zi ∼ p(xi | zi ; θ), (1)

where θ are parameters of the likelihood function p(xi | zi ; θ). Equation (1) constitutes the generative
model of a VAE. It also encompasses classical probabilistic models like Gaussian mixture model
(GMM) and probabilistic principle component analysis (PPCA).

To perform inference, a VAE attempts to optimize the parameters θ by maximizing the log marginal
likelihood, and then infer the posterior of the latent variables Z = (Z1, . . . , Zn) at the maximum
likelihood (ML) parameters θ∗. Formally, the ML parameters solve θ∗ = argmaxθ log p(x ; θ) =
argmaxθ

∑n
i=1 log

∫
p(xi | zi ; θ)p(zi)dzi. Then the exact posterior of the latent variables are com-

puted at the ML parameters, p(z |x ; θ∗)=∏n
i=1 p(zi |xi ; θ∗).

However, the integral
∫

p(xi | zi ; θ)p(zi)dzi in computing the ML parameters is often intractable
in practice. Therefore, VAEs approximate this integral with variational inference. In the ideal
case where the variational approximation is exact, the usual VAE objective (Diederik et al., 2014)
coincides with maximizing log marginal likelihood. Moreover, the approximate posterior of the
latents q(z |x) also coincides with the exact posterior p(z |x ; θ∗). (We prove this fact in Appendix B.)
We focus on this ideal case below, abstracting away computational considerations.
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2.1. Posterior collapse and latent variable non-identifiability

We now discuss posterior collapse and its connections to latent variable non-identifiability.

Posterior collapse is a phenomenon where the posterior of the latents in a VAE is equal to its
uninformative prior

p(z |x ; θ∗)= p(z). (2)

To be clear, most of the literature defines this phenomenon with respect to the approximate posterior,
but we focus on the ideal case where the approximation is exact. This phenomenon is commonly
observed in VAEs with a flexible likelihood, i.e. a flexible neural network of fθ (Bowman et al.,
2016; Sønderby et al., 2016; Kingma et al., 2016; Chen et al., 2016; Zhao et al., 2018; Yeung et al.,
2017).

When posterior collapse occurs, it prevents the latent variable from providing meaningful low-
dimensional representations of the high-dimensional data-points. For example, if Zi is categorical,
posterior collapse implies that its posterior is equal to

∏n
i=1 Categorical(zi ; 1/K). Treating the latent

variable Zi’s as a summarization of the corresponding data-point X i, it says all data-points have
an equal chance to belong to each of the K categories. Such a representation does not distinguish
among different data-points and does not summarize the data-points in a meaningful way. In this
way, the VAE only performs density estimation, which defeats the purpose of density estimation
specifically through latent variable modeling.

Why does posterior collapse occur? Below we provide an explanation of posterior collapse via a
connection to latent variable non-identifiability. We will show that posterior collapse (Equation (2)) is
equivalent to the latent variable z being non-identifiable in the model. We first define latent variable
non-identifiability.

Definition 1 (Latent variable non-identifiability) Consider a likelihood p(x | z ; θ) where X is the
dataset, Z is the latent variables, and θ is the parameter to be optimized. The latent variable Z is
non-identifiable if there exists a θ∗ ∈Θ such that, for a given dataset x= {x1, . . . , xn},

p(x | z = z1 ; θ∗)= p(x | z = z2 ; θ∗) ∀z1, z2 ∈Z , (3)

where log p(x |θ∗)=maxθ∈Θ log p(x |θ).

Loosely, this definition says that the latent variable Z is non-identifiable when the likelihood function
p(x | z ; θ∗) does not depend on the latent, i.e. constant in z. Equation (3) implies that the conditional
likelihood given Z must be equal to the marginal, p(x | z = z1 ; θ∗)= p(x ; θ∗) ∀z1 ∈Z .

