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Abstract

In Automated Planning (AP) a proper definition of the do-
main and problem files is assumed. However, producing com-
plete model descriptions is a time consuming and challenging
task, especially for non-experts. It is easy to make mistakes
when creating formal models, turning the planning task un-
solvable for the planners. This can happen if the initial state
is not fully and properly specified, some actions are miss-
ing, or some actions are incomplete. Explaining the absence
of solution in such cases is essential to help humans in the
development of AP tasks. In this paper we focus on repair-
ing planning models where the effects of some actions are
incomplete. We propose a compilation of the unsolvable task
to a new extended planning task, where the actions are al-
lowed to insert possible missing effects. The solution to such
task is a plan that achieves the goals of the original problem
while also warning about the modifications that were neces-
sary to do so. Experimental results show this approach can
be effectively used to repair incomplete planning tasks across
different planning domains.

1 Introduction
Automated Planning (AP) is a general problem-solving tech-
nique for a wide range of scenarios and goals (Ghallab, Nau,
and Traverso 2004). Planning tasks are usually defined by a
domain description, which specifies all available actions and
the predicates used to describe the states; and a problem de-
scription that contains the initial and goal states. Given a
solvable and well-defined task, and assuming infinite mem-
ory and time resources, a planner will return a solution.
However, there are some scenarios where neither complete-
ness nor correctness in the planning task specification can
be ensured (Kambhampati 2007). Flaws in the task model
can appear due to a noisy acquisition process, because do-
main engineers are not experts in the description language
or because they do not have deep knowledge of the current
task, specially when the domain is difficult to represent. This
can lead to a wrong or incomplete specification of the initial
state, or an inaccurate actions’ definition. Such issues can
turn the planning task unsolvable: due to a loss of informa-
tion, there is no way to achieve the goals from the initial
state.
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Previous works have considered initial states from which
the goals cannot be achieved (Sreedharan et al. 2019;
Göbelbecker et al. 2010). They provide explanations and
different alternatives which would turn the task solvable, al-
though they do not consider alterations in the domain and as-
sume a proper specification. But just making changes to the
initial state is not enough in some cases. Let us consider the
well known barman domain (Linares López, Jiménez Celor-
rio, and Garcı́a-Olaya 2015), where a robot prepares drinks
using glasses that need to be empty and clean to be filled.
Forgetting to include the action effect that cleans the glass
(Figure 1) will turn the task unsolvable, but setting the glass
as clean in the initial state will not solve the problem, since
it will get dirty again. A better option would be to repair the
operator and allow the robot to clean the glass.

(:action clean-shot

:pareters (?s - shot ?b - beverage ?h1 ?h2 - hand)

:precondition (and (holding ?h1 ?s) (handempty ?h2)

(empty ?s) (used ?s ?b))

:effect (and (not (used ?s ?b)) (clean ?s)))

Figure 1: Action to clean a shot. If the positive effect
(clean ?s) is removed, the planner is not able to find a plan.

Due to the number of potential changes to the set of
operators, repairing faulty domains is not trivial. Previous
works focusing on incomplete domains assume guidelines
from the user side to supply the lack of knowledge (Mc-
Cluskey, Richardson, and Simpson 2002; Simpson, Kitchin,
and McCluskey 2007; Nguyen, Sreedharan, and Kambham-
pati 2017; Garland and Lesh 2002).

This paper introduces domain reparation procedure based
on AP for cases where some action effects are missing, with-
out receiving additional information to the unsolvable task.
Since some of the common mistakes when modelling an AP
task are more likely to return an erroneous or undesirable
plan (which can be supervised by the user), in this work we
consider unsolvable tasks, where no plan is provided by the
planner. Specifically, we focus on the absence of positive ac-
tion effects, which can seriously affect the task solvability.
Given a domain with incomplete positive effects for some
actions, we compile the unsolvable task into a new extended
plannning task, providing operators to repair any action of



the underlying domain with possible missing positive ef-
fects. The solution is a plan that achieves the goals while
also including warnings about the modifications made to re-
pair the domain model.

In the remainder of the paper we present the background
in AP, followed by the problem formulation in Section 3.
The compilation of the extended planning task is detailed in
Section 4. Section 5 contains some problems related to do-
main reparation identified in the course of this work. We pro-
pose a metric to address them, detailed in the same section.
Sections 6 and 7 include the experiments conducted and a
discussion about our approach. Finally, we discuss some re-
lated works and draw the main conclusions of our work.

2 Background
Automated Planning tasks define problems which solutions
are sequences of actions, called a plans, that achieve the
problem goals when applied to specific initial states. We
use the first-order (lifted) planning formalism, where a clas-
sical planning task is a pair Π = (D, I), where D is the
planning domain and I defines a problem instance. A plan-
ning domain is a tuple D = ⟨H, C,P,A⟩; where H is a
type hierarchy; C is a set of (domain) constants; P is a
set of predicates defined by the predicate name, and the
types of its arguments; and A is a set of action schemas.
If p(t) ∈ P is an n-ary predicate, and t = t1, . . . , tn are
either typed constants or typed free variables, then p(t) is
an atom. An atom is grounded if its arguments do not con-
tain free variables. Action schemas a ∈ A are tuples a =
⟨name(a), par(a), pre(a), add(a), del(a), cost(a)⟩, defin-
ing the action name; the action parameters (a finite set of free
variables); the preconditions, add and delete lists; and the ac-
tion cost. pre(a) is a set of atoms representing what must be
true in a state to apply the action. add(a) and del(a) rep-
resent the changes produced in a state by the application of
the action (added and deleted atoms, respectively). A prob-
lem instance is a tuple I = ⟨O, I,G⟩, where O is a set of
typed constants representing problem-specific objects; I is
the set of ground atoms in the initial state; and finally, G is
the set of ground atoms defining the goals.

