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ABSTRACT

Modern image classifiers achieve high predictive accuracy, but the predictions
typically come without reliable uncertainty estimates. Conformal prediction al-
gorithms provide uncertainty estimates by predicting a set of classes based on
the probability estimates of the classifier (for example, the softmax scores). To
provide such sets, conformal prediction algorithms often rely on estimating a cutoff
threshold for the probability estimates, and this threshold is chosen based on a
calibration set. Conformal prediction methods guarantee reliability only when
the calibration set is from the same distribution as the test set. Therefore, the
methods need to be recalibrated for new distributions. However, in practice, labeled
data from new distributions is rarely available, making calibration infeasible. In
this work, we consider the problem of predicting the cutoff threshold for a new
distribution based on unlabeled examples only. While it is impossible in general
to guarantee reliability when calibrating based on unlabeled examples, we show
that our method provides excellent uncertainty estimates under natural distribution
shifts, and provably works for a specific model of a distribution shift.

1 INTRODUCTION

Consider a (black-box) image classifier that is trained on a dataset to output probability estimates for
L classes given an input feature vector x ∈ Rd. This classifier is typically a deep neural network with
a softmax layer at the end. Conformal prediction algorithms are wrapped around such a black-box
classifier to generate a set of classes that contain the correct label with a user-specified desired
probability based on the output probability estimates.

Let x ∈ Rd be a feature vector with associated label y ∈ {1, . . . , L}. We say that a set-valued
function C generates valid prediction sets for the distribution P if

P(x,y)∼P [y ∈ C(x)] ≥ 1− α, (1)

where 1−α is the desired coverage level. Conformal prediction methods generate valid set generating
functions by utilizing a calibration set consisting of labeled examples {(x1, y1), . . . , (xn, yn)} drawn
from the distribution P . An important caveat of conformal prediction methods is that they assume that
the examples from the calibration set and the test set are exchangeable, i.e., samples are identically
distributed, or more broadly, are invariant to permutations across the two sets.

The exchangeability assumption is difficult to satisfy and verify in applications and potentially limits
the applicability of conformal prediction methods in practice. In fact, in practice one usually expects
a distribution shift between the calibration set and the examples at inference (or the test set), in which
case the coverage guarantees provided by conformal prediction methods are void. For example, the
new CIFAR-10.1 and ImageNetV2 test sets were created in the same way as the original CIFAR-10
and ImageNet test sets, yet Recht et al. (2019) found a notable drop in classification accuracy for all
classifiers considered.

Ideally, a conformal predictor is recalibrated on a distribution before testing, otherwise the cover-
age guarantees are not valid (Cauchois et al., 2020). However, in real-world applications, while
distribution shifts are ubiquitous, labeled data from new distributions is scarce or non-existent.
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We therefore consider the problem of recalibrating a conformal predictor only based on unlabeled
data from the new domain. This is an ill-posed problem: it is in general impossible to calibrate a
conformal predictor based on unlabeled data. Yet, we propose a simple calibration method that gives
excellent performance for a variety of natural distribution shifts.

Organization and contributions. We start with concrete examples on how conformal predictors
yield miscalibrated uncertainty estimates under natural distribution shifts. We next propose a simple
recalibration method that only uses unlabeled examples from the target distribution. We show that our
method correctly recalibrates a popular conformal predictor (Sadinle et al., 2019) on a theoretical toy
model. We provide empirical results for various natural distribution shifts of ImageNet showing that
recalibrating conformal predictors using our proposed method significantly reduces the performance
gap. In certain cases, it even achieves near oracle-level coverage.

Related work. Several works have considered robustness of conformal prediction to distribution
shift. Tibshirani et al. (2019) considers covariate shifts and proposes calibrating conformal predictors
by estimating the amount of covariate shift from unlabeled target data. Similarly, Park et al. (2022)
considers the problem of estimating the covariate shift from unlabeled target data, and aims at
constructing PAC prediction sets instead of the standard unconditionally valid prediction sets. In
contrast, we focus on complex image datasets for which covariate shift is not well defined. In
Appendix B, we provide a comparison of our method to the above covariate shift based methods for a
setting where we have access to labeled examples from multiple domains during training/calibration,
one of which correspond to the target distribution.

We are not aware of other works studying calibration of conformal predictors under distribution shift
based on unlabeled examples. However, prior works propose to make conformal predictors robust to
various distribution shifts from the source distribution of the calibration set (Cauchois et al., 2020;
Gendler et al., 2022), via calibrating the conformal predictor to achieve a desired coverage in the
worse case scenario of the considered distribution shifts. Cauchois et al. (2020) considers covariate
shifts and calibrates the conformal predictor to achieve coverage for the worst-case distribution
within the f -divergence ball of the source distribution. Gendler et al. (2022) considers adversarial
perturbations as distribution shifts and calibrates a conformal predictor to achieve coverage for the
worst-case distribution obtained through `2-norm bounded adversarial noise.

While making the conformal predictor robust to a range of worst-case distributions at calibration
time allows maintaining coverage worst-case distributions, this approaches has two shortcomings: 1.
Natural distribution shifts are difficult to capture mathematically, and models like covariate-shifts or
adversarial perturbations do not seem to model natural distribution shifts (such as that from ImageNet
to ImageNetV2) accurately. 2. Calibrating for a worst-case scenario results in an overly conservative
conformal predictor that tends to yield much higher coverage than desired for test distributions that
correspond to a less severe shift from the source, which comes at the cost of reduced efficiency (i.e.,
larger set size, or larger confidence interval length).

In contrast, our method does not compromise the efficiency of the conformal predictor on easier
distributions as we recalibrate the conformal predictor separately for any new dataset.

A related problem is to predict the accuracy of a classifier on new distributions from unlabeled data
sampled from the new distribution (Deng & Zheng, 2021; Chen et al., 2021; Jiang et al., 2021; Deng
et al., 2021; Guillory et al., 2021; Garg et al., 2022). In particular, Garg et al. (2022) proposed a
simple method that achieves state-of-the-art performance in predicting classifier accuracy across a
range of distributions. However, the calibration problem we consider is fundamentally different than
estimating the accuracy of a classifier. While predicting the accuracy of the classifier would allow
making informed decisions on whether to use the classifier for a new distribution, it doesn’t provide a
solution to recalibrate.

2 CONFORMAL PREDICTION AND PROBLEM STATEMENT

We start by introducing conformal prediction and our problem setup.

Conformal prediction. Consider a black-box classifier with input feature vector x ∈ Rd that
outputs a probability estimate π`(x) ∈ [0, 1] for each class ` = 1, . . . , L. Typically, the classifier is a
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neural network trained on some distribution, and the probability estimates are the softmax outputs.
We denote the order statistics of the probability estimates by π(1)(x) ≥ π(2)(x) ≥ . . . ≥ π(L)(x).
Many conformal predictors are based on calibrating on a calibration set DPcal = {(xi, yi)}ni=1 to
find a cutoff threshold (Sadinle et al., 2019; Romano et al., 2020; Angelopoulos et al., 2020) that
achieves the desired empirical coverage on this set. Here, the superscript P denotes the distribution
from which the examples in the calibration set are sampled from. Specifically, conformal calibration
computes the threshold parameter as

τ∗ = inf {τ : |{i : yi ∈ C(xi, ui, τ)}| ≥ (1− α)(n+ 1)} . (2)
Here, C(x, u, τ) is the set-valued function associated with the conformal predictor that outputs a
confidence set which is a subset of the classes {1, . . . , L}, and ui is added randomization to ensure
the smoothness of the cardinality term, chosen independently and uniformly from the interval [0, 1].
See Vovk et al. (2005) on smoothed conformal predictors. Finally, the ‘+1’ term in the (n+ 1) term
is a bias correction for the finite size of the calibration set.

