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Abstract

The recent rapid advancement of machine learning has been driven by increasingly
powerful models with the growing availability of training data and computational
resources. However, real-time decision-making tasks with limited time and sparse
learning signals remain challenging. One way of improving the learning speed
and performance of these agents is to leverage human guidance. In this work, we
introduce GUIDE, a framework for real-time human-guided reinforcement learning
by enabling continuous human feedback and grounding such feedback into dense
rewards to accelerate policy learning. Additionally, our method features a simulated
feedback module that learns and replicates human feedback patterns in an online
fashion, effectively reducing the need for human input while allowing continual
training. We demonstrate the performance of our framework on challenging tasks
with sparse rewards and visual observations. Our human study involving 50
subjects offers strong quantitative and qualitative evidence of the effectiveness of
our approach. With only 10 minutes of human feedback, our algorithm achieves up
to 30% increase in success rate compared to its RL baseline.

1 Introduction
Many real-world tasks are real-time decision-making processes [7, 48] that require understanding the
problem, exploring different options, making decisions, refining our understanding, and adjusting
decisions accordingly. Due to their inherent complexity, these tasks pose significant challenges
for current machine learning systems. Effective exploration[8, 16, 41, 36] is crucial for gathering
informative data, especially in mission-critical tasks such as search and rescue, disaster response,
and medical emergencies where time is limited. Furthermore, open-world problems often lack dense
labels and provide extremely sparse environment feedback signals[42, 19, 29, 21]. Therefore, agents
must reason over long horizons to make informed decisions [24, 26, 43].

Human-guided machine learning[32, 33, 34, 31, 1, 52], also known as human-in-the-loop machine
learning, has been proposed to integrate human feedback into reinforcement learning (RL) agents.
Various methods differ in how they obtain, format, and incorporate human feedback. Some approaches
rely on full demonstrations[32, 34] or partial corrections[12] through imitation learning [32, 33, 34] or
inverse RL [31, 1, 52], assuming that humans can directly control the agents and possess expert-level
task knowledge. Conversely, non-expert humans can often still judge the quality of the agent strategies,
leading to comparison-based feedback, such as preferences[2, 20, 45, 18, 46, 17, 47, 23, 53] and
rankings [9, 10]. These offline methods, however, require large datasets and parallel prompts and,
hence, cannot support real-time guidance, limiting their applicability in dynamic environments.

Discrete label feedback has shown promise for real-time human-guided RL, where humans provide
scalar rewards[28, 4] or discrete feedback[25, 44] (e.g., good, neutral, bad). Despite its promise, this
approach is constrained by the need for significant human efforts and the less informative nature of
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Fig. 1: We propose GUIDE as
a novel framework for real-time
human-shaped agents enabling con-
tinuous feedback and continual im-
provements without human trainers.
We also aim to understand how indi-
vidual differences affect their guided
agents’ performances.

the discrete feedback. Current research has demonstrated success[25, 44, 28, 4] primarily in simple,
low-dimensional tasks with limited solution spaces. Moreover, high-quality human feedback is
challenging [11] to obtain due to variability in human guidance skills, cognitive biases, and individual
differences. Most studies [25, 44, 28, 4, 50] involve small sample sizes (N < 10), often including
the designers themselves, which makes it difficult to quantitatively assess the applicability of the
methods to the real world. Furthermore, how to keep refining the agent without continuous human
input remains unclear.

We introduce GUIDE (Fig. 1), a framework for real-time human-guided RL that enables continuous
human feedback and grounds such feedback into dense rewards, thereby accelerating policy learning.
GUIDE also includes a parallel training algorithm that learns a simulated human feedback model to
effectively reduce human inputs and enable continued policy improvements without human feedback.
Our experiments span three challenging tasks characterized by continuous action spaces, high-
dimensional visual observations, temporal and spatial reasoning, multi-agent interactions, and sparse
environment rewards. Our human studies involving 50 participants provide strong quantitative and
qualitative support to the efficacy of our approach. Additionally, we conduct a series of cognitive tests
and analyses to quantify individual differences among participants and explore how these differences
correlate with agent learning performance. Our further analysis of the learned policies highlights the
critical role of alignment in developing effective human-guided agents.