Grounded actions a are obtained from action schemas a
by substituting the free variables in the action schema’ pa-
rameters by constants in O. A grounded action a is appli-
cable in an state s if pre(a) ⊆ s. When a grounded ac-
tion is applied to s we obtain a successor state s′, defined
as s′ = {s \ del(a)} ∪ add(a). A plan π is a sequence
of grounded actions a1, . . . , an such that each ai is appli-
cable to the state si−1 generated by applying a1, . . . , ai−1
to I; a1 is applicable in I; and the consecutive applica-
tion of all actions in the plan generates a state sn contain-
ing the goals, G ⊆ sn. The cost of a plan is defined as
cost(π) =

∑
ai∈π

cost(ai). Optimal plans are those with
minimum cost.

3 Problem Formulation
We assume the previous lifted formalism to represent plan-
ning tasks, where planners usually rely on correctly and fully
specified models. Incompleteness or flaws in these models

may result in the unsolvability of the task. And thus, the
design of methods to repair automatically those incomplete
planning models is a challenging research direction. This
work aims to address such issues considering domain mod-
els with incomplete action definitions, giving rise to plan-
ning tasks where some necessary actions to achieve the goals
do not generate all required positive effects, and these effects
are also not generated by any other action, turning the task
unsolvable. We define such domains as add-incomplete. For-
mally:

Definition 1 (Add-incomplete planning domain). A plan-
ning domain D− = ⟨H, C,P,A−⟩ is add-incomplete wrt.
an underlying planning domain D = ⟨H, C,P,A⟩ iff:

• They define the same actions schemas with the same pa-
rameters (i.e. there is a one-to-one correspondence be-
tween action schemas);

• For every pair of corresponding action schemas, a ∈ A
and a− ∈ A−:

a− = ⟨name(a), par(a), pre(a), add−(a), del(a)⟩

where add−(a) ⊆ add(a); and
• There is at least one action schema in A− for which
add−(a) ⊂ add(a).

For an add-incomplete domain there always exists at least
one a− ∈ A− whose positive effects are a proper subset of
the original action a ∈ A. We will focus just on the cases
where the missing effects turn the task unsolvable. In any
other case, the found plan may not be semantically correct,
but this might be more difficult to be detected automatically.
For this work, we consider unitary actions for the under-
lying domain. Following the barman running example, an
add-incomplete planning task could have the missing effect
(clean ?s) for the action clean-shot. Since the glass has to
be clean to prepare the beverage and no other actions can
clean it, the task has no solution. Considering that differ-
ent flaws can be spread over all the domain, other actions
may also have missing positive effects. The solution consists
in repairing the actions of the add-incomplete domain with
additional add effects, so that the resulting planning task is
solvable. Formally:

Definition 2 (Repairing set). Given an add-incomplete
planning domain D− = ⟨H, C,P,A−⟩, with actions
schemas a−i ∈ A−, a repairing set R = {Ri}i=1,...,|A−|,
defines collections of atoms Ri = {p(t) | p ⊆ P, t ⊆
par(a−i )} that extend the add effects of every action a−i , re-
sulting in a new (repaired) domain DR = ⟨T , C,P,AR⟩
with add(aRi ) = add(a−i ) ∪Ri.1

We will denote the repaired domain as DR = D− ⊕ R.
The repairing set R extends the action effects with new pos-
itive effects, provided that the terms in t for every p(t) also
appear in the parameters of the action being repaired. As-
suming that the domain of the underlying task corresponds
the correct mental model in the mind of the designer, we are
interested in finding the precise repairing set that extends the

1Note that the repairing set can be empty for some actions.



incomplete domain, generating exactly the underlying men-
tal domain. We denote it as the true repairing set, defined as
follows:

Definition 3 (True repairing set). Given an add-incomplete
planning domain D− wrt. another planning domain D , the
true repairing set, R∗, generates a repaired domain DR∗

=
D− ⊕R∗ which is exactly D, DR∗

= D.

This is trivial if D is known. However, when repairing
D− we have no information about the underlying domain
and how to fix it, which may lead to estimated reparations.
Considering the barman domain again and according to that,
a solution may not fix the action clean-shot with the clean
effect, linking the predicate to another action instead. But
we consider it a solution of the problem since it makes the
task solvable. We formally define the problem to solve as:

Definition 4 (Uninformed repairing problem). Given an
unsolvable planning task Π− = (D−, I) with an add-
incomplete domain wrt. the unkown domain of an assumed
solvable planning task Π = (D, I), the uninformed repair-
ing problem consists of determining a repairing set R̂ so that
the planning task ΠR̂ = (DR̂, I), with DR̂ = D− ⊕ R̂, is
solvable.

The objective of the uninformed repairing problem is to
find the missing effects R̂ that allow to extend Π− in a way
that the resulting task, ΠR̂, is solvable, ideally getting the
repair to match the resulting domain with the domain of the
underlying task. It is important to highlight that Π and R are
unknown. Our approach to solve the problem is the topic of
the next section.