This conformal calibration procedure achieves distributional coverage as defined in the expression (1),
for any set valued function C(x, u, τ) satisfying the nesting property, i.e., C(x, u, τ1) ⊆ C(x, u, τ2)
for τ1 < τ2, see (Angelopoulos et al., 2020, Thm. 1).

In this paper, we primarily focus on the popular conformal predictors Thresholded Prediction Sets
(TPS) (Sadinle et al., 2019) and Adaptive Prediction Sets (APS) Romano et al. (2020). The set
generating functions of the two conformal predictors are

CTPS(x, τ) = {` ∈ {1, . . . , L} : π`(x) ≥ 1− τ} , (3)
and

CAPS(x, u, τ) =

` ∈ {1, . . . , L} :
`−1∑
j=1

π(j)(x) + u · π(`)(x) ≤ τ

 , (4)

with u ∼ U(0, 1) for smoothing. The set generating function of TPS doesn’t require smoothing since
each softmax score is independently thresholded and therefore there are no discrete jumps.

We emphasize that the threshold τ depends on the distribution P and a labeled calibration set from P
is needed to compute the threshold through conformal calibration given in the expression (2). We
therefore add a superscript to the threshold to make clear which distribution was used to sample the
calibration set, for example τP indicates that the calibration set was sampled from the distribution P .
The prediction set function CTPS for TPS and CAPS for APS both satisfy the nesting property. There-
fore, TPS/APS calibrated on a calibration set DPcal by computing the threshold in the expression (2)
is guaranteed to achieve coverage on the distribution P . However, coverage is only guaranteed if the
test distribution Q is the same as the calibration distribution P .

Coverage failures under distributions shifts. Often we’re most interested in quantifying uncer-
tainty with conformal predictions when we apply a classifier to new data that might come from a
slightly different distribution than the distribution we calibrated on. Yet, conformal predictors only
provide coverage guarantees for data coming from the same distribution as the calibration set, and
the coverage guarantees often fail even under slight distribution shifts.

For example, APS calibrated to yield 1− α = 0.9 coverage on the standard ImageNet-Val dataset
only achieves a coverage of 0.64 on the ImageNet-Sketch dataset, which consists of sketches of the
ImageNet-Val images and hence constitutes a distribution shift (Wang et al., 2019).

Different conformal predictors typically have different coverage gaps under the same distribution
shift. More efficient conformal predictors (i.e., those that produce smaller prediction sets) tend to have
a larger coverage gap under a distribution shift. For example, both TPS and RAPS (a generalization
of APS proposed by Angelopoulos et al. (2020)) yield smaller confidence sets, but only achieve a
coverage of 0.38 vs. 0.64 for APS on the ImageNet-Sketch distribution shift discussed above.

Even under more subtle distribution shifts such as a subpopulation shifts (Santurkar et al., 2021), the
achieved coverage can drop significantly. For example, APS calibrated to yield 1−α = 0.9 coverage
on the source distribution of the Living-17 BREEDS dataset only achieves a coverage of 0.68 on the
target distribution. The source and target distributions contain images of exclusively different breeds
of animals while the animals’ species is shared as the label (Santurkar et al., 2021).
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Figure 1: Illustration of recalibration of a conformal predictor with QTC: ImageNet-Val was used as
the source distribution P and ImageNet-Sketch as the target distribution Q.
Step 1: QTC is used on the target to find the threshold q such that a α fraction of the target samples
have a lower score than q as measured by |{x∈D

Q : s(π(x))<q}|
|DQ| = α.

Step 2: At test time, QTC estimates the value of β as |{x∈D
P : s(π(x))<q}|
|DP | .

Step 3: The estimate of β is used to recalibrate the conformal predictor, yielding τ̂QQTC = 0.99991.

Problem statement. Our goal is to recalibrate a conformal predictor on a new distributionQ based
on only unlabeled data. Specifically, our goal is to predict the threshold τQ as an estimate τ̂Q
for a target distribution Q as well as possible so that the conformal predictor with the set function
C(x, u, τ̂Q) achieves coverage close to the desired coverage of 1 − α on the new distribution Q.
Towards this goal, we only have access to an unlabeled dataset DQunlabeled = {x1, . . . ,xn} sampled
from the target distribution Q. We use Dunlabeled to denote an unlabeled (label-stripped) dataset.

In general, it is impossible to guarantee coverage since conformal prediction relies on strict exchange-
ability assumptions which can not be controlled in practice for new datasets (Vovk et al., 2005;
Romano et al., 2020; Angelopoulos et al., 2020; Cauchois et al., 2020). However, we will see that we
can consistently estimate the threshold τQ for a variety of natural distribution shifts.

We refer to the difference between the target coverage of 1− α and the actual coverage achieved on a
given distribution without any recalibration efforts as the coverage gap. We assess how effective a
recalibration method is based on the reduction of the coverage gap after recalibration under a variety
of settings (e.g., choice of conformal predictor, target level 1− α) and distribution shifts.

3 METHODS

In this section we introduce our calibration method, that we term Quantile Thresholded Confidence
(QTC), along with baseline methods we consider in our experiments.

3.1 QUANTILE THRESHOLDED CONFIDENCE

Consider a conformal predictor calibrated on the source distribution P to yield coverage of 1− α,
which yields the threshold τPα . The conformal predictor guarantees coverage of 1− α on the source
distribution P , but on a different distribution Q the coverage is off. But there is a value β such that,
if we calibrate the conformal predictor on the source distribution using the value β instead of α, it
achieves 1− α coverage on the target distribution, i.e., the corresponding thresholds obey τPβ = τQα .

Our method estimates the value β based on unlabeled examples. From this estimate β̂, we can compute
the corresponding threshold τP

β̂
by calibrating the conformal predictor on the source calibration set

using β̂, which yields a threshold close to the desired one, i.e., τP
β̂
≈ τQα .
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We are given a labeled source dataset DPcal and an unlabeled target dataset DQunlabeled. Our estimate
of β relies on the following quantile function

q(D, c) = inf

{
p :

1

|D|
∑
x∈D

1{s(π(x))<p} ≥ c
}
, (5)

which depends on the scores of the classifier through a score function s(π(x)) = max` π`(x),
which we take as the largest softmax score of the classifier’s prediction. Here, D is a set of unlabeled
examples and c ∈ [0, 1] is a scalar. Our method first identifies a threshold based on the unlabeled target
dataset DQunlabeled for a desired coverage level α in expression (5) by computing q(DQunlabeled, α).
Since this process is identical to finding the (α)th quantile of the scores on the dataset, we dub the
method Quantile Thresholded Confidence (QTC). QTC estimates β as

βQTC(DQunlabeled) =
1

|DPcal|
∑

x∈DPcal

1{s(π(x))<q(DQunlabeled,α)}. (6)

We use the value βQTC found in (6) to calibrate the conformal predictor on the dataset DPcal with the
goal of achieving 1− α coverage on the target distribution Q. QTC is illustrated in Figure 1.

We also study two variants of QTC that find the threshold q on the source dataset used for conformal
calibration instead of the target as ablation methods: QTC-SC and QTC-ST, where SC stands for
Source Coverage and ST for Source Threshold. Similarly to QTC, QTC-SC aims to estimate the value
β. On the other hand, QTC-ST aims to directly estimate the threshold τQ by using the threshold τP
found by calibrating the conformal predictor on the source as in equation (2). QTC-SC and QTC-ST
estimate β and τQ as

βQTC−SC(D) = 1− 1

|D|
∑
x∈D

1{s(π(x))<q(DPcal,1−α)}, (7)

τQTC−ST(D) =
1

|D|
∑
x∈D

1{s(π(x))<q(DPcal,τP)}, (8)

where DQunlabeled is substituted for D in the above expressions for target distribution Q.

