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ABSTRACT

Missing data poses challenges for machine learning applications across domains.
Prevalent imputation techniques using deep learning have demonstrated limita-
tions: GANSs exhibit instability, while AutoEncoders tend to overfit. In real appli-
cation scenarios, there are diverse types of missingness with varied missing rates,
calling for an accurate and generic imputation approach. In this paper, we intro-
duce Dual Corruption Denoising AutoEncoders (DC-DAE), which 1) augments
inputs via dual corruptions (i.e., concurrent masking and additive noise corrup-
tions) during training, preventing reliance on fixed missingness patterns, and en-
abling improved generalization; 2) applies a balanced loss function, allowing con-
trol over reconstructing artificial missingness versus denoising observed values.
DC-DAE has a simple yet effective architecture without the complexity of atten-
tion mechanism or adversarial training. By combining corruption robustness and
high-fidelity reconstruction, DC-DAE achieves both accuracy and stability. We
demonstrate state-of-the-art performance on multiple tabular datasets with differ-
ent missing rates, outperforming GAN, DAE, and VAE baselines under varied
missingness scenarios. Our results highlight the importance of diverse and proper
corruptions when designing models for imputation. The proposed plug-and-play
approach offers an effective solution for ubiquitous missing data problems across
domains.

1 INTRODUCTION

Missing data is a ubiquitous issue that arises across many scientific domains. Incomplete datasets
are prevalent in various fields including healthcare, transportation, environmental science, and more
(Wu et al.|(2022), Little et al.| (2012)), | Duan et al.|(2014), |Luo et al.| (2019)), ' Yoon et al.|(2016), |Alaa
et al. (2017), |Yoon et al.[|(2018b), [Lall (2016), [Wooldridge|(2007)). This missing data problem can
attribute to various factors including the high cost of data collection, privacy restrictions, measure-
ment errors, system failures, and human negligence in recording information (Jaseena et al.| (2014)).
The presence of missing values can significantly degrade the performance of data mining algorithms
and statistical models, leading to reduced predictive power, loss of statistical significance, and the
introduction of bias (Camino et al. (2019)).

Numerous techniques have been advanced to mitigate the bias induced by missing data. Con-
ventional statistical methods (e.g., mean/mode imputation, regression, Expectation-Maximization
(EM), and multiple imputation) have proven effective with low missing rate scenarios (Strike et al.
(2001)) and Raymond & Roberts|(1987)). However, these strategies tend to falter as the missing rate
escalates, introducing significant bias and deviation from the authentic data distribution, thereby
yielding unreliable results (Acuna & Rodriguez|(2004)). This scenario has propelled the exploration
of advanced solutions such as deep learning techniques, adept at discerning complex patterns and
preserving data integrity, even with high missing rates.

Two major categories of deep learning imputation techniques have been explored: generative adver-
sarial networks (GANs) and autoencoders (AEs). GAN-based approaches like [Yoon et al.|(2018a))
treat missing data imputation as a generative modeling problem. However, GAN-based approaches
often suffer from training instability and mode collapse (Salimans et al.| (2016), |Gulrajani et al.
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(2017)). Besides, imputation differs from typical generative tasks in computer vision that require
flexible latent spaces for controllable generation. In contrast, imputation is better formulated as a
self-reconstruction task, since the goal is to estimate missing values consistent with the observed
data distribution. Thus, AE-based methods are well-suited for this task, as they aim to encode cor-
rupted input and reconstruct the original complete data. Variants such as denoising autoencoders
(DAESs) (Vincent et al.| (2008)), variational autoencoders (VAEs) (Kingma & Welling| (2013))), and
overcomplete AEs (Gondara & Wang| (2018))) have been applied for missing data imputation. Nev-
ertheless, VAEs make strong assumptions about latent variable distributions that may not match real
data. Standard DAE:s fail to generalize to samples with missingness patterns not seen during training.
Overcomplete AEs require large networks that are resource intensive and could allow overfitting.