4 Compilation to Classical Planning
In order to solve the uninformed repairing problem we per-
form a compilation of Π− to a new extended planning task
Π′, provided with operators to repair any of the domain ac-
tions. At the conceptual level, every action scheme is now
divided into three different parts: (1) the action in the origi-
nal domain, (2) the reparation of the action and (3) the end
of the reparation, where the current action is closed. Con-
sidering the running example, the planner first instantiates
the clean-shot action. Since it is incomplete and it can not
continue without actually cleaning the glass, it will fix it by
applying a repair operator and, if no further repairs are nec-
essary for that action, it will close such phase and continue
with other actions. This process is repeated until the goals
are achieved. If an action does not need to be repaired, it is
closed without reparation.

To manage such reparation we need to have access to the
planning task elements. First, the original type hierarchy is
extended with new types yielding to a new type hierarchy
H′, shown in Figure 2. Types action and type (denoted in
the remainder of the paper as o act and o type, respectively)
are used to provide information about the different action
and type names present in the original domain D−. item
(denoted as o item) represents original domain objects and
predicate names which are both elements required to repair
the planning task. We use object domain (denoted as o obj)

Figure 2: Hierarchy type proposed for the new extended
planning task.

as an abstract object for summarizing the type hierarchy in
the original domain.

The following new domain constants are introduced:
• Constants of type o act to represent action names:

Ca = {name(a) | a ∈ A}

• Constants of type o type to represent the types in the
original hierarchy:

Ct = {ttype | type ∈ H}

• Constants of type o pred to represent the names of the
predicates in the original domain.

Cp = {p | p(t) ∈ P}

Examples of them can be seen in Figures 3 and 4. The
former contains the types redefinition according to the pre-
sented hierarchy, color highlighting the new ones introduced
in the compilation, whereas the second shows how the types
action, type and predicate are instantiated through domain
constants.

(:types

action type item - object

predicate objectdomain - item

hand level beverage dispenser container - objectdomain

ingredient cocktail - beverage

shot shaker - container)

Figure 3: Reformulated types definition in Π′.

(:constants

grasp leave fill-shot clean-shot ... - action

handempty empty clean used shaked ... - predicate

t_shot t_ingredient t_shaker ... - type

...)

Figure 4: Actions, predicates and types reformulated as do-
main constants in Π′.

Regarding predicates, we introduced two groups of new
predicates in order to handle such reformulation. The first
group contains predicates to access the elements of the orig-
inal task; and the second group contains control predicates
for the repairing task. The definition for the new access pred-
icates, denoted as Paccess, is the following:



• functor(o pred), that allows to define facts to
represent predicate names. Possible examples are
functor(ontable), functor(holding), etc.

• type(o obj,o type), that allows to define facts to
access the type and super-types of every object in
the original domain. Examples are (type shaker1
t shaker) and (type shaker1 t container).

• pred ⟨n⟩(o pred,o type1, . . . ,o typen), represent-
ing that there is a n-ary predicate defined in the orig-
inal domain. It allows to define facts that facilitate
the access to the predicates and the types of their
arguments, as (pred 2 contains t container
t beverage). This means that there is a predicate of
arity 2 to represent that a container contains a beverage.

• in state ⟨n⟩(o pred,o obj1, . . . ,o objn), repre-
senting that the fact (o pred, o obj1, . . . , o objn) is
true in a state. Again, n represents the arity. In this
way we can group propositions with the same arity.
Let us consider the predicates of the barman domain
(clean shot01) and (empty shot01), with
arity 1, where clean and empty are predicate symbols
and shot01 is a object. They can be represented by the
same predicate in state 1. Then, if the shot is clean or
empty in the current step our new task will not represent
the grounded proposition (clean shot01), but
(in state 1 clean shot01) or (in state 1
empty shot01). This lets us generalize our compiled
task for any proposition in the domain, allowing the
repair operators to add or remove any fact from the
current state.

• goal ⟨n⟩(o pred,o obj1, . . . ,o objn) represents that
(o pred, o obj1, . . . , o objn) is a goal of the cur-
rent planning task. An example would be (goal 2
contains shot1 cocktail1).

• add eff(o pred,o act), denotes that a predicate name
appears in the add effects of an action. For instance,
(add eff holding grasp).

• del eff(o pred,o act), denotes that a predicate name
appears in the del effects of an action. (del eff
holding leave).

The new control predicates, denoted as Pcontrol, are:
• checked(o act), denoting that an action has been al-

ready added to the plan, repaired or not. No action previ-
ously checked can be repaired.

• current action(o act), used to control what is the
current action in course, to reparair it if needed.

• patched(o act), indicating that action has been fixed
at least once.

• fix(o act,o pred), meaning that an action has been re-
paired and the predicate involved.

• used(o item), for repairing the action with the objects
currently in use.

• open, indicating that the reparation is allowed.
• fixed, denoting that an action has been fixed and at least

one of the add effects involved in a fix has been added to
the current state.

(:action clean-shot

:parameters (?s - shot ?b - beverage ?h1 ?h2 - hand)

:precondition (and (in_state2 holding ?h1 ?s)

(in_state1 handempty ?h2)

(in_state1 empty ?s)

(in_state2 used ?s ?b)

(not (open))

:effect (and (not (in_state2 used ?s ?b))

(current_action clean-shot)

(used ?s) (used ?b)

(used ?h1) (used ?h2)

(open)))

Figure 5: Clean shot action compiled for the reparation task.
It is important to note that the positive effect clean ?s is omit-
ted and needs to be added by the planning process.

• end, used to mark the end of the whole reparation pro-
cess.

