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Abstract— Control of off-road vehicles is challenging due to
the complex dynamic interactions with the terrain. Accurate
modeling of these interactions is important to optimize driving
performance, but the relevant physical phenomena, such as
slip, are too complex to model from first principles. Therefore,
we present an offline meta-learning algorithm to construct a
rapidly-tunable model of residual dynamics and disturbances.
Our model processes terrain images into features using a visual
foundation model (VFM), then maps these features and the
vehicle state to an estimate of the current actuation matrix
using a deep neural network (DNN). We then combine this
model with composite adaptive control to modify the last
layer of the DNN in real time, accounting for the remaining
terrain interactions not captured during offline training. We
provide mathematical guarantees of stability and robustness
for our controller, and demonstrate the effectiveness of our
method through simulations and hardware experiments with a
tracked vehicle and a car-like robot. We evaluate our method
outdoors on different slopes with varying slippage and actuator
degradation disturbances, and compare against an adaptive
controller that does not use the VFM terrain features. We show
significant improvement over the baseline in both hardware
experimentation and simulation.

I. INTRODUCTION
To better understand the effects of terradynamics, re-

searchers have designed sophisticated models [1] that inform
the design, simulation, and control of ground vehicles. How-
ever, these models have numerous assumptions and are often
limited when the vehicles are operated at their performance
boundaries. In addition, designing controllers that consider
these complex models is challenging. For control, kinematic
models, such as Dubins, are often employed due to their
simplicity and intuitive understanding. However, these mod-
els are not able to capture the complicated dynamics between
the vehicle and the ground, nor other disturbances such as
internal motor dynamics or wheel or track degradation. To
increase the performance of ground vehicles, more compre-
hensive models are necessary.

Furthermore, learning sophisticated unmodeled dynamics
based only on a limited set of vehicle states is ill-posed given
that the operating environment is infinite dimensional. To
accurately represent a complete dynamics model, including
learned residual terms for control, it is imperative to leverage
as much information about the environment as possible. For
instance, visual information can inform the model about the
type of terrain in which the vehicle is operating. Previ-
ous work includes segmentation-based models that assign
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Fig. 1: MAGICVFM: An offline meta-learning algorithm to build
a residual dynamics and disturbance model using both Visual
Foundation Models (VFM) and vehicle states. This model is in-
tegrated with composite adaptive control to adapt to changes in
both the terrain and vehicle dynamics conditions in real time. See
https://youtu.be/sxM73ryweRA

a discrete terrain type to each area in the image. This
information is further employed in planning and control [2].
However, in off-road applications, categorizing terrains into
a limited number of classes such as snow, mud, sand, etc.
is not sufficient. There are infinite subcategories within
each terrain type, each presenting distinct effects on the
vehicle. In addition, two terrains can appear similar yet
induce different dynamic behaviors on the robot (e.g., deep
and shallow sand). Therefore, finding the most accurate and
robust representation of the environment is indispensable for
vehicle control over complex terrain.

A. Contributions

We present MAGICVFM (Meta-learning Adaptation for
Ground Interaction Control with Visual Foundation
Models), an approach that integrates a VFM with meta-
learning and composite adaptive control, thereby enabling
ground vehicles to navigate and adapt to complex terrains in
real time. Our method is well-suited for any ground vehicle
equipped with the following: 1) sensors to measure the
internal robot state, 2) exteroceptive sensors that can capture
the terrain such as cameras, 3) the availability of a pre-trained
VFM, and 4) the necessary computation hardware to evaluate
the VFM in real-time. Our contributions are:
• the first stable learning-based adaptive controller that in-

corporates visual foundation models for terrain adaptation
in real time;

• an offline meta-learning algorithm that uses continuous
trajectory data to train and learn the terrain disturbance as
a function of visual terrain information and vehicle states;

https://youtu.be/sxM73ryweRA


• mathematical guarantees of exponential stability and ro-
bustness against model errors for adaptive control with
visual and state input that works in conjunction with our
meta-learning offline training algorithm;

• the development of a position, attitude, and velocity track-
ing control formulation with the control influence matrix
adaptation that can handle a variety of other perturbations
in real-time such as unknown time-varying track or motor
degradation and arbitrary time-varying disturbances.
We validate the effectiveness of our method both through

simulation and in hardware on two heterogeneous robotic
platforms, demonstrating its performance outdoors, on slopes
with different slippage, as well as under track degradation
disturbances.

II. RELATED WORK

A. Meta-learning

The term meta-learning, first coined in [3], most often
refers to learning protocols in which there is an underlying
set of related learning tasks/environments, and the learner
leverages data from previously seen tasks to adapt rapidly
to a new task [4]–[7]. The goal is to adapt more rapidly
than would be possible for a standard learning algorithm
presented with the new task in isolation. In robotics, meta-
learning has been used to accurately adapt to highly dynamic
environments [8]–[11]. Some examples of meta-learning
algorithms from the literature are Model-Agnostic Meta-
Learning (MAML) [4] with its online extension [12], Meta-
learning via Online Changepoint Analysis (MOCA) [13], and
Domain Adversarially Invariant Meta-Learning (DAIML)
used in Neural-Fly [14].

Our method builds on the previous work [14] on the
integration of adaptive control and offline meta-learning
to create a comprehensive model for ground vehicles. We
develop a meta-learning algorithm that uses continuous tra-
jectories from a robot driving on different terrains to learn a
representation of the dynamics residual common across these
terrains.

B. Embedding Visual Information in Classical Control and
Reinforcement Learning

Recently, vision-based reinforcement learning (VRL) has
demonstrated the capability to control agents in simulated
environments [15], as well as robots in real environments,
with applications to ground robots [16]–[18] and robot
manipulation [19]–[21]. This capability is achieved by lever-
aging high-fidelity models in robotics simulators [22], [23],
imitation learning from human demonstrations or techniques
to bridge the sim-to-real gap of the learned policy [24].
Nevertheless, a limitation of VRL is that the generated
policy remains uninterpretable and does not have safety
and robustness guarantees. Despite progress in combining
vision with reinforcement learning, incorporating a suitable
terrain model into a policy is still an open area of research,
especially when combined with theoretical guarantees and
safety properties. To address this limitation, we derive a

nonlinear adaptive tracking controller with stability guaran-
tees for AGVs that uses a learned ground model with vision
information incorporated in the control influence matrix.

See Sec. II in Appendix I for a more comprehensive
literature review.

III. METHODS
A. Residual Dynamics Representation using VFMs

We consider an uncertain dynamical system model

ẋ = f(x,u, t) + d, (1)

where x ∈ Rn denotes the state, u ∈ Rm denotes the
control input, f : Rn+m+1 7→ Rn denotes the nominal
dynamics model, and d is an unknown disturbance that is
possibly time-varying and state- and environment-dependent.
Our algorithm approximates d by

d = Φ(x,u,E)θ(t) + δ, (2)

where θ(t) = [θ1 . . . θnθ ]
⊤ ∈ Rnθ denotes a time-varying

vector of linear parameters that are adapted online by our
algorithm, δ ∈ Rn is a representation error, and E ∈ Rp
is a feature vector representation of the terrain surrounding
the robot computed by a VFM. From the perspective of the
adaptive control part of our method, the precise form of E is
not required in our work. We can think of E as computed by
some arbitrary Lipschitz function from the robot’s sensors to
Rp. The feature mapping Φ(x,u,E) : Rn+m+p 7→ Rn×nθ
is learned in the offline training phase of our algorithm.
Our method supports arbitrary parameterized families of
continuous functions, but in practice we focus on the case
where Φ is a DNN. In this case, θ can be regarded as the
weights of the last layer of the DNN (2), which continuously
adapt in real-time. Further, we assume that the disturbance
d is affine in the control input u, taking the form

d ≈ Φw(x,E)θu =

nθ∑

i=1

θiΦ
w
i (x,E)u, (3)

where the dependence on a parameter vector w (the DNN
weights) is made explicit, and the basis function has the form
Φw(x,E) : Rn+p 7→ Rn×m×nθ with the individual matrix-
valued components denoted by Φw

i (x,E) : Rn+p 7→ Rn×m.
The control affine assumption is motivated by two factors
presented in Sec. III-A of Appendix I. Lastly, we define the
dynamics residual that is used in both the online and offline
phase of our method as y = ẋ− f(x,u, t).

B. Offline Meta-Learning Phase
In Fig.2, we illustrate the structure of our proposed so-

lution to learn offline the basis function Φw(x,E) in (3)
and to make real-time adjustments using composite adaptive
control (Sec. III-C in the Appendix I). Our method is
divided into two steps. First, the robot captures relevant
ground information during offline data collection, followed
by training a DNN with terrain and state information to
approximate the residual dynamics y. Second, the trained
model is deployed onboard the robot and updated online to
compensate for the residual dynamics not captured in offline
training.
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Fig. 2: Terrain-aware Architecture: offline data collection and training, followed by real-time adaptive control running onboard the robot.

1) Dataset: To learn the basis function Φw in (3), we
collect a dataset of the robot operating on a diverse set of
terrains. The dataset includes paired ground images from
the onboard camera and state information measured using
onboard sensors. The images are processed through a VFM,
resulting in the representation E , as discussed in Sec. III-A.
This dataset contains N ∈ N trajectories. Each trajectory is
an uninterrupted driving session on the order of a few min-
utes. The details of the Dataset and the Model Architecture
is in Sec. III-B of the Appendix.

2) Optimization: Our method is built around the assump-
tion that two terrains with similar visual features E will
usually, but not always, induce similar dynamics. We account
for this observation with a meta-learning method that allows
the linear part θ to vary over the training data while the
feature mapping weights w remain fixed. In particular, we
assume that the linear part θ is slowly time-varying within
a single trajectory in the training data but θ may change
arbitrarily much between two trajectories. The slowly time-
varying assumption implies that within a sufficiently short
window into a full trajectory, θ is approximately constant.
We can now define our overall optimization objective. Let
L denote a distribution over trajectory window lengths: L ∈
△[1, ℓ]. We minimize the meta-objective

J(w) = E
n,ℓ̂,s



s+ℓ̂−1∑

t=s

∥∥∥ynt −
(
Φw(xnt ,Ent )θ⋆n,ℓ̂,s(w)

)
unt

∥∥∥
2

2




:= E
n,ℓ̂,s

[
Jn,ℓ̂,s(w)

]
, (4)

where the expectation is shorthand for n ∼ U [1, N ], ℓ̂ ∼ L,
and s ∼ U [1, ℓ − ℓ̂ + 1]. We incorporate the closed-form
computation of the best-fit linear component θ⋆

n,ℓ̂,s
in the

computational graph of our optimization , as opposed to
treating the trajectories of θ as optimization variables. Given
this, we obtain a simpler algorithm. Our offline training
procedure details is given in Algorithm 1 in Appendix 1. It
consists of stochastic first-order optimization on the objective
J(w) and spectral normalization to enforce the Lipschitz
constraint on Φ. For the remaining sections, the parameters
w of the basis function Φ are fixed. Therefore, we drop the
superscript and refer to Φw as Φ, for simplicity of notation.
For our empirical work, we selected DINO V1 [25] as the

VFM. DINO maps a high-resolution red-green-blue (RGB)
image to a lower-resolution image where each pixel is a high-

dimensional feature vector that depends on the entire input
image, not just the corresponding input patch. In Sec. V in
Appendix 1, we provide an analysis of the features of the
VFM. These results provide positive empirical evidence that
the DINO VFM is suitable for fine-grained discrimination
of terrain types in images containing only terrain, and thus
suitable for use in our control setting.