QTC is inspired by a method for predicting the accuracy of a classifier from Garg et al. (2022). Garg
et al. (2022)’s method finds a threshold on the scores that matches the accuracy of a classifier on the
dataset and predicts the accuracy on other datasets analogous to the expression (8). Contrary, we
predict a threshold of a conformal predictor, and our method is based on predicting the parameter β
instead of a threshold directly.

3.2 BASELINE METHODS

We consider several regression-based methods as baselines. Regression-based methods have been
used for predicting classification accuracy, assuming a correlation between the classification accuracy
and a feature (e.g., average confidence) across different distributions (Deng et al., 2021; Deng &
Zheng, 2021; Guillory et al., 2021). Those regression-based methods learn a function fθ that makes
a prediction on a new distributionQ based on the set of unlabeled examples DQunlabeled. The function
fθ is learned based on synthetically generated distributions P1,P2, . . . and datasets DP1

cal,DP2

cal, . . .
sampled from those distributions. Such synthetic datasets can be produced by applying corruptions to
the natural images of the source distribution, e.g., ImageNet-C (Hendrycks & Dietterich, 2019).

We expand the existing range of regression-based methods by considering a variety of setups for the
feature space that extract different levels of detail from the classifier’s statistics on the dataset. We
use φπ(D) : RL → Rd to denote the feature extractor that maps the softmax scores of the classifier to
the features for a given dataset D. A simple example is the one-dimensional feature (d = 1) extracted
by computing the average confidence of a given classifier across the examples of a given dataset.

We fit a regression function fθ parameterized by a the feature extractor φπ by minimizing the mean
squared error between the output and the calibrated threshold τ across the distributions as

θ̂ = argmin
θ

∑
j

(fθ(φπ(Dj))− τPj )2. (9)

We consider the following choices for the feature extractor φπ:

5



Under review as a conference paper at ICLR 2023

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.81

0
.8
8

0
.8
8

0
.8
8

0
.8
7 0
.8
9

0
.8
9

0
.8
8

0
.8
4

0.9

ac
hi

ev
ed

co
ve

ra
ge

ImageNetV2

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.38

0
.6
5

0
.6
1

0
.6
4

0
.6
6

0
.4
7

0
.8
4

0
.8

0
.5
4

0.9

ImageNet Sketch

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.34

0
.5
6

0
.5
4

0
.5
4

0
.5
7

0
.3
6

0
.7
3

0
.7
5

0
.5
2

0.9

ImageNet-R

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.61

0
.7
6

0
.7
8

0
.7
8

0
.7
7

0
.7
9

0
.8
1

0
.9
2

0
.7
7

0.9

ac
hi

ev
ed

co
ve

ra
ge

Entity-13

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.57

0
.7
3

0
.7
5

0
.7
4

0
.7
3

0
.7
4 0
.7
9

0
.8
9

0
.7
7

0.9

Entity-30

AC
R

CH
R

CH
R-

D
CR PC

R
Q

TC
Q

TC
-S

C
Q

TC
-S

T

0.55

0
.7 0
.7
3

0
.7
1

0
.7

0
.7
1 0
.7
5

0
.9
3

0
.7
6

0.9

Living-17

Figure 2: Coverage obtained by TPS for a desired coverage of 1− α = 0.9 on the target distribution
Q after recalibration using the unlabeled samples from Q for various recalibration methods. The
dotted line is the coverage without recalibration, and the dashed line is the target coverage 1−α = 0.9.
The figure shows that QTC and its variants almost fully close the coverage gap across ImageNet and
BREEDS test distribution shifts, corresponding to varying severities.

• Average confidence regression (ACR): The average confidence of the classifier across the
entire dataset which is φπ(D) = 1

|D|
∑

x∈Dmax` π`(x).

• Difference of confidence regression (DCR) (Guillory et al., 2021): The average confidence
of the classifier across the entire dataset offset by the average confidence on the source
dataset, which is φπ(D) = 1

|D|
∑

x∈Dmax` π`(x)− 1
|DP |

∑
x∈DP max` π`(x), where DP

is the source dataset. Prediction is also for the offset target τ − τP .
We consider DCR in addition to ACR, because DCR performs better for predicting the
classifier accuracy (Guillory et al., 2021). Since the threshold τ found by conformal
calibration depends on the distribution of the confidences beyond the average, we propose
the below techniques for extracting more detailed information from the dataset.

• Confidence histogram-density regression (CHR): Variable dimensional (d = p) features
extracted as φπ(D) =

{
1
|D|
∑

x∈D 1{max` π`(x)∈[ j−1
p , jp ]}

}
j={1,...,p}

. This corresponds to

the normalized histogram density of the classifier confidence across the dataset, where p
is a hyperparameter that determines the number of histogram bins in the probability range
[0, 1]. Neural networks tend to be overconfident in their prediction which heavily skews the
histogram densities to the last bin. We also therefore consider a variant of CHR, dubbed
CHR-, where we have j = {1, . . . , p− 1} and hence d = p− 1, equivalent to dropping the
last bin of the histogram as a feature.

• Predicted class-wise average confidence regression (PCR): Features with dimen-
sionality equal to the number of classes (d = L) extracted as φπ(D) ={∑

x∈D πj(x)·1{l=arg max` π`(x)}∑
x∈D 1{l=arg max` π`(x)}

}
j={1,...,L}

. This corresponds to the average confidence of

the classifier across the samples for each predicted class.

4 EXPERIMENTAL RESULTS

For most experiments, we use ResNet-50 and DenseNet-121 as the backbone classifiers. We use the
following choices for the source distribution P and associated natural distribution shifts:
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ImageNet (Deng et al., 2009) distribution shifts: ImageNet is one of the most popular image
classification datasets. In our ImageNet experiments, we take ImageNet as the source distribution P
and we consider the following natural distribution shifts of ImageNet as the target distribution Q:

• ImageNetV2 (Recht et al., 2019) was constructed by following the same procedure as for
constructing and labeling the original ImageNet dataset. However, all standard models
perform significantly worse on ImageNetV2 relative to the original ImageNet testset.
• ImageNet-Sketch (Wang et al., 2019) contains sketch-like images of the objects in the

original ImageNet, but otherwise matches the original categories and scales.
• ImageNet-R (Hendrycks et al., 2021) contains artwork images of the ImageNet class objects

found in the web. ImageNet-R only contains images for a 200-class subset of the original
ImageNet. We don’t limit our experiments to this subset but instead consider the adverse
setting of calibrating on all 1000 classes since our main goal is to provide an end-to-end
solution for recalibration of the conformal predictors and we are interested in how well
our method performs against possible adversaries such as dataset imbalance that can be
encountered in practice.

For ImageNet and the above variations, we use a fixed ResNet-50 and DenseNet-121 that were
pretrained on the ImageNet training set.

BREEDS (Santurkar et al., 2021) distribution shifts: The BREEDS datasets were constructed
using the existing ImageNet images, but use different classes. BREEDS utilizes the hierarchical
WordNet structure of the classes to choose a parent class that makes the original ImageNet classes
the leaves. For example, in the BREEDS Living-17 dataset, one of the classes is domestic cat. This is
a parent class of several ImageNet classes, which are tiger cat, Egyptian cat, Persian cat and Siamese
cat. BREEDS induces a subpopulation shift from the source distribution to the target by assigning
these leaf classes exclusively to either the source or target. For example, the images in the source
dataset of Living-17 under the domestic cat class are that of either tiger cats or Egyptian cats, whereas
in the target are that of either Persian cats or Siamese cats. Therefore, despite having the same label
(domestic cat), the source and target distributions semantically differ due to the differences between
the breeds, which induces a subpopulation shift. We consider three BREEDS datasets: Entity-13,
Entity-30 and Living-17, which are named using the convention theme/object type–#classes. Since
we can’t use ImageNet pre-trained models (even with finetuning, as all layers have been trained on
all ImageNet classes already), we train a ResNet-18 model from scratch for the BREEDS datasets
such that the classifiers only sees examples from the source distribution.