Once this information has been presented, our new ex-
tended planning task can be defined as Π′ = (D′, I ′), where
D′ = ⟨H′, C′,P ′,A′⟩. H’ is the described new hierarchy
(see Figure 2); the constants include the original constants
and the new ones: C′ = C ∪ Ca ∪ Ct ∪ Cp; the predicate
definition includes the new access and control predicates:
P ′ = Paccess ∪ Pcontrol; and A′ is new set of actions
schemes, defined as A′ = Aα ∪ Aφ ∪ Aψ ∪ Aω , where
Aα are actions generated from the original domain actions,
but compiled to adapt them to the new object representation;
and Aφ, Aψ and Aω are the actions for the reparation. We
describe all of them, as well as the configuration of the new
problem instance I ′, in the next paragraphs.2

ACTIONS FROM ORIGINAL ACTIONS (Aα) There is an
action αa ∈ Aα for every action a ∈ A, with the same name
and parameters, defined as follows.

name(αa) =name(a)

par(αa) =par(a)

pre(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ pre(a)}∪
{¬open} ∪ {¬end}

add(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ add(a)}∪
{current action(a)}∪
{used(x) | x ∈ par(a)} ∪ {open}

del(αa) ={in state ⟨n⟩(p, t) | p(t) ∈ del(a)}
cost(αa) =0

where p(t), t ⊆ par(a)∪ C, denotes any literal in the action
preconditions or effects.

An example of the resulting compiled action is shown in
Figure 5. Every predicate is now replaced by its in-state re-
formulation, and effects include information about what is

2The extended planning task requires in some cases of negative
preconditions and forall effects. So, in this part we consider clas-
sical planning extended with these additional expresivity incorpo-
rated in ADL (Pednault 1989).



the current action been in course and also the objects in-
volved in such action. Finally, we also include a flag fact
called open to denote that, once applied, the action is al-
lowed to be repaired. As long as this fact is present in the
state, no other action in Aα can be applied.

FIX ACTION (Aφ) This action select any predicate and
link it as a new effect of any action. The parameters are the
variables a and p, of type o act and o pred, respectively. It
follows the next scheme:

name(φ) =fix

par(φ) =(a, p)

pre(φ) ={current action(a)} ∪ {functor(p)}∪
{¬check(a)} ∪ {open}

add(φ) ={fix(a, p)} ∪ {patched(a)}
del(φ) =∅
cost(φ) =Cφ

The preconditions require to have an action opened to be
repaired, that has not been previously checked (added to the
plan). Actions have to be repaired in their first use, otherwise
they can not be linked to a new effect after that. Then, a
predicate symbol p ∈ Ct is selected to be attached as a new
effect of the action, adding to the state that such action has
to be patched. It has a constant associated cost which allows
to define a metric for minimizing the number of reparations
made in the domain.

ADD-FIX ACTIONS (Aψ ) Once the missing effect has
been linked to an action, such predicate symbol has to be
matched with its parameters to be added to the state with the
proper objects. The number of these objects depends on the
arity n of the predicate being added, so a predicate clean will
be repaired with a single object of type shot, whereas other
predicates may involve a larger number of objects. Accord-
ingly, we need actions with different number of parameters
to do so. For each arity n we define a repair action ψn. The
parameters are: variables a and p of type o act and o pred,
respectively; n variables, x1, . . . , xn, of type o obj, repre-
senting domain objects; and n variables, y1, . . . , yn of type
o type, representing their types. We define add-fix actions
such that:

name(ψn) =add fix ⟨n⟩
par(ψn) =(a, p, x1, . . . , xn, y1, . . . , yn)

pre(ψn) ={current action(a)}∪
{fix(a, p)} ∪ {functor(p)}∪
{pred ⟨n⟩(p, y1, . . . , yn)}∪
{type(xi, yi) | 1 ≤ i ≤ n}∪
{used(xi) | 1 ≤ i ≤ n} ∪ {¬end}

add(ψn) ={in state ⟨n⟩(p, x1, . . . , xn)} ∪ {fixed}
del(ψn) =∅
cost(ψn) =0

CLOSE ACTION (Aω ) The application of the close action
concludes the reparation of an action and change to the next

one. It deletes the open flag and the current action along with
all objects used, adding the action as already checked to the
current state. The scheme is defined as follows, where the
only parameter is a of type o act. Note that close actions
have a forall effect, where x is of type o item.

name(ω) =close

par(ω) =(a)

pre(ω) ={current action(a)} ∪ {open}
add(ω) ={checked(a)}
del(ω) ={forall(x, used(x))}∪

{current action(a)} ∪ {open}
cost(ω) =0

In summary, the new action schemes A′ = Aα ∪ Aφ ∪
Aψ ∪ Aω , are defined as Aα = {αa | a ∈ A}, with an ac-
tion for every action in the original domain; Aφ = {φ}, the
fix action scheme; the add-fix action schemes Aψ = {ψn |
n arity of p(t) ∈ P}, with an action scheme for each differ-
ent arity of the predicates in the original domain; and the
close action scheme Aω = {ω}.