We note that Theorem 1 only requires Equation (3) be true for a given realization of the dataset X = x.
Thus we should expect that a latent variable may be identifiable or not depending on the combination
of the dataset x and the model p(x | z ; θ). A latent variable may be identifiable in a model given one
dataset but not another. Moreover, Equation (3) only consider the value of the parameters θ at its
ML value θ∗, i.e. when the parameter θ∗ maximizes the log marginal likelihood log p(x |θ). The
behavior of p(x | z ; θ) at other values of θ is unconstrained. Finally, Theorem 1 is closely related
to the definition of Z being conditionally non-identifiable (or conditionally uninformative) given
θ∗ (San Martın & González, 2010; Raue et al., 2013, 2009; Xie & Carlin, 2006; Poirier, 1998).

Next we show that posterior collapse is equivalent to latent variable non-identifiability.
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Theorem 2 (Posterior collapse ⇔ non-identifiability) The posterior of the latent variable z col-
lapses with positive probability if and only if the latent variable Z is non-identifiable.

Proof First suppose the ML parameters θ∗ are unique. Then, by the Bayes rule, posterior collapse
(Equation (2)) implies

p(z)= p(z |x ; θ∗)∝ p(z) · p(x | z ; θ∗). (4)

Equation (4) is equivalent to p(x | z ; θ∗) being a constant function in z, i.e. the latent variable z
being non-identifiable as in Theorem 1. To see it intuitively, note that p(z)∝ p(z)p(x | z ; θ∗) holds
when p(x | z ; θ∗) is constant in z. Moreover, if p(x | z ; θ∗) non-trivially depend on z, then p(z) must
be different from p(z)p(x | z ; θ∗) as a function of z. Therefore, posterior collapse occurs if and only
if the latent variable is non-identifiable.

Next, suppose the ML parameters θ∗ are not unique; there are multiple values of θ∗ that maximize
log p(x |θ). Then one of them must satisfy Equation (4) and be equivalent to posterior collapse, due
to latent variable Z being non-identifiable. Because there is a positive probability for any of these
ML parameters to be reached in maximizing log marginal likelihood, there is a positive probability
of posterior collapse.

The proof of Theorem 2 may seem straightforward. But this simple argument shows that it is essential
to understand posterior collapse from the standpoint of the model and the data, rather than inference
or optimization. Below we give examples to illustrate this equivalence between posterior collapse
and latent variable non-identifiability.

Example 3 (Gaussian mixture VAE (GMVAE)) Consider a GMVAE,

Zi ∼Categorical(1/K), X i |Zi ∼N ( fθ(N (µzi ,Σzi )),σ
2 · Im),

where the parameters are θ = ( fθ, {µk,Σk}K
k=1); µk’s are d-dimensional and Σk are d×d-dimensional.

Fit the model to a dataset drawn from the same GMVAE.

Suppose the neural network function fθ is fully flexible. One optimizer of the log marginal likelihood
is θ∗ = ( f ∗

θ
, {µ∗

k,Σ∗
k}K

k=1)= ( f ∗
θ

, {0, Id}K
k=1), where

N ( f ∗θ (N (0, Id)),σ2 · Im)=
∫

N ( fθ(N (µzi ,Σzi )),σ
2 · Im) · p(zi)dzi.

That is, the ML f ∗ produces the same distribution as the original GMVAE by mapping from a
single standard Gaussian cluster, as opposed to the original mixture of K clusters. Under this ML
parameter θ∗, the latent variable Zi is non-identifiable because the K clusters are the same, similar
to Example 1.1. Hence the posterior of the latent variable Zi also collapses; Section 1 illustrates a
fit of this (non-identifiable) GMVAE to the pinwheel data (Johnson et al., 2016).

Together with two other examples of GMM and PPCA in Appendix C, it illustrates different ways
that a latent variable can be non-identifiable in a model and suffer from posterior collapse. They
illustrate that even exact inference methods can not prevent posterior collapse in non-identifiable
models (Sections 1 and 2.2 and theorem 6). Therefore, posterior collapse is an intrinsic problem of
the model and the data, rather than specific to the use of neural networks or variational inference in
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VAEs, or any inference algorithms. The equivalence between posterior collapse and latent variable
non-identifiability in Theorem 2 also implies that, to mitigate posterior collapse, we should try to
resolve latent variable non-identifiability.