For all experiments, we first calibrate the conformal predictor on the source distribution P to find the
cutoff threshold τP . For QTC and variants, we find the threshold q using the expression (5). For the
regression methods, we use the ImageNet-C dataset (Hendrycks & Dietterich, 2019) as the source of
synthetic distributions, find the cutoff threshold τ for each of the distributions, and fit a regressor by
minimizing the loss (9). For the regression function we use a 4-layer MLP with ReLU activations.
ImageNet-C consists of 90 different distributions obtained by synthetically perturbing the images of
ImageNet-Val for 18 different types of perturbations at 5 different levels of severity, resulting in 90
distinct distributions.

Recalibration experiments for a fixed target coverage. We first evaluate the recalibration meth-
ods for a fixed target coverage of 1− α = 0.9. The results in Figure 2 for recalibrating TPS show
that while regression methods can fall short on reducing the coverage gap, QTC is able to reduce
the coverage gap significantly and even close it in many cases. Often QTC works best, but for the
distribution shifts of BREEDS, QTC-SC performs better. This can be attributed to the difference of
the nature of shifts between ImageNet distributions and BREEDS distribution.

Recalibration experiments for different target coverage levels. The coverage gap (i.e., the dif-
ference of achieved coverages and targeted coverage) varies across the desired coverage level 1− α.
We there next evaluate the performance as a function of the desired coverage level. Figure 3 shows
the coverage obtained after recalibration TPS and APS for different values of 1− α for the natural
distribution shifts from ImageNet. Both QTC and QTC-SC close the coverage gap significantly for
all choices of 1− α, whereas the best performing regression-based baseline method, CHR-, fails to
consistently significantly improve the coverage gap across all choices of 1− α.
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Figure 3: Coverage obtained by TPS (top row) and APS (bottom row) on the target distribution Q
for various settings of (1−α) after recalibration with the respective prediction method. For regression
methods, only the best performing method of CHR- is shown. Both QTC and QTC-SC significantly
close the coverage gap across the range of 1 − α, while CHR- yields inconsistent or insufficient
performance improvements.

5 THEORETICAL RESULTS

We consider a simple binary classification distribution shift model from Nagarajan et al. (2021);
Garg et al. (2022), and adapt the analysis from Garg et al. (2022) to show that recalibrating provably
succeeds within this model. Specifically, we show that the conformal predictor TPS with QTC yields
the desired coverage of 1− α on the target distribution based on unlabeled examples.

We start by describing the distribution shift model from Garg et al. (2022). Consider a binary
classification problem with response y ∈ {−1, 1} and with two features x = [xinv, xsp] ∈ R2, an
invariant one and a spuriously correlated one. The source and target distributions P and Q over
the feature vector and label are defined as follows. The label y is uniform distributed over {−1, 1}.
The invariant fully-predictive feature xinv is uniformly distributed in an interval determined by the
constants c > γ ≥ 0, with the interval being conditional on y:

xinv|y ∼
{
U [γ, c] if y = 1

U [−c,−γ] if y = −1 . (10)

The spurious feature xsp is correlated with the response y such that P(x,y)∼P [xsp · y > 0] = pP ,
where pP ∈ (0.5, 1.0) for some joint distribution P . A distribution shift is modeled by simulating
target data with different degrees of spurious correlation such that P(x,y)∼Q [xsp · y > 0] = pQ,
where pQ ∈ [0, 1]. There is a distribution shift from source to target when pP 6= pQ. Two example
distributions P and Q are illustrated in Figure 4.

We consider a logistic regression classifier that predicts class probability estimates for the classes

y = −1 and y = 1 as f(x) =
[

1

1+ewT x
, ew

T x

1+ewT x

]
, where w = [winv, wsp] ∈ R2. Note that the

classifier with winv > 0 and wsp = 0 minimizes the misclassification error across all choices of
distributions P and Q (i.e., across all choices of p). However, a classifier learned by minimizing
the empirical logistic loss via gradient descent depends on both the invariant feature xinv and the
spuriously-correlated feature xsp, i.e., wsp 6= 0 due to the geometric skews on the finite data and
statistical skews of the optimization with finite gradient descent steps (Nagarajan et al., 2021).
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xinv
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xinv
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y = −1

y = +1

Figure 4: Example source and target distributions P and Q for the binary classification model,
and a classifier with winv, wsp = 1. The decision boundary is shown with a faded dotted line. The
correlation between the feature xsp and the label y is higher for the source than target (pP > pQ).

We consider the conformal predictor TPS (Sadinle et al., 2019) applied to this problem to generate
confidence sets. We extend the results of Garg et al. (2022, Theorem 3) and show that for a logistic
regression classifier described as above (i.e., winv > 0, wsp 6= 0), TPS recalibrated using QTC
provably yields 1− α coverage on the target distribution:

Theorem 1 (Informal). Consider the logistic regression classifier for the binary classification problem
described above with winv > 0, wsp 6= 0, let n be the number of samples for the source and target
datasets and α ∈ (0, ε) be a user-defined value, where ε is the error rate of the classifier on the
source. The coverage achieved on the target by recalibrating TPS on the source with the QTC estimate
obtained in (6) by finding the QTC threshold on the target as in (5) converges to 1− α as n→∞
with high probability.

First, we comment on the assumption on α. A value of α that is larger than the error rate of the
classifier would not make sense as it would result in empty confidence sets for a portion of the
examples in the dataset. This is because returning a confidence set consisting of the top prediction
alone always achieves a coverage of 1− ε by definition.

In order to understand the intuition behind Theorem 1, we first explain how the coverages is off under
a distribution shift in this model. Consider a classifier that depends positively on the spurious feature
(i.e., wsp > 0). When the spurious correlation is decreased from the source distribution to the target,
the error rate of the classifier increases. TPS calibrated on the source samples finds a threshold τ such
that the prediction sets yield 1− α coverage on the source dataset as n→∞. In other words, the
fraction of misclassified points for which the model confidence is larger than the threshold τ is equal
to α on the source. As the spurious correlation decreases and the error rate increases from source to
target, the fraction of misclassified points for which the model confidence is larger than the threshold
τ surpasses α, leading to a gap in targeted and actual coverage.

Now, we remark on how QTC recalibrates and ensures the target coverage is meet. Note that there
exists an unknown coverage 1− β that can be used to calibrate TPS on the source distribution such
that it yields 1 − α coverage on the target. Theorem 1 guarantees that QTC correctly estimates β
and therefore recalibration of the conformal predictor using QTC yields the desired coverage level of
1− α on the target.

6 CONCLUSION

We considered the problem of providing reliable uncertainty estimates for conformal prediction
algorithms under distribution shifts based on unlabeled examples. We propose a simple test-time
recalibration method dubbed Quantile Thresholded Confidence (QTC) that recalibrates conformal
predictors based only on unlabeled examples. QTC provably succeeds on the distribution shift model
from Nagarajan et al. (2021); Garg et al. (2022), and most importantly reduces, or even closes, the
coverage gap (i.e., the difference of achieved coverage and desired coverage) of conformal predictors
under distribution shifts for a variety of natural distribution shifts.
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A PROOF OF THEOREM 1

In this section, we state and prove a formal version of Theorem 1. Our results rely on adapting the
proof idea of Garg et al. (2022, Theorem 3) for predicting the classification accuracy of a model to
our conformal prediction setup.