To overcome the limitations of prior techniques, we introduce Dual Corruption Denoising Autoen-
coders (DC-DAE) - a novel autoencoder-based approach that concurrently injects masking and ad-
ditive noise corruptions during training. DC-DAE provides several key advantages:

* The dual corruptions prevent overreliance on any fixed missingness pattern by exposing the
model to diverse missingness. This facilitates generalization to new missing data distribu-
tions.

* The balanced loss function allows configurable tradeoff between reconstructing artificial
missingness and denoising observed values. This is tailored for robust performance across
heterogeneous real-world datasets.

* DC-DAE utilizes a lightweight architecture without overparameterization. And our empir-
ical results demonstrate state-of-the-art imputation accuracy across a wide range of miss-
ingness scenarios, outperforming prior AE variants.

The rest of the paper is organized as follows: Section |2 reviews related work across GAN and
AE based deep learning techniques for missing data imputation. Section [3] provides the problem
formulation. Section [ explains our proposed DC-DAE methodology. Section [5] describes our ex-
perimental setup, results, and analysis. Section [6] discusses limitations and future work. Finally,
Section[7]concludes with a summary of our contributions.

2 RELATED WORK

A variety of deep learning techniques have been proposed for missing data imputation and can be
categorized into two main approaches:

2.1 GENERATIVE ADVERSARIAL NETWORK (GAN) BASED TECHNIQUES

Generative adversarial networks (GANs) have been explored for missing data imputation by formu-
lating it as a generative modeling problem (e.g., GAIN, [Yoon et al.|(2018a))). The generator creates
synthetic data and the discriminator tries to distinguish real versus generated data (Goodfellow et al.
(2014)). However, GANSs often suffer from issues like mode collapse and training instability (Sali-
mans et al.| (2016), Gulrajani et al.|(2017)).

Approaches aim to improve GAN-based imputation through attention layers (e.g., SA-GAIN, Zhang
et al.| (2021)), additional discriminators (e.g., MisGAN, [Li et al.|(2019)), temporal architectures
(e.g., E2GAN, Luo et al.|(2019)), auxiliary tasks (e.g., HexaGAN, [Hwang et al.[(2019)), and skip
connections (e.g., ST-LBAGAN, |Yang et al.| (2021))). These enhance sample quality and training
stability to some extent. However, fundamental challenges remain in properly balancing generator
and discriminator capacities over training (Hwang et al|(2019)).

Moreover, the flexibility of generative modeling may exceed the requirements of reconstructive
imputation (Yoon & Sull| (2020)). Latent spaces tailored for controllable generation are likely un-
necessary or even detrimental. The instability and excessive modeling flexibility make GANSs less
than ideal for missing data imputation.
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2.2 AUTOENCODER (AE) BASED TECHNIQUES

AutoEncoders (AEs) are a natural fit for missing data imputation, as they aim to reconstruct cor-
rupted inputs. The encoder maps the input data to a latent representation, and the decoder attempts
to reconstructs the original input from this compressed code.

For imputation, the model is trained to fill in missing values in order to minimize the reconstruc-
tion error between the input and output. However, traditional AEs often struggle to generalize to
missingness patterns not seen during training (Gondara & Wang| (2018)), Tihon et al.|(2021)). They
may overfit to the specific fixed missingness in the training data distribution, failing to effectively
estimate values for new missingness patterns.

A variety of techniques have been proposed to enhance the imputation accuracy and generalization
of AEs, such as OAE/DAE/VAE-based methods :

* Overcomplete AEs (i.e., OAE,|Gondara & Wang|(2018))) use more hidden units than inputs,
improving representation capacity.

* Denoising AEs (Vincent et al.| (2008))) inject noise or missingness during training as an
explicit corruption process. The model learns to reconstruct the original undistorted input.