IV. SYSTEM MODELLING AND CONTROL SYNTHESIS

We apply the methods from Algorithms 1 and 2 in
Appendix 1 to a skid-steering tracked vehicle (Fig. 4 in
Appendix 1) (Sec. IV-A through IV-C in Appendix 1) and
to an Ackermann-steering vehicle (Sec. IV-D through IV-
E in Appendix 1). The tracked vehicle uses skid-steering
to maneuver over the ground, with its tracks moving at
different speeds depending on the sprocket’s angular veloc-
ity. Due to the slip between the sprocket and the tracks
and between the tracks and the ground, modeling the full
dynamics becomes very complex. We therefore derive its
3 DOF dynamics model (see (10) in Appendix 1) with its
corresponding simplified model of the form (see (11) in
Appendix 1). To this simplified model, we apply an adaptive
controller with learned ground information of the form (18)-
(19) in Appendix 1. The car-like vehicle uses the Ackermann
steering geometry. For this vehicle type, we derive a 3-DOF
dynamics model (28) in Appendix 1 using the bicycle model
and an adaptive controller using Algorithm 2 in Appendix
1. See Sec. IV in Appendix 1 for a detailed description.
Lastly, we prove that tracking errors and the parameter errors
exponentially converge to a bounded error ball. The details
of the proof can be found in Sec. IV in Appendix 1.

V. EMPIRICAL RESULTS: HARDWARE EXPERIMENTS

We focus on the hardware implementation and exper-
imental validation of our MAGICVFM adaptive controller
on a tracked vehicle, called GVR-Bot, and a car with
Ackermann steering. We present how our adaptive controller
effectively addresses various perturbations such as terrain
changes, severe track degradation, and unknown internal
robot dynamics.

A. Experiments on Slopes in JPL’s Mars Yard

To verify the performance of our MAGICVFM controller on
different terrains, the GVR-Bot tracked vehicle was driven on
the slopes of the Mars Yard [26] at the Jet Propulsion Labora-
tory (JPL). Fig.3 shows the two selected slopes, both chosen

3



Fig. 3: a) The GVR-Bot traversing two slopes with different textures and terrain-induced dynamic behaviors at the JPL Mars Yard. b) The
GVR-Bot with the sensing and compute units highlighted. Note that the forward facing camera is used for state estimation, while the top
camera is used for taking terrain images for MAGICVFM. The rear camera is not used in this work. c) The Traxxas robot traversing two
different terrains that induce different dynamic behaviors. d) The Traxxas robot with its main sensing and compute units highlighted.

for their appropriate angle and visually different terrain type
that induce different dynamic terrain-based behaviors.

1) Offline Training: Training data was collected by driv-
ing the GVR-Bot via direct tele-operation for a total of
20 minutes on the slopes. This trajectory was designed to
include segments of transition between different slopes as
well as periods of single slope operation. We utilize this
dataset for training our terrain-dependent basis function as
outlined in Algorithm 1 in Appendix 1. By leveraging the
strengths of a pre-trained VFM, we develop the lightweight
DNN basis function head used in the adaptive controller of
(18) and (19) from Appendix 1.

2) Online Adaptation: The benefits of the terrain-
informed basis function can been seen by comparing the
performance of a constant and non-constant basis function
controller as the robot traverses slopes. Each experiment was
carried out five times, with the results detailed in Fig. 13 of
Appendix 1. The desired trajectory is a straight line that
spans the entire length of the two slopes. We show that
when the robot traverses the first slope (flagstone resulting in
minimal slippage), both controllers have comparable tracking
errors. However, a significant change in performance appears
when the robot transitions to the second slope, which has
an increased tendency for the soil to slump down the hill,
causing slippage. In Table IV of Appendix 1, we quantify the
performance. The results demonstrate that the integration of
a VFM in an adaptive control framework enhances tracking
performance, yielding an average improvement of 53%.
Computational load is a significant bottleneck when deploy-
ing VFMs onboard robots. Therefore, to minimize inference
time and allow high controller rates, we employ the smallest
transformer architecture of the DINO V1, which enables the
controller to run at 20 Hz on the Graphics Processing Unit
(GPU) on-board an NVIDIA Jetson Orin.

B. Experiments On-board an Ackermann Steering Vehicle

We performed similar experiments to those described
in Sec. V-A using an Ackermann steering vehicle. Here, the
robot traverses two different terrains, as seen in Fig.3, which

induce different dynamic behaviors onto the robot (grass is
more slippery than concrete). In Fig. 14 in Appendix 1, we
show the product Φθ̂ for the constant basis function of the
nonlinear tracking controller in (36) of Appendix 1. As the
robot transitions between the two terrains, we see that the
robot effectively adapts to each terrain during this transition.
This behavior mirrors that observed in the simulation plots
(Fig. 8 in Appendix 1). as the robot transitions between the
two terrains (grass and concrete) several times. The DNN ba-
sis function switches depending on the type of environment it
operates in, while the corresponding adaptation coefficients
θ̂ remain mostly constant. This behavior also mirrors that
observed in the simulation plots (Fig. 8 of Appendix 1) when
a DNN with a VFM is employed. Lastly, in Sec. VII-E
in Appendix 1, we show the performance of our algorithm
running a constant basis function on-board the GVR-Bot
tracked vehicle during the DARPA’s Learning Introspective
Control. Details of the hardware experiments can be found
in Sec. VII-E in Appendix 1.

VI. CONCLUSION

We introduced a learning-based composite adaptive con-
troller that incorporates visual foundation models for terrain
understanding and adaptation. The basis function of this
adaptive controller, which is both state and terrain dependent,
is learned offline using our proposed meta-learning algo-
rithm. We prove the exponential convergence to a bounded
tracking error ball of our adaptive controller and demonstrate
that incorporating a pre-trained VFM into our learned rep-
resentation enhances our controller’s tracking performance
compared to an equivalent controller without the learned rep-
resentation. Our method showed a 53% decrease in position
tracking error when deployed on a tracked vehicle traversing
two different sloped terrains. We further demonstrated our
algorithm on-board a car-like vehicle and showed that the
learned DNN basis function captures the residual dynamics
generated by the two different terrains.
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MAGICVFM -Meta-learning Adaptation for Ground
Interaction Control with Visual Foundation Models

Elena Sorina Lupu∗, Fengze Xie∗, James A. Preiss, Jedidiah Alindogan, Matthew Anderson, Soon-Jo Chung

Abstract—Control of off-road vehicles is challenging due to
the complex dynamic interactions with the terrain. Accurate
modeling of these interactions is important to optimize driving
performance, but the relevant physical phenomena, such as slip,
are too complex to model from first principles. Therefore, we
present an offline meta-learning algorithm to construct a rapidly-
tunable model of residual dynamics and disturbances. Our model
processes terrain images into features using a visual foundation
model (VFM), then maps these features and the vehicle state to
an estimate of the current actuation matrix using a deep neural
network (DNN). We then combine this model with composite
adaptive control to modify the last layer of the DNN in real time,
accounting for the remaining terrain interactions not captured
during offline training. We provide mathematical guarantees of
stability and robustness for our controller, and demonstrate the
effectiveness of our method through simulations and hardware
experiments with a tracked vehicle and a car-like robot. We
evaluate our method outdoors on different slopes with varying
slippage and actuator degradation disturbances, and compare
against an adaptive controller that does not use the VFM terrain
features. We show significant improvement over the baseline in
both hardware experimentation and simulation.

I. INTRODUCTION

Autonomous Ground Vehicles (AGVs) are gaining popu-
larity across numerous domains including agriculture appli-
cations [1]–[3], wilderness search and rescue missions [4]–
[7], and planetary exploration [8]. In many of these scenarios,
the AGVs operate on rugged surfaces where the ability to
follow a desired trajectory degrades. To reliably operate in
these environments with minimal human intervention, AGVs
must understand the environment and adapt to it in real time.
Slippage is one of the primary challenges encountered by
ground vehicles while operating on loose terrain. For rovers
exploring other planets, slippage can slow down their progress
and even halt their scientific objectives. For instance, the
Opportunity rover recorded significant slippage and sinking
of its wheels during the Mars Day 2220 [9] while traversing
sand ripples. During its climb, the slip, calculated based on
visual odometry [10], was high, and thus the drive was halted
and rerouted by the ground operators.

To better understand the effects of terradynamics, re-
searchers have designed sophisticated models [11] that inform
the design, simulation, and control of ground vehicles. How-
ever, these models have numerous assumptions and are often
limited when the vehicles are operated at their performance
boundaries (e.g., steering at high speeds and instances of non-
uniform resistive forces like stumps and stones). In addition,

∗Co-first authors. This work was supported by DARPA Learning Introspec-
tive Control (LINC) and Amazon AI for Science.
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Fig. 1: MAGICVFM: An offline meta-learning algorithm to build a
residual dynamics and disturbance model using both Visual Foun-
dation Models (VFM) and vehicle states. This model is integrated
with composite adaptive control to adapt to changes in both the
terrain and vehicle dynamics conditions in real time. See https:
//youtu.be/sxM73ryweRA

designing controllers that consider these complex models is
challenging. For control, kinematic models, such as Dubins,
are often employed due to their simplicity and intuitive under-
standing. However, these models are not able to capture the
complicated dynamics between the vehicle and the ground, nor
other disturbances such as internal motor dynamics or wheel
or track degradation. To increase the performance of ground
vehicles, more comprehensive models are necessary.

Controllers that stabilize a ground vehicle and track de-
sired trajectories amidst a variety of disturbances are crucial
for achieving optimal vehicle performance. Oftentimes, the
bottleneck is not in the controller design per se, but rather
in the choice and complexity of the model utilized by the
controller. Recently, reinforcement learning (RL) has shown
significant promise in facilitating the development of efficient
controllers through experiential learning [12]–[14]. The com-
bination of meta-learning [15]–[22] and adaptive control [23]–
[31] demonstrates considerable potential in accurately esti-
mating unmodeled dynamics, efficiently addressing domain
shift challenges and real-time adaptation to new environ-
ments [18], [32]–[34]. Despite this progress, incorporating a
suitable model into a controller/policy is still an active area
of research, especially when combined with theoretical and
safety guarantees.