Recall that we consider a distribution shift model for a binary classification problem with an invariant
predictive feature and a spuriously correlated feature, where a distribution shift is induced by the
spurious feature of the target distribution being more or less correlated with the label than the source
distribution (Nagarajan et al., 2021; Garg et al., 2022).

We consider a logistic regression classifier that outputs class probability estimates for the two classes
of y = −1 and y = +1 as

f(x) =

[
1

1 + ewTx
,

ew
Tx

1 + ewTx

]
,

where w = [winv, wsp] ∈ R2. The classifier with winv > 0 and wsp = 0 minimizes the misclassi-
fication error across all choices of distributions P and Q (i.e., across all choices of p). However, a
classifier learned by minimizing the empirical logistic loss via gradient descent depends on both
the invariant feature xinv and the spuriously-correlated feature xsp, i.e., wsp 6= 0 due to the geo-
metric skews on the finite data and statistical skews of the optimization with finite gradient descent
steps (Nagarajan et al., 2021).

In order to understand how geometric skews result in learning a classifier that depends on the spurious
feature, suppose the probability that the spurious feature agrees with the label is high, i.e., p is close
to 1.0. Note that in a finite-size training set drawn from this distribution, the fraction of samples for
which the spurious feature disagrees with the label (i.e., xsp 6= y) is small. Therefore, the margin on
the invariant feature for these samples alone can be significantly larger than the actual margin γ of
the underlying distribution. This implies that the max-margin classifier depends positively on the
spurious feature, i.e., wsp > 0. Furthermore, we assume that winv > 0, which is required to obtain
non-trivial performance (beating a random guess).

Conformal prediction in the distribution shift model. We consider the conformal prediction
method TPS (Sadinle et al., 2019) applied to the linear classifier described above. While other
conformal prediction methods such as APS and RAPS also work for this model, the smoothing
induced by the randomization of the model scores used in those conformal predictors would introduce
additional complexity to the analysis. TPS also tends to be more efficient in that it yields smaller
confidence sets compared to APS and RAPS at the same coverage level, see (Angelopoulos et al.,
2020, Table 9).

In the remaining part of this section, we establish Theorem 1, which states that TPS recalibrated on
the source calibration set with QTC achieves the desired coverage of 1− α on any target distribution
that has a (potentially) different correlation probability p for the spurious feature. We show this in
two steps:

First, we show that the oracle TPS that achieves 1− α coverage on the target distribution achieves
1 − β coverage on the source distribution. We then show that TPS calibrated to achieve 1 − β
empirical coverage on the source dataset achieves at least 1− α coverage on the target distribution,
as n→∞.

Second, we provide a bound on the deviation of the QTC estimate from the true value of β. We show
that in the infinite sample size case, the QTC estimate converges to the true value of β. Those two
steps prove Theorem 1.

Recall that the calibration of TPS entails identifying a cutoff threshold τ computed by the formula (2).
The set generating function of TPS for the linear classification problem described above simplifies to

CTPS(x, τ) = {` ∈ {0, 1} : f`(x) ≥ 1− τ} , (11)

where f0(x) and f1(x) are the first and second entry of f(x) as defined above.

We are only interested in the regime where the desired coverage level 1 − α is larger than the
classifier’s accuracy, or equivalently α < ε with ε being the error rate of the classifier. This is because
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a trivial method that constructs confidence sets with equal length of 1 for all samples (i.e., singleton
sets of only the predicted label) already achieves coverage of 1− ε.

Step 1: QTC relies on the fact that there exists an unknown β ∈ (0, 1) that can be used to calibrate
TPS on the source distribution such that it yields 1 − α coverage on the target. Here, we show
that TPS calibrated to achieve 1− β coverage on the source calibration set DPcal via computing the
threshold (2) achieves 1− α coverage on the target distribution Q as n→∞.

We utilize the following coverage guarantee of conformal predictors established by Vovk et al. (2005);
Lei et al. (2017); Angelopoulos et al. (2020):
Lemma 1. (Lei et al., 2017, Thm. 2.2), (Angelopoulos et al., 2020, Thm. 1, Prop. 1) Consider
(xi, yi), i = 1, . . . , n drawn iid from some distribution P . Let C(x, τ) be the conformal set generating
function that satisfies the nesting property in τ , i.e., C(x, τ ′) ⊆ C(x, τ) if τ ′ ≤ τ . Then, the conformal
predictor calibrated by finding τ∗ that achieves 1−α coverage on the finite set {(xi, y)}ni=1 as in (2)
satisfies the coverage over a sample (xn+1, yn+1) drawn from the same distribution P

P [yn+1 ∈ C(xn+1, τ
∗)] ≥ 1− α. (12)

Furthermore, assume that the variables si = s(xi, yi) = inf{τ : yi ∈ C(xi, τ)} for i = 1, . . . , n are
distinct almost surely. Then, the coverage achieved by the calibrated conformal predictor with the set
generating function C(x, τ) = {` ∈ Y : s(x, `) ≤ τ} is also accurate, in that it satisfies

P [yn+1 ∈ C(xn+1, τ
∗)] ≤ 1− α+

1

n+ 1
. (13)

Both the lower bound (12) and the upper bound (13) of Lemma 1 apply to TPS in the context of the
binary classification problem that we consider. To see this, we verify that TPS calibrated with the
set generating function (11) satisfies both assumptions of Lemma 1. First, note that TPS satisfies
the nesting property, since we have CTPS(x, τ ′) ⊆ CTPS(x, τ) for τ ′ ≤ τ . Next, note that for TPS
we have s(x, y) = fy(x). Further note that the linear logistic regression model we consider assigns
a distinct score to each data point and since the invariant feature xinv is uniformly distributed in a
continuous interval conditional on y, the variables si are distinct almost surely.

Now, consider the oracle TPS threshold τQα that achieves 1−α coverage, or equivalently α miscover-
age, on the target distribution, i.e.,

P(x,y)∼Q
[
y /∈ CTPS(x, τQα )

]
= α. (14)

Next, note that y /∈ CTPS(x, τQα ) if and only if argmaxj∈{0,1} fj (x) 6= y and maxj∈{0,1} fj (x) ≥
τQα . To see that, note that the confidence set returned by TPS is a singleton containing only the
top prediction of the model when the confidence of this prediction is higher than the threshold τQα .
Moreover, the confidence set returned by TPS for the binary classification problem above does not
contain the true label only when the confidence set is the singleton set of the top prediction of the
model and is different than the true label. Thus, equation (14) implies

P(x,y)∼Q

[
arg max

j∈{0,1}
fj (x) 6= y and max

j∈{0,1}
fj (x) ≥ τQα

]
= α. (15)

We define β as the miscoverage that the oracle TPS yields on the source distribution, i.e.,

β := P(x,y)∼P

[
arg max

j∈{0,1}
fj (x) 6= y and max

j∈{0,1}
fj (x) ≥ τQα

]
. (16)

We have β 6= α if there is a distribution shift from target to source.