2.2. Identifiable VAEs via monotone transport maps

We develop a class of identifiable VAEs to mitigate posterior collapse. To resolve latent variable
non-identifiability in VAEs, we propose to use monotone transport maps (Ball, 2004). For example,
a transport map that maps everything to the right is monotone, i.e. its mapping preserves the ordering
of the data points. A monotone transport map between two distributions is, under weak conditions,
guaranteed to exist and be unique (McCann et al., 1995). This property will enable us to resolve
non-identifiability in VAEs and mitigate posterior collapse.

Definition 4 (Identifiable VAEs via monotone transport maps) An identifiable VAE via mono-
tone transport maps generates an m-dimensional data-point X i from the following process:

Zi ∼ p(zi), X i |Zi ; θ ∼ expfam(h◦ gθ(expfam(z>i βθ ; γθ)) ; λ), (5)

where Zi is a K-dimensional latent variable. The parameters of the model are θ = (gθ,βθ,γθ),
where βθ is K ×m-dimensional matrix whose first column must be positive and strictly increasing,
i.e. 0 < βθ[0,0] < βθ[1,0] < . . . < βθ[K ,0], and gθ : Z m →Z m is a monotone transport map. The
function h(·) is a one-to-one link function for the exponential family, e.g. the sigmoid function.
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Figure 2: As the noise level increases in
PPCA, the latent variable becomes closer to non-
identifiable and more susceptible to posterior col-
lapse. Its likelihood surface becomes flatter and its
posterior becomes closer to the prior.

This class of generative model emulates many
existing VAEs, including exponential family
mixtures or vanilla VAEs. How does this model
guarantee identifiability? It is for two reasons:
the positive and strictly increasing requirement
on βθ and the monotone transport map require-
ment on gθ. The first requirement on βθ pre-
vents Zi from being non-identifiable due to in-
distinguishable latent clusters or zero latent di-
mensions (cf. Examples 1 and 2). The second re-
quirement on gθ guarantees that gθ must be the
unique monotone transport map from p1 to p2,
due to the key result of McCann et al. (1995),
which shows that monotone transport maps be-
tween probability distributions must be unique under weak conditions. Appendix D further discusses
the theoretical and practical aspects of the identifiable VAEs via monotone transport maps. Ap-
pendix E demonstrates its empirical performance.

3. Discussion

We study the posterior collapse phenomenon from the perspective of latent variable non-identifiability.
We show that posterior collapses if and only if the latent variable is non-identifiable in a probabilistic
model. It shows that posterior collapse is not specific to the use of neural networks or particular
inference algorithms in VAEs. Rather, it is an intrinsic issue of the model and the dataset.
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Appendix A. Related work

Our work draws on two themes around generative models.

The first is a body of work on algorithms that mitigate posterior collapse in VAEs. Many works have
proposed methods to avoid posterior collapse in the VAE training. These methods often focus on
the optimization perspective of VAEs and modify the optimization objective or the optimization
algorithm in variational inference (Bowman et al., 2016; Hoffman & Johnson, 2016; Sønderby et al.,
2016; Kingma et al., 2016; Chen et al., 2016; Zhao et al., 2018; Yeung et al., 2017; Alemi et al.,
2017; Fu et al., 2019; Asperti, 2019; Li et al., 2019; Seybold et al., 2019; Zhao et al., 2020; Havrylov
& Titov, 2020; Dieng et al., 2018; He et al., 2019; Kim et al., 2018; Razavi et al., 2019; Shu, 2016;
Tomczak & Welling, 2017). More recently, a few works try to provide explanations for the posterior
collapse phenomenon. For example, (Dai et al., 2019) shows that posterior collapse can be partially
attributed to the local optima in training VAEs with deep neural networks; (Lucas et al., 2019)
shows that posterior collapse is not specific to the variational inference training objective; absent
variational approximation, the log marginal likelihood of PPCA has bad local optima that can lead
to posterior collapse. Related to these works, this paper try to both provide explanations and propose
solutions to posterior collapse. However, in contrast to the common optimization perspective, this
paper focuses on the modeling perspective. It studies the connection between posterior collapse and
the non-identifiability of latent variables in probabilistic models, including both the classical ones
like GMM and the modern ones like VAEs. This modeling perspective characterizes global optimal
solutions, abstracting away optimization challenges like local optima and saddle points.