» Stacked DAEs (Sanchez-Morales et al.| (2020), |Costa et al.| (2018))) ensemble multiple
DAEs for improved modeling. Dropout regularization further enhances generalization.

* Variational AEs (i.e., VAE, |Kingma & Welling|(2013), e.g., HI-VAE, Nazabal et al.|(2020)
and MIWAE, Mattei & Frellsen|(2019)) impose assumptions on the latent space distribution
and enable generative sampling.

* Attention-based AEs ( e.g., AimNet, |Wu et al.| (2020) and DAEMA, [Tihon et al.| (2021))
allow the model to focus on relevant input features when reconstructing mixed data.

However, fundamental limitations still remain. E.g., Latent space assumptions in VAEs may not
match real data. Standard AEs fail to generalize(Gondara & Wang| (2018))) , while overcomplete
networks require extensive resources. Moreover, added complexity from attention does not guar-
antee benefits. Thus, more advanced regularization and architecture design are needed to improve
robustness and generalization of AEs for missing data imputation.

Some recent approaches like IM-GAN (Wu et al.| (2022)) utilizes a bidirectional RNN, DAE, and
GAN for time series data imputation, learning temporal correlations. Note, this demonstrates po-
tential benefits of complementing AEs with GAN components, however, stability and performance
gains are not guaranteed (Yoon & Sull| (2020)).

To address these challenges, we propose a novel yet simple approach called Dual Corruption De-
noising Autoencoder (DC-DAE). DC-DAE augments the input data during training via concurrent
corruption with masking and noise. Additionally, we apply different loss weights to the masking
reconstruction task versus the denoising reconstruction task. We demonstrate that this rebalanc-
ing prevents overfitting to any one fixed missingness mechanism, facilitating generalization. The
lightweight architecture requires no adversarial training, overcomplete representations, or attention
modules. Our experiments across diverse datasets and missingness scenarios demonstrate state-of-
the-art performance compared to existing imputation techniques. The straightforward reconstructive
framework of DC-DAE provides an effective and efficient solution for missing data imputation.

3 PROBLEM FORMULATION

Consider a dataset D = {X}. X € R"*? is a matrix composed of n samples and each sample
is composed by d features: z; = (z},22,...,2%). As for the missing data imputation problem, a

dataset with natural missing values in is given as X. We denote X * the ground truth dataset without
missingness. We define a new data matrix X € R™*¢ and mask matrix M € R"™*? in the following

way:
i _ [l (ml=0)
”‘{o (md =1) M
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j { 0 (observed data) @)

i =\ 1 (natural missing data)

Our goal is to impute all the missing components of X and make it as close to X* as possible.
Formally, we want to obtain imputed data matrix X € R"*? given X and M:

X = f(X,M) 3)

where f is the imputation method.

4 METHODOLOGY

4.1 OVERALL ARCHITECTURE

As shown in Figure[I] the DC-DAE framework consists of two key phases: 1) concurrent corruption
of the input data with masking and noise, and 2) reconstruction of the original complete data using
a DAE architecture.

Original Data
x11 x12 x13 x14
x21 nan x23 x24
nan %32 nan %34
x41 x42 nan x44
Data Matrix Mask Matrix
x11 x12 x13 x14 0 0 0 0
x21 0 x23 x24 0 1 0 0
[ x32 0 x34 1 0 1 0
x41 x42 0 x44 0 0 1 0
Gaussian Noise Dropout Noise
x11' x12' x13' x1d4" 0 0 1 0
x21' 0 x23' x24" 0 1 0 1
%31 x32' 0 x34° 1 0 0 0
0 x42' 0 x44" 0 0 0 0
Corrupted Data Corrupted Mask
x11' x12' 0 x14' 0 0 1 0
x21' 0 x23' 0 0 1 0 1
0 x32' 0 x34' 1 0 1 0
x4l x42' o x44' 0 0 1 0
Rebalanced
Reconstruction l
Loss
Denoising AutoEncoder
Reconstruction Data
gil g1z g13 g14
921 922 923 g24
g3l a32 a33 a34
g4l a42 g43 g44
Imputed Data
x11 x12 x13 x14
x21 922 x23 %24
g3l x32. g33 X34
x41 x42 g43 x44