Consider the threshold τ̂Pβ found by calibrating TPS on the set DPcal to achieve empirical coverage of
1− β as in (2). TPS with the threshold τ̂Pβ achieves coverage on the source distribution P as a result
of Lemma 1. Moreover, combining (12) with (13) at n→∞ yields exact coverage of 1− β on the
source distribution P . Thus, we have

P(x,y)∼P

[
arg max

j∈{0,1}
fj (x) 6= y and max

j∈{0,1}
fj (x) ≥ τ̂Pβ

]
= β. (17)

Comparing equation (17) to the definition of β in equation (16) yields τ̂Pβ = τQα . Therefore, it follows
that TPS calibrated to achieve 1− β coverage on the source calibration set DPcal as in (2) achieves
exactly 1− α coverage on the target distribution Q as n→∞.
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Step 2: In the second step, we show that QTC correctly estimates the value of β described above.
This is formalized in the theorem below.
Theorem 2. Given the logistic regression classifier for the binary classification problem described
above with any winv > 0, wsp 6= 0, assume that the threshold q for QTC is computed using a dataset
DQ consisting of n samples, sampled from some target distribution Q, such that

1

n

∑
x∈DQ

1{maxj∈{0,1} fj(x)<q} = α. (18)

Consider the oracle TPS conformal predictor with conformal threshold τQα , i.e., the predictor that
achieves 1− α coverage on the target distribution Q. Denote with 1− β the coverage achieved on
the source distribution P by this oracle TPS. Fix a δ > 0. The QTC estimate of the miscoverage β,
denoted by

βQTC =
1

|DPcal|
∑

x∈DPcal

1{s(π(x))<q}, (19)

satisfies the following inequality with probability at least 1−δ over a randomly drawn set of examples
DQ

|βQTC − β| ≤
√

2 log(16/δ)

n · csp
, (20)

where csp = (1− pQ) · (1− pP)2 if wsp > 0 and csp = pQ · (pP)2 otherwise.

Proof. We adapt the proof idea of Garg et al. (2022, Theorem 3), which pertains to the problem of
estimating the classification error of the classifier on the target, to estimating the source coverage of
the oracle conformal predictor that achieves 1− α coverage on the target distribution.

For notational convenience, we define the event that a sample (x, y) is not in the prediction set of the
oracle TPS with conformal threshold τQα (i.e., y /∈ CTPS(x, τQα )) as

Emc = {y /∈ CTPS(x, τQα )}
= {arg max

j∈{0,1}
fj (x) 6= y and max

j∈{0,1}
fj (x) ≥ τQα }.

The infinite sample size case (n→∞). In this part we show that as n→∞, the QTC estimate
βQTC found as in (19) converges to the source miscoverage β to illustrate the proof idea. For n→∞,
the QTC estimate βQTC in (19) becomes

βQTC = E(x,y)∼P
[
1{maxj∈{0,1} fj(x)≤q}

]
= P(x,y)∼P

[
max
j∈{0,1}

fj (x) < q

]
= P(x,y)∼P [Emc] (21)

= β,

where the last equality is the definition of β as given in equation (16). The critical step is equation (21),
which we establish in the remainder of this part of the proof.

First, we condition on the label y. Using the law of total probability, we get

P(x,y)∼P

[
max
j∈{0,1}

fj (x) < q

]
= Px∼P|y=−1

[
max
j∈{0,1}

fj (x) < q

]
· P(x,y)∼P [y = −1]

+ Px∼P|y=+1

[
max
j∈{0,1}

fj (x) < q

]
· P(x,y)∼P [y = +1]

(i)
=

1

2
· Px∼P|y=−1

[
max
j∈{0,1}

fj (x) < q

]
+

1

2
· Px∼P|y=+1

[
max
j∈{0,1}

fj (x) < q

]
(ii)
= Px∼P|y

[
max
j∈{0,1}

fj (x) < q

]
. (22)
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For equation (i), we used that y is uniformly distributed across {−1, 1}, and for equation (ii) that
x is symmetrically distributed with respect to the label y. That is, we have xinv ∼ U [−c,−γ] and
P [xsp = −1] = p if y = −1 and xinv ∼ U [γ, c] and P [xsp = +1] = p if y = +1, so the two
probabilities in (i) are equal.

We can further expand the expression for the probability Px∼P|y
[
maxj∈{0,1} fj (x) < q

]
by addi-

tionally conditioning on the spurious feature xsp, which yields

P(x,y)∼P

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼P|y,xsp=y

[
max
j∈{0,1}

fj (x) < q

]
· Px∼P|y [xsp = y]

+ Pxinv∼P|xsp 6=y

[
max
j∈{0,1}

fj (x) < q

]
· Px∼P|y [xsp 6= y] .

(23)

In order to simplify the expression in the RHS of equation (23), we consider the cases of wsp > 0
and wsp < 0 separately. If wsp > 0, we have maxj∈{0,1} fj (x) > q if xsp = y. Therefore, we have
Pxinv∼P|y,xsp=y

[
maxj∈{0,1} fj (x) < q

]
= 0 if wsp > 0 and equation (23) simplifies to

P(x,y)∼P

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼P|xsp 6=y

[
max
j∈{0,1}

fj (x) < q

]
· Px∼P|y [xsp 6= y]

= Pxinv∼P|xsp 6=y

[
max
j∈{0,1}

fj (x) < q

]
· (1− pP). (24)

Similarly, if wsp < 0, we have maxj∈{0,1} fj (x) > q if xsp 6= y, and equation (23) becomes

P(x,y)∼P

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼P|xsp=y

[
max
j∈{0,1}

fj (x) < q

]
· Px∼P|y [xsp = y]

= Pxinv∼P|xsp=y

[
max
j∈{0,1}

fj (x) < q

]
· pP . (25)

We next follow the same steps that we carried out above for P(x,y)∼P
[
maxj∈{0,1} fj (x) < q

]
to

rewrite the probability P(x,y)∼P [Emc]. If wsp > 0, the classifier makes no errors if xsp = y and only
misclassifies a fraction of examples if xsp 6= y. Therefore, we have

Px∼P|y [Emc] = Pxinv∼P|xsp 6=y [Emc] · Px∼P|y [xsp 6= y]

= Pxinv∼P|xsp 6=y [Emc] · (1− pP). (26)

Similarly, for wsp < 0, we have

Px∼P|y [Emc] = Pxinv∼P|xsp 6=y [Emc] · Px∼P|y [xsp = y]

= Pxinv∼P|xsp 6=y [Emc] · pP . (27)

Therefore, in order to establish equation (21), it suffices to show

Pxinv∼P|y,xsp 6=y

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼P|y,xsp 6=y [Emc] , for wsp > 0 and (28)

Pxinv∼P|y,xsp=y

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼P|y,xsp=y [Emc] , for wsp < 0. (29)

The feature xinv is identically distributed conditioned on y, i.e., uniformly distributed in the same
interval, regardless of the underlying source or target distributions P andQ. Therefore, equations (28)
and (29) are equivalent to

Pxinv∼Q|y,xsp 6=y

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼Q|y,xsp 6=y [Emc] , for wsp > 0 and (30)

Pxinv∼Q|y,xsp=y

[
max
j∈{0,1}

fj (x) < q

]
= Pxinv∼Q|y,xsp=y [Emc] , for wsp < 0. (31)
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Equations (30) and (31) in turn follow from

P(x,y)∼Q

[
max
j∈{0,1}

fj (x) < q

]
= P(x,y)∼Q [Emc] , (32)

by carrying out the same steps that we carried out to expand the probabilities Px∼P|y [Emc] and
P(x,y)∼P [Emc] starting from equation (32) to establish equations (28) and (29). Equation (32) in turn
is a consequence of combining (15) with (18) at n→∞. This establishes equation (21), as desired.

The finite sample case: We next show that the desired results approximately hold with high
probability over a randomly drawn finite-sized set of examplesDQ. We bound the difference between
the LHS and RHS of (30) and (31) with high probability.

First, consider the case of wsp > 0. Recall that for the case of wsp > 0 we are interested in the
regime where wsp 6= y. We denote the set of points in the target set DQ for which the spurious
feature disagrees with the label as

XD = {i = 1, . . . , n : xsp 6= y, (xi, yi) ∈ DQ},
and denote the set of points for which the spurious feature agrees with the label as

XA = {i = 1, . . . , n : xsp = y, (xi, yi) ∈ DQ}.