Learning sophisticated unmodeled dynamics based only on
a limited set of vehicle states is ill-posed given that the
operating environment is infinite dimensional. To accurately
represent a complete dynamics model, including learned resid-
ual terms for control, it is imperative to leverage as much
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information about the environment as possible. For instance,
visual information can inform the model about the type of
terrain in which the vehicle is operating. Previous work in-
cludes segmentation-based models that assign a discrete terrain
type to each area in the image. This information is further
employed in planning and control [35]. However, in off-road
applications, categorizing terrains into a limited number of
classes such as snow, mud, sand, etc. is not sufficient. There
are infinite subcategories within each terrain type, each pre-
senting distinct effects on the vehicle. In addition, two terrains
can appear similar yet induce different dynamic behaviors on
the robot (e.g., deep and shallow sand). Therefore, finding the
most accurate and robust representation of the environment is
indispensable for vehicle control over complex terrain.

A. Contributions

To address these limitations, we present MAGICVFM (Meta-
learning Adaptation for Ground Interaction Control with
Visual Foundation Models), an approach that integrates a
Visual Foundation Model (VFM) with meta-learning and
composite adaptive control, thereby enabling ground vehicles
to navigate and adapt to complex terrains in real time. Our
method is well-suited for any ground vehicle equipped with
the following: 1) sensors to measure the internal robot state,
2) exteroceptive sensors that can capture the terrain such as
cameras, 3) the availability of a pre-trained VFM, and 4) the
necessary computation hardware to evaluate the VFM in real-
time. Our contributions are:
• the first stable learning-based adaptive controller that in-

corporates visual foundation models for terrain adaptation
in real time;

• an offline meta-learning algorithm that uses continuous
trajectory data to train and learn the terrain disturbance as
a function of visual terrain information and vehicle states;

• mathematical guarantees of exponential stability and robust-
ness against model errors for adaptive control with visual
and state input that works in conjunction with our meta-
learning offline training algorithm;

• the development of a position, attitude, and velocity track-
ing control formulation with the control influence matrix
adaptation that can handle a variety of other perturbations
in real-time such as unknown time-varying track or motor
degradation and arbitrary time-varying disturbances.
We validate the effectiveness of our method both through

simulation and in hardware on two heterogeneous robotic
platforms, demonstrating its performance outdoors, on slopes
with different slippage, as well as under track degradation
disturbances.

B. Paper Organization

The paper is organized as follows: Sec. II provides a review
of existing literature. In Sec. III, our offline meta-learning
algorithm and the online adaptation algorithm are presented.
Sec. IV presents the two different vehicle models and the
adaptive controllers with stability and robustness guarantees.
In Sec. V, we analyze the VFM output for terrain, particularly

in relation to our learning-based adaptive controller. In Sec. VI,
we validate the algorithm using simulation and continue with
experimental validation in Sec. VII and concluding remarks
in Sec. VIII.

C. Notation

Unless otherwise noted, all vector norms are Euclidean and
all matrix norms are the Euclidean operator norm. We denote
the floor operator by ⌊·⌋. Given A ∈ Rn×m×p and b ∈ Rp, the
notation (Ab) is defined as

∑p
i=1 Aibi. The notation ∥x∥P

for positive semi-definite matrix P defines the weighted inner
product

√
x⊤Px. For a function f : X 7→ Y where X and Y

are metric spaces with metrics dX and dY , we define ∥f∥Lip =
maxx,x′∈X dY (f(x), f(x′))/dX(x, x′). For a measurable set
X , we denote the set of probability measures on X by △X ,
and if a uniform distribution on X exists, we denote it by UX .
When clear from context, we overload the notation [i, j] to
denote the integer sequence i, . . . , j. All matrices and vectors
are written in bold.

II. RELATED WORK

The term meta-learning, first coined in [36], most often
refers to learning protocols in which there is an underlying
set of related learning tasks/environments, and the learner
leverages data from previously seen tasks to adapt rapidly
to a new task [16], [17], [37], [38]. The goal is to adapt
more rapidly than would be possible for a standard learn-
ing algorithm presented with the new task in isolation. In
robotics, meta-learning has been used to accurately adapt to
highly dynamic environments [18], [32]–[34]. Online meta-
learning [27], [39]–[41] includes two phases: offline meta-
training and online adaptation. In the offline phase, the goal
is to learn a model that performs well across all environments
using a meta-objective. Given limited real-world data, the
online adaptation phase aims to use online learning, such as
adaptive control [23], to adapt the offline-learned model to a
new environment in real time.

Some examples of meta-learning algorithms from the litera-
ture are Model-Agnostic Meta-Learning (MAML) [17] with its
online extension [41], Meta-learning via Online Changepoint
Analysis (MOCA) [42], and Domain Adversarially Invariant
Meta-Learning (DAIML) used in Neural-Fly [27]. For task-
centered datasets, MAML [17] trains the parameters of a
model to achieve optimal performance on a new task with
minimal data, by updating these parameters through one or
more gradient steps based on that task’s dataset. In continu-
ous problems, tasks often lack clear segmentation, resulting
in the agent being unaware of task transitions. Therefore,
MOCA [42] proposes task unsegmented meta-learning via
online changepoint analysis. DAIML [27] proposes an online
meta-learning-based approach where a shared representation
is learned offline (for example, using data from different wind
conditions for a quadrotor), with a linear, low-dimensional part
updated online through adaptive control.

Our method builds on the previous work [27] on the inte-
gration of adaptive control and offline meta-learning to build
a comprehensive model for ground vehicles. We develop a
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meta-learning algorithm that uses continuous trajectories from
a robot driving on different terrains to learn a representation
of the dynamics residual common across these terrains. This
representation is a Deep Neural Network (DNN) that encodes
the terrain information through vision, together with a set of
linear parameters that adapt online at runtime. These linear
parameters can be interpreted as the last layer of the DNN [27]
and are terrain independent but encapsulate the remaining
disturbances not captured during training.

A. Embedding Visual Information in Classical Control and
Reinforcement Learning

One of the early works on including visual information
for control is visual servoing [43], a technique mainly used
for robot manipulation. Recently, vision-based reinforcement
learning (VRL) has demonstrated the capability to control
agents in simulated environments [44], as well as robots in real
environments, with applications to ground robots [45]–[47]
and robot manipulation [48]–[50]. This capability is achieved
by leveraging high-fidelity models in robotics simulators [51],
[52], imitation learning from human demonstrations or tech-
niques to bridge the sim-to-real gap of the learned policy [14].
Nevertheless, a limitation of VRL is that the generated pol-
icy remains uninterpretable and does not have safety and
robustness guarantees. To address the uninterpretability aspect,
recent advancements in Inverse Reinforcement Learning (IRL)
offer promising algorithms for interpreting terrain traversabil-
ity as a reward map, thus enhancing the understanding of the
environments [53], [54]. Despite progress in combining vision
with Reinforcement Learning (RL), incorporating a suitable
terrain model into a policy is still an open area of research,
especially when combined with theoretical guarantees and
safety properties.

To this end, we derive a nonlinear adaptive tracking con-
troller for AGVs that uses a learned ground model with
vision information incorporated in the control influence matrix.
Our method processes camera images that are then passed
through a VFM to synthesize the relevant features. These
features, together with the robot’s state, are incorporated into
the ground-robot interaction model learned offline using meta-
learning. For this adaptive controller, we prove exponential
convergence to a bounded error ball.

B. Visual Foundation Models in Robotics

A foundation model is a large-scale machine learning model
trained on a broad dataset that can be adapted, fine-tuned,
or built upon for a variety of applications. Self-supervised
learned VFMs, such as Dino and DINOv2 [55], are foundation
models that are based on visual transformers [56], [57]. These
models are trained to perform well on several downstream
tasks, including image classification, semantic segmentation,
and depth estimation. In robotics, these foundation models are
starting to gain popularity in tasks such as image semantic seg-
mentation [58], [59], traversability estimation [54], and robot
manipulation [60], [61]. One of their key advantages lies in the
robustness against variations in lighting and occlusions [62], as
well as their ability to generalize well across different images

of the same context. By consuming raw images as inputs,
these self-supervised learning foundation models possess the
potential to learn all-purpose visual features if pre-trained on
a large quantity of data.

C. Adaptation to Ground Disturbances

Adaptive control [23]–[31], [63] is a control method with
provable convergence guarantees in which a set of linear
parameters is adapted online to compensate for disturbances
at runtime. Typically, these linear parameters are multiplied
by a basis function, which can be constant (as in the case
of integral control), derived from physics [64], or represented
using Radial Basis Functions (RBFs) [65] or DNNs [27]. First
introduced in [23], [66], composite adaptation combines online
parameter estimation and tracking-error adaptive control. A
rigorous robustness/stability analysis for composite adaptation
with a connection to deep meta-learning was first derived
in [27] for flight control applications.

Ground vehicles (including cars, tracked vehicles, and
legged robots) should be adaptive to changes in the terrain
conditions. This adaptability is essential for optimal perfor-
mance and safety in diverse environments [67]–[72]. In [73],
an adaptive energy-aware prediction and planning framework
for vehicles navigating over terrains with varying and unknown
properties was proposed and demonstrated in simulation. [74]
proposes a deep meta-learning framework for learning a global
terrain traversability prediction network that is integrated with
a sampling-based model predictive controller, while [75] de-
velops a probabilistic traction model with uncertainty quan-
tification using both semantic and geometric terrain features.
In [76], a meta-learning-based approach to adapt probabilistic
predictions of rover dynamics with Bayesian regression is
used. While these approaches succeeded in developing differ-
ent models for control and planning, incorporating a suitable
model that fits the adaptive control framework is an open area
of research.

In this paper, we establish an adaptive controller that can
handle a broad range of real-time perturbations, such as
unknown time-varying track or motor degradation, under con-
trollability assumptions, arbitrary time-varying disturbances,
and model uncertainties. This work can be viewed as a gener-
alization and improvement of [27] with a new control matrix
adaptation method using visual information and improved sta-
bility results. Our adaptive capability acts as an enhancement
to the offline trained basis function, further improving tracking
performance under challenging conditions.

