
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOUNDCTM: UNIFYING SCORE-BASED AND CONSIS-
TENCY MODELS FOR FULL-BAND TEXT-TO-SOUND
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sound content creation, essential for multimedia works such as video games and
films, often involves extensive trial-and-error, enabling creators to semantically
reflect their artistic ideas and inspirations, which evolve throughout the creation
process, into the sound. Recent high-quality diffusion-based Text-to-Sound (T2S)
generative models provide valuable tools for creators. However, these models often
suffer from slow inference speeds, imposing an undesirable burden that hinders the
trial-and-error process. While existing T2S distillation models address this limi-
tation through 1-step generation, the sample quality of 1-step generation remains
insufficient for production use. Additionally, while multi-step sampling in those
distillation models improves sample quality itself, the semantic content changes
due to their lack of deterministic sampling capabilities. Thus, developing a T2S
generative model that allows creators to efficiently conduct trial-and-error while
producing high-quality sound remains a key challenge. To address these issues,
we introduce Sound Consistency Trajectory Models (SoundCTM), which allow
flexible transitions between high-quality 1-step sound generation and superior
sound quality through multi-step deterministic sampling. This allows creators to
efficiently conduct trial-and-error with 1-step generation to semantically align sam-
ples with their intention, and subsequently refine sample quality with preserving
semantic content through deterministic multi-step sampling. To develop Sound-
CTM, we reframe the CTM training framework, originally proposed in computer
vision, and introduce a novel feature distance using the teacher network for a
distillation loss. Additionally, while distilling classifier-free guided trajectories,
we introduce a ν-sampling, a new algorithm that offers another source of quality
improvement. For the ν-sampling, we simultaneously train both conditional and
unconditional student models. For production-level generation, we scale up our
model to 1B trainable parameters, making SoundCTM-DiT-1B the first large-scale
distillation model in the sound community to achieve both promising high-quality
1-step and multi-step full-band (44.1kHz) generation. Audio samples are available
at https://anonymus-soundctm.github.io/soundctm_iclr/.

1 INTRODUCTION

Sound contents play a pivotal role in multimedia experiences, such as video games, music, and
films. In a video game development, for example, sound creators and foley artists meticulously craft
sound contents like footsteps, dragon roars, and ambient bird chirps to enhance the immersive quality
of gameplay. Recently, Text-to-Sound (T2S) generative models based on Latent Diffusion Models
(LDMs) (Rombach et al., 2022), such as Stable Audio (Evans et al., 2024a;c) and AudioLDM2-
48kHz (Liu et al., 2024b), demonstrating full-band sound generation in either 44.1 kHz or 48 kHz
formats, which is required for real-world applications, have emerged as appealing tools for streamlin-
ing the sound production process. Despite their potential, these DMs (Sohl-Dickstein et al., 2015;
Song et al., 2021b; Karras et al., 2022) are computationally intensive, making it challenging to swiftly
modify and refine sound content to align with creators’ continuously evolving artistic inspiration,
which is influenced by various triggers, such as the intermediate sounds produced during creation and
shifts in their viewpoint toward the desired sound. This paper addresses the issue of slow inference
speeds in T2S models and seeks to enhance their editability and practical application.
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SoundCTM-DiT-1B w/. deterministic sampling 

1 Step 4 Step 16 Step

Trial Refinement

Prompt: “A woman speaks then a small child speaks.” Teacher DiT (NFE=79) SoundCTM-DiT-1B (NFE=1)

Sc
or
e

Inference speed: 

2.5 [s]
Overall audio quality

Text alignment

Human evaluation on full-band T2S generation

Inference speed: 

0.06 [s]

Figure 1: SoundCTM-DiT-1B is first model that achieves high-quality 1-step and higher-quality multi-
step full-band T2S generation while preserving semantic content through deterministic sampling,
enabling creators to efficiently carry out the trial-and-refinement creation process within a single
model.

Sound creation typically involves a significant trial-and-error process, whether through mixing and
splicing digital sounds from extensive high-quality sound libraries or recording physical objects. This
trial-and-error process, while time-consuming, is crucial for creators to semantically reflect their
changing ideas and inspirations throughout the creation, driven by their vision of the experience they
want to deliver to consumers, into the sound content.

When applying sound generative models to the sound creation for production use, existing LDM-based
full-band T2S models can be leveraged for their high-quality generated sounds. However, due to their
slow inference speeds, these models struggle to efficiently accommodate the trial-and-error process,
posing an undue burden on creators. While these models suffer from slow inference speeds, recent
Consistency Distillation (CD) (Song et al., 2023)-based T2S models, such as ConsistencyTTA (Bai
et al., 2023) and AudioLCM (Liu et al., 2024c), offer the potential to accelerate the trial-and-error
process with their 1-step generation. However, the sample quality of their 1-step generation remains
insufficient for production-level use.

To integrate sound generative models into real-world sound creation, we aim to propose a single
model that efficiently facilitates a trial-and-refinement creation process, where creators can first
conduct trials with 1-step generation and, once the semantically desired content is obtained, refine
the sample quality through multi-step deterministic sampling while preserving the semantic content.
It is true that existing CD-based distillation models can improve the sound quality itself through
multi-step sampling. However, the refinement phase—where sounds are further refined for production
use while preserving their semantic content after the trial phase—remains challenging with those
distillation models. This difficulty stems from the fact that deterministic sampling, essential for
maintaining semantic content, is not feasible due to their CD’s training regime, which only learns
anytime-to-zero-time jumps. Therefore, developing a new model that can be applied efficiently to
both the trial and refinement phases remains a critical challenge for sound generative models.

To address this challenge, in this paper, we present the Sound Consistency Trajectory Model
(SoundCTM), a novel T2S model that enables flexible switching between 1-step high-quality
sound generation and higher-quality multi-step generation with deterministic sampling, allowing
creators to efficiently perform the trial-and-refinement creation process within a single model (See
Figure 1). This is achieved through a training framework that learns anytime-to-anytime jumps (i.e.,
deterministic mapping) and employs deterministic sampling as proposed in Consistency Trajectory
Models (CTMs) (Kim et al., 2024). Building upon the CTM framework, originally proposed in
the computer vision field, we address the limitations of its training approach, particularly its heavy
reliance on extra pretrained networks to achieve notable generation performance, which are not
always accessible in other domains. Specifically, we propose a novel feature distance that uses a
teacher network as a feature extractor for distillation loss (see Section 3.1). Furthermore, while
distilling classifier-free guided text-conditional trajectories with Classifier-Free Guidance (CFG) (Ho
and Salimans, 2022) as a new condition for student models, we introduce ν-sampling, a new sampling
algorithm that incorporates the text-conditional and unconditional student models. For ν-sampling,
we train both text-conditional and unconditional student models, simultaneously. (see Section 3.2 and
Algorithm 1).

In our experiments, SoundCTM shows notable 1-step generation and higher-quality multi-step gener-
ation not only in the 16kHz setting but also in the 44.1kHz full-band T2S generation setting, which
is the minimum requirement for real-world sound creation. Additionally, by utilizing deterministic
sampling, SoundCTM demonstrates the capability to flexibly control the trade-off between inference
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speed and sample quality while preserving semantic content, thereby enabling the trial-and-refinement
process with a single model. We highlight that SoundCTM-DiT-1B, whose teacher model is a DiT-
based LDM with 1B trainable parameters, is the first large-scale full-band T2S distillation model
capable of achieving both high-quality 1-step generation and higher-quality multi-step generation.

Our contributions are summarized as:
• We introduce SoundCTM, enabling the efficient trial-and-refinement creation process with a

single T2S model through high-quality 1-step generation and higher-quality generation with
multi-step deterministic sampling.

• To develop SoundCTM, we address the limitations of the CTM framework by proposing a
novel feature distance for distillation loss, a strategy for distilling CFG trajectories, and a
ν-sampling that combines text-conditional and unconditional student jumps.

• We demonstrate that SoundCTM-DiT-1B is the first large-scale distillation model to achieve
notable 1-step and multi-step full-band text-to-sound generation.

2 PRELIMINARY

Diffusion Models Let pdata denote the data distribution. In DMs, the data variable x0 ∼ pdata
is generated through a reverse-time stochastic process (Anderson, 1982) defined as dxt =
−2t∇ log pt(xt)dt +

√
2tdw̄t from time T to 0, where w̄t is the standard Wiener process in

reverse-time. The marginal density pt(x) is obtained by encoding x0 along with a fixed forward
diffusion process, dxt =

√
2tdwt, initialized by x0, where wt is the standard Wiener process in

forward-time. Song et al. (2021b) present the deterministic counterpart of the reverse-time process,
called the Probability Flow Ordinary Differential Equation (PF ODE), given by

dxt

dt
= −t∇ log pt(xt) =

xt − Ept|0(x|xt)[x|xt]

t
,

where pt|0(x|xt) is the probability distribution of the solution of the reverse-time stochastic process
from time t to 0, initiated from xt. Ept|0(x|xt)[x|xt] = xt + t∇ log pt(xt) is a denoiser func-
tion1 (Efron, 2011).