2 Related Work

Human-Guided Machine Learning Various computational frameworks have been proposed to
integrate human feedback in guiding machine learning agents. Behavior cloning [32, 33, 34] trains a
policy through supervised learning on human demonstrations assuming direct human control of the
agents. Inverse reinforcement learning [31, 1, 52] infers objectives from human demonstrations for
police optimization, but it requires extensive human demonstrations and often struggles with accurate
objective inference and scalability. Human preference-based learning [2, 20, 45, 18, 46, 17, 47, 23]
allows humans to score trajectories through comparisons, reducing the need for full demonstrations yet
still depending on offline policy sampling. GUIDE differs by focusing on real-time decision-making
tasks without relying on abundant offline datasets or parallel trajectory rollouts.

Real-Time Human-Guided Reinforcement Learning Our work is formalized into an RL framework
to integrate real-time human feedback into the policy learning process. TAMER [25] learns to regress
a reward model from human feedback, which is used as a typical reward function for policy learning.
Deep TAMER [44] generalizes this approach to higher dimensional inputs and uses a neural network
to parameterize both the policy and the reward model. COACH [28] and Deep COACH [4] address
the inconsistency of human rewards observed during training by modeling human feedback as an
advantage function in an actor-critic framework. Deep COACH scales COACH to handle higher-
dimensional observations and more expressive policy representations. Recent advancements have
further improved these algorithms, addressing various challenges in ground human feedback, such as
different feedback modalities, stochasticity of feedback [3], and continuous action space [37].

However, existing real-time human-guided RL studies share several limitations. Simplifying human
feedback to discrete sets {positive, neutral, negative} with rewards {1, 0,−1} requires users to focus
on clicking or typing the correct options which can be distracting. Such simplification also causes
information loss by ignoring intermediate values. This approach also introduces hyperparameters to
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associate feedback to trajectories in time, requiring extensive tuning. Moreover, most studies validate
their methods on simple tasks with discrete actions and low-dimensional observations. Furthermore,
human studies are often limited to the designers themselves, a small group of subjects (N < 10,
mostly N < 5), or a trained expert policy with RL to simulate humans. It remains unclear whether
the existing approaches scale to general populations. There is also a large gap in understanding
how individual differences among human participants affect policy training. Lastly, there is little
discussion on continuing to improve policies in the absence of human feedback.

Key Novelties of GUIDE Unlike previous approaches, GUIDE enables continuous human feedback,
maximizing guidance information with minimal hyperparameter tuning. Our experiments cover
challenging tasks with continuous action spaces, high-dimensional visual observations, spatial-
temporal reasoning, and multi-agent interactions. GUIDE is also evaluated on the largest sample of
human subjects (N = 50) among related studies, incorporating cognitive assessments to characterize
individual differences and their impact on guiding learning agents. Additionally, GUIDE includes a
parallel training algorithm to mimic human feedback for continued policy improvements when direct
human feedback becomes unavailable.

3 Preliminary
3.1 Value-Based Reinforcement Learning
Value-based Reinforcement Learning is an effective approach to solving decision-making problems.
In value-based RL, a key element is the action-value function Q(s, a) which provides an estimate of
the total expected return when taking an action a in state s and following a specific policy thereafter
[40]. The policy π is derived from Q by selecting the action that maximizes the action-value function:

π(s) = argmax
a

Q(s, a) (1)

The action-value function Q(s, a) at time step t can be defined as the expected sum of discounted
future rewards with discounted factor γ:

Q(s, a) = E[
∞∑
k=0

γkRt+k+1|s, a] (2)

Where Rt+k+1 is the reward k + 1 steps after the current step. In valued-based deep reinforcement
learning, a neural network is used to approximate the action-value function to tackle challenges such
as high-dimensional and partial observations and complex decision boundaries. The training of these
networks typically involves a combination of Monte-Carlo sampling and bootstrapping techniques,
which leverage current estimates of Q to improve future predictions. The accuracy of the Q-function
is crucial, especially in environments where reward signals are sparse and delayed, posing significant
challenges to the efficiency and efficacy of the learning process.