III. METHODS

A. Residual Dynamics Representation using VFM

We consider an uncertain dynamical system model

ẋ = f(x,u, t) + d, (1)

where x ∈ Rn denotes the state, u ∈ Rm denotes the control
input, f : Rn+m+1 7→ Rn denotes the nominal dynamics
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Fig. 2: Terrain-aware Architecture: offline data collection and training (Algorithm 1), followed by real-time adaptive control (Algorithm 2)
running onboard the robot.

model, and d is an unknown disturbance that is possibly time-
varying and state- and environment-dependent. Our algorithm
approximates d by

d = Φ(x,u,E)θ(t) + δ, (2)

where θ(t) = [θ1 . . . θnθ ]
⊤ ∈ Rnθ denotes a time-varying vec-

tor of linear parameters that are adapted online by our al-
gorithm, δ ∈ Rn is a representation error, and E ∈ Rp
is a feature vector representation of the terrain surrounding
the robot computed by a VFM. From the perspective of the
adaptive control part of our method, the precise form of E
is not required in our work. We can think of E as computed
by some arbitrary Lipschitz function from the robot’s sensors
to Rp. We provide details on the particular form of E used
in our empirical sections (Sec. V-VII). The feature mapping
Φ(x,u,E) : Rn+m+p 7→ Rn×nθ is learned in the offline
training phase of our algorithm. Our method supports arbitrary
parameterized families of continuous functions, but in practice
we focus on the case where Φ is a DNN. In this case, θ can
be regarded as the weights of the last layer of the DNN (2),
which continuously adapt in real-time. The online adaptation
is necessary in real scenarios, because two environments (i.e.,
terrains) might have the same representation E , but induce
different dynamic behaviors onto the robot, as well as for other
types of disturbances not captured in the feature mapping Φ.

Further, we assume that the disturbance d is affine in the
control input u, taking the form

d ≈ Φw(x,E)θu =

nθ∑

i=1

θiΦ
w
i (x,E)u, (3)

where the dependence on a parameter vector w (the DNN
weights) is made explicit, and the basis function has the form
Φw(x,E) : Rn+p 7→ Rn×m×nθ with the individual matrix-
valued components denoted by Φw

i (x,E) : Rn+p 7→ Rn×m.
The control affine assumption is motivated by two factors.
First, in our main application of ground vehicles with desired-
velocity inputs, input-affine disturbances more accurately cap-
ture terrain interactions such as slippage (Sec. IV-C1), internal
dynamics, and wheel or track degradations. Second, this
assumption simplifies the exponential convergence proof for
our adaptive controller given in Theorem 1. However, we
emphasize that Theorem 1 can be extended to more general
forms of disturbances by input-output stability combined with
contraction theory [77], [78]. Lastly, we define the dynamics
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Fig. 3: The structure of the DNN used for the basis function Φw in
the controller synthesis from (18), (19) applied to a tracked vehicle.

residual that is used in both the online and offline phase of
our method as y = ẋ− f(x,u, t).

B. Offline Meta-Learning Phase

In Fig. 2, we illustrate the structure of our proposed solution
to learn offline the basis function Φw(x,E) in (3) and to
make real-time adjustments using composite adaptive control
(Sec. III-C). Our method is divided into two steps. First, the
robot captures relevant ground information during offline data
collection, followed by training a DNN with terrain and state
information to approximate the residual dynamics y. Second,
the trained model is deployed onboard the robot and updated
online to compensate for the residual dynamics not captured
in offline training.

1) Dataset: To learn the basis function Φw in (3), we
collect a dataset of the robot operating on a diverse set of
terrains. The dataset includes paired ground images from the
onboard camera and state information measured using onboard
sensors. The images are processed through a VFM, resulting
in the representation E , as discussed in Sec. III-A.

This dataset contains N ∈ N trajectories. Each trajectory
is an uninterrupted driving session on the order of a few
minutes. Therefore, a single trajectory may contain significant
dynamics-altering terrain transitions, such as between grass
and concrete, but it will not contain dramatic transitions such
as from a desert to a forest, or from midday to night. For
notational simplicity only, we assume all trajectories have
equal length ℓ ∈ N. Let xnt ,u

n
t ,Ent ,ynt respectively denote

the tth state, input, VFM representation, and residual dynamics
derivative of the nth trajectory.

2) Model Architecture: In designing the parameterized
function class for the basis function Φw, we prioritize simplic-
ity and efficiency to enable fast inference for real-time control.
Therefore, we select a fully connected DNN with two hidden
layers (Fig. 3), which takes as input both the robot’s state and
visual features from the VFM. We employ layer-wise spectral
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Algorithm 1 Offline Meta-Learning with Continuous Trajec-
tories

1: Input
2: Dataset of N trajectories of length ℓ, window length

distribution L, regularization target θr and weight λr,
minibatch size K, initial DNN weights w.

3: Output: Final optimized DNN weights w of Φ.
4: while not converged do
5: Sample (with replacement) size-K minibatches of:
6: - trajectory indices {nk}Kk=1,
7: - window lengths {ℓ̂k}Kk=1,
8: - start times {sk}Kk=1.
9: Solve (4) for each θ⋆

nk,ℓ̂k,sk
in the minibatch

10: (in closed form, allowing Jnk,ℓ̂k,sk gradient flow1).
11: Take optimizer step on w w.r.t minibatch cost (4)

∑K
k=1 Jnk,ℓ̂k,sk(w).

12: Spectral Normalizaton: Wi ← Wi

∥Wi∥ for all i ∈ [d].
13: end while

normalization to constrain the Lipschitz constant of the DNN.
Spectral normalization is crucial for ensuring smooth control
outputs and limiting pathological behavior outside the training
domain [79]. Details of spectral normalization are given in
Sec. III-B3.

3) Optimization: Our method is built around the assump-
tion that two terrains with similar visual features E will
usually, but not always, induce similar dynamics. We account
for this observation with a meta-learning method that allows
the linear part θ to vary over the training data while the feature
mapping weights w remain fixed. In particular, we assume that
the linear part θ is slowly time-varying within a single trajec-
tory in the training data but θ may change arbitrarily much
between two trajectories. The slowly time-varying assumption
implies that within a sufficiently short window into a full
trajectory, θ is approximately constant. Therefore, we optimize
the weights w of the basis function for data-fitting accuracy
when the best-fit constant θ is computed for random short
windows into the trajectories. Due to our linear adaptation
model structure, we observe that for a particular trajectory
index n ∈ [1 . . . N ], window length ℓ̂ ∈ [1 . . . ℓ], and starting
timestep s ∈ [1 . . . ℓ− ℓ̂+ 1], the best-fit value

argmin
θ

s+ℓ̂−1∑

t=s

∥∥ynt − (Φwθ)unt
∥∥2
2
+ λr∥θ − θr∥22,

=

s+ℓ̂−1∑

t=s

(
(Φwθ)⊤(Φwθ) + λrInθ

)−1 (
(Φwθ)⊤ynt + λrθr

)

=: θ⋆
n,ℓ̂,s

(w),

is the solution to an L2-regularized linear least-squares
problem and is a closed-form, continuous function of the
feature mapping parameter w, where Φw is shorthand for
Φw(xnt ,Ent ), λr ∈ R is the regularization parameter, and
θr ∈ Rnθ is the regularization target, chosen arbitrary. The
∥θ − θr∥22 regularization term ensures that the closed-form

Algorithm 2 Rapid Terrain-Informed Online Adaptation for
Model Mismatch and Tracking Error

1: Input
2: Optimized feature mapping Φ from Algorithm 1,

importance weight for prediction R, damping constant λ,
initial adaptive gain Γ0, reference trajectory xr.

3: Initialize θ̂ with an user-defined regularization target θr.
4: while running do
5: Evaluate the VFM on the input image and get the

features E .
6: Get state x and evaluate the DNN Φ(x,E).
7: Compute the tracking error vector s (e.g., using (17)).
8: Compute the control input u (e.g., using (18)).
9: Compute the dynamics residual y (e.g., using (20))

10: Compute the adaptation parameter derivative ˙̂
θ

˙̂
θ = −λθ̂− predict(Γ,y,Φ, θ̂,u) + track(Γ, s,Φ, θ̂,u).

11: Compute the adaptation gain derivative Γ̇ (e.g., us-
ing (19) or (26)).

12: Integrate with system timestep ∆t

θ̂ ← θ̂ +∆t
˙̂
θ, Γ← Γ+∆tΓ̇.

13: end while

solution is unique. We can now define our overall optimization
objective. Let L denote a distribution over trajectory window
lengths: L ∈ △[1, ℓ]. We minimize the meta-objective

J(w) = E
n,ℓ̂,s



s+ℓ̂−1∑

t=s

∥∥∥ynt −
(
Φw(xnt ,Ent )θ⋆n,ℓ̂,s(w)

)
unt

∥∥∥
2

2




:= E
n,ℓ̂,s

[
Jn,ℓ̂,s(w)

]
, (4)

where the expectation is shorthand for n ∼ U [1, N ], ℓ̂ ∼ L,
and s ∼ U [1, ℓ − ℓ̂ + 1]. We incorporate the closed-form
computation of the best-fit linear component θ⋆

n,ℓ̂,s
in the

computational graph of our optimization (meaning we take
gradients through the least squares solution in Line 9), as
opposed to treating the trajectories of θ as optimization
variables. Given this, we obtain a simpler algorithm.

Our offline training procedure is given in Algorithm 1. It
consists of stochastic first-order optimization on the objective
J(w) and spectral normalization to enforce the Lipschitz
constraint on Φ. In particular, let w = (W1, . . . ,Wd,w),
with d being the number of layers, where W1, . . . ,Wd are the
dimensionally compatible weight matrices of the DNN, such
that the product W1 · · ·Wd exists, and w are the remaining
bias parameters. It holds that ∥Φw∥Lip ≤ ∥W1 · · ·Wd∥ for
neural networks with 1-Lipschitz nonlinearities. Therefore, we
can enforce that ∥Φw∥Lip ≤ 1, by enforcing that ∥Wi∥ ≤ 1
for all i ∈ [1 . . . d]. This is implemented in Line 12 of
Algorithm 1. Note that finding less conservative ways to
enforce ∥Φw∥Lip ≤ 1 for DNN is an active area of research.

For the remaining sections, the parameters w of the basis
function Φ are fixed. Therefore, we drop the superscript and
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refer to Φw as Φ, for simplicity of notation.

C. Online θ Adaptation and Tracking Control

This section introduces the online adaptation running on-
board the robot to adapt the linear part θ of the dynamics
model. The algorithm uses composite adaptation [80] and is
given in Algorithm 2. The parameter vector θ is initialized
with a user-defined regularization target θr (Line 3). Then,
in each cycle of the main loop, the robot processes the data
from its visual sensor through the VFM to generate the feature
vector E (Line 5). The feature mapping Φ is then evaluated
using the robot’s current state x and the feature vector E
(Line 6). We compute the error vector s between the reference
trajectory xr and the actual state x, for example, using (17),
as well as the control input u (Line 8).

These previously computed variables are passed to the com-
posite adaptive controller. In this way, model mismatches and
other disturbances not captured during training (Algorithm 1)
can be adapted in real-time. For each sampled measurement
(interaction with the environment), the adaptation parameter
vector θ̂ is updated using the composite adaptation rule in
Line (10), which is designed to decrease both the tracking
error and the prediction error.