Practically, the denoiser E[x|xt] is estimated by a neural network Dϕ, obtained by minimizing a
Denoising Score Matching (DSM) loss (Vincent, 2011; Song et al., 2021b) Ex0,t,p0|t(x|x0)[∥x0 −
Dϕ(x, t)∥22], where p0|t(x|x0) is the transition probability from time 0 to t, initiated with x0. Given
the trained denoiser, the empirical PF ODE is given by

dxt

dt
=

xt −Dϕ(xt, t)

t
. (1)

DMs can generate samples by solving the empirical PF ODE, initiated with xT , which is sampled
from a prior distribution π approximating pT .

Text-Conditional Sound Generation with Latent Diffusion Models LDM-based T2S models (Liu
et al., 2023; 2024b; Ghosal et al., 2023; Evans et al., 2024a;c) generate audio matched to textual
descriptions by first obtaining the latent counterpart of the data variable z0 through the reverse-time
process conditioned by text embedding ctext. This latent variable z0 is then converted to x0 using
a pretrained decoder D. During the training phase, Dϕ is trained by minimizing the DSM loss
Ez0,t,p0|t(z|z0)[∥z0 − Dϕ(z, t, ctext)∥22], where p0|t(z|z0) is the latent counterpart of the transition
probability from time 0 to t, initiated with z0. z0 is given by a pretrained encoder as z0 = E(x0). We
refer to Appendix A for a review of related work.

Consistency Models Consistency Models (CMs) (Song et al., 2023) and CD predict anytime-to-
zero time long jumps of the PF ODE trajectory. G(xt, t, 0) is defined as the solution of the PF ODE
from initial time t to final time 0, and G is estimated by Gθ as the neural jump. To train Gθ , two time
step 0-predictions are compared: one from a teacher ϕ and the other from a student θ as:

Gθ(xt, t, 0) ≈ Gsg(θ)

(
Solver(xt, t, t−∆t;ϕ), t−∆t, 0

)
,

1For simplicity, we omit pt|0(x|xt), a subscript in the expectation of the denoiser, throughout the paper.
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Multiple-step ODE solver

Feature extraction by Teacher’s Network

PF ODE trajectory SoundCTM’s jump

Feature distance computation

Figure 2: Illustrations of SoundCTM’s two predictions ztarget and zest at time s with an initial value zt
and the feature extraction by the teacher’s network for the CTM loss shown within the blue ellipse
area. All the parameters of the teacher’s network are frozen. The conditional embedding c and time s
are also input to the feature extractor. Note that the teacher’s network does not need to be the UNet
architecture (Ronneberger et al., 2015).

where Solver(xt, t, t−∆t;ϕ) is the pre-trained PF ODE in Eq. (1) within the interval [t−∆t, t],
which determines the amount of teacher information to distill, and sg is the exponential moving
average (EMA) stop-gradient sg(θ) ← stopgrad(µsg(θ) + (1 − µ)θ). In CMs and CD, only
stochastic sampling is possible during multi-step sampling. This is because the model is trained using
the anytime-to-zero time jump framework, which requires adding noise to the estimated x0 to obtain
xt for multi-step sampling. As a result, the semantic content of generated samples changes depending
on the number of sampling steps. This variability hinders the trial-and-refinement process, which is
why we do not adopt the CD framework.

Consistency Trajectory Models In contrast to CMs, CTMs predict both infinitesimally small step
jump and long step jump of the PF ODE trajectory. G(xt, t, s) is defined as the solution of the PF
ODE from initial time t to final time s ≤ t, and G is estimated by Gθ as the neural jump. To train
Gθ, two s-predictions are compared: one from a teacher ϕ and the other from a student θ as:

Gθ(xt, t, s) ≈ Gsg(θ)

(
Solver(xt, t, u;ϕ), u, s

)
, (2)

where Solver(xt, t, u;ϕ) is the pre-trained PF ODE in Eq. (1), a random u ∈ [s, t) determines the
amount of teacher information to distill. To quantify the dissimilarity (CTM loss) between the student
prediction Gθ(xt, t, s) and the teacher prediction Gsg(θ)(Solver(xt, t, u;ϕ), u, s) in Eq. (2), the
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) is used to measure a
feature distance dfeat. after transporting both predictions from s-time to 0-time as xest(xt, t, s) :=
Gsg(θ)(Gθ(xt, t, s), s, 0) and xtarget(xt, t, u, s) := Gsg(θ)(Gsg(θ)

(
Solver(xt, t, u;ϕ), u, s

)
, s, 0).

Summarizing, the CTM loss is defined as

LCTM(θ;ϕ) := Et∈[0,T ]Es∈[0,t]Eu∈[s,t)Ex0Ext|x0

[
dfeat.

(
xtarget(xt, t, u, s),xest(xt, t, s)

)]
. (3)

With this anytime-to-anytime jump training framework, both stochastic and deterministic sampling
are possible in CTMs, enabling the trial-and-refinement process for sound creation.

3 SOUNDCTM

To address the challenges of achieving fast, flexible, and high-quality T2S generation, we introduce
SoundCTM by reframing the CTM’s training framework. Consistent with the CTM, we use the same
distillation loss. Since this paper primarily illustrates the method using LDM-based T2S models as
the teacher model, the student model is trained to estimate the neural jump Gθ as:

Gθ(zt, ctext, t, s) ≈ Gsg(θ)

(
Solver(zt, ctext, t, u;ϕ), ctext, u, s

)
, (4)

where zt is the latent counterpart of xt, and Solver(zt, ctext, t, u;ϕ) is the numerical solver of the
pre-trained text-conditional PF ODE by following Eq. (2). To quantify the dissimilarity between Gθ

and Gsg(θ), we propose a new feature distance in Section 3.1. We refer to Appendix A for a review
of related work about our proposed feature distance.

4
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3.1 TEACHER’S NETWORK AS FEATURE EXTRACTOR FOR CTM LOSS

We propose a new training framework that utilizes the teacher’s network as a feature extractor
and measures the feature distance dteacher for the CTM loss between Gθ and Gsg(θ) in Eq. (4), as
illustrated in Figure 2. Utilizing dteacher offers two benefits:

• Using dteacher yields better performance compared with using the l2 distance in the z domain
computed at either 0-time or s-time, as demonstrated in Table 1.

• The teacher network can naturally be utilized even in situations where external off-the-shelf
pretrained networks for computing a feature distance are inaccessible, since SoundCTM is a
distillation model that assumes the availability of a teacher diffusion model. We discuss the
potential use of external off-the-shelf pretrained networks in Appendix B.

We define dteacher between two predictions ztarget and zest as follows:

dteacher(ztarget, zest, c, t) =

M∑
m=1

∥TNϕ,m(ztarget, c, t)− TNϕ,m(zest, c, t)∥22, (5)

where TNϕ,m(·, c, t) denotes the channel-wise normalized 2 output feature of the m-th layer of the
pretrained teacher’s network, conditioned by time t and embedding c. This approach is feasible since
noisy latents are input to the teacher’s network during teacher’s training.

3.2 CFG HANDLING FOR SOUNDCTM

CFG plays a pivotal role in T2S generation, as well as in other modalities (Ho and Salimans, 2022),
for generating high-quality samples. To leverage this advantage of CFG, we propose distilling the
classifier-free guided PF ODE trajectory scaled by ω uniformly sampled from the range [ωmin, ωmax]
during training, and using ω as a new condition in the student network defined as:

Gθ(zt, ctext, ω, t, s) =
s

t
zt +

(
1− s

t

)
gθ(zt, ctext, ω, t, s), (6)

where gθ is a neural output. To summarize Eqs.(4)–(6), the distillation loss for SoundCTM is
formulated as:
LSound

CTM (θ;ϕ) := Et,s,u,ω,zt

[
dteacher

(
ztarget(zt, ctext, ω, t, u, s), zest(zt, ctext, ω, t, s), ctext, s

)]
, (7)

where
ztarget(zt, ctext, ω, t, u, s) := Gsg(θ)(Solver(zt, ctext, ω, t, u;ϕ), ctext, ω, u, s),

zest(zt, ctext, ω, t, s) := Gθ(zt, ctext, ω, t, s),

Solver(zt, ctext, ω, t, u;ϕ) := ωSolver(zt, ctext, t, u;ϕ) + (1− ω)Solver(zt,∅, t, u;ϕ), ∅ is
an unconditional embedding, u ∈ [s, t), and ω ∼ U [ωmin, ωmax], respectively.