The second theme is the latent variable identifiability in probabilistic models. Identifiability of latent
variables has long been studied in the statistics literature, including (San Martın & González, 2010;
Raue et al., 2013, 2009; Xie & Carlin, 2006; Poirier, 1998). More recently, Betancourt (2017) studies
the effect of latent variable identifiability in GMM on Bayesian computation. Khemakhem et al.
(2019) studies the non-identifiability of deep latent variable models and its effect on disentanglement.
Moreover, it proposes to resolve non-identifiability by appealing to external data. Related to these
works, this work demonstrates posterior collapse as one additional aspect in which the classical
concept of identifiability can play a key role in modern probabilistic modeling. It also opens
the door to many new solutions to posterior collapse via existing techniques of resolving non-
identifiability.

Appendix B. VAEs approximately maximize marginal likelihood

To perform inference, a VAE attempts to optimize the parameters θ by maximizing the log marginal
likelihood, and then infer the posterior of the latent variables Z = (Z1, . . . , Zn) at the ML parameters
θ∗. Formally, the ML parameters solve

θ∗ = argmax
θ

log p(x ; θ)= argmax
θ

n∑
i=1

log
∫

p(xi | zi ; θ)p(zi)dzi. (6)

Then the exact posterior of the latent variables are computed at the ML parameters,

p(z |x ; θ∗)=
n∏

i=1
p(zi |xi ; θ∗)=

n∏
i=1

p(zi)p(xi | zi ; θ∗)∫
p(xi | zi ; θ∗)p(zi)dzi

. (7)

1
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The integral
∫

p(xi | zi ; θ)p(zi)dzi in Equations (6) and (7) is often intractable. So a VAE employs
variational approximations to approximate this integral. It first posits an approximating family
Qn,

Qn = {qφ({zi}n
i=1)=

n∏
i=1

qφ(zi |xi) :φ ∈Φ}, (8)

where qφ(·) is a neural network mapping with known structure and parameters φ. For example,
qφ(zi |xi) = N (zi ; gφ(xi), IK ). It then approximates the log marginal log p(xi ; θ) with a lower
bound

log p(xi ; θ)≥ log p(xi ; θ)− min
qφ(θ)∈Qn

KL(qφ(θ)(zi |xi)||p(zi |xi ; θ)), (9)

where the right side of the inequality is the evidence lower bound (ELBO), which is easier to
maximize (Blei et al., 2017). The parameters φ(θ) indicates that the parameters of the approximate
distribution φ can take different values with different θ. This inequality becomes equality when
the approximating family Qn contains all distributions. In this case, the approximate qφ(zi) also
coincide with the exact posterior p(zi |xi ; θ).

Finally, the VAE approximately optimizes the parameters

θ∗ = argmax
θ

[
log p(xi ; θ)− min

qφ(θ)∈Qn
KL(qφ(θ)(zi |xi)||p(zi |xi ; θ))

]
. (10)

This nested optimization can be equivalently unpacked into a single-level optimization (Murphy &
Van der Vaart, 2000)

q∗
φ,θ∗ = argmax

qφ∈Qn,θ

[
log p(xi ; θ)−KL(qφ(θ)(zi |xi)||p(zi |xi ; θ))

]
(11)

= argmax
qφ∈Qn,θ

n∑
i=1

Eqφ(zi)
[
log p(xi, zi ; θ)− log qφ(zi)

]
, (12)

where Equation (12) is the usual VAE objective (Diederik et al., 2014). It is equivalent to Equa-
tion (6).

Appendix C. Examples of posterior collapse ⇔ latent variable non-identifiability

Example 5 (Gaussian mixture model (GMM)) Consider a Gaussian mixture model with two clus-
ters,

p(α)=Beta(α ; 5,5), p(xi |α ; θ)=α ·N (xi ; µ1,σ2
1)+ (1−α) ·N (xi ; µ2,σ2

2).

Here α is the latent variable and θ = (µ1,µ2,σ1,σ2) are the parameters of the model. Fit this model
to three datasets, each with 105 samples.