3.2 Human feedback as Value Functions
A natural way for humans to guide an agent’s learning is to observe its inputs and provide feedback
on its actions. This translates directly to incorporating human feedback into reinforcement learning
by assigning human feedback as the myopic state-action value. Deep TAMER [44] is a prominent
human-guided RL framework that leverages this concept by enabling humans to offer discrete,
time-stepped positive or negative feedback. To account for human reaction time, a credit assignment
mechanism maps feedback to a window of state-action pairs. A neural network F is trained to
estimate the human feedback value, denoted as f̂s,a, for a given state-action pair (s, a). The policy
then selects the action that maximizes this predicted feedback.

We constructed a strong baseline by enhancing Deep TAMER in numerous ways. First, the original
Deep TAMER’s greedy action selection method only works with discrete action spaces. We designed
a continuous version of Deep TAMER while adopting state-of-the-art reinforcement learning im-
plementation practices. We implement an actor-critic framework to handle continuous action space.
Here, the critic is the human feedback estimator parameterized by ϕ: Fϕ(s, a), directly estimating
human feedback instead of a target action value. The actor is parameterized by θ: Aθ(s) = a, aiming
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Fig. 2: GUIDE: The training consists of two stages: During the Human guidance stage, the human
trainer observes the state and action taken by the agent and provides real-time continuous feedback.
The feedback values are grounded into per-step dense rewards and combined with the environment
reward. Concurrently, we train a human feedback simulator that takes in state-action pairs and
regresses the feedback values. During the Automated guidance stage, the trained simulator stands in
for the human and provides feedback to continue to improve the policy, effectively reducing human
efforts and cognitive loads.

to maximize the critic’s output. The combined objective is defined as Lc-Deep TAMER = Lθ + Lϕ,
where:

Lθ = −Fϕ(s,Aθ(s)) (3)
Lϕ = ||Fϕ(s,A(s))− fs,Aθ(s)||2 (4)

We follow recent advancements in model architectures and optimization strategies, such as target net
soft updates and using Adam optimizer instead of SGD. Our strong baseline not only enhances Deep
TAMER to continuous actions and recent RL practices but also maintains the core methodology of
integrating real-time human feedback into the learning process.

4 GUIDE: Grounding Real-Time Human Feedback
4.1 Method Overview

Developing real-time decision-making agents presents significant challenges. These agents must
explore high-dimensional observations, constantly adapt, and make accurate decisions with limited
supervisory signals. Real-time human-guided RL seeks to harness human expertise and adaptability.
However, existing algorithms often underutilize human expertise by solely relying on discrete
feedback. Additionally, integrating human feedback with environmental rewards can be complex,
and human evaluation criteria often evolve during training.

This section introduces our framework GUIDE (Fig. 2) to address these limitations. GUIDE enables
real-time human guidance using dense and continuous feedback. The agent directly perceives the
environment through visual frames, selects and executes actions, and receives continuous human
feedback per decision step. This feedback is then converted into dense rewards that will be integrated
with sparse environment rewards for effective learning. Concurrently, a separate neural network
consistently observes the state-action pairs and human feedback and learns to predict the provided
human feedback. This learned model will eventually replace the human as the feedback provider,
significantly improving the efficiency of human-guided RL while minimizing the required human
guidance time.

4.2 Obtaining Continuous Human Feedback

Conventional real-time human-guided RL frameworks rely on feedback that is discrete in time and
values. An example that we adopted as our baseline is shown in Fig. 3(A). We propose a novel
interface that enables human trainers to provide continuous-valued feedback at every time step. As
illustrated in Fig. 3(B), the trainer hovers their mouse over a window to indicate their assessment of
the agent’s behavior.
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Our method offers several advantages:

• Natural Engagement: Hovering is a more natural interaction compared to clicking buttons [39],
fostering continuous human guidance without interrupting the training flow.

• Expressive Feedback: Continuous values allow humans to express nuanced assessments, capturing
a wider range of feedback compared to discrete options, as shown in Fig. 3.

• Constant Training: Unlike discrete-feedback algorithms where the model update frequency is
based on the feedback frequency, the continuous feedback ensures that the model continuously
learns and adapts.

• Simplified Credit Assignment: In our setting, it is reasonable to assume a constant human
feedback delay, alleviating the need for complex credit assignment to map delayed feedback to
specific state-action pairs. Such delayed association time window has been reported to have
inconsistent values across different studies. In contrast, we used the same one-time delay factor for
all our studies.