Figure 1: DC-DAE architecture overview

4.2 MASKED DENOISING
A key innovation of DC-DAE is jointly utilizing two different corruption techniques during training:

* Noise Injection: Adding Gaussian random noise € to the observed values. The noise scale
hyperparameter -y determines the noise level. € ~ N(0,7)

X =X +ex(1—M) (4)

* Masking: Randomly dropout, or “masking”, a subset of the observed feature values to
create artificial missingness. The mask ratio hyperparameter [ controls the amount of
masking. Let M be the artificial mask matrix, then

X=Xx(1-M) 5)
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Here, * operation denotes element-wise multiplication. Applying these corruptions prevents the
model from directly accessing clean observed data. Additionally, it exposes the model to diverse
missingness during training, improving generalization to unseen patterns at test time.

4.3 RECONSTRUCTION

The corrupted input then goes through a DAE to reconstruct the original complete data. DAE is
trained to invert the effect of corruption by mapping corrupted samples to clean samples.

X = f(X,M « M) (6)

f is the reconstruction network, which architecture consists of 3 encoder layers which map the input
to a latent representation, followed by 3 symmetric decoder layers that reconstruct the output from
the code. All layers use tanh activation and the dimensionality of the hidden layers matches the
input feature dimension. Combining with observed data, DC-DAE final imputation results are:

X=X+M+Xx(1-M) (7)

4.4 LosS FUNCTION

The overall reconstruction loss is defined as:

L=a*xL,+ (1—a)xLy )
Ly =X = X) % (1-M)*(1- M) ©)
Lyp= (X -X)*Mx(1-M)| (10)

Here, L,, penalizes reconstruction error on the artificially masked entries, while L,, penalizes error
on noising observed values. The a parameter controls the balance between the two objectives.
Setting o < 0.5 puts less emphasis on reconstructing the noisy observed data. We demonstrate
experimentally that this rebalancing improves imputation accuracy by preventing overfitting to the
artificial masking distribution. The loss hyperparameters are tuned on a validation set.

5 EXPERIMENTS

5.1 DATASETS

We evaluate DC-DAE on 5 real-world tabular datasets from the UCI repository (Kelly et al.). As
is shown in Table [1| these datasets cover a diverse range of sizes and dimensions to comprehen-
sively evaluate performance between DC-DAE and various state-of-the-art imputation methods. We
remove the ID column in the Glass and Breast datasets and samples contain NA values in Breast
dataset.

Table 1: Datasets used for evaluation

Dataset Full Name Dataset Acronym Samples Features
Glass Identification Glass 214 9
Breast Cancer Wisconsin (Original)  Breast 683 9
Spambase Spam 4601 57
Letter Recognition Letter 20000 16
Statlog (Shuttle) Shuttle 58000 8

5.2 EVALUATION PROTOCOL

We introduce missingness artificially via Missing Completely at Random (MCAR) maskingﬂ The
datasets are split 70/30 into train/test. Missing values in the test set are imputed and evaluated.

"We also evaluate performance under Missing Not at Random (MNAR) missingness in the Appendix
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Normalization uses train set statistics. Performance is measured by normalized root mean squared
error (NRMSE) on the missing test values across 10 random missingness trials. We report average
NRMSE over these trials. NRMSE is a common imputation evaluation metric used by baseline
methods like DAEMA.

5.3 IMPLEMENTATION DETAILS
The hyperparameters are set as:

* Mask ratio 3: set to be 0.2 based on common usage in baseline methods.
* Noise scale ~: set to be 0.2 for simplicity.

* Denoising loss weight a: Tuned on validation data across the range 0.1 to 0.9. Optimal
values found were 0.1 (Breast, Spam), 0.2 (Letter, Shuttle), 0.9 (Glass).