To achieve better generation performance, Kim et al. (2024) use the two auxiliary losses, the DSM
loss and an adversarial loss (GAN loss) (Goodfellow et al., 2014). For SoundCTM, we only use the
DSM loss, defined as:

LSound
DSM (θ) = Et,z0,ω,zt|z0

[∥z0 − gθ(zt, ctext, ω, t, t)∥22]. (8)
Note that the DSM loss serves to improve the accuracy of approximating the small jumps during the
training. We discuss the reason why we eliminate the GAN loss in Section 5. Summing Eqs. (7) and
(8), SoundCTM is trained with the following objective:

L(θ) := LSound
CTM (θ;ϕ) + λDSMLSound

DSM (θ), (9)
where λDSM is a scaling weight for LSound

DSM . We summarize SoundCTM’s training in Appendix C.

3.3 SAMPLING SCHEME OF SOUNDCTM

Inspired by the performance improvement by using CFG in DMs, we introduce ν-sampling in
SoundCTM’s sampling, which incorporates the text-conditional and unconditional student models,
given by:

zs|t = Gθ(zt,∅, ω, t, s) + ν(Gθ(zt, ctext, ω, t, s)−Gθ(zt,∅, ω, t, s)). (10)

2The idea of this normalization process is borrowed from LPIPS (Zhang et al., 2018, Sec. 3).
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Algorithm 1 SoundCTM’s Inference

Require: Hyperparameter ν, text condition ctext, CFG
scale ω, hyperparameter of CTM’s γ-sampling γ

1: Sample zt0 from prior distribution
2: for n = 0 to N − 1 do
3: t̃n+1 ←

√
1− γ2tn+1

4: zt̃n+1
← νGθ(ztn , ctext, ω, tn, t̃n+1)

5: +(1− ν)Gθ(ztn ,∅, ω, tn, t̃n+1)
6: ztn+1 ← zt̃n+1

+ γtn+1ϵ

7: end for
8: Return ztN

Algorithm 1 summarizes SoundCTM’s sam-
pling, with the sampling timesteps denoted as
T = t0 > · · · > tN = 0. Note that in con-
trast to the previous sampling methods for the
diffusion-based distillation models (Bai et al.,
2023; Liu et al., 2024c; Kim et al., 2024), we
also use Gθ(zt,∅, ω, t, s) as highlighted in blue
Algorithm 1. We train both Gθ(zt, ctext, ω, t, s)
and Gθ(zt,∅, ω, t, s) simultaneously as shown
in Algorithm 2.

4 EXPERIMENTS

4.1 T2S GENERATION ON 16KHZ

As an initial step, in this section, we conduct experiments on 16 kHz audio signals by following
most of the existing T2S generative models (Ghosal et al., 2023; Liu et al., 2023; 2024b; Bai et al.,
2023; Liu et al., 2024c). We evaluate SoundCTM on the AudioCaps dataset (Kim et al., 2019),
which contains 47, 289 pairs of 10-second audio samples and human-written text descriptions for
the training set and 957 samples for the testset. All audio samples are downsampled to 16 kHz. We
adopt TANGO (Ghosal et al., 2023) as the teacher model trained with EDM’s variance exploding
formulation (Karras et al., 2022). We use deterministic sampling (γ = 0 in Algorithm 1) and evaluate
the model performance with student EMA rate µ = 0.999. Experimental details are described in
Appendix C.1.

Evaluation Metrics We use four objective metrics: the Frechet Audio Distance (FADvgg) (Kilgour
et al., 2019) on VGGish, the Kullback-Leibler divergence (KLpasst) on PaSST (Koutini et al., 2022),
a state-of-the-art audio classification model, the Inception Score (ISpasst) (Salimans et al., 2016) on
PaSST, and the CLAP score3 (Wu* et al., 2023).

Effectiveness of Utilizing Teacher’s Network as Feature Extractor We first evaluate the efficacy
of utilizing the teacher’s network as a feature extractor in Eq (7), which we newly proposed in
Section 3.1, by comparing the following cases: Using 1) the l2 at 0-time step, 2) the l2 at s-time step,
and 3) the dteacher at s-time step. We use the entire layers of the teacher’s network for computing
dteacher.

Table 1: Effectiveness of using proposed dteacher against l2
on z0 space evaluated on AudioCaps testset. ω = 3.5 and
ν = 1.0 are used for inference.

Model # of steps FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑
Teacher diffusion model 40 1.71 1.28 8.11 0.46(TANGO-EDM w/. Heun solver)

Student Models
SoundCTM w/. l2 (0-time step) 1 2.43 1.28 6.87 0.42
SoundCTM w/. l2 (s-time step) 1 2.45 1.28 6.83 0.42
SoundCTM w/. dteacher 1 2.17 1.27 7.18 0.43

As shown in Table 1, using dteacher
demonstrates better performance
across all the metrics against all the
other cases. This result indicates
that using dteacher enables the student
model to distill the trajectory more
accurately than using l2. In the
subsequent experiments, unless
otherwise noted, SoundCTM refers to
the model trained with using dteacher.

Preserving Semantic Content within Multi-step Sampling One of our goals is to develop a
model capable of achieving high-quality 1-step generation and higher-quality multi-step generation
while preserving semantic content through deterministic sampling. To demonstrate this capability, we
visualize the spectrograms of generated samples from the same initial noise and input text prompt
across different numbers of sampling steps with SoundCTM’s deterministic sampling and other T2S
distillation models (ConsistencyTTA and AudioLCM) in Figure 3.

We emphasize that, by its anytime-to-anytime jump training framework, SoundCTM can preserve
generated content using deterministic sampling (γ = 0) 4, even when varying the number of sampling

3We use the "630k-audioset-best.pt" checkpoint from https://github.com/LAION-AI/CLAP
4Note that SoundCTM also supports stochastic sampling by adjusting γ.

6
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1 Step 2 Step 4 Step

ConsistencyTTA
w/. stochastic sampling

(*Deterministic sampling is not feasible) 

SoundCTM (Ours)
w/. deterministic sampling 

Method Sampling steps

Prompt: “Thunder claps, and hard rain falls and splashes on surfaces.”

AudioLCM
w/. stochastic sampling

(*Deterministic sampling is not feasible) 

Figure 3: Visualization of spectrograms of generated samples using 1-step, 2-step, and 4-step genera-
tion with ConsistencyTTA, AudioLCM, and SoundCTM.

Table 2: Performance comparisons on AudioCaps testset at 16 kHz. Bold scores indicate the
best results under 1-step generation. Underlined scores indicate the best results under multi-
step generation of Distillation Models. † denotes the results tested by us using the open-sourced
checkpoints, as not all metrics are provided in each paper.

Model # of sampling
ω ν FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑steps

Diffusion Models
AudioLDM 2-AC-Large (Liu et al., 2024b) 200 3.5 - 1.42 0.98 - -
TANGO (Ghosal et al., 2023) 200 3.0 - 1.64 1.31† 6.35† 0.44†

Teacher of ConsistencyTTA (Bai et al., 2023) 200 3.0 - 1.91 - - -
Teacher of AudioLCM (Liu et al., 2024c) 100 5.0 - 1.56 - - -
Our Teacher model (TANGO w/. Heun Solver) 40 3.5 - 1.71 1.28 8.11 0.46

Distillation Models
ConsistencyTTA (Bai et al., 2023) 1 4.0 - 2.41 1.31† 7.84† 0.42†

2 4.0 - 2.48† 1.27† 7.88† 0.41†

4 4.0 - 3.01† 1.31† 8.05† 0.42†

AudioLCM (Liu et al., 2024c) 1 5.0 - 4.04† 1.75† 6.52† 0.33†

2 5.0 - 1.67 1.49† 8.24† 0.41†

4 5.0 - 1.42† 1.40 8.78† 0.42†

SoundCTM (Ours) 1 3.5 1.0 2.08 1.26 7.13 0.43
2 3.5 1.0 1.90 1.24 7.26 0.45
4 3.5 1.0 1.72 1.22 7.37 0.45
8 3.0 1.5 1.45 1.20 7.98 0.46

16 3.0 2.0 1.38 1.19 8.24 0.46

steps (see additional examples in Figure 6). This cannot be achieved with ConsistencyTTA or
AudioLCM due to their lack of deterministic sampling capability. In terms of the sample quality, as
shown in Table 2, which we discuss later, SoundCTM shows clear trade-offs between the performance
improvements and the number of sampling steps. These SoundCTM’s characteristics allow sound
creators to efficiently proceed with the trial-and-refinement process with a single model.

Performance Comparison with Other T2S Models We compare SoundCTM with other T2S
models under both 1-step and multi-step generation. We employ ConsistencyTTA and AudioLCM as
our baseline models. We also include AudioLDM2-AC-Large (Liu et al., 2024b), TANGO (Ghosal
et al., 2023) in the evaluation for completeness. Table 2 presents the quantitative results. All the
LDM-based models use DDIM sampling (Song et al., 2021a) except for our teacher model.