4.3 Learning from Joint Human and Sparse Environment Feedback
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Fig. 3: (A) Conventional discrete feedback. (B) Our continuous feedback. The
histograms indicate the feedback distribution provided by the same subject on
the same task. Continuous feedback carries more information from the human
trainer.

While human
guidance offers
valuable super-
vision, sparse
environment re-
wards or terminal
rewards remain
crucial for their
easy access and
the ability to
induce desired targets. However, directly using human feedback as a value function makes
incorporating existing environment rewards challenging [44]. We propose a straightforward but
effective solution: convert the human feedback at each time step t into a reward, denoted as
ft = rhft . This allows the seamless integration of environment rewards through simple addition:
rt = rhft + renvt . This approach also enables leveraging off-the-shelf advanced RL algorithms,
which typically make minimal assumptions about the reward function. Our method can be seen
as interactive reward shaping [30] which is a vastly effective approach in handling sparse and
long-horizon tasks. However, designing dense reward functions directly can be difficult as it often
requires significant prior knowledge, manual effort, and trial and error. Moreover, it lacks adaptability
to unforeseen scenarios. Our approach allows for real-time reward shaping through human guidance,
capitalizing on human flexibility and intuition.

4.4 Continue Training by Learning to Mimic Human Feedback

Human guidance can be time-consuming and cognitively demanding. To maximize the benefit of
human input while minimizing their effort, we propose a regression model that learns to mimic human
feedback, acting as a surrogate for the human trainer (Fig. 2). This model allows for continual policy
improvements even when human feedback is not available. Our idea is based on the assumption that
human feedback implicitly follows a mapping function: H(s, a) = f , where s and a are the state and
action observed by the human, and f is the assigned feedback value.

The key insight is that during human guidance, we can readily collect state-action pairs along with
their assigned feedback values, which allows training a human feedback simulator, parameterized
by a neural network Ĥ(s, a) = f̂ , by minimizing ||f − f̂ ||2. This training can occur concurrently
with human guidance to prepare to substitute at any time or offline for later deployment in continual
training. To prevent overfitting, we held out 1 out of 5 trajectories as a validation set. Once trained, the
simulator can operate in inference mode to provide feedback in the absence of the human trainer. This
model makes no assumptions about the human’s specific feedback style or patterns. Instead, it learns
to provide feedback consistent with the human trainer, minimizing the shift in reward distribution.
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5 Experiments

5.1 Environments

We conduct our experiments on the CREW [51] platform.

Bowling: A modified version of Atari Bowling. Each episode consists of 10
rolls. The agent receives a reward equal to the number of pins hit after each
roll. The action space is 3-dimensional: the initial ball position, the distance to
start steering the ball, and the steer direction. Observation is the visual image.

Find Treasure: The agent is tasked to navigate through a partially observable
maze to retrieve a treasure. The agents receive a +10 reward upon reaching the
treasure, and a constant -1 time penalty for each step taken. The observation
space is a top-down accumulated view of where the agent has explored, initial-
ized by a square area around the agent. The action space is a two-dimensional
vector of the next destiny location, to which a low-level planning algorithm
will navigate the agent. The max episode length is 15 seconds.

1v1 Hide-and-Seek: A multi-agent one-on-one visual hide-and-seek task
[13, 14], where we aim to learn the seeker policy whose goal is to navigate
through the maze and catch the hider. The hider policy is a heuristic that will
avoid obstacles and reflect when running into a wall while moving away from
the seeker if the seeker is within a certain range. The reward, observation, and
action spaces remain the same as Find Treasure.

5.2 Experiment Settings
Evaluation Metrics We allocated 10 minutes for consistent human feedback. We collected the
checkpoints and human feedback data and performed continual training for another 10 minutes. The
model’s performance was evaluated in a test environment every minute for Bowling and every 2
minutes for Find Treasure and Hide-and-Seek. For every Bowling checkpoint, we evaluate for 1 game
(10 rolls); for Find Treasure and 1v1 Hide-and-Seek, we evaluate 100 episodes for every checkpoint.
All test results are reported on unseen test conditions.