1. Samples from a single Gaussian distribution, X i ∼N (−1,1).

The latent variable α is non-identifiable in this case. The reason is that one set of ML parameters
is θ∗ = (µ∗

1 ,µ∗
2 ,σ∗

1 ,σ∗
2 ) = (−1,−1,1,1), i.e. setting both of the two mixture components equal

2
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to the true data generating Gaussian distribution. Under this θ∗, the latent variable α is non-
identifiable and its likelihood function p({xi}n

i=1 |α ; θ∗) is constant in α because the two mixture
components are equal; Section 1 illustrates this fact. Moreover, the posterior of α collapses,
p(α | {xi}n

i=1 ; θ∗) = p(α). Section 1 illustrates this fact: The Hamiltonian Monte Carlo (HMC)
samples of the α posterior closely match those drawn from the prior. (Exact inference is intractable
in this case, so we use HMC as a close approximation to exact inference.) This example
demonstrates the connection between non-identifiability and posterior collapse; it also shows that
posterior collapse is not specific to variational inference but is an issue of the model and the data.

2. Samples from a mixture of two overlapping clusters, X i ∼ 0.15 ·N (−0.5,1)+0.85 ·N (0.5,1).

The latent variable α is identifiable in this case. However, it is nearly non-identifiable. While
the two data generating clusters are different, they are very similar to each other because they
overlap. Therefore, the likelihood function p(xi |α ; θ∗) is slowly varying under ML parameters
θ∗ = (µ∗

1 ,µ∗
2 ,σ∗

1 ,σ∗
2 )= (−0.5,0.5,1,1); see Section 1. Consequently, the posterior of α remains

very close to the prior; see Section 1.

3. Samples from a mixture of two non-overlapping clusters, X i ∼ 0.15 ·N (−10,1)+0.85 ·N (10,1).

The latent variable α is identifiable in this case. The two data generating clusters are substantially
different, so the likelihood function varies across α ∈ [0,1] under the ML parameters (Section 1).
The posterior of α is also peaked (Section 1) and differs much from the prior.

Example 6 (Probabilistic principle component analysis (PPCA)) Consider a PPCA with two
latent dimensions,

p(zi)=N (zi ; 0, I2), p(xi | zi ; θ)=N (xi ; z>i w,σ2 · I5),

where zi’s are the latent variables of interest and others θ = (w,σ2) are parameters of the model. Fit
this model to two datasets, each with 500 samples.

1. Samples from a one-dimensional PPCA, X i ∼N (xi ; N (0, I1) · w̄1, σ̄1 · I5).

The latent variables Zi’s are not (fully) identifiable in this case. The reason is that one set of ML
parameters is θ∗ = (w∗,σ∗)= ([0, w̄1], σ̄1), i.e. setting one latent dimension as zero and the other
equal to the true data generating direction. Under this θ∗, the likelihood function is constant
in the first dimension of the latent variable, i.e. Zi1; see Theorem 6. The posterior of Zi1 thus
collapses, matching the prior, while the posterior of Zi2 stays peaked (Theorem 6).

2. Samples from a two-dimensional PPCA, X i ∼N (xi ; N (0, I2) · w̄2, σ̄2 · I5).

The latent variables Zi’s are identifiable in this case. The likelihood function varies against both
Zi1 and Zi2; the posteriors of both Zi1 and Zi2 are peaked (Theorem 6).

Next, consider a variant of PPCA with fixed noise σ2. Here the only parameter to be optimized
is w. When the noise σ2 is set to a large value, the latent variable Zi may become nearly non-
identifiable. The reason is that the likelihood function p(xi | zi) becomes slower-varying as σ2

increases. For example, Section 2.2 shows that the likelihood surface becomes flatter as σ2

increases. Accordingly, Section 2.2 shows that the posterior becomes closer to the prior as σ2

increases. When σ= 1.5, the posterior closely matches the prior (i.e. collapses).