Under the 1-step generation setting, SoundCTM shows the best performance in all the evaluation
metrics except for ISpasst. Note that, considering its teacher models’ performance, the results of 1-step
generation of AudioLCM is limited (See also (Liu et al., 2024c, Fig.2 (b)).). Under the multi-step
case, AudioLCM and SoundCTM show clear trade-offs between the performance improvements and
the number of sampling steps. On the other hand, ConsistencyTTA dose not show such trade-offs,
implying that ConsistencyTTA might suffer from accumulated errors during multi-step stochastic
sampling. These results indicate that SoundCTM is the first T2S distillation model to successfully
achieve both promising 1-step and multi-step generation.
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Table 3: Performance comparisons on AudioCaps at full-band setting. Bold scores indicate best
results.

Model channels/sr # of sampling
ω ν FDopenl3 ↓ KLpasst ↓ CLAP ↑ Inference

steps speed [sec.] ↓
Diffusion Models
Stable Audio Open (Evans et al., 2024c) 2/44.1kHz 100 7.0 - 78.24 2.14 0.29 -
AudioLDM2-48kHz (Liu et al., 2024b) 1/48kHz 200 3.5 - 101.11 2.04 0.37 -
Our teacher model w/. Heun Solver 1/44.1kHz 40 5.0 - 72.34 1.74 0.36 2.50

Distillation Models
SoundCTM-DiT-1B 1/44.1kHz 1 5.0 1.0 84.07 1.74 0.36 0.06

2 5.0 1.0 79.96 1.61 0.38 0.10
4 5.0 1.0 83.14 1.57 0.37 0.18
8 5.0 5.0 79.05 1.29 0.40 0.35

16 5.0 5.0 72.24 1.27 0.42 0.71

4.2 LARGE-SCALE FULL-BAND T2S GENERATION

Inspired by the success of recent large-scale (e.g., 1B scale) LDM-based T2S generative mod-
els (Evans et al., 2024a;b;c; Liu et al., 2024b) in achieving full-band T2S generation suitable for
real-world applications, for production-level generation, we evaluate the scalability of SoundCTM to
a 1B-scale model and its extension to full-band T2S generation tasks. We conduct our evaluation on
the AudioCaps dataset, with all audio samples resampled to 44.1 kHz. Following Evans et al. (2024a),
we use all 4, 875 text captions from the AudioCaps testset, which contains 5 captions per audio clip.

In contrast to the UNet-based model used in Section 4.1, we adopt the diffusion-transformer
(DiT) (Peebles and Xie, 2023), which contains 1.0B trainable parameters, as the teacher and student
model. The teacher model is trained using EDM’s variance exploding formulation. To distinguish the
UNet-based student model, we, hereafter, refer to the DiT-based student model as SoundCTM-DiT-1B.
We use deterministic sampling and evaluate the model performance with student EMA rate µ = 0.96.
We use the entire DiT blocks of the teacher’s network for computing dteacher. Experimental details are
described in Appendix C.2. It is worth noting that in the field of sound generation, SoundCTM-DiT-1B
represents the first attempt to distill a LDM-based large-scale full-band T2S generative model.

Evaluation Metrics Following the objective evaluation protocol for the full-band T2S gener-
ation in Stable Audio series (Evans et al., 2024a;b;c), we compute three objective metrics: the
FDopenl3 (Cramer et al., 2019), KLpasst, and the CLAP score by using stable-audio-metrics 5.

Quantitative Evaluation Since SoundCTM is the first attempt to perform a few step full-band
T2S generation using a distillation model, we only employ diffusion models such as AudioLDM2-
48kHz (Liu et al., 2024b), Stable Audio Open (Evans et al., 2024c) 6, and our teacher model as
baselines. AudioLDM2-48kHz, Stable Audio Open, and our teacher model use DDIM sampling (Song
et al., 2021a), DPM-Solver++ (Lu et al., 2023), and our 2nd-order Heun solver, respectively.

Table 3 presents the quantitative results. SoundCTM-DiT-1B demonstrates promising performance
in both 1-step and multi-step generation, with clear trade-offs between the number of sampling
steps and the sample quality. These results indicate that the SoundCTM framework is scalable to
the full-band T2S generation setting. We also measured the inference time of SoundCTM-DiT-
1B and its teacher diffusion model on a single NVIDIA H100. As shown in Table 3, SoundCTM
demonstrates faster generation compared to the teacher model, enabling creators to efficiently conduct
the trial-and-refinement creation process with full-band setting.

Subjective Evaluation For further evaluation of SoundCTM-DiT-1B, we conduct a listening test.
The baselines used for comparison included Stable Audio Open, AudioLDM2-48kHz, our teacher
model, SoundCTM with 1-step generation, SoundCTM with 16-step generation, and ground-truth
samples. We asked 17 human evaluators to assess the generated audio samples based on two criteria:
overall audio quality (OVAL) and relevance to the text prompts (REL). Each participant was presented
with 10 samples per model for each metric and asked to rate them on a scale from 1 to 100. The text

5https://github.com/Stability-AI/stable-audio-metrics
6Note that the results of Stable Audio Open might not comparable to the other results since AudioCaps is not

used for its training, as mentioned in Evans et al. (2024c, Table 2).
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Table 4: Subjective evaluation on AudioCaps testset on full-band T2S generation setting. We report
overall audio quality (OVAL) and text alignment (REL) with 95% Confidence Interval.

Method # of steps ω ν OVAL ↑ REL ↑
Ground-truth - - - 79.6 ± 1.29 83.2 ± 1.13

Stable Audio Open (Evans et al., 2024c) w/. DPM-Solver++ 100 7.0 - 54.0 ± 1.58 47.1 ± 1.65
AudioLDM2-48kHz (Liu et al., 2024b) w/. DDIM 200 3.5 - 65.1 ± 1.45 69.9 ± 1.42
Our teacher model w/. Heun Solver 40 5.0 - 66.9 ± 1.41 69.4 ± 1.48
SoundCTM-DiT-1B 1 5.0 1.0 63.2 ± 1.46 69.1 ± 1.34

16 5.0 5.0 72.0 ± 1.30 77.0 ± 1.22

SoundCTM-DiT-1B 
w/. deterministic sampling 

Method

SoundCTM-DiT-1B 
w/. stochastic sampling

(𝛾 = 0.5) 

1 Step 4 Step 16 Step
Sampling steps

Prompt: “Distant honking and humming of an engine as a car approached with a loud honk nearby.”

Figure 4: Visualization of spectrograms of generated sam-
ples by SoundCTM-DiT-1B using 1-step, 4-step, and 16-
step generation with stochastic (γ = 0.5) and deterministic
(γ = 0) sampling.

𝝎

𝝂𝟏. 𝟎 𝟐. 𝟎 𝟑. 𝟎 𝟒. 𝟎 𝟓. 𝟎

𝟐. 𝟎
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(a) FDopenl3
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𝟒. 𝟎
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(b) CLAP
Figure 5: Influence of ν on SoundCTM-
DiT-1B with 8-step sampling. Darker
colors indicate better scores.

prompts for the generated samples were randomly selected from the AudioCaps testset. Considering
the difficulty of comparing generated samples in a T2S generation task with the single stimulus
testing approach, following Evans et al. (2024a), we employ MUSHRA method (Union, 2003) on the
webMUSHRA platform (Schoeffler and et al., 2018) as the evaluation protocol (See also Figure 9).

As demonstrated in Table 4, SoundCTM-DiT-1B’s 1-step generation shows comparable scores to other
methods across both metrics. Moreover, comparing the 1-step and 16-step generation results, the 16-
step generation demonstrates higher scores. These results, along with the objective evaluation results
in Table 3, indicate that SoundCTM-DiT-1B is capable of flexibly switching between high-quality
1-step and higher-quality multi-step sound generation, even in a full-band setting.

Stochastic and Deterministic Sampling on SoundCTM-DiT-1B Once again, one of our goals
is to develop a model capable of achieving high-quality 1-step generation and higher-quality multi-
step generation while preserving semantic content through deterministic sampling. To demonstrate
this capability in SoundCTM-DiT-1B, we visualize the spectrograms of generated samples from
the same initial noise and input text prompt across varying numbers of sampling steps with both
deterministic and stochastic sampling. As shown in Figure 4 (See more examples in Figure 7 and
Figure 8), SoundCTM-DiT-1B preserves semantic content with deterministic sampling while allowing
variations through stochastic sampling.

Influence of ν-sampling We examine the influence of both ω and ν on multi-step sampling,
particularly 8-step generation, for SoundCTM-DiT-1B. In this experiment, we use a single caption
per audio clip (957 samples) and compute the FDopenl3 and the CLAP score. As shown in Figure 5,
regardless of the value of ω, increasing the value of ν improves the sample quality. This indicates
that the hyperparameter ν serves a role similar to the CFG scale.

4.3 POTENTIAL APPLICATION: GUIDANCE-BASED CONTROLLABLE GENERATION

For further exploration of SoundCTM’s application to sound creation, we investigate its potential
downstream task and conduct experiments on sound intensity control task (Novack et al., 2024b;a;
Wu et al., 2024).