Baselines We include two state-of-the-art reinforcement learning algorithms and a human-guided
RL algorithm as baselines. We selected Deep Deterministic Policy Gradient (DDPG) [27] and Soft
Actor-Critic (SAC) [22] due to their superior performance on many benchmarks. We compared
GUIDE to the continuous version of Deep TAMER as described in Sec. 3.2, denoted as c-Deep
TAMER under the same amount of human training time. We also run experiments on Find Treasure
and Hide and Seek with heuristic feedback, in other words, a dense reward. The feedback is an
exploration reward when the target (treasure or hider) is not within the agent’s visible view and a
distance reward when it is. This can be seen as an upper bound of our method, as this is the “heavy
engineered reward” by domain experts with no noise or delay.

Human Subjects. We recruited 50 adult subjects to participate in the experiments under the approval
of the Institutional Review Board. The subjects have no prior training or knowledge of the algorithms
or tasks and have only been instructed to assess the performance of the agents. Inter-trial intervals
are included between individual game experiments. For each session, the subject will receive $20
compensation.

5.3 Human Cognitive Tests for Individual Difference Characterization
In order to quantify individual differences among participants and explore how these differences affect
the human-guided RL performance, we conducted a series of cognitive tests to evaluate their cognitive
abilities relevant to the training tasks before the human-guided RL experiments. We describe the
details of the cognitive tests as follows. All tests involve six trials for each participant.

Eye Alignment [35](Fig. 4)(A): The subject is asked to align a ball on the left side of the screen
with a target on the right side as accurately as possible within five seconds without using any tools.
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Fig. 4: Cognitive Tests: We conducted a series of cognitive tests to quantify how individual
differences among subjects affect their guided agents’ performances. (A) Eye Alignment (B) Reflex
(C) Theory of Behavior (D) Mental Rotation (E) Mental Fitting (F) Spatial Mapping

The score is calculated as the negative average of the distances between the ball’s and the target’s
horizontal positions across trials.

Reflex [6](Fig. 4)(B): The subject is asked to click the screen as quickly as possible when it changes
from yellow to green. Clicking while the screen is still yellow or failing to click within two seconds
after the screen turns green is considered a failure. The score is calculated as the negative average of
the reflex times, with failures being left out in the score calculation.

Theory of Behavior [15](Fig. 4)(C): The subject observes a red ball moving in an unknown but
fixed pattern for five seconds. Afterward, the ball pauses, and the subject must predict the ball’s
position one second after it resumes moving. The subject has two seconds to make this prediction.
The score is calculated as the negative average of the distances between the ball’s actual positions
and the subject’s predicted positions across trials.

Mental Rotation[38](Fig. 4)(D): The subject is tasked with identifying the piece among three similar
pieces that cannot be directly rotated to match the target piece within eight seconds. The score is
calculated based on the accuracy of the subject’s identifications across all trails.

Mental Fitting[38](Fig. 4)(E): The subject is tasked with identifying the only piece among three
similar pieces that can fit with the target piece within eight seconds. The score is calculated based on
the accuracy of the subject’s identifications across all trials.

Spatial Mapping [5](Fig. 4)(F): A video of an agent navigating a maze with a restricted field of
view is presented to the subject. After watching the video, the subject is asked to identify the maze
from a selection of three similar mazes within five seconds. The score is calculated based on the
accuracy of the subject’s identifications across all trials.

5.4 Implementation Details

RL backbone and model architecture. The state-of-the-art visual reinforcement learning algorithm
transitioned from SAC [22] to DDPG [27] due to its stronger performance enabled by the easy
incorporation of multi-step returns and the avoidance of entropy collapse[49]. Following this, we
also select DDPG [27] as our Reinforcement Learning backbone for GUIDE. We used a 3-layer
convolutional neural network as the vision encoder. The actor, critic, and learned feedback model
shared this encoder, and each follows it with a 3-layer Multi-Layer Perceptron.

Hyperparameters We used an Adam optimizer with a fixed learning rate of 1e-4 for RL policy
training, with a discount factor of γ = 0.99. We applied gradient clipping setting max grad norm
to 1. For the learned feedback model, we used the same Adam optimizer with 1e-4 learning rate
and employed early stopping based on the loss on held-out trajectories. For Deep TAMER’s credit
assignment window, we used the same uniform [0.2, 4] distribution as in the original paper. We used
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Fig. 5: GUIDE performance compared with other baselines. In challenging tasks, GUIDE consistently
outperforms all other baselines. Subjects with higher cognitive test scores also result in higher
performance in the learned agents as shown in the top row (Top 15).
a shorter window of [0.2, 1] for Find treasure and Hide-and-Seek. For these more difficult navigation
tasks, we stacked three consecutive frames as input.