PROBLEM INSTANCE (I ′) We have defined the compiled
domain D of the new planning task Π′ = (D′, I ′). Now,
we specify the new problem instance I ′ = ⟨O, I ′,G′⟩. The
new initial state contains all the facts present in the original
one I , but reformulated according to the new type hierarchy
(Figure 2) and the new predicate definition P ′. Then, pred-
icates in Paccess are instantiated in the new initial state. All
of them represent static domain information about the orig-
inal predicates and actions, except for in state ⟨n⟩ atoms.
They are grounded with the available objects in O accord-
ing to the facts currently true in the initial state. The initial
state is then defined as follows, where the function all(H, o)
provides all types (primitive type and all super-types) of an
object in a type hierarchy:

I ′ ={in state ⟨n⟩(p, t) | p(t) ∈ I}∪
{functor(p) | p ∈ P}∪
{pred ⟨n⟩(p, ttype1 , . . . , ttypen) | p ∈ P}∪
{type(o, ttype) | o ∈ O, ttype ∈ all(H, o)}∪
{goal ⟨n⟩(p, t) | p(t) ∈ G}∪
{add eff (p, name(a)) | p(t) ∈ add(a), a ∈ A−}∪
{del eff (p, name(a)) | p(t) ∈ del(a), a ∈ A−}

The new problem goals also contain the in state ⟨n⟩ facts
corresponding to the facts defined in the goals of the orig-
inal problem and additional checked facts for every action
scheme, meaning that all action schemes have been consid-
ered to be repaired:

G′ ={in state n(p, t) | p(t)} ∈ G}∪
{checked(a) | a ∈ A−}

Actions become checked by the corresponding close ac-
tion, when they are added to the plan, so we are indirectly
forcing the planner to include all the domain actions in the
plan. To alleviate this strong constraint we transform those



(:init

(in_state1 clean shot01)

(in_state1 empty shot01)

(in_state2 dispenses dispenser01 ingredient01)

(del_eff used clean-shot)

...)

(:goal (in_state2 contains shot01 cocktail04)

(check clean-shot)

...)

Figure 6: Example of the problem compilation for the bar-
man domain.

hard goals to soft goals following the compilation proposed
by Keyder and Geffner (2009), including a forgo action that
can directly achieve goals, but at high cost.

Figure 6 shows part of a barmans’ problem instance as
compiled in I ′. We reformulate facts and extend the prob-
lem with information on already existing actions’ effects, an
input useful to guide the reparation process.

Given the set of actions defined, we establish the total cost
of a solution as the sum of the reparations made in the do-
main (number of predicated linked as new effects). In the
problem instance we include a metric to minimize such total
cost. In this way we aim to solve the uninformed repairing
problem to find the minimum repairing set R̂ so thatD−⊕R̂,
Π− is solvable.

5 Heuristics for Domain Reparation
There are a huge number of ways in which a planning do-
main can be repaired to make the task solvable, leading the
process to fall into undesirable reparations. The proposed
metric is established to minimize the number of reparations,
but, in general, we have identified several problems related
to the planning task reparation:

• Goals: a solution with lower cost and the simplest repa-
ration may be to add the goal predicates to any of the ac-
tions, making the problem solvable by applying just such
operator.

• Adding deleted atoms: including a new add effect that
coincides with a del effect of the same action may not
make many sense.

• Repair effects in the same action: the planner is likely
to incorporate all required missing positive effects in the
same action, without considering the rest of the planning
actions.

• Use of repaired actions: it may be convenient for the
planner the reparation of an action which is repeated
throughout the plan, so we penalize the use of fixed ac-
tions in order not to overuse them.

Managing the reparations means to impose restrictions
over the set of fixing operators, where the application of
some of them may be penalized. To this end we decom-
pose such actions into separate ones with different sets of
preconditions and different costs, so that the least restrictive

fix actions have a higher cost. We established an optimiza-
tion criteria which minimizes the total cost of the reparations
made over the domain. Thus, the use of an optimal planner
for solving the task guarantees a least costly solution. In the
remainder of the section we show the different solutions con-
sidered to solve the mentioned issues.

Goals We have defined an add-fix action with zero cost,
even if the predicate being repaired is present in G. However,
to avoid achieving the solvability of the problem by repair-
ing an action with predicates in the set of goals, we duplicate
every add-fix action with arity n, ψn for the case where the
proposition being repaired is a goal, but penalizing its ap-
plication. We define such actions as ψgn. The parameters and
effects are exactly those of the corresponding ψn action. ψgn
differs on the name, preconditions and costs:

name(ψgn) =name(ψn) goal

pre(ψgn) =pre(ψn) ∪ {goal ⟨n⟩(p, x1, . . . , xn)}
cost(ψgn) =Cg

Conversely, common add-fix actions specify in the precon-
ditions that the atom involved is not a goal. Considering
the barman domain, if there is a goal (contains cocktail01
shot01), a plan that repairs the clean-shot action and then
prepares the cocktail will have a lower cost than a plan
adding directly the goals. The cost Cg is a constant value.

Adding deleted atoms If we consider the action that fills
the shot, it already involves a (not (clean ?s)) atom
as effect, so adding the same predicate as a positive effect
would be an undesirable reparation. For this reason we in-
clude information about current action effects in the problem
of the extended task, as shown in Figure 6. We take this into
account in fix actions. We consider two types of fix actions
here, φ− and φ+, so that the former does not allow this kind
of reparation. Both share the defined general scheme for fix
actions (φ) in parameters and effects, where φ− is specified
as follows:

pre(φ−) =pre(φ) ∪ {¬del eff (p, a)}
cost(φ−) =C−

A φ− action can only be applied when the predicate be-
ing repaired is not part of the delete effects of the action.
However, we have to penalize the opposite case instead of
forbidding it, to allow for reparations adding atoms which
predicate name is shared with a deleted atom. Remember
that in our representation we only consider the predicate
name in the del eff facts, and there are domains with ac-
tions for which atoms sharing the same predicate name have
to be added and deleted. For instance, in domains where the
location of objects is important, it is necessary to delete the
previous position and generate the new one. Thus, φ+ ac-
tions represent this opposite case:

pre(φ+) =pre(φ) ∪ {del eff (p, a)}
cost(φ+) =C+

Actions φ− are prioritized over actions φ+ making C+ >
C−.