Loss-based Guidance for SoundCTM In DMs, a loss-based guidance method is one of the
major method for training-free controllable generation with using pretrained DMs (Yu et al., 2023;

9
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Levy et al., 2023). The loss-based guidance method in DMs involves an additional update zt−1 =
zt−1 − ρt∇zt

L(f(x̂0),ycondition) during sampling, where f(·) is a differentiable feature extractor
that converts x̂0 into the same space as the target condition ycondition, x̂0 = D(ẑ0(zt)), ẑ0(zt) is a
clean estimate derived from zt using Tweedie’s formula (Efron, 2011), and ρt is a learning rate.

Sound Intensity Control To validate the proposed loss-based guidance framework with Sound-
CTM, we conduct sound intensity control (Novack et al., 2024b; Wu et al., 2024; Novack et al.,
2024a). This task adjusts the dynamics of the generated sound to match a given target volume line or
curve. We follow the experimental protocol from DITTO (Novack et al., 2024b) to control the decibel
(dB) volume line or curve of the generated samples. We use 200 audio-text pairs from the AudioCaps
testset for each of the 6 different types of ycondition (See Figure 10 (a) and Figure 11 (a)). We use the
pretrained UNet-based SoundCTM obtained from Section 4.1. We evaluate our framework using
the mean squared error (MSE) between the target and obtained ycondition, the FADvgg, and the CLAP
score. Experimental details are provided in Appendix C.3.

We employ DITTO-2 (Novack et al., 2024a) and default T2S generation as baselines. DITTO-2 is
a trainig-free controllable generation method using pretrained distillation models proposed in the
music generation field by optimizing an initial noise latent zT given the target loss. Since DITTO-2
is not open-sourced, we apply its zT -optimization to SoundCTM.

Table 5: Quantitative results of sound intensity con-
trol on SoundCTM. Number of sampling step is 16
for all methods.

Methods γ MSE↓ FADvgg ↓ CLAP ↑
Default T2S Generation 0 231.9 2.08 0.47

DITTO-2 (Novack et al., 2024a) 0 60.2 3.65 0.38
0.2 50.4 3.71 0.41

Our loss-based guidance 0 18.5 3.04 0.41

From Table 5 and the intensity curves shown in
Figures 10 to 11, our method successfully con-
trols the sound intensities. These results show
the potential capability of the loss-based guid-
ance of SoundCTM. Be aware that the objective
of this experiment is to show the potential ap-
plication of SoundCTM rather than to propose
a new method that outperforms other methods
for training-free controllable generation.

5 DISCUSSION ABOUT INTEGRATING GAN LOSS FOR SOUNDCTM

Although we propose a new training framework for SoundCTM, the model cannot surpass the teacher
model in 1-step generation, as achieved in the original CTM. To achieve such 1-step generation
performance, integrating the GAN loss into Eq. (7) is required (Sauer et al., 2024; Xu et al., 2024;
Lin et al., 2024).

However, obtaining performance improvements via the GAN loss requires careful selection of
a discriminator. In fact, in our preliminary experiments with the 16kHz setting, even though we
employed several off-the-shelf discriminators in the sound domain (gil Lee et al., 2023; Kumar et al.,
2023; Iashin and Rahtu, 2021), they did not lead better performance than without using them. We
report one of the preliminary results of using GAN loss in Table 6. In this preliminary experiment,
we use a multi-period discriminator (Kong et al., 2020) and a multi-band multi-scale complex STFT
discriminator (Kumar et al., 2023) by following DAC (Kumar et al., 2023). Along with the lack of
performance improvement from using the GAN loss, there are also significant increases in memory
consumption. Therefore, in this work, we do not utilize the GAN loss. That said, developing new
GAN setups including tailored for large-scale conditional sound generation might be worth exploring
as future work.

6 CONCLUSION

SoundCTM addresses the challenges of current T2S generative models, which make it difficult for
creators to efficiently conduct the trial-and-error to semantically reflect their artistic inspirations into
the sound and generate high-quality sound within a single model. To develop SoundCTM, we propose
a novel feature distance for distillation loss, a strategy for distilling CFG trajectories, and ν-sampling
for multi-step generation. While being the first large-scale full-band T2S distillation model in the
sound community, SoundCTM-DiT-1B has demonstrated notable performance in both 1-step and
multi-step generation.
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ETHICS STATEMENT

SoundCTM poses a risk for generating harmful or inappropriate content, offensive sound effects,
or even sound content that infringes on copyrights. To mitigate these risks, it is crucial to carefully
curate the training data as a first step. Furthermore, addressing these risks involves implementing
robust content filtering, moderation mechanisms to prevent the creation of unethical, harmful sound
contents.

REPRODUCIBILITY STATEMENT

The source code is available at the submitted supplementary materials and the
checkpoints are available at https://drive.google.com/drive/folders/
1SAFwzhQ5KlSX17aoVTvNzDhDrmr6W99l?usp=sharing and https://drive.
google.com/drive/folders/1jcXmYEVdeTeg2esJxg0cYyM0cCPEWoSS?usp=
sharing. Moreover, we outline our training and sampling procedures in Algorithm 2 and
Algorithm 1, and detailed implementation instructions for result reproducibility can be found in
Appendix C. After acceptance, we will open-source our codes and checkpoints.
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A RELATED WORK

Diffusion-based Models for T2S Recent work (Huang et al., 2023b;a; Liu et al., 2023; 2024b;
Ghosal et al., 2023; Evans et al., 2024a;b;c) and competitions (Choi et al., 2023) report that LDM-
based sound generation models outperform other approaches such as GANs. However, these LDM-
based models suffer from slow inference speeds. To address this issue, two main approaches have
been proposed for achieving faster generation in the sound domain. The first approach involves
training distillation models, such as ConsistencyTTA (Bai et al., 2023) and AudioLCM (Liu et al.,
2024c), using LDMs as teacher models. Both models are trained with the CD framework (Song
et al., 2023). The second approach compresses long-form audio waveform using an encoder, as in
the Stable Audio series (Evans et al., 2024a;b;c). For instance, the Stable Audio series compresses
95-second waveform signals into z0, and its LDM is trained on this latent representation, unlike
other LDM-based models that compress only 10-second audio signals with their encoder. SoundCTM
is categorized as the distillation approach but based on CTMs in contrast to ConsistencyTTA and
AudioLCM.

Feature Extractor for Latent Distillation Models In the field of computer vision, several methods
utilize pretrained feature extractors for LDM-based distillation (Sauer et al., 2024; Kang et al., 2024;
Lin et al., 2024; Xu et al., 2024). Sauer et al. (2024); Lin et al. (2024); Xu et al. (2024) employ
pretrained teacher models as a discriminator for adversarial diffusion distillation (Sauer et al., 2023).
Kang et al. (2024) propose training LatentLPIPS, a latent counterpart of LPIPS, and using it to train
GANs by distilling teacher LDMs.

In contrast to these approaches, we leverage pretrained teacher models for the CTM loss (not using
GAN loss). Notably, none of these approaches have been explored in the sound domain.

Training-free Controllable Generation Levy et al. (2023) demonstrate training-free controllable
music generation using loss-based guidance (Yu et al., 2023). Their approach defines a task-specific
loss, such as for music continuation and infilling, and incorporates the gradient of this loss into the
inference sampling. Novack et al. (2024b;a) also present controllable generation by optimizing initial
noisy latents zT based on loss computed in the target condition space. DITTO (Novack et al., 2024b)
uses pretrained DMs and DITTO2 (Novack et al., 2024a) uses pretrained distillation models for
zT -optimization.

B DISCUSSION ON FEATURE EXTRACTOR CANDIDATES FOR CTM LOSS

When considering the use of external off-the-shelf pretrained networks as feature extractors, several
potential candidates exist, such as VGGish (Hershey et al., 2017), PaSST (Koutini et al., 2022),
LPAPS (Iashin and Rahtu, 2021), and CLAP (Wu* et al., 2023). However, these models are first
trained with the data domain rather than the latent domain at not only different training data but also
different sampling frequencies (16 kHz, 32kHz, and 48kHz, respectively), necessitating, for every
training iteration, projecting z0 to x0 and resampling the audio from the training data’s sampling
frequency to that of the pretrained feature extractors. After resampling, the waveform must be
transformed into another domain, such as the Mel-spectrogram domain, to match the input format of
the extractors. Consequently, utilizing these models is not straightforward. This is why we propose to
use the teacher’s network as feature extractor for distillation loss.
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Table 6: Preliminary experiments with and without using GAN loss. Memory consumption is mea-
sured with a batch size of two per GPU.