Note that the QTC threshold q found on the entire set DQ as in (18) satisfies

1

|XD|
∑
i∈XD

1{maxj∈{0,1} fj(xi)<q} =
1

|XD|
∑
i∈XD

1{Emc(xi,yi)}, (33)

which follows from noting that the classifier only makes an error on the subset XD if wsp > 0
and therefore the only points for which the event Emc is observed lie in the set XD. Similarly, as
established before in the infinite sample case, we have 1{maxj∈{0,1} fj(xi)<q} = 0 for all i ∈ XD.

By the Dvoretzky-Kiefer-Wolfowitz-Massart (DKWM) inequality, for any q > 0 we have with
probability at least 1− δ/8∣∣∣∣∣ 1

|XD|
∑
i∈XD

1{maxj∈{0,1} fj(xi)<q} − Exinv∼Q|y,xsp 6=y
[
1{maxj∈{0,1} fj(x)<q}

]∣∣∣∣∣ ≤
√

log(16/δ)

2|XD|
.

(34)

Plugging equation (33) into (34), we have with probability at least 1− δ/8∣∣∣∣∣Exinv∼Q|y,xsp 6=y
[
1{maxj∈{0,1} fj(x)<q}

]
− 1

|XD|
∑
i∈XD

1{Emc}

∣∣∣∣∣ ≤
√

log(16/δ)

2|XD|
. (35)

We next bound the second term in the LHS of equation (35) from its expectation. Using Hoeffding’s
inequality, we have with probability at least 1− δ/8∣∣∣∣∣ 1

|XD|
∑
i∈XD

1{Emc} − Exinv∼Q|y,xsp 6=y
[
1{Emc}

]∣∣∣∣∣ ≤
√

log(16/δ)

2|XD|
. (36)

Combining equations (35) and (36) using the triange inequality and union bound, we have with
probability at least 1− δ/4∣∣∣Exinv∼Q|y,xsp 6=y

[
1{maxj∈{0,1} fj(x)<q}

]
− Exinv∼Q|y,xsp 6=y

[
1{Emc}

]∣∣∣ ≤√2 log(16/δ)

|XD|
. (37)

Recall that the invariant feature xinv is uniformly distributed in the same interval con-
ditioned on y regardless of the source or target distributions P and Q and that
Pxinv|y,xsp=y

[
maxj∈{0,1} fj (x) > q

]
= Pxinv|y,xsp=y

[
argmaxj∈{0,1} fj (x) 6= y

]
= 0 for the
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case of wsp > 0 as shown before. Therefore, by dividing both sides of (37) with 1/Px∼P|y [xsp 6= y]
we have with probability at least 1− δ/4∣∣∣E(x,y)∼P

[
1{maxj∈{0,1} fj(x)<q}

]
− E(x,y)∼P

[
1{Emc}

]∣∣∣ ≤ 1

Px∼P|y [xsp 6= y]

√
2 log(16/δ)

|XD|

=
1

1− pP

√
2 log(16/δ)

|XD|
.

(38)

For the case of wsp < 0, we can show an analogous result by noting that the above results can be

shown on the setXA, where xsp = y. Specifically, noting that
1

|XA|
∑
i∈XA 1{maxj∈{0,1} fj(xi)<q} =

1

|XA|
∑
i∈XA 1{Emc} if wsp < 0 and following exactly the same steps from equation (33) onward

that lead to equation (38), we have with probability at least 1− δ/4∣∣∣E(x,y)∼P
[
1{maxj∈{0,1} fj(x)<q}

]
− E(x,y)∼P

[
1{Emc}

]∣∣∣ ≤ 1

pP

√
2 log(16/δ)

|XA|
. (39)

Using Hoeffding’s inequality we can further bound the RHS of (38) and (39). For the set XD, we
have with probability at least 1− δ/2∣∣|XD| − n · (1− pQ)∣∣ ≤√ log(4/δ)

2n
, (40)

and for the set XA, we have with probability at least 1− δ/2∣∣|XA| − n · pQ∣∣ ≤√ log(4/δ)

2n
. (41)

We next bound the difference between the finite sample QTC estimation on the source from its
expectation. By DKWM inequality, for any q > 0 we have with probability at least 1− δ/4∣∣∣∣∣∣ 1

|DPcal|
∑

x∈DPcal

1{maxj∈{0,1} fj(x)<q} − E(x,y)∼P
[
1{maxj∈{0,1} fj(x)<q}

]∣∣∣∣∣∣ ≤
√

log(8/δ)

2n
. (42)

We first show the result for the case wsp > 0. Combining equations (38) and (42) using the triangle
inequality and union bound, we have with probability at least 1− δ/2∣∣∣∣∣∣ 1

|DPcal|
∑

x∈DPcal

1{maxj∈{0,1} fj(x)<q} − E(x,y)∼P
[
1{Emc}

]∣∣∣∣∣∣ ≤ 1

1− pP

√
2 log(16/δ)

|XD|
. (43)

Plugging in the definitions of βQTC in (19) and β in (16) above, equivalently we get

|βQTC − β| ≤
1

1− pP

√
2 log(16/δ)

|XD|
, (44)

which holds with probability at least 1 − δ/2. Combining (44) with (40) proves equation (20) for
wsp > 0, as desired.

Similarly, for the case wsp < 0, following the same steps by first combining equation (39) with (42),
we have with probability at least 1− δ/2

|βQTC − β| ≤
1

pP

√
2 log(16/δ)

|XA|
. (45)

Combining (45) with (41) yields equation (20), as desired, for the case wsp < 0, which concludes the
proof.
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Figure 5: Coverage (top row) and the average set size (bottom row) obtained by TPS on the target
distribution Q = DomainNet-Infograph for various settings of (1− α) after recalibration with QTC
(ours) and covariate shift based methods of WSCI (Tibshirani et al., 2019) and PS-W (Park et al.,
2022). We show the results for the setting where all domains (including the target) are available as
the source (left) as well as for the setting where all domains are available at training time but only
the DomainNet-Real domain is available for the source at calibration time (right). For the setting of
P = DomainNetAll, WSCI closes the coverage gap while QTC considerably improves it, whereas
for the setting of P = DomainNetReal, QTC slightly outperforms WSCI. In both settings, PS-W
fails by constructing uninformatively large confidence sets for the range 1− α > 0.9 and QTC-SC
and QTC-ST fail to successfully recalibrate the conformal predictor.

B COMPARISON TO METHODS BASED ON ESTIMATING A COVARIATE SHIFT

In this section, we compare the performance of QTC to methods that assume a covariate shift as a
distribution shift, and recalibrate by estimating the amount of covariate shift from unlabeled target
data (Tibshirani et al., 2019; Park et al., 2022).

Covariate shift refers to the case where the conditional distribution of the label y given the feature
vector x is fixed across the source and target distributions, but the marginal distribution of the feature
vectors differ. Specifically, we have

source : (x, y) ∼ P = pP(x)× p(y|x)
target : (x, y) ∼ Q = pQ(x)× p(y|x),

where pP(x) and pQ(x) are the marginal PDFs of the feature vector x, p(y|x) is the conditional PDF
of the label y, and pP(x) 6= pQ(x).

In order to account for the covariate shift, the methods from (Tibshirani et al., 2019; Park et al., 2022)
utilize an approach called weighted conformal calibration. In weighted conformal calibration, the
likelihood ratio of the covariate distributions, i.e., w(x) = pQ(x)/pP(x), is used to weigh the scores
used for the set generating function of the conformal predictor for each sample (x, y) ∈ DPcal.
The weights w(x) are called the importance weights (IWs) and the conformal predictor calibrated on
a source calibration set with the true importance weights (if known) for a given target distribution
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is guaranteed to achieve the desired coverage on the target, see Tibshirani et al. (2019, Cor. 1). In
practice, the true IWs are not known and are therefore estimated heuristically.