The model architecture uses 6 fully-connected layers with tanh activations and hidden dimensional-
ity matching the input features. We select 6 layers to match the default depth required by the MIDA
baseline method and to enable fair comparison by allowing other baselines to use the same capacity
if desired. Models are trained with batch size 64 for 10000 epochs, using the Adam optimizer with
a learning rate of 0.001.

5.4 BASELINE
We compare DC-DAE with several state-of-the-art imputation methods:

¢ Traditional: Mean, MICE (Van Buuren & Groothuis-Oudshoorn|(2011))

¢ GAN-based: GAIN (Yoon et al.|(2018a)), IM-GAN (Wu et al.| (2022))

* DAE-based: MIDA (Gondara & Wang|(2018))), DAEMA (Tihon et al.|(2021))

¢ VAE-based: HI-VAE (Nazabal et al.| (2020)), MIWAE (Matte1 & Frellsen|(2019)))

Recent works (Camino et al.|(2020), Lin & Tsai| (2020)) have identified challenges in reproducing
and fairly comparing deep learning imputation algorithms due to inconsistencies in evaluation pro-
tocols and difference in model capacity. To mitigate this, we implement a standardized experiment
procedure across all algorithms. The same train/test splits, missingness patterns, and evaluation
metrics are applied to each method. Additionally, baseline architectures are adjusted to match the
capacity of DC-DAE where possible, while retaining their core characteristics:

» For GAIN, we use equal hidden layer sizes rather than bottleneck layers and construct a
6-layer generator and a 3-layer discriminator.

» For IM-GAN, we replace BRNN cells with fully-connected networks in the same 6+3 ar-
chitecture as GAIN.

* For DAEMA, we reduce the hidden size from [2d, 2d] to [d, 1] to prevent overparameteri-
zation and set the depth of feature decoder to 3.

* For MIWAE and HI-VAE, the decoder depth is set to 3 layers.
* For MIDA, we use the default hyperparameters from the original papers.

» For MICE, we utilize the Iterativelmputer module from the scikit-learn Python package
with its default settings.

This standardized protocol enables direct comparison between DC-DAE and state-of-the-art base-
lines.

5.5 RESULTS

The experimental results show that the proposed DC-DAE method has achieved superior imputation
performance compared to existing deep learning techniques. This validates the author’s hypothesis
that the dual corruption technique and balanced loss can enhance the generalization ability for vari-
ous missing patterns. The results are consistent with the design objectives, with DC-DAE achieving
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Table 2: Imputation performance (NRMSE) comparison between DC-DAE and baseline methods

Glass Breast Spam Letter Shuttle
Low miss rate: beta = 0.2
Mean 1-003i0.112 O~993i0.035 1.007104039 0-997i0.005 0.969i0,077
MICE 0.757+0.152 0.67940.037 1.05140.188 0.746410.006 0.57310.121
GAIN 122140277 1.29840.078  1.19640.034 1.29740.041 0.9284¢.093
DAEMA 0.73910.003 0.68510050 0.95010.040 0.70940010 0.595+0.117
MIWAE 090310125 0.75940.047 101410044 0.74210.028 0.67415.122

DC-DAE(OUI'S) 0.788:&0.118 0.661i0_041 0.927:‘:0,040 0.669:|:0‘006 0~595:|:0.118
Medium miss rate: beta = 0.5

Mean 0-998i0.089 1~007i0.020 0.993104029 0‘999i0.003 0.982i0,040
MICE 1.13040.168 0.84310.070 1.22540.200 0.856+0.000 0.9344.135
GAIN 1.534:&0,470 1.285:‘:0.124 1.113:‘:0‘030 1.378:|:0,05U 1.256:&0.065
IM-GAN 2~267i0.605 1.469i0,309 1.036104027 1.062i0_025 1~041i0.122
MIDA 0.958410.060 0.86310.026 0.966.0026 0.93410003 0.92410.043
DAEMA 0.965:&0,079 0.731:‘:0.033 O~993:tO‘026 0.804:|:0,005 0.737:&0.052
HI-VAE 0-943i0.083 0.824i0,04g 1.015104029 0‘853i0.008 0.857i0,043
MIWAE 09400003 0.81240036 1.006409031 0.83240.026 0.8831+0.047