3



POSTERIOR COLLAPSE AND LATENT VARIABLE NON-IDENTIFIABILITY

z1

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0
z2

2.01.51.00.50.00.51.01.52.0

lik
el

ih
oo

d

3000
2500
2000
1500
1000
500

Likelihood (1D PPCA)

2 0 2 40.00

0.25

0.50

0.75

1.00

1.25 prior of z1 and z2
posterior of z1
posterior of z2

Posterior (1D PPCA)

z1

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0
z2

2.01.51.00.50.00.51.01.52.0

lik
el

ih
oo

d

8000
7000
6000
5000
4000
3000
2000
1000

Likelihood (2D PPCA)

2 0 20.0

0.5

1.0

1.5 prior of z1 and z2
posterior of z1
posterior of z2

Posterior (2D PPCA)

Figure 3: Fitting PPCAs with more latent dimensions than enough leads to non-identifiable local
latent variables and collapsed posteriors. (a)-(b) Fit a two-dimensional PPCA to data drawn from a
one-dimensional PPCA. The likelihood surface is constant in one dimension of the latent variable,
and the corresponding posterior collapses. (c)-(d) Fit a two-dimensional PPCA to data from a
two-dimensional PPCA does not suffer from posterior collapse; its likelihood surface varies in all
dimensions.

Appendix D. Theoretical and practical details of identifiable VAEs
The identifiable VAE with monotone transport maps emulates many existing VAEs. Letting Zi be
categorical (one-hot) vectors, the distribution expfam(z>i βθ ; γθ) is an exponential family mixture.
The identifiable VAE then maps this mixture model through a flexible function gθ. When Zi is
real-valued, it mimics classical VAEs by mapping an exponential family PCA through flexible
functions.

How does the VAE model with monotone transport maps guarantee identifiability? It is identifiable
for two reasons: the positive and strictly increasing requirement on βθ and the monotone transport
map requirement on gθ. The first requirement on βθ guarantees that each dimension of β must be
distinct and positive. It prevents Zi from being non-identifiable due to indistinguishable latent clusters
or zero latent dimensions (cf. Examples 1 and 2). Therefore, the distribution expfam(z>i βθ ; γθ) is
guaranteed to be different under different values of Zi.

The second requirement on gθ requires that it must be monotone. Loosely, monotone functions are
functions such that their mapping preserves (or reverse) the order of the data points. To resolve
non-identifiability, we build off the key result of McCann et al. (1995), which shows that monotone
transport maps between probability distributions must be unique under weak conditions. It implies
that if the gθ function can successfully transport distributions p1 to p2 (both must be non-degenerate),
then gθ must be the unique monotone transport map. Returning to the VAEs, the monotonicity of
gθ preserves the distinctiveness of expfam(z>i βθ ; γθ) under different values of zi. Together with h
being one-to-one, it implies that h◦ gθ(expfam(z>i βθ ; γθ)) must take different values under different
values of zi, Therefore, the likelihood p(xi | zi ; θ) must be non-constant, and the latent variables Zi’s
must be identifiable and, by Theorem 2, do not suffer from posterior collapse.

A reader might ask: Do these requirements constrain the flexibility of the identifiable VAEs? It
turns out that the requirements on βθ and gθ only resolves non-identifiability but do not limit the
representation power of the identifiable VAE. Any full-rank βθ can be row-permuted and re-centered
to satisfy 0<βθ[0,0]<βθ[1,0]< . . .<βθ[K ,0]. Moreover, constraining gθ to be monotone does not
limit the capacity of the generative model because monotone transport maps (almost) always exists
(Theorem 6 of (McCann et al., 1995)).

The following theorem summarizes these results.
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Theorem 7 The latent variable Zi is identifiable in the identifiable VAEs via monotone transport
maps. Moreover, it has the same capacity as the VAE absent all parameter constraints.

Next, we attend to practical aspects of identifiable VAEs. The first aspect is how to parametrize the
monotone transport map gθ? We parametrize the monotone gθ as the gradient of input convex neural
networks (ICNNs) (Amos et al., 2017; Makkuva et al., 2019), which can approximate any convex
function on a compact domain in sup norm (Theorem 1 of Chen et al. (2018).) The rationale is that
the gradient of any convex functions must be a monotone transport map (McCann et al., 1995). More
concretely, we require that the function gθ(x) : X m →X m must be an L-layer feed forward neural
network such that for l = 1, . . . ,L−1,

zl+1 =σl(Wl zl + Al x+bl), gθ(x)= ∂zL

∂x
, (13)

where the last layer zL must be a scalar, {Wl} are non-negative with W0 = 0, and {σl} are convex and
non-decreasing. A common choice of σ0 is the square of leaky RELU, σ0(x)= (max(α · x, x))2 with
α= 0.2; the remaining σl’s are set be a leaky RELU, σl(x)=max(α · x, x).