Repair effects in the same action In order to avoid the
planner adding all the missing predicates to the same action
and to promote the use of the rest of the actions, the set of fix
actions are specialized even more to cover the combination
of cases considering delete effects and whether the action
has (or has not) been already fixed in some way. This gives
rise to the following four fix actions, which are now fully
specified:

• Actions φ−
0 : the atom used to repair the action is not a

negated effect and the action was not repaired before:

name(φ−
0 ) =fix not del not fixed

pre(φ−
0 ) =pre(φ

−) ∪ {¬patched(a)}
cost(φ−

0 ) =C
−
0

• Actions φ−
1 : the atom to repair the action is not a negated

effect, but the action has already been repaired before:

name(φ−
1 ) =fix not del fixed

pre(φ−
1 ) =pre(φ

−) ∪ {patched(a)}
cost(φ−

1 ) =C
−
1

• Actions φ+
0 : the atom to repair the action is a negated

effect and the action has not been repaired before:

name(φ+
0 ) =fix del not fixed

pre(φ+
0 ) =pre(φ

+) ∪ {¬patched(a)}
cost(φ−

0 ) =C
+
0

• Actions φ+
1 : the atom to repair the action is a negated

effect and the action was repaired before:

name(φ+
1 ) =fix del fixed

pre(φ+
1 ) =pre(φ

+) ∪ {patched(a)}
cost(φ+

1 ) =C
+
1

This last action is the one that applies the least restrictive
reparation, but has the highest cost. The different costs are
distributed following C+

1 > C+
0 > C−

1 > C−
0 . By using

the four defined types of fix actions with different costs, we
want to prevent the exposed situations and promote the use
of all available domain actions.

Use of repaired actions. To control the application of re-
paired actions, we create two specific cases of close actions,
ω− and ω+. They are defined with identical scheme as ω,
but considering whether the action being closed is (or is not)
a fixed action. Then, w− is defined as:

name(ω−) =close

pre(ω−) =pre(ω) ∪ {¬patched(a)}
cost(ω−) =0

And w+ is defined as:

name(ω+) =close fix

pre(ω+) =pre(ω) ∪ {patched(a)} ∪ {fixed}
cost(ω+) =Cω

where Cω > 0.
Therefore, we aim to minimize the cost of the reparations

depending on where they are made, while also penalizing
the application of repaired actions. With these diverse costs
want to find more refined reparations to get as close as pos-
sible to the underlying domain, which corresponds to the
user’s mental model.

After considering the explained heuristic improvements,
the resulting set of action schemes A′ is the union of:

Aα ={αa | a ∈ A}
Aφ ={φ−

0 , φ
−
1 , φ

+
0 , φ

+
1 }

Aψ ={ψn, ψgn | n arity of p(t) ∈ P}
Aω ={ω−, ω+}

The following plan is part of a solution obtained for the ex-
tended planning task for the barman domain, where the fix
and add-fix repair actions are highlighted:
...

12:(clean-shot shot01 ingredient01 left right)

13:(fix-not-del-not-fixed clean clean-shot)

14:(add-fix-1 clean clean-shot shot01 o)

15:(close-fixed clean-shot)

16:(fill-shot shot01 ingredient02 left right dispenser2)

17:(close-nofixed fill-shot)

18:(pour-shot-used-shaker shot01 ingredient02 shaker1 left l1 l2)

19:(close-nofixed pour-shot-to-used-shaker)

20:(clean-shot shot01 ingredient02 left right)

21:(add-fix-1 clean clean-shot shot01 o)

22:(close-fixed clean-shot)

...

It is important to note that if we perform the compilation
on a completely specified task, the resulting plan will also
achieve the goals, but without including any reparation.

6 Experiments
To empirically evaluate the feasibility of our approach,
we selected the domains TRANSPORT, BLOCKSWORLD,
ROVERS and BARMAN from the IPC. They were chosen
to verify how the approach works as the number of actions
and propositions increases. Table 1 summarises their main
characteristics. We generated a set of 10 problems associ-
ated to each domain by increasing the number of objects
involved, being the first problem the smaller one.3 Each do-
main and problem conform to a complete planning task Πi,
being i = {1, . . . , 10} the number of the problem to which
is associated. In order to test our approach, we created a set
of add add-incomplete tasks with respect to each Πi by ran-
domly deleting positive effects of the domain actions, pro-
vided that such changes made the task unsolvable. For in-
stance, from the blocksworld domain we deleted the hold-
ing effect when it picks up a block or we removed a shot as
cleaned from the clean-shot action for the barman domain.

We follow an iterative process in which we generate a set
of tasks Π−

iD where D = {1, . . . , 5} is the number of re-
moved positive effects with respect to Πi. Therefore we have
a total of 50 add-incomplete planning tasks for each domain.

3https://github.com/AI-Planning/pddl-generators



Domain |A| |P|
TRANSPORT 3 5

BLOCKSWORLDS 4 5
ROVERS 9 25
BARMAN 12 15

Table 1: Benchmark summary

They are compiled following the explained approach and
solved to obtain the set of new effects R̂ used in the repa-
ration. We have tested the aforementioned planning tasks
using the seq-opt-lmcut and lama configurations of
Fast-Downward (Helmert 2006), using the LMCUT admissi-
ble heuristic (Helmert and Domshlak 2009) and an anytime
planner that reports the best plan found in a given time win-
dow LAMA (Richter and Westphal 2010), respectively. The
planning times for both configurations were set to 900 sec-
onds.