Each term of Line (10) provides a specific functionality: the
first term in Line (10) implements the so-called “exponential
forgetting” to allow θ to change more rapidly when the best-
fit parameters are time-varying. The second term is gradient
descent on the R−1-weighted squared prediction error with
respect to θ̂, where R is a positive definite matrix. The third
term minimizes the trajectory tracking error. In Line 11, we
introduce Γ, which is our adaptation gain, and its deriva-
tive Γ̇ can be defined from least-squares with exponential
forgetting [64], [80] or reminiscent of a Kalman Filter like
in [27]. Thus, this composite adaptation is used to ensure
both small tracking errors and low model mismatch. The
functions ‘predict’ and ‘track’ are defined in Sec. IV-C3.
The stability and robustness properties of Algorithm 2 are
presented in Sec. IV-C.

IV. SYSTEM MODELLING AND CONTROL SYNTHESIS

We apply the methods from Algorithm 1 and 2 to a skid-
steering tracked vehicle (Fig. 4) (Sec. IV-A through IV-C) and
to an Ackermann-steering vehicle (Sec. IV-D through IV-E).
The tracked vehicle uses skid-steering to maneuver over the
ground, with its tracks moving at different speeds depending
on the sprocket’s angular velocity. Due to the slip between
the sprocket and the tracks and between the tracks and the
ground, modeling the full dynamics becomes very complex.
We therefore derive its 3 Degrees of Freedom (DOF) dynamics
model (10) with its corresponding simplified model of the
form (11). To this simplified model, we apply an adaptive
controller with learned ground information of the form (18)
and (19). The car-like vehicle uses the Ackermann steering
geometry, which ensures that all wheels turn around the same

1We use the machine learning framework PyTorch that implements the
linear least squares solution with gradient flow.
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Fig. 4: The frames of reference for the tracked vehicle, its correspond-
ing velocities, and the main driving components (left), a velocity
vector diagram used for the proof of Theorem 2 (middle), and the
car model notations (right). For both vehicles, we assume the center
of mass and the body frame are at the same location.

center, thus minimizing wheel wear. For this vehicle type, we
derive a 3-DOF dynamics model (28) using the bicycle model
and an adaptive controller using Algorithm 2.

A. Tracked Vehicle Dynamics Model

We define a fixed reference frame I and a moving reference
frame B attached to the body of the tracked vehicle, as seen
in Fig. 4. Consider the 3-DOF dynamics model with the
generalized coordinates q := [pIx , p

I
y , ψ] ∈ R3, where pIx and

pIy are the inertial positions and ψ is the yaw angle from I to
B, as follows

M(q)q̈+C(q, q̇)q̇ = B(q)τu + Fr(q, q̇), (5)

where M ∈ R3×3 is the inertia matrix, C(q, q̇) ∈ R3×3

is the Coriolis and centripetal matrix, B(q) ∈ R3×2 is the
control actuation matrix, Fr(q, q̇) ∈ R3 are the dissipative
track forces due to surface-to-soil interaction, and τu ∈ R2 is
the control torque.

Developing a tracking controller for the system modeled
using (5) is difficult due to underactuation. To address this
complexity, previous work [81], [82] introduced a nonholo-
nomic constraint for (5), which reduces the number of state
variables. The following constrains the ratio of the lateral body
velocity ṗBy to the angular velocity ω

ṗBy + xICRω = 0, (6)

where xICR is the Instantaneous Center of Rotation (ICR) and
ω = ψ̇. We embed this constraint into (5), as follows

M(q)q̈+C(q, q̇)q̇ = B(q)τu +Fr(q, q̇) +A(q)⊤λc, (7)

with λc being the Lagrange multiplier corresponding to the
equality constraint in (6). By assuming xICR as constant,
A(q) ∈ R1×3 is defined as follows, in which p from (6)
is expressed in the I frame
[
− sinψ cosψ xICR

]
·
[
ṗIx ṗIy ω

]
= A(q)q̇ = 0. (8)

To remove the constraint force from (7), an orthogonal pro-
jection operator S(q) ∈ R3×2 is defined, whose columns are
in the nullspace of A⊤(q), and thus S(q)⊤A(q)⊤ = 0 [83],
[84].

S(q) =

[
cos(ψ) xICR sin(ψ)
sin(ψ) −xICR cos(ψ)

0 1

]
. (9)

We select this projection operator conveniently to transform
the velocities in the I frame to v = [vBx , ω]

⊤, with vBx being
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the projection of the inertial velocity onto the body x-forward
axis. The reduced form can be written as [85]

q̇(t) = S(q)v(t),

v̇(t) = M̃−1(B̃(q)τu − C̃(q, q̇)v(t) + F̃r(q, q̇)),
(10)

with the reduced matrices

M̃ = S⊤(q)MS(q) =
[
m 0
0 Iz+mx

2
ICR

]
,

F̃r = S⊤(q)Fr, B̃(q) = S⊤(q)B(q),

C̃(q, q̇) = S⊤MṠ =
[

0 mxICRω
−mxICRω 0

]
,

where m is the mass of the robot and Iz is the inertia of the
robot about the rotational degree of freedom.

B. Simplified Vehicle Dynamics Model with Velocity Input

Due to the limited access to the robot’s internal control
software, specifically the absence of direct torque command
capabilities, we are only able to utilize velocity inputs. Con-
sequently, we have chosen to simplify the system in (10) with
the velocity modeled as a first-order time delay

q̇(t) = S(q)v(t), v̇(t) = Anv(t) +Bnu(t), (11)

where u = [uv, uω] are velocity inputs and

An =

[
− 1
τv

0

0 − 1
τω

]
, Bn =

[
k1
τv

0

0
k2
τω

]
. (12)

The simplified system is dynamically equivalent to (10). We
identify the process gains k1, k2 and the process time constants
τv , τω using system identification on hardware. The robot is
symmetric and rotates around the origin, therefore xICR is
assumed 0.

C. Adaptive Tracking Controller for a Tracked Vehicle

First, we explain why using a control matrix adaptation is
suitable for adapting to longitudinal and rotational slips, as
well as the internal dynamics of a tracked vehicle. Next, we
design a composite adaptive controller for the system in (11)
and prove its exponential convergence to a bounded error ball.
Note that our adaptive controller can be applied to any system
of the form (5).

1) Motivation for Control Matrix Adaptation: The longitu-
dinal slip κ is defined [86] as

κ = −v
B
x − Ωtrrtr

vBx
, (13)

where Ωtr is the angular velocity of the tracks, rtr is the track
wheel radius, and vBx is the projection of the inertial velocity
onto the body x-forward axis. Let Ωtrrtr be our velocity
control input uv . Then (13) can be written as vBx = 1

1+κuv .
Analyzing the extreme cases, we notice that if κ = 0 (no
longitudinal slip), the velocity of the vehicle will match the
velocity input into the tracks. In comparison, if κ → ∞, the
forward velocity of the vehicle will tend toward zero. Similar
reasoning can be applied to the rotational slip. Therefore,
adapting for a coefficient that multiplies the control input
(the track speeds) ensures tracking of the body’s forward and
angular velocity.

In addition, adapting the control matrix also contributes
to compensating for the unknown internal dynamics of the
robot, because the velocity control input is the setpoint to an
internal proportional-derivative-integral controller, which out-
puts motor torques to the tracked vehicle. Lastly, adapting the
control matrix effectively compensates for track degradation,
manifested as a slowdown in the sprocket’s angular velocity.

2) Reference Trajectories: We define a 2 dimensional
feasible trajectory characterized by the desired position and
velocity pI

d (t), vI
d (t) in the inertial frame I. The position

error is p̃I = pI −pI
d (t), where pI = [pIx , p

I
y ], and ψd is the

desired yaw angle. Let the following reference velocities be

vI
ref = vI

d −Kpp̃
I , vref,x =

[
cos(ψ)
sin(ψ)

]
· vI

ref , (14)

ωref = ψ̇ref − kψ(ψ − ψref), (15)

where the reference angle is given as

ψref =





arctan

(
vI
ref,y

vI
ref,x

)
, if ∥vI

ref∥22 > vϵ

ψd, otherwise.
(16)

Note that the reference trajectory is not fully pre-planned;
it includes feedback terms that are only defined during the
execution of the trajectory. Both Kp ∈ R2×2 and kψ ∈ R
are positive gains, with Kp = diag(kpx, kpy), and vϵ is a
small velocity constant used to ensure the robot can track
time-varying position trajectories, as well as turn in place. We
define vref = [vref,x, ωref ]

⊤, which is our reference trajectory
further used in the control synthesis.

3) Controller Synthesis: We design a composite adaptive
controller u(t) and show that this composite tracking and
adaptation error exponentially converges to a bounded error
ball. First, we start by defining the tracking error variable s as

s = v − vref = [vBx − vref,x, ω − ωref ]
⊤. (17)

We then derive the tracking controller for the system in (11)

u = −(Bn +Φθ̂)−1[Ks+Anvref − v̇ref ], (18)

where K ∈ R2×2 is a positive gain matrix, with K =
diag(kdx, kdw), Φ ∈ R2×2×nθ is the output of the DNN basis
function (Fig. 3) evaluated with the feature vector E and state
v, and θ̂ ∈ Rnθ is the estimated parameter vector of the true
parameter vector θ. Recall from Sec. III-A that the learned
basis function Φ and the true adaptation parameters θ were in-
troduced to model the disturbance d ≈ (Φθ)u =

∑nθ
i=1 θiΦu.

For our model of the skid-steer vehicle, we chose nθ = 4,
matching the number of terms in our control matrix Bn.
Choosing nθ too large can introduce redundant parameters
and choosing nθ too small could make the function class
insufficiently expressive.
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Theorem 1. By applying the controller in (18) to the dynamics
that evolve according to (11), with the composite adaptation
law, for each i ∈ [1, nθ]

˙̂
θi = −λθ̂i − γiu⊤Φ⊤

i R
−1

(
nθ∑

i=1

Φiuθ̂i − y

)

︸ ︷︷ ︸
predict

+ γis
⊤Φiu︸ ︷︷ ︸
track

,

γ̇i = −2λγi + qi + γiu
⊤Φ⊤

i R
−1Φiuγi, (19)

where γi > 0, qi > 0, for each i ∈ [1, nθ], then the tracking
errors s and the parameter error θ̃ will exponentially converge
to a bounded error ball.

Proof. Defining the true control matrix as B := Bn+Φθ, we
obtain the following closed loop system using (11)

v̇ = Anv−(Bn+Φθ)(Bn+Φθ̂)−1[Ks+Anvref− v̇ref ]+δ,

where δ is a representation error, previously introduced in (2).
Let θ̃ = θ̂−θ be the error adaptation vector. Further, using the
composite variable s in (17), the closed-loop system becomes

ṡ = Ans−Ks− (Φθ̃)u+ δ = Ans−Ks−
nθ∑

i=1

Φiuθ̃i + δ.