DC-DAE(OUI'S) 0-942:|:0.084 0.717:‘:0.053 0-97010‘036 0.786:&0,006 0.730:&0.055
High miss rate: beta = 0.8

Mean 1-035i0.058 1.006i0,014 1.000104014 I.OOOio_oog 0-991i0.018
MICE 1.28040.202 1.01010.052 1.18510.221 098319012 1.2804+0.430
GAIN 1.736:&0,578 1.386:‘:0.057 1.105:‘:0‘015 1.365:&0,033 1.303:&0,022
IM-GAN 3-233i0.709 2~349i0.377 1.499104124 2‘264i0.285 2-325i0.613
DAEMA 1272:&0.189 0.861:‘:0.023 1.086:‘:0,035 0.920:&0,003 0.904:&0,019
HI-VAE 1-034i0.034 0~910i0.035 1.024104015 0.965i0_025 0.967i0,029
MIWAE 1.042410.034 0.887+0.030 1.02310.016 0.93140.002 0.96640.024

DC—DAE(ours) 1-19110.162 0.839:‘:0.029 1.029:‘:0,015 0.914:&0,003 0.893:&0,019

a balance of accuracy and efficiency. It demonstrates the state-of-the-art performance of our pro-
posed DC-DAE method against existing deep learning techniques for missing data imputation. Fur-
thermore, the baseline comparisons in Table 2] highlight that DC-DAE achieves lower NRMSE than
GAN-based, AE-based, and VAE-based approaches across diverse datasets and missingness ratios.

5.6 ANALYSIS

The experimental results validate the efficacy of the proposed DC-DAE technique and provide in-
sights into the sources of performance gains. We conduct in-depth ablation studies on the Letter
dataset, systematically evaluating the contribution of each component of our approach (Figure [2).
The different sample sizes show ablation experiments using subsets of the full dataset, which eval-
uates model performance according to the availability of training data. The figures report perfor-
mance as a percentage of NRMSE compared to the corresponding baseline, with lower percentages
indicating improvement.

5.6.1 SOURCE OF GAIN

Introducing artificial missingness via random observation masking consistently improves imputation
accuracy over a vanilla AE across datasets, sample sizes, and missingness ratios (Figure 2a)). This
indicates that training on both real and synthetic missing values, which the model cannot differen-
tiate, regularizes the model and prevents overfitting to any one fixed pattern. Further corrupting the
remaining observed data with Gaussian noise provides additional gains in the majority of settings
(Figure[2b). By preventing direct access to clean observations, the model must reconstruct the orig-
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Figure 2: Incremental ablation studies showing gains from (a) masking, (b) adding noise, and (c)
rebalancing loss, relative to previous step. The tables report performance as a percentage of NRMSE
compared to the corresponding baseline, with lower percentages indicating improvement.

inal values from the noisy inputs during training. This denoising task acts as an effective auxiliary
regularizer. Tuning the loss rebalancing hyperparameter « allows control over the relative impor-
tance of reconstructing the artificially introduced missingness versus denoising the randomly noised
observed data. As shown in Figure[2d] this prevents overfitting to the noised observation distribution,
especially for large samples and low missing rates where noised observed data dominates.

5.6.2 ATTENTION AND GAN
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Figure 3: DC-DAE with (a) attention and (b) GAN components

Incorporating cross-attention between the data and mask provides minimal benefits, even decreas-
ing performance in some scenarios (Figure [3a). This indicates that the additional complexity is
unneeded for DC-DAE’s straightforward reconstructive approach. Similarly, introducing an adver-
sarial discriminator offers gains only in some scenarios (Figure[3b). This aligns with the finding that
flexible generative modeling is unnecessary for the primary task of missing value imputation.