The results are shown in Tables 2 and 3. We compared
the set R̂ obtained as solution with the actual removed that
represents R∗, showing in % the percentage of the domain
repaired and in t the planning time in seconds. Empty fields
mean that no plan has been found in the given time window.
In general, the proposed approach performs well for smaller
instances of domains and problems, although the scalability
decreases in larger tasks. However, LAMA seems to be a bet-
ter option since its use increases significantly the number of
solved tasks with similar or shorter planning times. In most
of the cases, we do not need to wait until the optimal solu-
tion of the planner to achieve the desired repair suggestions,
intermediate plans already contains them. Rapid responses
are also critical in the context of user support, and although
some reparations exceed the repair rate (they include extra
reparations besides the desired ones), domain designers can
supervised the solutions suggested and discard unwanted
reparations, even refining the search to obtains new plans
which may show new suggestions.

7 Discussion
In this section we argue the proposed method along with the
solutions provided. The main decision of this work relies on
the applied method, which may have any other technique
based on cost optimization as alternative. However, we im-
plemented an AP compilation of the unsolvable task to keep
the goal oriented approach, ensuring that the given solution
also achieve the original goals of the problem. It provides a
guideline for the reparations, showing those ones which help
to achieve the goal.

Reparations are dependent on the problem configuration
and the established metric provides an heuristic, presenting
several ways to achieve the goals. To exemplified this, let us
consider again the clean shot example. To achieve a clean
glass it has to repair the clean operator, but the domain con-
tains a very similar operator: empty-shot. This situation can
return a solution in which the operator fixed is the latter.
The effect is the same and the problem turns solvable any-

way, the only difference is semantic. But semantic issues are
out of the scope of this work, delegating them to the users’
side. By embedding the proposed system in any PDDL edi-
tor, users have the opportunity to decide if the proposed so-
lution fits in its domain model or a better option it is to apply
the reparation made to another operator. For larger domains
and problems with multiple missing effects, were the perfor-
mance of the method decreases, it is also possible to follow
an iterative process. Instead of repair all the effects at once,
the user can select some of the recommendations and run the
system again, obtaining more precise suggestions since the
model is now more accurate.

This approach also has the advantage of being parameter-
izable. For further developments, we can offer to users the
possibility of choosing the penalizations applied to each op-
erator, in addition to extend the metric with extra parameters
as the plan length, for which it would be sufficient to also
penalize the close operators.

8 Related Work
Several works addressed the previous problem in a effort
to help users in the development of AP tasks. In Mixed-
initiative planning (Burstein and McDermott 1996), plan-
ning is seen as a collaborative activity in which given a
domain, a problem and a solution, automated and humans
planners need to interact to jointly build a plan to accom-
plish a certain objective. Such solution can be generated
from similar stored past plans (Veloso, Mulvehill, and Cox
1997) or generated by hand by the user (Howey and Long
2003; Howey, Long, and Fox 2004, 2005; Fox, Howey, and
Long 2005), where if the plan is flawed it gives advice on
how the plan should be fixed. Similarly, Model reconcilia-
tion (Chakraborti et al. 2017) presents way of bringing the
human model closer to the agent’s model by explaining the
plan when it differs from the expected one.

These works rely on a properly specified domain and
problem and also assume an initial plan which is changed or
improved in collaboration with humans. However, there may
be some cases where there is no suggested plan and the AP
task proves to be unsolvable anyway. Techniques involved in
such problems try to explain why it fails and how it could be
solved. (Sreedharan et al. 2019) propose to assist the user
by identifying unreachable subgoals of the problem. Since is
challenging to extract subgoals from a unsolvable problem,
they derive them from abstract and solvable models by us-
ing planning landmarks (Hoffmann, Porteous, and Sebastia
2004). Going a step further, given an unsolvable task it is
also possible to make it solvable (Göbelbecker et al. 2010).
Based on counterfactuals theory (Ginsberg 1985), it is able
to explain why a plan fails and what should be done to pre-
vent it, creating excuse states from which the given task is
solvable, although they only consider changes in the initial
state.

Planning with incomplete domains or approximate do-
main models (McCluskey, Richardson, and Simpson 2002;
Simpson, Kitchin, and McCluskey 2007; Nguyen, Sreedha-
ran, and Kambhampati 2017; Garland and Lesh 2002) con-
siders not properly specified domains, but all those works
assume that the incompleteness in the model is filled with



Π1D Π2D Π3D Π4D Π5D Π6D Π7D Π8D Π9D Π10D
Domain D % t % t % t % t % t % t % t % t p9 t p10 t

TRANSPORT

1 100 0,00 100 0,01 100 0,06 100 0,05 100 1,27 100 18,15 100 68,59 - - - - - -
2 100 0,05 100 0,24 100 0,74 100 0,07 100 5,80 100 12,91 - - - - - - - -
3 100 0,01 100 16,18 100 1,45 70 0,31 - - - - - - - - - - - -
4 100 0,20 100 21,25 100 2,55 100 96,01 - - - - - - - - - - - -
5 80 0,20 80 0,59 - - 80 92,99 - - - - - - - - - - - -

WORLD

1 100 0,01 100 0,01 100 0,01 100 0,03 100 0,01 100 0,11 100 0,06 100 0,03 100 0,32 100 3,07
BLOCKS 2 50 0,01 100 0,01 100 0,01 50 0,01 100 0,01 100 0,18 50 0,39 50 0,01 100 0,14 50 2,94