Method # of steps FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑ Memory consumption for training

w/o. GAN 2 2.43 1.29 7.50 0.42 46782 MiB
4 2.28 1.21 7.63 0.43

w/. GAN 2 2.91 1.37 6.29 0.37 64492 MiB
4 2.37 1.35 7.53 0.41

C EXPERIMENTAL DETAILS

Algorithm 2 SoundCTM’s Training

Require:Probability of unconditional training
puncond

1: repeat
2: Sample (x0, ctext) from pdata
3: Calculate z0 through E(x0)
4: ctext ← ∅ with puncond
5: Sample ϵ ∼ N (0, I)
6: Sample t ∈ [0, T ], s ∈ [0, t], u ∈ [s, t)
7: Sample ω ∼ U [ωmin, ωmax]
8: Calculate zt = z0 + tϵ
9: Calculate Solver(zt, ctext, ω, t, u;ϕ)

10: Calculate ztarget(zt, ctext, ω, t, u, s)
11: Calculate zest(zt, ctext, ω, t, s)
12: Update θ ← θ − ∂

∂θ
L(θ)

13: until converged

Algorithm 3 SoundCTM’s Loss-based Guidance

Require: ν, ctext, ycondition, ω, γ, ρtn
1: Start from zt0
2: for n = 0 to N − 1 do
3: t̃n+1 ←

√
1− γ2tn+1

4: Denoise zt̃n+1
← νGθ(ztn , ctext, ω, tn, t̃n+1)

5: +(1− ν)Gθ(ztn ,∅, ω, tn, t̃n+1)
6: ztN |tn = Gθ(ztn , ctext, ω, tn, tN )
7: ŷcondition = f(D(ztN |tn))
8: zt̃n+1

= zt̃n+1
− ρtn∇ztnL(ŷcondition,ycondition)

9: Diffuse ztn+1 ← zt̃n+1
+ γtn+1ϵ

10: end for
11: Return ztN

C.1 DETAILS OF T2S GENERATION ON 16KHZ

Training Details We employ TANGO as the teacher diffusion model. For teacher’s training, we
use σdata = 0.25 and time sampling t ∼ N (−1.2, 1.22) by following EDM’s training manner. We
utilize the EDM’s skip connection cskip(t) =

σ2
data

t2+σ2
data

, output scale cout(t) =
tσdata√
t2+σ2

data

, input scale

cin(t) =
1√

t2+σ2
data

, and cnoise(t) =
1
4 ln t for Dϕ modeling as

Dϕ(zt, t, ctext) = cskip(t)zt + cout(t)Fϕ(cinzt, cnoise(t), ctext),

where Fϕ refers to the actual neural network to be trained and the actual DSM loss is

Ez0,t,p0|t(z|z0)[λ(t)∥z0 − Dϕ(z, t, ctext)∥22], where λ(t) =
t2+σ2

data
(tσdata)2

. Other than that, we follow the
same network architecture, parameter size, and training setups as the original TANGO.

The network architecture of the teacher model and dataset for the teacher’s training remained
unchanged from the original ones. The network architecture of the teacher model is composed of the
VAE-GAN (Liu et al., 2023), the HiFiGAN vocoder (Kong et al., 2020) as D and the Stable Diffusion
UNet architecture (SD-1.5), which consists of 9 2D-convolutional ResNet (He et al., 2016) blocks as
Dϕ. The UNet has a total of 866 M parameters, and the frozen FLAN-T5-Large text encoder (Chung
et al., 2022) is used. The UNet employs 8 latent channels and a cross-attention dimension of 1024.
During teacher model’s training, we only train the UNet parts.

For student training, we mostly follow the original CTM’s training setup. We utilize the EDM’s skip
connection cskip(t) =

σ2
data

t2+σ2
data

and output scale cout(t) =
tσdata√
t2+σ2

data

for gθ modeling as

gθ(zt, ctext, ω, t, s) = cskip(t)zt + cout(t)NNθ(zt, ctext, ω, t, s),

where NNθ refers to the actual neural network output. We initialize the student’s NNθ with ϕ
except for student model’s s-embedding and ω-embedding. The network architecture of the student
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model mostly follows that of the teacher model. However, since we inject time step s-embedding
and ω-embedding to the student network, we incorporate via auxiliary temporal embedding with
positional embedding (Vaswani et al., 2017) add this embedding to the time step t-embedding.
As for ω-embedding, by following Meng et al. (2023), we apply Fourier embedding to ω and
add this embedding to the time step t-embedding. In Eq. 9, we employ adaptive weighting with

λDSM =
∥∇θL

LSound
CTM (θ;ϕ)∥

∥∇θL
LSound

DSM (θ)∥ , where θL is the last layer of the student’s network by following the original
CTM.

We use 8×NVIDIA H100 (80G) GPUs and a global batch size of 64 for the training. We choose t
and s from the N -discretized timesteps to calculate LSound

CTM . For LSound
DSM calculation, we opt to use 50%

of time sampling t ∼ N (−1.2, 1.22). For the other half time, we first draw sample from ξ ∼ [0, 0.7]

and transform it using (σ
1/ρ
max + ξ(σ

1/ρ
min − σ

1/ρ
max))ρ. Throughout the experiments, for student training,

we use N = 40, µ = 0.999, σmin = 0.002, σmax = 80, ρ = 7, RAdam optimizer (Liu et al., 2020)
with a learning rate of 8.0×10−5, and σdata = 0.25. We set the maximum number of ODE steps as 39
during training and we use Heun solver for Solver(zt, ctext, ω, t, u;ϕ). We also utilized TANGO’s
data augmentation (Ghosal et al., 2023, Sec. 2.3) during student training.

Evaluation Details For large-NFE sampling, we follow the EDM’s and the CTM’s time discretiza-
tion. Namely, if we draw n-NFE samples, we equi-divide [0, 1] with n points and transform it (say ξ)
to the time scale by (σ

1/ρ
max + (σ

1/ρ
min − σ

1/ρ
max)ξ)ρ.

We use four objective metrics: the Frechet Audio Distance (FADvgg) (Kilgour et al., 2019) between
the extracted embeddings by VGGish, the Kullback-Leibler divergence (KLpasst) between the outputs
of PaSST (Koutini et al., 2022), a state-of-the-art audio classification model, the Inception Score
(ISpasst) (Salimans et al., 2016) using the outputs of PaSST, and the CLAP score7. The lower FAD
indicates better audio quality of the generated audio. The KL measures how semantically similar
the generated audio is to the reference audio. The IS evaluates sample diversity. The CLAP score
demonstrates how well the generated audio adheres to the given textual description.

C.2 DETAILS OF FULL-BAND T2S GENERATION

Network Architecture In this experiment, the teacher model is also based on LDM. A variational
autoencoder (VAE) (Kingma and Welling, 2014) is used for the encoder and the decoder, compressing
the 44.1kHz monaural waveform to obtain the latent variable z0. We employ a fully-convolutional
architecture, following the Descript Audio Codec (DAC) (Kumar et al., 2023), but without using
the residual-vector quantizer. The encoder has 4 layers, each of which downsamples the input audio
waveform at rates [4, 4, 8, 8]. The decoder has 4 corresponding layers, which upsample at rates
[8, 8, 4, 4]. We set the encoder dimension to 64 and the decoder dimension to 1536. Thus, an overall
data compression ratio of 16 and the model has 63.5M parameters.

For the VAE training, we mainly follow the DAC’s training configuration. Since we remove the
quantizer and trained a Gaussian VAE, we use a multi-scale Mel-loss, a feature matching loss, an
adversarial loss, and a KL-regularization. To balance these four losses, the weighting factors are
set to 15.0, 2.0, 1.0, and 10−5, respectively. In terms of training dataset for the VAE part, we use
AudioSet (Gemmeke et al., 2017) and MUSDB18-HQ (Rafii et al., 2019).

In contrast to TANGO-based SoundCTM, we employ DiT in this experiment. Specifically, our DiT
architecture mostly follows Stable Audio-2.0 architecture (Evans et al., 2024b) but we remove the
timing embedding since we do not aim at variable-length generation. For CLAP text embedding in the
DiT, we use the "630k-audioset-best.pt" checkpoint from https://github.com/LAION-AI/
CLAP. The model has 1.2B parameters.

The network architecture of the student model mostly follows that of the teacher model. However,
since we inject time step s-embedding and ω-embedding to the student network, we incorporate
s-information by using sinusoidal embeddings following the time step t-embedding of Stable Audio-2
and add this embedding to the time step t-embedding. As for ω-embedding, by following Meng et al.
(2023), we apply Fourier embedding to ω and add this embedding to the time step t-embedding. The
model has 1.2B parameters.

7We use the "630k-audioset-best.pt" checkpoint from https://github.com/LAION-AI/CLAP
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Table 7: Semantic Preservation Evaluation of SoundCTM-DiT-1B on CLAP-LPAPS (Manor and
Michaeli, 2024).