5.6.3 OVERCOMPLETE

Expanding the hidden layer sizes approximating MIDA and VAE architectures consistently improves
results, especially for low missingness (Figure [d). This highlights the value of increased represen-
tational capacity despite DC-DAE’s lightweight architecture. Integrating overcomplete representa-
tions could further improve performance.

In summary, the analysis verifies that the dual corruption techniques and balanced loss formulation
are the primary drivers of DC-DAE’s effectiveness. The results provide insights into appropriate
inductive biases for imputation.
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Figure 4: DC-DAE with overcomplete representations approximating (a) MIDA and (b) VAEs

6 FUTURE WORK

While the proposed DC-DAE method achieves state-of-the-art imputation accuracy, several promis-
ing directions remain for future work:

* As the auxiliary denoising task provides benefits, exploring more advanced multi-task
learning approaches like MMOE (2018))) could further improve performance.

* Applying more sophisticated methods to handle mixed data types with both numerical and
categorical features could enhance applicability to broader tabular dataset

 Tuning the hyperparameters like mask ratio, nose scale and denoising loss weight simulta-
neously in a dataset-specific or automated manner could improve robustness across diverse
missing data scenarios.

* Incorporating overcomplete representations and greater model capacity could potentially
build upon the benefits of the masking denoising technique.

By addressing these limitations and extensions, the power of the simple yet effective masked de-
noising approach could be further leveraged to tackle missing data challenges.

7 CONCLUSIONS

This work introduced Dual Corruption Denoising Autoencoders (DC-DAE), a straightforward yet
powerful technique for missing data imputation. DC-DAE corrupts input data during training
through simultaneous masking and additive noise. We demonstrate experimentally that this pre-
vents overfitting to any one artificial missingness pattern, facilitating imputation under real-world
missingness conditions at test time.

The balanced loss function further enhances the approach by controlling the tradeoff between re-
constructing artificial missingness and denoising observed values. Our experiments across diverse
datasets and missingness scenarios demonstrate state-of-the-art performance compared to existing
deep learning imputation methods based on GANs, AEs, and VAEs.

The plug-and-play masked denoising technique provides an intuitive and effective solution for han-
dling missing data. By combining simple corruption robustness with reconstructive modeling, DC-
DAE achieves both accuracy and efficiency. The strong empirical results highlight the value of
proper inductive bias when designing deep learning architectures for missing data problems.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS ON MISSING NOT AT RANDOM (MNAR) DATA

Missing data which arises under different missingness mechanisms can be categorized as Missing
Completely at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR)
(Baraldi & Enders|(2010), Rubin| (1976)), [Little & Rubin|(2019)). Under MCAR, the probability of
a data point being missing is unrelated to the values of any features. For MAR, the missingness
probability depends only on the observed data rather than the missing values. And under MNAR,
the missingness depends on the missing values themselves. The distribution of real-world missing
data can fall under any of these mechanisms.

In the main paper, we focused our experiments and analysis on MCAR missing data. Here, we
provide additional results validating the performance of DC-DAE on data with MNAR missingness.

To evaluate performance under MNAR missingness, we generate the missing data as follows:

1. Randomly select 2 features from the dataset
2. Select samples where:

¢ Feature 1 < median of feature 1
e Feature 2 > median of feature 2

3. For only those selected samples, randomly remove 20% of values across all features.

This results in missingness that depends on the value distribution of the 2 chosen features, but is
broadly applied across features for those samples meeting the criteria. The same evaluation protocol
as the main MCAR experiments is then applied.