For the prediction term in (19), we compute the dynamics
residual derivative y determined for the bounded and adver-
sarial noise ϵ̄ as

y = LPF(s)v̇ − f(v,u, t) = (Φθ)u+ ϵ̄, (20)

where premultiplying the noisy measurement v̇ by LPF(s)
with the Laplace transform variable s indicates low-pass filter-
ing. Using the Lyapunov function V = s⊤s+

∑nθ
i=1 θ̃iγ

−1
i θ̃i,

we compute its derivative as follows

V̇ = 2s⊤ṡ+ 2

nθ∑

i=1

θ̃iγ
−1
i

˙̃
θi +

nθ∑

i=1

θ̃i
d

dt

(
γ−1
i

)
θ̃i

= −2s⊤
[
(K−An)s+

nθ∑

i=1

Φiuθ̃i

]

+ 2

nθ∑

i=1

γ−1
i θ̃i(γis

⊤Φiu− γiu⊤Φ⊤
i R

−1
nθ∑

j=1

Φjuθ̃j − λθ̃i)

+

nθ∑

i=1

θ̃i(2γ
−1
i λ− γ−1

i qiγ
−1
i − u⊤Φ⊤

i R
−1Φiu)θ̃i

+ 2

(
s⊤δ +

nθ∑

i=1

θ̃i

(
u⊤Φ⊤

i R
−1ϵ̄− γ−1

i λθi − γ−1
i θ̇i

))

︸ ︷︷ ︸
error terms

.

After further manipulation, the time derivative of the Lyapunov
function becomes

V̇ = −2s⊤(K−An)s−
nθ∑

i=1

θ̃i(qiγ
−2
i + u⊤Φ⊤

i R
−1Φiu)θ̃i

− 2

(
nθ∑

i=1

θ̃iu
⊤Φ⊤

i

)
R−1




nθ∑

j=1

Φjuθ̃j


+ error terms.

(21)

Next, we will bound the terms in (21) as follows. There exists
α ∈ R+ such that

−2(K−An) ⪯ −2αI,
−
(
qiγ

−2
i + u⊤Φ⊤

i R
−1Φiu

)
≤ −2αγ−1

i , ∀i ∈ [1, nθ].

(22)
We assume that ∥δ∥, ∥ϵ̄∥, and θ̇i are small and bounded, and
that the true value θi is bounded. Furthermore, the DNN Φi

is bounded since we use spectral normalization and the input
domain is bounded. We then define an upper bound for the
error terms as

d̄ = sup
t

(
∥δ∥+

∣∣∣∣∣
nθ∑

i=1

(
u⊤Φ⊤

i R
−1ϵ̄− γ−1

i λθi − γ−1
i θ̇i

)∣∣∣∣∣

)
,

(23)
Note that this is a conservative estimate (the worst-case
disturbance of all future time t), and hence can be made
smaller using a shorter time range. Furthermore, even for a
relatively large value of Φ, d̄ can be made small using a larger
value of R and a smaller value of ϵ̄. We define the matrixM,
for i ∈ [1, nθ]

M =

[
I 0
0 diag(γ−1

i )

]
. (24)

By applying the Comparison Lemma [87] and using a contrac-
tion theory like argument [78], [88], we can then prove the
tracking error and adaptation parameters error exponentially
converge to the bounded error ball

lim
t→∞

∥∥∥∥
[
s

θ̃i

]∥∥∥∥ ≤
d̄

αλmin(M)
:= b̄, (25)

where λmin is the minimum eigenvalue of a square matrix.
It follows from [77], [87] that the input-to-state stability

(ISS) and bounded input and bounded output (BIBO) stability
in the sense of finite-gain Lp [87] is proven for b̄ ∈ Lpe,
resulting in its bounded output s, θ̃ ∈ Lpe, where the Lp norm
in the extended space Lpe, p ∈ [1,∞] is

∥(u)τ∥Lp =

(∫ τ

0

∥u(t)∥pdt
)1/p

<∞, p ∈ [1,∞)

∥(u)τ∥L∞
= sup

t≥0
∥(u(t))τ∥ <∞

and (u(t))τ is a truncation of u(t), i.e., (u(t))τ = 0 for t ≥ τ ,
τ ∈ [0,∞) while (u(t))τ = u(t) for 0 ≤ t ≤ τ .

The exponential convergence proof in Theorem 1 shows
that the online algorithm (Algorithm 2) will drive θ̂ to a
value within a bounded error ball of the offline least-squares
solution used in the meta-learning algorithm (Algorithm 1)
for a sufficiently long window of data. In contrast with [27],
[80], (18) and (19) admits adaptation through the B control
influence matrix. For stability purposes, under the assumption
of a diagonal Γ, the adaptation law equation resembles the
Riccati equation of the H∞ filtering [89]. This tends to
increase the adaptation gain, making it more responsive to
measurements.

The parameters of the adaptation law (19) are Γ =
diag(γ1, . . . , γnθ ), R, λ, and Q = diag(qi). Γ is a positive
definite matrix that influences the convergence rate of the
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estimator, and a sufficiently large initial Γ0 should be chosen
to obtain a suitable convergence rate. Q is a positive definite
gain added to the gain update law, λ is a damping factor, and R
is a gain added to the prediction component of the adaptation
law. Without this gain, the prediction term and the tracking
error-based term could not be tuned separately.

Next, we assume the adaptation gain Γ in (19) has cross
terms. Under this more general setting, we prove the expo-
nential convergence of both θ̃ and s to a bounded error ball.

Proposition 1. By applying the controller in (18) to the
dynamics in (11), with the composite adaptation law

˙̂
θ = −λθ̂ − ΓH⊤R−1(Hθ̂ − y)︸ ︷︷ ︸

predict

+ΓH⊤s︸ ︷︷ ︸
track

, (26a)

Γ̇ = −2λΓ+Q− ΓH⊤R−1HΓ, (26b)

where λ > 0, Γ ∈ Rnθ×nθ , Qnθ×nθ and R ∈ R2×2 are
positive definite matrices and H ∈ Rn×nθ , the tracking errors
s and the parameter error θ̃ exponentially converge to a
bounded error ball defined in [27].

Proof. We define the matrix H = [h1 . . .hnθ ] ∈ Rn×nθ ,
where the columns hi = Φiu, for each i ∈ [1, nθ].
By observing that the disturbance in (3) can be defined as
d ≈∑nθ

i=1 Φiθiu := Hθ, the proof of exponential conver-
gence for additive disturbance adaptation from [27] can be
directly applicable for the multiplicative disturbance adapta-
tion.

Note that the exponential convergence proof for Proposi-
tion 1 using Lyapunov theory holds for both when the last
term of the gain adaptation law (26b) is positive and when
the last term is negative. A negative sign makes the update
law (26b) resemble the covariance update law of the Kalman
filter. However, using a positive sign will make the closed-loop
system converge faster for the same constants. Our controller
in Theorem 1 behaves similar to the second case with the
assumption that Γ is diagonal.

Lastly, for completeness, we show exponential convergence
to a bounded error ball for the position and the attitude error.

Theorem 2. By Theorem 1, s converges to a bounded error
ball (25) defined as b̄. Therefore, we hierarchically show that
ψ → ψref and p→ pd exponentially fast to a bounded error
ball for bounded reference velocity.

Proof. We define the error ψ̃ = ψ−ψref . Using (15), we obtain
˙̃
ψ+kψψ̃ ≤ b̄, and with the Comparison Lemma, we prove that
the error ψ̃ converges to the bounded error ball b̄

kψ
. To give

intuition about the following position tracking error proof, we
use Fig. 4. We define v = vref + ve in vector form, where
ve is the velocity error. We further express these quantities in
the reference frame D and note that, by Theorem 1, we have
proved the convergence vBx = vref,x + b̄ as t→∞. Therefore,
we obtain

vD
e = −

[
vDref,x
0

]
+

[
cos(ψ̃)

sin(ψ̃)

]([
cos(ψ̃)

sin(ψ̃)

]
·
[
vDref,x
0

]
+ b̄

)

= vDref,x

[
cos2(ψ̃)− 1

sin(ψ̃) cos(ψ̃)

]
+ b̄

[
cos(ψ̃)

sin(ψ̃)

]
.

We compute and bound the norm, as follows

∥vD
e ∥2 ≤ vmax

∣∣∣∣sin
(
b̄

kψ

)∣∣∣∣
√
2 + b̄, (27)

where vmax is our assumption for the existence of an upper
bound for the reference velocity. From (14) and (27), it is
straightforward to see that the position error is also bounded
using the Comparison Lemma.

D. Ackermann Steering Vehicle Dynamics Model

We define a fixed reference frame I, a moving reference
frame B attached to the center of mass of the car, and a
desired frame D attached to the desired trajectory as seen
in Fig. 4. Similar to (8), a non-holonomic constraint holds:[
sinψ − cosψ 0

]
·
[
ṗIx ṗIy 0

]
, where ṗIx and ṗIy are the

velocities in the inertial frame I and ψ is the yaw angle from
B to I. For the tracked vehicle discussed in Sec. IV-A, the
instantaneous center of rotation xICR is assumed to be 0 with
ṗBy = 0 in (6) because the tracked vehicle is not designed for
highly aggressive maneuvers.

A car, on the other hand, can be drifting, and thus the
side velocity plays a much more important role, which is
considered in our control design. Let vBx and vBy be the linear
velocities in the body frame and ω the angular velocity around
the vertical z-axis of the B frame. The dynamic model can be
expressed as [90]

m(v̇Bx − ωvBy ) = Fxr + Fxf cos(uδ)− Fyf sin(uδ),
m(v̇By + ωvBx ) = Fyr + Fxf sin(uδ) + Fyf cos(uδ),

Izω̇ =
L

2
Fxf sin(uδ) +

L

2
Fyf cos(uδ)−

L

2
Fyr,

(28)

where L is the wheelbase length, Fxf and Fxr are the front and
rear tire forward forces, m is the vehicle mass, Iz is the vehicle
inertia about the vertical axis intersecting the center of mass,
and the lateral forces are Fyf ≈ Cyαf , Fyr ≈ Cyαr, where
Cy is the tire cornering stiffness [11], and αr and αf are two
tire slip angles, defined as in [90]. The tire cornering stiffness
coefficient is terrain- and wheel-dependent. Either an accurate
estimate or online adaptation is necessary when designing a
tracking controller. Note that a more slippery ground has a
lower Cy .