Method γ CLAP-LPAPS↓
VAE-reconstruction (Lower bound) - 2.55± 0.39

Deterministic sampling 0 3.34± 0.74
Stochastic sampling 0.2 5.21± 0.57

0.5 5.21± 0.56
1.0 (CM-sampling) 5.34± 0.65

AC GT test samples - 6.07± 0.41

Table 8: Inference speeds measured on NVIDIA A100 with batch size of 1.
Model channels/sr # of sampling Inference speed [sec.] ↓
SoundCTM-DiT-1B (Ours) 1/44.1 kHz 1 0.141

2 0.193
4 0.298
8 0.501

AudioLCM (Liu et al., 2024c) 1/16 kHz 1 0.169
2 0.181
4 0.220
8 0.224

ConsistencyTTA (Bai et al., 2023) 1/16 kHz 1 0.216
2 0.253
4 0.306
8 0.472

Training Details For teacher training, we follow the EDM’s variance exploding formulation.
After obtaining z0 through the encoder, z0 is standardized globally to zero mean and standard
deviation σdata = 0.5 and we use σdata = 0.5 and time sampling t ∼ N (−1.2, 1.22) by following
EDM2 (Karras et al., 2024). We utilize the EDM’s skip connection cskip(t) =

σ2
data

t2+σ2
data

, output scale

cout(t) =
tσdata√
t2+σ2

data

, input scale cin(t) =
1√

t2+σ2
data

, and cnoise(t) =
1
4 ln t for Dϕ modeling as

Dϕ(zt, t, ctext) = cskip(t)zt + cout(t)Fϕ(cinzt, cnoise(t), ctext),

where Fϕ refers to the actual neural network to be trained and the actual DSM loss is

Ez0,t,p0|t(z|z0)[λ(t)∥z0 −Dϕ(z, t, ctext)∥22], where λ(t) =
t2+σ2

data
(tσdata)2

.

For student training, we use 8×NVIDIA H100 (80G) GPUs and a global batch size of 192 for the train-

ing. We train 10K iterations. In Eq. 9, we employ adaptive weighting with λDSM =
∥∇θL

LSound
CTM (θ;ϕ)∥

∥∇θL
LSound

DSM (θ)∥ ,
where θL is the last layer of the student’s network by following the original CTM. We choose t and s
from the N -discretized timesteps to calculate LSound

CTM . For LSound
DSM calculation, we opt to use 50% of

time sampling t ∼ N (−1.2, 1.22). For the other half time, we first draw sample from ξ ∼ [0, 0.7] and
transform it using (σ

1/ρ
max + ξ(σ

1/ρ
min − σ

1/ρ
max))ρ. We use N = 40, µ = 0.96, σmin = 0.002, σmax = 80,

ρ = 7, RAdam optimizer (Liu et al., 2020) with a learning rate of 8.0× 10−5, ω ∼ U [2.0, 5.0], and
σdata = 0.5. We set the maximum number of ODE steps as 39 during training and we use Heun solver
for Solver(zt, ctext, ω, t, u;ϕ).

Evaluation Details For large-NFE sampling, we follow the EDM’s and the CTM’s time discretiza-
tion. Namely, if we draw n-NFE samples, we equi-divide [0, 1] with n points and transform it (say ξ)
to the time scale by (σ

1/ρ
max + (σ

1/ρ
min − σ

1/ρ
max)ξ)ρ.

C.3 DETAILS OF SOUND INTENSITY CONTROL EXPERIMENT

We define f(x0) := w ∗ 20 log 10(RMS(x0)), where w represents the smoothing filter coefficients
of a Savitzky-Golay filter (Savitzky and Golay, 1964) with a 1-second context window over the
frame-wise value, and the RMS is the root mean squared energy of the generated sound. The target
condition ycondition is a dB-scale target line or curve (See Figure 10 (a) and Figure 11 (a) for example).
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Table 9: Subjective evaluation on AudioCaps testset on 16kHz setting. We report overall audio quality
(OVAL) and text alignment (REL) with 95% Confidence Interval.

Method channels/sr # of steps ω ν OVAL ↑ REL ↑
Ground-truth 1/16 kHz - - - 75.5 ± 1.33 74.9 ± 1.50

AudioLCM (Liu et al., 2024c) 1/16 kHz 1 5.0 - 49.6 ± 1.51 56.9 ± 1.67
4 5.0 - 57.2 ± 1.51 64.1 ± 1.59

SoundCTM 1/16 kHz 1 3.5 1.0 64.0 ± 1.26 69.4 ± 1.49
4 3.5 1.0 67.0 ± 1.35 71.3 ± 1.45

Table 10: Performance comparisons between SoundCTM-UNet-1B and SoundCTM-DiT-1B on
AudioCaps at full-band setting.

Model channels/sr # of sampling
ω ν FDopenl3 ↓ KLpasst ↓ CLAP ↑steps

Diffusion Models
UNet-Teacher w/. Heun Solver 1/44.1kHz 40 5.0 - 72.2 1.49 0.48
DiT-Teacher w/. Heun Solver 1/44.1kHz 40 5.0 - 68.8 1.59 0.46

Distillation Models
SoundCTM-UNet-1B 1/44.1kHz 1 5.0 1.0 89.8 2.12 0.26

16 5.0 5.0 65.1 1.27 0.43
SoundCTM-DiT-1B 1/44.1kHz 1 5.0 1.0 77.4 1.70 0.35

16 5.0 5.0 65.6 1.22 0.42

We use 200 audio-text pairs from the AudioCaps testset for each of the 6 different types of ycondition
as shown in Figure 10 (a) and Figure 11 (a).

For DITTO-2 framework on SoundCTM, we use Adam (Kingma and Ba, 2017) with a learning rate
of 1.0. We also tested learning rates of 1.0× 10−1, 1.0× 10−2, and 5.0× 10−3 by following DITTO.
However, we cannot obtain better results than the case using 1.0. The reason why we follow DITTO’s
setting instead of DITTO-2 is the learning rate setting is not provided in DITTO-2.

During zT -optimization, we use 1-step generation with ω = 3.5 and ν = 1. We perform 70
iterations for zT -optimization following DITTO’s settings. After the optimization, we perform 16-
step generation with ω = 3.5 and ν = 2.0. As suggested in DITTO-2 paper, we include results
both using the deterministic sampling (γ = 0) and the stochastic sampling (γ = 0.2). For the
time-dependent learning rate ρt in SoundCTM’s loss-based guidance framework, we use the overall
gradient norm by following DITTO (Novack et al., 2024b, Section 5.4). For time discretization in
multi-step generation, we use the same scheme as in T2S generation evaluation in Appendix 4.1.

D ADDITIONAL EXPERIMENTS

D.1 NUMERICAL ANALYSIS FOR DETERMINISTIC SAMPLING

To objectively evaluate the semantic content preservation capability of SoundCTM in deterministic
sampling, we calculate sample-wise reconstruction metrics, specifically LPAPS with the CLAP
audio encoder (CLAP-LPAPS) (Manor and Michaeli, 2024) by using the toolkit8. The evaluation
is conducted on 957 samples from the AudioCaps test set. We compute the CLAP-LPAPS between
samples generated by SoundCTM-DiT-1B with 1-step and 16-step across several values of γ.

Furthermore, to benchmark these CLAP-LPAPS values, we also calculate scores for the following: 1).
the ground truth audio samples from the AudioCaps test set and their corresponding reconstructed
samples using the VAE in SoundCTM-DiT-1B (VAE-reconstruction), which reflects a signal-level
reconstruction score; and 2). the ground truth audio samples from the AudioCaps test set and
SoundCTM-DiT-1B’s 1-step generated samples (AC GT test samples), which reflect a semantic-level
random score within the same distribution.

We report the average and standard deviation of the CLAP-LPAPS scores in Table 7. Table 7
demonstrates that using deterministic sampling in SoundCTM preserves semantic meaning regardless
of changes in the number of sampling steps.

8https://github.com/HilaManor/AudioEditingCode/tree/codeclean/evals.
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Table 11: Ablation study on loss function with SoundCTM-DiT-1B on AudioCaps testset at full-band
setting.

Model # of sampling steps ω ν FDopenl3 ↓ KLpasst ↓ CLAP ↑
SoundCTM-DiT-1B w/o. DSM loss 1 5.0 1.0 77.9 1.74 0.35

8 5.0 5.0 93.6 2.28 0.28
16 5.0 5.0 108.7 2.60 0.23

SoundCTM-DiT-1B 1 5.0 1.0 77.4 1.70 0.35
8 5.0 5.0 68.1 1.29 0.40
16 5.0 5.0 65.6 1.22 0.42

Table 12: Ablation study on teacher’s feature extractor dteacher with SoundCTM-DiT-1B on AudioCaps
testset at full-band setting.

Model # of sampling steps ω ν FDopenl3 ↓ KLpasst ↓ CLAP ↑
SoundCTM-DiT-1B w/o. dteacher 1 5.0 1.0 77.8 1.67 0.36

8 5.0 5.0 79.6 1.58 0.35
16 5.0 5.0 69.2 1.28 0.41

SoundCTM-DiT-1B 1 5.0 1.0 77.4 1.70 0.35
8 5.0 5.0 68.1 1.29 0.40

16 5.0 5.0 65.6 1.22 0.42

D.2 INFERENCE SPEED EVALUATION

We compare the inference speed of SoundCTM-DiT-1B with that of AudioLCM and ConsistencyTTA
in Table 8. The inference speeds of all models are measured on an NVIDIA A100 with a batch size
of 1. As shown in Table 8, we confirm that SoundCTM-DiT-1B can provide efficient trial-and-error
processes not only in terms of the number of sampling steps but also with respect to inference time.