As shown in Table [3] DC-DAE continues to achieve strong performance under MNAR across the
datasets and across low (0.2), medium (0.5) and high (0.8) missingness ratios. Specifically, DC-
DAE outperforms all baseline methods on 3 out of 5 datasets when missing rate is 0.2, 4 out of 5
datasets when missing rate is 0.5, and all 5 datasets when missing rate is 0.8.
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Table 3: Imputation performance (NRMSE) comparison between DC-DAE and baseline methods

Glass Breast Spam Letter Shuttle
Low miss rate: beta = 0.2
Mean 0-957:t0.119 1.018:|:()‘041 1.012:&0,051 0.990:‘:0.011 1-02710‘148
MICE 0.76210.205 0.667i0_04g 1~120i0.393 0~737i0.012 0.64910230
GAIN 120810281 121510000 1.19110.0as 1.26810050 0.95010203
IM-GAN 1.246:‘:0.434 1-111:|:O‘088 0.984:&0,046 0.969:‘:0.023 0.801:‘:0‘206
MIDA 0.783i0.121 0-757i0.061 0~939i0.051 0~790i0.008 0.8561()‘177
DAEMA | 0.737 10124 0.6821004a7 094810049 0.70610012 0.67710 224
HI-VAE | 0.86310.125 0.78110.063 1.03310.050 0.74910013 0.84310.190
MIWAE 0.899i0.154 O.765i0_059 1~020i0.051 0~723i0.012 0.72610228
DC-DAE 0.721:‘:0.122 0.662i0,043 0.926:|:0_047 0.674:‘:(),009 0.677:‘:0.223
Medium miss rate: beta = 0.5
Mean 0.975:‘:0.090 1.008:|:0‘034 0.999:&0,015 0.998:‘:0.009 0.984:‘:0,061
MICE 0-970i0.191 0.822i0_035 1~202i0.114 0.866i0,025 0.8271()‘070
GAIN 130910211 139710120 1.12410005 136210036 1.21410130
IM-GAN 2.168:‘:0.401 1.437:|:0,193 1.067i0,053 1.076:‘:0.033 0.946:‘:0,127
MIDA 090410076 0.86510.038 0.96510019 091810006 0.90919. 066
DAEMA | 0.88210120 0.72910030 1.00010030 0.80510010 0.73410.0s2
HI-VAE | 092319032 0.80510.040 1.02010.014 0.84110016 0.85610.079
MIWAE | 0902419099 0.79310.036 1.01310.020 0.81010.0235 0.85210.069
DC-DAE 0.853:‘:0.115 0.712:|:0,032 0.970:|:0_029 0.785:‘:(),009 0'729:t0.081
High miss rate: beta = 0.8
Mean 1.036i0.097 ].0]8i0,023 0.998i0,012 1~019i0.013 0'991j:0.056
MICE 1.09510.210 092510049 1.23240262 0.96910016 1.02910.100
GAIN 139410100 1.38240.105 1.11840.020 1.37010.047 1.29010.049
IM-GAN | 296810677 2.56910.400 148410135 2.11240.303 2.1901¢.748
MIDA 1-012i0.103 0.984i0_020 0-992i0.013 0-997i0.011 0'967104054
DAEMA | 1.04719.150 0.87910.021 1.09610.037 0.91910008 0.87310.061
HI-VAE 1-014i0.096 0.91 140.034 1-022i0.011 O~944i0.014 0'943i0‘063
MIWAE 1-019i0.096 0.888i0_031 1~020i0.014 0-922i0.014 0'941104059

13



	Introduction
	Related Work
	Generative Adversarial Network (GAN) based Techniques
	Autoencoder (AE) based Techniques

	Problem Formulation
	Methodology
	Overall Architecture
	Masked Denoising
	Reconstruction
	Loss Function

	Experiments
	Datasets
	Evaluation Protocol
	Implementation Details
	Baseline
	Results
	Analysis
	Source of gain
	Attention and GAN
	Overcomplete


	Future Work
	Conclusions
	Appendix
	Additional Experiments on Missing Not at Random (MNAR) Data