Human delay factor. Human delay is non-neglectable in human-guided RL. The time it takes for
a human to see and process the states and to produce a feedback signal varies across environments
and individuals. Preliminary experiments with the authors suggested that shifting human feedback
by 2 seconds for Bowling and 1 second for Find Treasure and Hide and Seek best aligned with the
intended state-action pairs.

5.5 Experiment Results and Analysis

Human-Guided RL performance We report our results in Fig. 5, where the x-axis is the total
training time, and the y-axis is either the score for Bowling or the success rate for Find Treasure and
Hide-and-Seek. The dashed line separating the first and second 10 minutes indicates the end of the
human guidance and the beginning of the automated guidance. The first row reports the training
results of the 15 human trainers who scored the highest on the cognitive test. The second row is
the average performance of all 50 human subjects. We observe that subjects who tested higher on
cognitive skills result in higher performing agents, as the trained AI performance approaches closer to
the heuristic feedback upper bound. For the simple Bowling task, all methods perform similarly, with
GUIDE having a slight advantage over DDPG. On the challenging Find Treasure and Hide-and-Seek
task, GUIDE-DDPG scored up to 30 percent higher success rate than its RL counterpart, and 50
percent higher than c-Deep TAMER given the same amount of human guidance time. It is worth
noting that in this time-critical setting, GUIDE-DDPG is able to reach the same level of performance
as its RL baselines within half the training time. The average of all 50 untrained human trainers was
able to surpass its RL baseline by a large margin while also surpassing our greatly enhanced Deep
TAMER on the challenging Find Treasure and Hide and Seek by up to 40 points in success rate.

Exploration Analysis The ability to explore the state space is considered one of the key aspects of
successful sparse reward RL. We hypothesize one benefit of human guidance is inducing efficient
exploration behavior. We quantify exploration tendency on Find Treasure by measuring the accu-
mulated visible area ratio. After two minutes of human feedback within the GUIDE framework, the
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Fig. 6: Exploration behavior of GUIDE and DDPG agents. For each of the plots, the x-axis is the
step number through the course of an episode. The y-axis is the ratio between the area of the visible
view and the entire input frame. We observe a stronger tendency of exploration exhibited by the
human-guided agent compared to the baseline RL agent.

agents have shown more efficient exploration behavior compared to the RL baseline. As shown in
Fig. 6, each plot corresponds to one stage in training. For each plot, the x-axis is the step number
through the course of an episode, and the y-axis is the visible area ratio for that step averaged across
10 episodes. The GUIDE results are tested on the human subjects who ranked top 15 in cognitive
tests. The DDPG results are tested on five different random seeds. The higher the curve, the faster the
agent explores the maze. We find that the exploration ability increases throughout training for both
DDPG and GUIDE, with GUIDE learning to explore faster in the first 10 minutes. As the training
progresses, exploration reaches its bottleneck utility, and DDPG and GUIDE converge to a similar
exploration rate.
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Fig. 7: Qualitative visualization of the learned human feedback model. Our learned feedback model
is able to generalize to unseen trajectories and provide effective feedback in place of humans.

Learned Feedback Model Ablations We qualitatively analyze the effect of the learned feedback
model by visualizing its predictions on unseen trajectories. As shown in Fig. 7, our learned feedback
model generalizes to unseen trajectories and is able to provide effective feedback in place of humans.

Bowling

Find

Treasure

1v1 Hide

& Seek

Total

Fig. 8: Correlation between cognitive test scores
(normalized) and GUIDE training performance.
The darker the color, the more statistically signifi-
cant the correlation. “+”: positive, “-”: negative.