We decouple the controller for the longitudinal velocity
from the controller for the lateral and angular velocity and
apply our MAGICVFM algorithm to the lateral and angular
motion. Note that the forward velocity dynamics is nonlinear.
Therefore, for simplicity, similar to the tracked vehicle, we
model the forward velocity as a first-order time delay system
v̇Bx = −τ−1

v (vBx − uv), with the time constant τv identified
through system identification. We then design an exponentially
stabilizing PD tracking controller for this linear system. For
the lateral and angular motion, we linearize (28) around a zero
steering angle and assume a small tire slip angle. The resulting
linear time-varying system dynamics in the B frame is written
by using x := [vBy , ω] and the disturbance model (3)

ẋ = An(v
B
x (t))x+Bnuδ + (Φ(x,E)θ)uδ, (29)
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where

An(v
B
x (t)) =

[
− 2Cy

mvBx
−vBx

0 − L2Cy

2vBx Iz

]
,Bn =

[
Cy
m
LCy
2Iz

]
,

and Φ(x,E) = [ϕ1 ϕ2

]⊤
, with the estimated component θ̂

adapted online. The definition of Φ(x,E) ∈ R2×nθ and θ ∈
Rnθ are the same as their definitions for the tracked vehicle.
The adaptation component accounts for model mismatches as
well as for the linearization errors in (28).

E. Adaptive Tracking Controller for Ackermann Steering

We apply MAGICVFM to compensate for the sideslip when
the robot is performing fast turning maneuvers. Thus, our
adaptive control algorithm is applied only to the lateral and
angular controller, although it can be applied for the linear
velocity, as well. We define the path error e = [e∥, e⊥] with
the longitudinal and lateral error components, as seen in Fig. 4

e := pD − pD
d = RD

I (p
I −OI

D) (30)

where OI
D is the origin of the desired frame D expressed in I,

p = [px, py] is the position of the robot, pd = [px,d, py,d] is
the desired position from the trajectory, and RD

I is the rotation
from the inertial frame I to the desired frame D. Next, we
compute the time derivative of the path error (30) as follows

[
ė∥

ė⊥

]
= RD

I R
I
Bv

B − vD
d + ṘD

I (R
I
Dp

D), (31)

where RI
B is the rotation from the body frame B to the

inertial frame I, vD
d = [vDd,x, 0] is the derivative of the desired

position taken in I, and expressed in D, and vB = [vBx , v
B
y ]

is the velocity of the robot in the B frame. From (31), the
perpendicular error derivative becomes

ė⊥ =

[
sin(ψe)
cos(ψe)

]
· vB − ψ̇de∥, (32)

where ψe = ψ−ψd is the angle error between the actual orien-
tation and the desired orientation. In addition, each component
in (30) is

e⊥ =

[
sin(ψe)
cos(ψe)

]
· p̃B, e∥ =

[
cos(ψe)
− sin(ψe)

]
· p̃B, (33)

where p̃B = pB − pB
d is the position error expressed in B.

Because we model the dynamics decoupled and linearized,
from (32), we obtain

ė⊥ = vBy + vBxψe. (34)

Further, we differentiate (34) and substitute (29), as follows

ë⊥ = − 2Cy
mvBx

vBy − vBxω+
Cy
m
uδ+(ϕ1θ)uδ + v̇Bxψe + vBxωe.

(35)
Now we design a tracking controller for the lateral motion of
the vehicle. Let s⊥ = ė⊥ + kpe

⊥, with kp ∈ R+ a positive
constant. Then, using (35), ṡ⊥ is

ṡ⊥ = − 2Cy
mvBx

vBy−vBxω+
Cy
m
uδ+(ϕ1θ)uδ+v̇

B
xψe+v

B
xωe+kpė

⊥.

We then design the following adaptive controller

uδ = −b̂−1
n

(
kvs

⊥ − 2Cy
mvBx

vBy + v̇Bxψe − vBxωd + kpė
⊥
)
,

(36)
where b̂n =

Cy
m + ϕ1θ̂. Letting θ̃ = θ̂ − θ, the closed-loop

system of s⊥ becomes

ṡ⊥ + kvs
⊥ =

(
ϕ1θ̃

)
uδ. (37)

Note that the controller in (36) resembles (18), which was
derived for the tracked vehicle. Using the same proof as
in Sec. IV-C3, we show that the tracking error s⊥ and θ̃
exponentially converge to a bounded error ball. Next, we
analyze the stability of the internal states vBy (t) and ψe(t)
under the exact error definitions (32)-(33).

Theorem 3. If |s⊥(t)| ≤ e−γt|s⊥0 |+ ϵ
γ , for positive constants

γ and ϵ, and s0 being the initial value, under the local
assumption of −π2 < ψe <

π
2 and a positive vBx , then p̃By ,

vBy , and ψe exponentially tend to bounds.

Proof. Our forward velocity controller ensures vBx converges
to the desired forward velocity, as shown in Theorem 1 for the
tracked vehicle. Thus, we can approximate p̃Bx ≈ 0 in (33).
Hence, (32) and (33) are simplified as

e⊥ ≈ cosψep̃
B
y , ė⊥ ≈ sinψe(v

B
x +ψ̇dp̃

B
y )+cosψev

B
y . (38)

Note that under no disturbance (ϵ ≈ 0) and since s⊥ =
ė⊥+kpe

⊥, e⊥ and ė⊥ exponentially converge to 0. Assuming
a feasible reference trajectory (nonzero desired side velocity,
vBy,d), since cosψe and vBx are nonzero values, we have p̃By , ṽBy ,
and ψe converge to 0. If ϵ is a small nonzero value, assuming
inft(cosψe) = ψ̄, we can show that |p̃By | exponentially
converges to a small error bound, as follows

lim
t→∞

|p̃By | ≤
ϵ

ψ̄kpγ
. (39)

We further assume that |p̃By (t)| ≈ e−γpt|p̃By (0)|+ |d(t)|
kpγ

, where
γp is a positive constant and d(t) is a function with a small
Lipschitz constant ϵy . With this assumption, we can show vBy
exponentially converges to the bound ϵy

kpγ
. Then, assuming

inft v
B
x = v̄, with positive v̄, we apply the triangle inequality

for ė⊥ as follows

| sinψe(vBx + ψ̇dp̃
B
y )| ≤ |ė⊥|+ | cosψevBy |. (40)

Taking the limit and denoting v̄ − ϵ supt |ψ̇d|
ψ̄kpγ

as v, we show
that ψe exponentially converges to a bounded error as

lim
t→∞

|ψe| ≤ arcsin

(
2ϵ

vγ
+

ψ̄ϵy
vkpγ

)
. (41)

Note that γ and kp can be chosen to make the error bounds
sufficiently small. The proof above is based on (32). Us-
ing the simplified version of (34), the bound simplifies to
limt→∞ |ψe| ≤ 2ϵ

vγ +
ϵy
vkpγ .



11

0

250

F
re

q
.

Histogram of Projections for Each Class
Class 1 (grass) Class 2 (sand) Class 3 (snow)

0

250

F
re

q
. Class 1 (grass) Class 2 (sand) Class 3 (snow)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
0

250

F
re

q
. Class 1 (grass) Class 2 (sand) Class 3 (snow)

Fig. 5: DINO VFM discriminative ability for different terrains. We
show the histograms of the projection values onto the separating
hyperplane normal computed using Support Vector Classifier for 3
sets of classes with 5 images each (each row presents the separation
margin between one class type and the other 2 classes). Note that the
spikes at -1 and 1 are an artifact of the high dimensionality and the
small dataset we used.

V. EMPIRICAL RESULTS: ANALYSIS OF VFM SUITABILITY

For our empirical work, we selected DINO V1 [91] as the
VFM. DINO maps a high-resolution red-green-blue (RGB)
image to a lower-resolution image where each pixel is a high-
dimensional feature vector that depends on the entire input
image, not just the corresponding input patch. More precisely,
let ξ ∈ N be the patch dimension and ξf ∈ N the feature vector
dimension. Given an RGB image IRGB, the transformation is

IRGB : h× w × 3→ IVFM :

⌊
h

ξ

⌋
×
⌊
w

ξ

⌋
× ξf , (42)

where h and w are the image height and width. We then
extract prominent patches from IVFM to form the terrain
representation E , which will be further used in the Φ from (3).
For our experiments, we select a set of patches on right and left
of the tracks/wheels of the vehicle, as emphasized in Fig. 1.

DINO is optimized for a self-supervised learning objective
and was shown to yield feature mappings useful for a variety
of downstream tasks. This VFM is trained on the ImageNet
dataset, which also includes diverse ground terrains but mainly
in the context of buildings, plants or landscapes, instead of
terrain-only images. Therefore, in this section, we verify that
DINO is able to clearly discriminate between different terrain
types in terrain-only images before deploying it in our control
setting.

We first measure DINO’s discriminative ability by exam-
ining the margins of linear classifiers between terrain classes
in the high-dimensional feature space Rξf . We consider three
terrain types: grass, sand, and snow. We collect five example
images for each class and convert each image to a set of
feature vectors using DINO. Then, using the known class
labels, we fit a multi-class linear classifier for the feature
vectors using the One-vs-Rest Support Vector Classifier (OVR-
SVC) method [92]. We then project the feature vectors onto the
one-vs-rest separating hyperplane normals. Let the separating
hyperplane have the equation wh·x+bh = 0, where wh ∈ Rξf
is the vector normal to hyperplane and bh ∈ R is the bias term.
Let E be represented by just one patch, and thus have size ξf .
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Fig. 6: Projection of sequential flagstones and gravel features onto
an OVR-SVC separating hyperplane normal. The middle plot shows
the projection of all the patch features from the top 8 figures, while
the bottom plot shows the projection of a central patch taken from
45 sequential images of flagstones and gravel.

The projected patch E onto the separating hyperplane normal
is defined as ph = wh · E . The histogram of these projected
values for each patch in the image is shown in Fig. 5. By
comparing the SVC margin (the separation between -1 and 1)
to the width of the histograms, we confirm that the classes are
highly separable.

We next examine the distribution of the features across a
sequence of images, taken while navigating from flagstones
(irregular-shaped flat rocks) to gravel in the Mars Yard [93] at
NASA Jet Propulsion Laboratory (JPL). The top row of Fig. 6
displays 8 out of a total of 45 images extracted from a video.
Each image is processed through the DINO VFM, yielding
1200 patches of dimension ξf = 384 per image (computed
using (42)). We apply OVR-SVC on the patches from one
flagstone and one gravel image and project all patches from
our chosen 8 images onto the SVC separating hyperplane
normal. This projection reveals a bimodal distribution in the
3rd and 4th images due to the presence of both flagstones
and gravel. In the bottom subplot of Fig. 6, we simulate a
scenario where the robot traverses the area covered in all 45
images sequentially. For each image, we focus on a central
patch of size ξf and project these features onto the separating
hyperplane normal. This projection shows a consistent and
continuous trend as the robot transitions from flagstone to
gravel surfaces. This observation ensures the continuity of the
VFM with respect to the camera motion.

Overall, these results provide positive empirical evidence
that the DINO VFM is suitable for fine-grained discrimination
of terrain types in images containing only terrain, and thus
suitable for use in our setting.