The second practical aspect is how to perform inference on the identifiable VAEs. As the identifiable
VAEs differ from the canonical ones only in its parameter constraints, the canonical amortized
inference algorithms of VAEs directly apply here. Thus, to maximize log marginal likelihood, we
posit an auxiliary variable ui = expfam(z>i βθ ; γθ) and maximize the ELBO of the log marginal
likelihood,

max
q∈Q

L(q,θ)=max
q∈Q

Eq(ui ,zi) [log p(xi,ui, zi ; θ)− log q(ui, zi)] , (14)

The variational family is Q = {q(ui, zi) : q(ui, zi) = qφu (ui | zi ; xi) · qφz (zi ; xi)}, where qφu and
qφz are neural network mappings. These steps follow closely from the amortized inference in
VAEs.
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ELBO NON-ID ELBO ID % AU NON-ID % AU ID

Pinwheel (Johnson et al., 2016) -6 -6 0.2 1.0
MNIST (LeCun et al., 2010) -108 -96 0.1 1.0
Fashion MNIST (Xiao et al., 2017) -259 -243 0.1 1.0
Omniglot (Lake et al., 2015) -862 -824 0.02 1.0

Table 1: The identifiable GMVAEs do not suffer from posterior collapse and achieves better model
fit than its classical counterpart in a 9-layer generative model. % AU indicates the proportion of the
units being active. ELBO indicates the fit of the model. (Higher is better.)

Appendix E. Empirical studies

We study the identifiable GMVAEs and the classical non-identifiable GMVAEs on four datasets:
pinwheel (Johnson et al., 2016), MNIST (LeCun et al., 2010), Fashion MNIST (Xiao et al., 2017),
and Omniglot (Lake et al., 2015). We find that the identifiable VAEs do not suffer from posterior
collapse as the generative model becomes more flexible. They also achieve higher ELBOs than
the GMVAEs, suggesting better fits to the data. (Throughout the empirical studies, we use two-
layer [512,512] RealNVPs (Dinh et al., 2016) as approximating families to maximally tease out the
approximation effect of variational inference.)

Evaluation metrics. To evaluate posterior collapse, we follow (Burda et al., 2015) to compute the
number of active units (AU), AU =∑D

d=1 1{Covp(x)(Eq(z |x) [Zd])≥ ε}, where Zd is the dth dimension
of the latent variable Z and the threshold ε is chosen to be 0.01. We also evaluate the predictive
accuracy of the categorical latents against ground truth labels to quantify their informativeness.
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Figure 4: Fashion MNIST: The identifiable GM-
VAEs produces posteriors that are substantially
more informative than GMVAE. It also achieves
higher ELBO and its performance does not de-
grade as the generative model becomes more flexi-
ble.

Results. Section 1 illustrate a fit of the GM-
VAE and the identifiable GMVAE to the pin-
wheel data (Johnson et al., 2016). The identifi-
able GMVAE produces categorical latents faith-
ful to the clustering structure, but the posterior
of the GMVAE latents collapse, attributing all
data-points to the same latent cluster. Figure 4
examines the identifiable GMVAEs as we in-
crease the flexibility of the generative model.
Appendix E shows that the categorical latents
of the identifiable GMVAEs are substantially
more predictive of the true labels than its clas-
sical counterparts. Moreover, its performance
does not degrade as the generative model be-
comes more flexible. Appendix E shows that
the identifiable GMVAEs consistently achieve
higher ELBOs. Table 1 compares the identifiable GMVAE and the GMVAE in a 9-layer genera-
tive model. The identifiable GMVAE does not suffer from posterior collapse and achieves higher
ELBOs.
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Appendix F. Experiment details

Experimental details. For all experiments, we use the Adam optimizer with learning rate 0.0001.
All hidden layers of the neural networks have 512 units. For continuous latent variables We use two-
layer RealNVP ((Dinh et al., 2016)) as an approximating family to tease out the effect of variational
inference.

In Table 1, we choose the number of units as the number of categories in ground truth labels. For
continuous latents, it is chosen as 200.
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