In general, covariate shift is not well defined for complex tasks such as image classification. We
therefore follow the experimental setup of Park et al. (2022) and consider a backbone ResNet-101
classifier trained using unsupervised domain adaptation based on training sets sampled from both
the source and target distribution. Furthermore, following Park et al. (2022), we train an auxillary
classifier (discriminator) g that yields probability estimates of a given input example being drawn from
the source distribution or the target distribution. For the weighted split conformal inference (WSCI)
method of Tibshirani et al. (2019), we estimate the importance weights using this discriminator g.
For the PAC prediction sets method of Park et al. (2022) based on rejection sampling (PS-W), we
estimate the importance weights using histogram density estimation over the output probabilities of
the discriminator g on the unlabeled examples of the source and target calibration sets. We use TPS
as the conformal predictor for all of the considered methods. For details on the experimental setup
for the covariate shift based methods, see Park et al. (2022, Sec. 4.1)

Note that QTC is significantly more versatile compared to the above covariate shift based methods
in that QTC applies in the setting where labeled examples from the target distribution may not be
available during training to train an auxillary source-target discriminator, which is required to estimate
the importance weights for the covariate shift based methods (Tibshirani et al., 2019; Park et al.,
2022).

In order to compare QTC to WSCI and PS-W, following Park et al. (2022), we consider the DomainNet
distribution shift problem (Peng et al., 2019). We first consider the original setup of Park et al. (2022),
where the source distribution comprises of multiple domains and the target distribution corresponds
to only specific domain out of these multiple domains. Specifically, the source distribution contains
examples from all six domains of the DomainNet dataset, which are DomainNet-Sketch, DomainNet-
Clipart, DomainNet-Painting, DomainNet-Quickdraw, DomainNet-Real, and DomainNet-Infograph.
In contrast, the target distribution contains examples from only the DomainNet-Infograph domain.
We focus on the DomainNet-Infograph domain for the target distribution as the performance drop
for other choices of the target domains are considerably small or even negligible even without any
recalibration (see Park et al. (2022, Table 1)). We also consider a more challenging scenario in which
all domains are available at training time, but only a single domain (different than the target) is
available for the source at calibration time. For this setting, inspired by the ImageNet distribution
shift setups, we consider the DomainNet-Real domain that features real images as the source and the
DomainNet-Infograph domain as the target.

We present our findings in Figure 5. The results show that when the source includes all the domains,
WSCI outperforms other methods. However, when only DomainNet-Real is available for the source
at calibration time, QTC slightly outperforms WSCI. In both settings, PS-W fails if α is chosen
such that 1− α > 0.9, by constructing uninformatively large confidence sets that tend to contain all
possible labels. On the other hand, QTC and WSCI tend to construct similarly sized confidence sets
consistently across the range of 1− α. Note that while QTC considerably closes the coverage gap in
both setups, QTC-SC and QTC-ST fail to improve the coverage gap. We believe this might be due to
the fact that ResNet-101 trained with domain adaptation tends to yield very high confidence across
all examples. While a separate discriminator that uses the representations of the ResNet-101 before
the fully-connected linear layer is utilized for the covariate shift based methods, this is not the case
for QTC and its variants. Therefore, the threshold found by QTC-SC and QTC-ST tends to be very
close or even equal to 1.0, hindering the performance.

C RAPS RECALIBRATION EXPERIMENTS

APS is a powerful yet simple conformal predictor. However, other conformal predictors (Sadinle
et al., 2019; Angelopoulos et al., 2020) are more efficient (in that they have on average smaller
confidence sets for a given desired coverage 1− α).

In this section, we focus on the conformal predictor proposed by Angelopoulos et al. (2020), dubbed
Regularized Adaptive Prediction Sets (RAPS). RAPS is an extension of APS that is obtained by
adding a regularizing term to the classifier’s probability estimates of the higher-order predictions
(i.e., subsequent predictions after the top-k predictions). RAPS is more efficient and tends to produce
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Figure 6: Coverage obtained by RAPS on the target distribution Q for various settings of (1− α) w/
and w/o recalibration using QTC.

smaller confidence sets when calibrated on the same calibration set as APS, as it penalizes large
sets. While TPS tends to achieve slightly better results in terms of efficiency compared to RAPS,
see (Angelopoulos et al., 2020, Table 9), RAPS coverage tends to be more uniform across different
instances (in terms of difficult vs. easy instances) and therefore RAPS still carries practical relevance.

Recall that while efficiency can be improved by constructing confidence sets more aggressively,
efficient models tend to be less robust, meaning the coverage gap is greater when there is distribution
shift at test time. For example, when calibrated to yield 1− α = 0.9 coverage on ImageNet-Val and
tested on Image-Sketch, the coverage of RAPS drops to 0.38 in contrast to that of APS, which only
drops to 0.64 (see Section 2). It is therefore of great interest to understand how QTC performs for
recalibration of RAPS under distribution shift.

RAPS is calibrated using exactly the same conformal calibration process as APS and only differs
from APS in terms of the prediction set function C(x, u, τ). The prediction set function for RAPS is
defined as

CRAPS(x, u, τ) =

` ∈ {1, . . . , L} :
`−1∑
j=1

[π(j)(x) + 1{j−kreg>0} · λ︸ ︷︷ ︸
regularization

] + u · π(`)(x) ≤ τ

 , (46)

where u ∼ U(0, 1), similar to APS and λ, kreg are the hyperparameters of RAPS corresponding to
the regularization amount and the number of top non-penalized predictions respectively.

Note that the cutoff threshold τP obtained by calibrating RAPS on some calibration set DPcal can be
larger than one due to the added regularization. Therefore, in order to apply QTC-ST, we map τP
back to the [0, 1] range by dividing by the total scores after added regularization. QTC and QTC-SC
do not require such an additional step as the coverage level α ∈ [0, 1] by definition. We show the
results of RAPS’ performance under distribution shift with or without calibration by QTC in Figure 6.
The results show that while QTC is not able to completely mitigate the coverage gap, it significantly
reduces it.

Recall that RAPS utilizes a hyperparameter λ, which is the added penalty to the scores of the
predictions following the top-kreg predictions, that can significantly change the cutoff threshold τP

when we calibrate on the calibration set DP . The regularization amount λ also implicitly controls
the change in the cutoff threshold

∣∣τQ − τP ∣∣ when the conformal predictor is calibrated on different
distributions P and Q. That is, the value of

∣∣τQ − τP ∣∣ increases with increasing λ as long as the
distributions P and Q are meaningfully different, as is the case for all the distribution shifts that we
consider.

Therefore, a good recalibration method should be relatively immune to the choice of λ in order to
successfully predict the threshold τQ based only on unlabeled examples. In Figure 7, we show the
performance of RAPS under the ImageNetV2 distribution shift for various values of λ. While QTC
is able to improve the coverage gap for various choices of λ, the best performing regression-based
baseline method does not generalize well to natural distribution shifts when λ is relatively large. In
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Figure 7: Coverage obtained by RAPS on the target distribution Q (ImageNetV2) for kreg = 2
and various settings of λ when the threshold τ is replaced with the predicted threshold τ̂ with the
respective prediction method. For regression methods, only the best performing method of CHR- is
shown.
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Figure 8: Coverage obtained by RAPS on the target distributionQ for λ = 0.1 and various settings of
(1− α) when the threshold τ is replaced with the predicted threshold τ̂ with the respective prediction
method. For regression methods, only the best performing method of CHR- is shown.

contrast, as demonstrated in Figure 8, when the regularization amount λ is relatively small, the best
performing regression-based method of CHR- does very well in reducing the coverage gap of RAPS
under various distribution shifts.
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