Individual Differences vs. Performance To further
characterize individual differences and how they af-
fect policy training, we found a significant correlation
between the cognitive test ranking of the human sub-
jects and their trained AI performance, with a Pear-
son correlation coefficient of 7.522 and a p-value of
0.001, as shown in Fig. 8. Among all cognitive tests,
the mental rotation test and Mental Fitting test are
the strongest indicators of overall guided AI success.
We also discovered relationships between individual
tasks and cognitive tests. Notably, 1v1 Hide-and-
Seek score is positively related to reflex time. This is
likely due to the fact that Hide-and-Seek is a quickly
evolving dynamic task, and faster response time will
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Fig. 9: Robustness to individual differences. The subplots from left to right show how performance
evolves over training time. In each subplot, the x-axis is training milestones indicated by task scores,
and the y-axis is the percentage of humans who were able to train the agent to reach the milestone at
a given time. We find that GUIDE’s robustness scales to more complex tasks.

result in better matching in feedback and state-action pairs. Detailed correlation results can be found
in the appendices.

Robustness to individual differences A critical aspect of human-guided machine algorithms is the
method’s robustness to different human trainers. A generalizable algorithm should maintain a strong
performance when human feedback patterns vary. However, this is rarely discussed by prior methods
likely due to the small size of human participants. Here we provide a thorough analysis on GUIDE’s
performance across our 50 human trainers compared to c-Deep TAMER. Each subplot in Fig 9 shows
for each human-guided algorithm, the percentage of human trainers (y-axis) that are able to train
the agent to reach specific milestones indicated by task scores (x-axis). Panel A shows that for the
Bowling task, c-Deep TAMER and GUIDE are close in performance. Panel B and C shows that for
Find Treasure and 1v1 Hide-and-Seek, as the complexity of the game increases, more human trainers
are able to reach milestones using GUIDE than using c-Deep TAMER, demonstrating the scalability
of the robustness of GUIDE to individual differences.

6 Conclusion, Limitations and Future Work
We introduce GUIDE, a novel framework for real-time human-guided RL. GUIDE leverages continu-
ous human feedback to effectively address limitations associated with sparse environment rewards
and discrete feedback approaches. Furthermore, GUIDE incorporates a parallel training algorithm to
learn a human feedback simulator, enabling continued policy improvements without ongoing human
input. Our extensive experiments demonstrate the efficacy of GUIDE across challenging tasks while
presenting human cognitive assessments to understand individual differences.

While GUIDE offers significant advantages, it presents some limitations and exciting avenues for
future work. First, our current evaluation focuses on tasks with moderate complexity. Future work
can explore scaling GUIDE to highly complex environments and large-scale deployments. Moreover,
we have quantitatively observed strong individual differences in guiding learning agents through
extensive human studies. However, we have not explored how to mitigate such differences and
account for human variability in feedback patterns. Furthermore, understanding how the human
feedback simulator operates and interprets the agent’s behavior remains an open question. Future
work will delve into explainable learning techniques to shed light on this process.
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A Computatonal Resources

All human subject experiments are conducted on desktops with one NVIDIA RTX 4080 GPU. All
evaluations are run on a headless server with 8 × NVIDIA RTX A6000 and NVIDIA RTX 3090 Ti.

B Fully Cognitive test-Guided AI performance Study
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our extensive experiment results support our claims in the abstract and
introduction. We also summarize our contributions in the Conclusion section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in the Conclusion, Limitations and
Future Work section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results or contributions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the full implementation details and settings in our experiment
section. We will also open-source the entire code base, including algorithms and task
environments for the broader community for full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will also open-source the entire code base, including algorithms and task
environments for the broader community for full reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the full implementation details in the paper including hyperparam-
eters, task setups, and algorithms. We will also open-source the entire code base, including
algorithms and task environments for the broader community for full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To the best of our knowledge, we present the most extensive studies among
related studies with N = 50 human subjects with detailed analysis. We report the full results
with extensive evaluation runs and the means and standard deviations. For all other RL
baselines, results are also reported with multiple random seeds with the mean and standard
deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the experiments’ compute resources in the our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and we follow this code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work does not fit into the stated negative societal impacts. We discuss the
positive societal impacts in the abstract and the introduction sections.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: this paper poses no such risks. Our human studies have been approved by the
Institutional Review Board, and we will not release or share any identifiable data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited all the previous works used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will open-source the entire code base for our algorithms, baselines, and
experiment environments. We will also include detailed documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Our human studies have been approved by the Institutional Review Board with
all detailed documents. We have included as many details as possible in the main texts. We
plan to release our instruction videos for the human subjects as well. We have included the
compensation in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our study has been approved by the Institutional Review Board and we have
included the details in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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