3 70 0,00 70 0,05 70 0,15 100 0,02 35 0,00 70 1,01 70 1,69 35 3,71 70 114,52 100 32,30
4 50 0,01 100 0,12 50 0,11 100 0,20 75 0,01 100 5,48 75 2,36 25 0,01 75 91,80 - -
5 80 0,01 100 0,03 80 0,23 60 0,66 80 0,03 100 16,80 60 385,66 60 0,13 100 34,76 40 798,06

ROVERS

1 100 48,00 - - - - 100 418,63 100 697,40 - - - - - - - - - -
2 50 67,77 - - - - - - 100 133,26 - - - - - - - - - -
3 35 808,46 - - - - 65 560,42 65 275,03 - - - - - - - - - -
4 25 205,27 - - - - - - - - - - - - - - - - - -
5 40 709,13 - - - - 40 348,30 - - - - - - - - - - - -

BARMAN

1 100 1,75 0 11,99 100 3,97 100 725,80 0 807,99 - - - - - - - - - -
2 50 16,87 50 11,71 100 27,60 - - - - - - - - - - - - - -
3 - - - - 65 589,28 - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - -
5 - - 40 550,38 40 387,40 - - - - - - - - - - - - - -

Table 2: Results of the extended planning tasks using the LMCUT configuration of Fast-Downward. Parameters shown the initial
number of removed effects (D), the percentage (%) of reparation achieved compared to the initial number of removed effects
and the planning time (t) spent to find the solution.

Π1D Π2D Π3D Π4D Π5D Π6D Π7D Π8D Π9D Π10D
Domain D % t % t % t % t % t % t % t % t % t % t

TRANSPORT

1 100 0,01 100 0,02 100 0,03 100 0,03 100 1,04 100 0,08 - - 100 197,55 - - - -
2 100 0,01 100 0,01 150 0,08 100 17,72 100 5,17 100 47,40 150 63,53 - - - - - -
3 100 0,10 100 0,02 100 178,80 70 51,35 100 1,93 100 1,51 - - - - - - - -
4 100 0,18 100 0,24 100 0,21 100 210,14 100 6,69 125 80,85 - - - - - - - -
5 80 0,19 80 0,23 100 0,19 120 37,47 100 6,64 120 77,09 - - - - - - - -

WORLD

1 100 0,00 100 0,01 100 0,01 100 0,01 100 0,01 100 0,03 100 0,01 100 0,01 100 0,04 100 0,03
BLOCKS 2 100 0,00 100 0,17 100 0,01 100 0,01 100 0,01 100 0,22 100 0,01 50 0,01 100 0,04 50 0,25

3 70 0,01 70 0,01 70 0,02 100 0,01 35 0,01 70 0,21 70 0,36 70 0,13 70 0,04 100 0,27
4 75 0,02 100 0,18 75 0,04 - - 75 0,51 100 16,89 75 21,95 75 0,02 75 0,04 75 0,38
5 100 0,01 100 0,22 100 0,22 60 0,02 100 0,05 100 2,74 80 0,58 80 0,10 100 6,86 80 16,96

ROVERS

1 0 0,03 200 0,03 200 0,04 - - 200 0,05 - - 0 1,28 - - 200 0,28 300 31,36
2 50 0,03 50 0,08 150 59,28 - - 150 0,38 - - 0 0,21 250 2,83 50 0,27 - -
3 0 50,98 70 0,03 70 0,75 70 1,33 35 1,08 - - - - 35 0,30 0 1,47 35 0,73
4 - - 50 0,09 25 0,16 50 0,49 50 16,82 - - - - - - - - - -
5 80 1,03 80 0,06 - - 20 0,45 40 12,85 - - - - 40 0,19 - - - -

BARMAN

1 0 0,10 200 0,06 100 0,10 - - 100 264,45 100 447,26 - - - - - - 200 1,30
2 50 0,24 50 3,27 50 0,13 - - - - 250 36,40 - - - - - - - -
3 - - 35 0,08 - - - - - - - - - - - - - - - -
4 - - 50 3,50 50 4,22 - - - - - - 25 10,87 - - - - - -
5 - - 40 3,59 60 0,93 - - - - 40 4,76 - - - - 80 27,79 - -

Table 3: Results of the extended planning tasks using the LAMA configuration of Fast-Downward. Parameters shown the initial
number of removed effects (D), the percentage (%) of reparation achieved compared to the initial number of removed effects
and the planning time (t) spent to find the solution.

annotations or statements about where the model has been
incompletely specified, and providing guidelines to supply
the lack of knowledge.

Therefore, all of the works seen so far make crucial as-
sumptions about the domain engineer understanding of the
problem or do not deal with partially specified domains
without further help of the user. In this paper we work on fix-
ing domains that have some missing actions’ effects which
make the problem unsolvable, and we have no a priory clues
about where the error resides.

9 Conclusions
We have presented a novel approach for the reparation of un-
solvable planning tasks due to a missing positive effects in
its domain, which is based on classical planning techniques.
Since the given task is incomplete, we have proposed its
compilation to a new extended planning task which intro-

duces general operators to repair any of the actions of the
domain by linking them to new positive effects. To test our
method, we selected some domains from the IPC to gener-
ate complete planning tasks and altering its domain by ran-
domly deleting positive effects, provided that such changes
turn the task unsolvable. The resulting incomplete task is
compiled to the new extended task and solved by an optimal
planner, including in the plan the modification on the actions
made while also achieving the original goals. Results show
that the approach performs well for a wide range of planning
tasks, especially with an anytime planner configuration. We
believe that this work has enough potential to be considered
as a user support system to develop planning tasks.
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