D.3 SUBJECTIVE EVALUATION WITH SOUNDCTM-UNET ON 16KHZ SETTING

We conduct additional subjective evaluation for the 16 kHz setting. Especially, we focus on comparing
16 kHz models of AudioLCM and SoundCTM, given the numerical results in Table 2. We follow
the same evaluation protocol that we use for the subjective evaluation in Section 4.2 (the full-band
setting) and we ask 15 participants for the evaluation. As shown in Table 9, unlike the trends observed
in FADvgg in Table 2, SoundCTM outperforms AudioLCM, especially in terms of OVAL, even when
comparing the results at 4 steps.

D.4 ABLATION STUDIES ON SUB-MODULES

Performance comparison between UNet and DiT on full-band settings We compare SoundCTM-
UNet-1B and SoundCTM-DiT-1B on AudioCaps test set (957 samples) at full-band settings in
Table 10. As shown in Table 10, SoundCTM-DiT-1B outperforms UNet-1B in 1-step generation. On
the other hand, both models demonstrate comparable performance in 16-step generation.

Loss function of DiT We provide an ablation study of SoundCTM-DiT-1B w/. and w/o. the DSM
loss in Table 11. Note that the DSM loss serves to improve the accuracy of approximating the small
jumps of conditional and unconditional trajectories during the training. As shown in Table 11, while
the performance is comparable for 1-step sampling, incorporating the DSM loss leads to improved
performance as the number of the sampling steps increases. This indicates the effectiveness of the
DSM loss.

Teacher’s feature extractor of DiT We provide an ablation study of SoundCTM-DiT-1B w/. and
w/o. the teacher’s feature extractor dteacher. As shown in Table 12, in contrast to UNet at 16 kHz case
(see in Table 13), the performance for 1-step generation are comparable between w/. and w/o. dteacher.
However, as the number of sampling steps increased, using feature extractor dteacher demonstrates
better performance.
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Table 13: Ablation study on teacher’s feature extractor dteacher with SoundCTM on AudioCaps testset
at 16kHz.

Model # of sampling steps ω ν FADvgg ↓ KLpasst ↓ ISpasst ↑ CLAP ↑
SoundCTM w/o. dteacher 1 3.5 1.0 2.45 1.28 6.83 0.42

8 3.0 1.5 1.64 1.23 7.56 0.44
16 3.0 2.0 1.62 1.23 7.16 0.44

SoundCTM 1 3.0 1.0 2.17 1.27 6.83 0.42
8 3.0 1.5 1.51 1.21 8.08 0.46
16 3.0 2.0 1.37 1.23 8.31 0.46

Table 14: Zero-shot bandwidth extension experiments on pretrained SoundCTM

Method # of sampling steps LSD ↓
Low-passed (Observed signal) - 28.8
Bandwidth extension with SoundCTM 4 13.3

8 12.9

Further ablations on ν and ω with SoundCTM-DiT-1B To further investigate the effects of
ν-sampling and ω, we train student models by distilling with ω uniformly sampled from [1.0, 7.0]
during training. We evaluate AudioCaps test set 957 samples in terms of FDopenl3 and CLAP scores as
shown in Figure 12. From the 16-step results, we find that we can get better sample quality regardless
of the ω value by ν-sampling. On the other hand, examining the CLAP scores for 1-step generation
reveals that the models might not be able to generate good samples for any value of ν when ω = 1.
This might highlight the important role of distilling the ω-guided trajectory distillation, especially for
1-step generation.

D.5 DOWNSTREAM APPLICATION: ZERO-SHOT BANDWIDTH EXTENSION

To further explore the zero-shot downstream application capabilities of SoundCTM, we apply it to a
bandwidth extension task. Specifically, we used 500 samples from the AudioCaps test set, applying a
low-pass filter with a cut-off frequency of 3 kHz to generate observed low-passed signals by following
the literature (Moliner et al., 2023). We perform zero-shot bandwidth extension on these observed
signals with pretrained SoundCTM. We use the Log-spectral Distance (LSD) metric (Liu et al.,
2024a; Wang and Wang, 2021) between the bandwidth extended signals and the ground-truth signals
for the evaluation. For the zero-shot bandwidth extension algorithm, we apply the data consistency
strategy (Moliner et al., 2023) to pretrained SoundCTM. As shown in Table 14 and Figure 14
demonstrate the potential zero-shot downstream application capabilities of SoundCTM for bandwidth
extension task.

E LIMITATIONS

We propose using the teacher’s network as the feature extractor for the distillation loss. However,
performance improvements may be limited when the student is trained on different datasets than
the teacher (e.g., training the student on a speech dataset using a teacher model trained on a music
dataset).

As an initial step in exploring SoundCTM’s capability for training-free controllable generation, we
experimentally validate that our framework can sound intensity control using loss-based guidance.
However, it remains unclear whether this method is applicable to a wider range of downstream tasks,
which we will address in future work.
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1 Step

2 Step

4 Step

SoundCTM
with deterministic sampling

ConsistencyTTA
w/. stochastic sampling

(*Deterministic sampling is not feasible)

AudioLCM
w/. stochastic sampling

(*Deterministic sampling is not feasible)

(a) Input text prompt: "Birds cooing and rustling."

1 Step

2 Step

4 Step

SoundCTM
with deterministic sampling

AudioLCM
w/. stochastic sampling

(*Deterministic sampling is not feasible)

ConsistencyTTA
w/. stochastic sampling

(*Deterministic sampling is not feasible)

(b) Input text prompt: "Race cars are racing and skidding tires."

Figure 6: Visualization of spectrograms for generated samples using 1-step, 2-step, and 4-step
generation with ConsistencyTTA (Bai et al., 2023), AudioLCM (Liu et al., 2024c), and SoundCTM.
As ConsistencyTTA and AudioLCM, CD-based models (Song et al., 2023), inherently does not
support deterministic sampling, the content of the generated samples cannot be preserved when
varying the number of sampling steps, even when using the same initial noise and text prompts.
This variability makes it challenging for users to control the output. In contrast, SoundCTM with
deterministic sampling (γ = 0) is able to maintain consistent contents even when varying the number
of sampling steps.
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1 Step

4 Step

16 Step

DeterministicStochasticCM-based sampling

(a) Input text prompt: "A man speaks followed by another man screaming and rapid gunshots."

1 Step

4 Step

16 Step

DeterministicStochasticCM-based sampling

(b) Input text prompt: "White noise and then birds chirping."

Figure 7: Visualization of spectrograms for generated samples using 1-step, 4-step, and 16-step
generation of SoundCTM-DiT-1B with CM-based sampling (γ = 1), stochastic sampling (γ = 0.5),
and deterministic sampling (γ = 0).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 Step

4 Step

16 Step

DeterministicStochasticCM-based sampling

(a) Input text prompt: "Rain pitter-patters as thunder cracks and the wind blows"

1 Step

4 Step

16 Step

DeterministicStochasticCM-based sampling

(b) Input text prompt: "Several motor vehicles accelerating."

Figure 8: Visualization of spectrograms for generated samples using 1-step, 4-step, and 16-step
generation of SoundCTM-DiT-1B with CM-based sampling (γ = 1), stochastic sampling (γ = 0.5),
and deterministic sampling (γ = 0).
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(a) Screenshot of OVAL evaluation

(b) Screenshot of REL evaluation

Figure 9: Screenshots of subjective evaluation.
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(c) zT -optimization (DITTO-2) with 16-step generation
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(d) Loss-based guidance with 16-step generation (Ours)

Figure 10: Target sound intensities and obtained intensities. We use the same text prompt within
each column and different prompts across different columns. Note that we use 70 iterations for
zT -optimization.
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(c) zT -optimization (DITTO-2) with 16-step generation
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(d) Loss-based guidance with 16-step generation (Ours)

Figure 11: Target sound intensities and obtained intensities. We use the same text prompt within
each column and different prompts across different columns. Note that we use 70 iterations for
zT -optimization.
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Figure 12: Influence of ν on SoundCTM-DiT-1B with 1- and 16-step sampling. Darker colors indicate
better scores. In this case, during training, ω uniformly sampled from the range [1.0, 7.0] in contrast
to main paper.

(a) 𝝂 = 𝟏 (a) 𝝂 = 𝟓

Figure 13: Visualization of spectrograms when ν = 1 and ν = 5. For both samples, we use ω = 5
with 16-steps generation. Increasing ν reduces "blurriness".
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Zero-shot band extension 
via SoundCTM

Observation (Low-passed) Ground-truth

Figure 14: Visualization of spectrograms of low-passed signals, bandwidth-extended signals, and,
ground-truth signals. Vertical axis is in log scale.
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