VI. EMPIRICAL RESULTS: SIMULATION STUDIES

A. Simulation Study Settings

To validate our learning and control strategy, we developed
a simulation environment (Fig. 7) that enables detailed visu-
alizations of the algorithm behavior. The dynamics for the
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Fig. 7: (a) Environment with 3 different types of terrain (sand,
grass, and ice), which represent areas of differing slip coefficients
(b) Generated trajectories for training.

TABLE I: Control and adaptation coefficients for the Φ constant and
Φ DNN controllers for the simulation environment.

Ctrl. Type kdx kdω Γ0 diag R diag Q diag λ

Φ = ct. 0.05 0.1 0.01 0.1 1.0 0.01
Φ = NN 0.05 0.1 0.01 0.1 1.0 0.01

simulator were modeled via (11), and the controller of (18)
and (19) with the coefficients in Table I was used to track
user-defined velocity trajectories vref generated at random.
The environment contains three distinct terrain types (Fig. 7a).
Each terrain type induces a different level of slip, modeled as
a scaling of the nominal control matrix Bn∈ R2×2 in (11)
such that Bn is replaced by ηBn and the dynamics matrix
An ∈ R2×2 is kept the same as in (11).

To construct a dataset, we simulate N = 1 long trajectory
of 150 000 discrete time steps, with randomized piecewise-
constant velocity inputs. For acquiring these features, we
utilize the DINO VFM on images of the terrains from Fig. 7a.
As explained in Sec. V, this model processes high-resolution
terrain images into a more compact, lower resolution embed-
ding. This reduced resolution representation is overlaid across
the entire map. Specifically, let ms × ns be the size of the
simulated map, which is 120 × 240 in our case. Let each
DINO feature image have the size computed as in (42), for a
background image of size 480× 640, a patch size of ξ = 16,
and the feature size ξf = 384.

IVFM :

⌊
480

16

⌋
×
⌊
640

16

⌋
× 384 = 30× 40× 384. (43)

Then, we tile each of the DINO feature images across
the entire map vertically 4 times

(⌊
120
30

⌋)
and horizontally

6 times
(⌊

240
40

⌋)
and extract and record the relevant terrain

features underneath the robot. For training, we collect random
trajectories, generated by sampling control inputs u from
a uniform distribution, and integrate forward the dynamics
in (11) in order to cover a large portion of the simulated map,
as seen in Fig. 7b. The dataset contains the DINO features
extracted from underneath the robot and the robot’s velocities,
and as labels the residual dynamics derivative y, computed as
in (20). Using this dataset, we then train the basis function Φ,
whose architecture can be seen in Fig. 3, using Algorithm 1.
This compact representation of the terrain is then integrated
with online adaptive control (Algorithm 2).

B. Simulation Study Objectives

In exploring the capabilities of our model, we investigate
how prior knowledge of the terrain contributes to improved
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Fig. 8: Results for in-distribution data from the simulation model.
Each experiment was run 40 times on the terrains from row 1. The
left column contains the performance for the baseline controller,
while the right column contains the performance for our method. The
second row contains the adaptation coefficients θ̂i, while the third row
emphasizes the basis function Φi. For the baseline, Φi is constant,
while in our method, Φi varies as a function of the terrain and state.
The last row presents the cumulative error, where the thick colored
line represents the median, and the shaded region encompasses the
range from the 25th to the 75th percentile.

tracking accuracy for an adaptive controller. We thus test
our algorithm across 3 scenarios: a) We assess the model
performance in an environment identical to the one used during
training to understand its effectiveness with in-distribution data
(Fig. 8). b) We test the algorithm under simulated nighttime
conditions to gauge performance when the ground is identical,
but the lighting conditions are different (Fig. 9). c) We chal-
lenge the model by presenting it with two environments that
have similar visual features to those in the training data set, but
exhibit different dynamic behaviors. Furthermore, we adopt
an adversarial approach by exposing the robot to completely
novel environments that are not encountered during training
(Fig. 11).

C. In-distribution Performance

To quantify if prior knowledge of the terrain improves
tracking accuracy, the robot is tested in-distribution using the
same environment as in the training dataset. The first row of
Fig. 8 shows 39 random trials (black) and the single exemplar
path (shades of purple, colored by the L2 error between the
actual and desired states). These random trials are used to
compute error statistics in row 6. The second row displays the
robot’s adaptation coefficients for the purple trajectory as it
navigates through this environment. When the basis function
lacks terrain awareness and is set as constant matrices (44),

Φ =
{[

1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

]}
. (44)
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Fig. 9: Simulation results in the simulated nighttime environment.
Despite different lighting conditions, the cumulative error is kept
small by the terrain-informed DNN.

there is significant fluctuation in the adaptation coefficients
during the transition between different terrains. Conversely,
when the DNN basis function is used, the adaptation coeffi-
cients remain relatively stable, while the DNN output itself
varies with each terrain type, as shown in the third row of
Fig. 8. The fourth row showcases the components of the
product between the DNN basis function Φ and the adaptation
vector θ̂. Though the output of our controller is slightly noisier,
the adaptation of the product Φθ̂ is significantly faster. The
fifth row shows the normalized error between the robot’s actual
and desired states. For the constant basis function, most of
the tracking error occurs at terrain transitions. When the basis
function is terrain-informed, the error is negligible, even at
terrain transitions. Finally, the last row shows the spread of
the cumulative error across 40 distinct experimental runs, each
initiated at a random starting point and orientation, but of the
same duration (the black and the purple trajectories in Row 1).
The results of the simulation show that our terrain-informed
DNN-based tracking controller reduces the cumulative error
by approximately 90.1% when compared to the constant Φ,
defined as in (44).

D. Nighttime Out-of-distribution Performance

To test the robustness of our framework to varying light-
ing conditions, we extend our simulated experiments with
a nighttime environment by uniformly darkening (changing
the brightness) of each image representing the environment
(Fig. 9). While the adaptation coefficients exhibit more varia-
tion compared to those in the standard, in-distribution scenario,
the DNN still demonstrates good accuracy in predicting the
environment from the darkened images. This outcome empha-
sizes the robustness of VFM, underscoring its ability to adapt
effectively to varying lighting conditions. Importantly, even in
these altered night conditions, the cumulative error remains
low.

We highlight the importance of adaptation by comparing
the tracking error under two scenarios: with adaptation and
without adaptation, as shown in Fig. 10. In the “no adaptation
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Fig. 10: Comparison of the cumulative error between adaptation and
“no adaptation” for the simulated nighttime experiment. In both cases,
the DNN version of Φ is used. This figure emphasizes the benefit of
doing online adaptation.

case,” we maintain θ as a constant, initialized to θr. This
comparison effectively demonstrates the benefits of adaptation,
emphasizing its value even in situations where the basis
function accurately predicts the terrain.

E. Adversarial Environment Performance
In our final test (Fig. 11), we introduced two adversarial

environments for the robot, manipulating two visually similar
environments by altering their respective η coefficient of the B
matrix. This emulates the real world where pits of deep sand
appear very similar to shallow sand, but have a significantly
different effect on the dynamics of the robot. Additionally, we
modified the appearance of the simulated ice environment to
create a distinct visual difference, while also slightly changing
the effect of ice on the dynamics.

In the adversarial environment, the adaptation coefficients
exhibit greater changes than for the in-distribution and night-
time simulations. In addition, we observe that the DNN basis
function demonstrates good performance, validating its effec-
tiveness in handling out-of-distribution data. This effectiveness
is likely attributed to the zero-shot capability inherent in the
VFM. Lastly, it is important to note that the overall cumulative
error remained lower compared to scenarios where the basis
function lacked terrain information, further demonstrating the
benefit and robustness of our approach in varied and challeng-
ing conditions, even for out-of-distribution data.

VII. EMPIRICAL RESULTS: HARDWARE EXPERIMENTS

We focus on the hardware implementation and experimental
validation of our MAGICVFM adaptive controller discussed
in Sec. III-V on a tracked vehicle whose dynamics are modeled
in (11) and a car with Ackermann steering with the dynamics
modeled as in (29). We present how our adaptive controller
effectively addresses various perturbations such as terrain
changes, severe track degradation, and unknown internal robot
dynamics.

A. Robot Hardware and Software Stack
Experiments were carried out using a GVR-Bot [94] and

a modified Traxxas X-Maxx, both shown in Fig. 12. Both
vehicles are equipped with an NVIDIA Jetson Orin, RealSense
D457 cameras (GVR-Bot: two forward facing and one rear
facing, Traxxas: single forward facing) and a VectorNav
VN100 Inertial Measurement Unit (IMU).

State estimation is provided onboard using OpenVINS [95],
which fuses the camera data with an IMU to estimate the plat-
form’s position, attitude, and velocity. Our MAGICVFM con-
troller, as presented in (18), (19) for the tracked vehicle and
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Fig. 11: Simulation results with adversarial environment (different
structures that look like ice) and different η scaling coefficient for
the control matrix for identical terrain.

in (36) for the car-like vehicle, and Theorem 1, runs at 20 Hz.
It is implemented in Python using the Robot Operating System
(ROS) as the middleware to communicate with the robot’s
internal computer.

B. Experiments on Slopes in JPL’s Mars Yard

The GVR-Bot only accepts velocity commands as the track
velocities are regulated using an internal PID controller, which
is inaccessible to the user. While this justifies our first-order
modelling (11) using velocities, these experimental results val-
idate that MAGICVFM successfully learns the unknown internal
dynamics. To verify the performance of our MAGICVFM con-
troller (Sec. III and IV) on different terrains, the GVR-Bot was
driven on the slopes of the Mars Yard [93] at the Jet Propulsion
Laboratory (JPL). Fig. 12 shows the two selected slopes, both
chosen for their appropriate angle and visually different terrain
type that induce different dynamic terrain-based behaviors.

1) Offline Training: Training data was collected by driving
the GVR-Bot via direct tele-operation for a total of 20 minutes
on the slopes. This trajectory was designed to include segments
of transition between different slopes as well as periods of
single slope operation. We utilize this dataset for training our
terrain-dependent basis function as outlined in Algorithm 1.
By leveraging the strengths of a pre-trained VFM, we develop
the lightweight DNN basis function head used in the adaptive
controller of (18), (19). This function processes inputs com-
prising of the mean of two visual feature patches from the
GVR-Bot’s right and left tracks and the robot’s velocity taken
from the onboard state estimator. The VFM-based DNN (Φ)
structure incorporates two hidden layers, each consisting of
200 neurons, as seen in Fig. 3. The output has size 16, which
is then reconfigured into dimensions n×m×nθ, where n = 2
is the state size, m = 2 is the control input size, and nθ = 4

TABLE II: Training hyperparameters for Algorithm 1 for the tracked
vehicle. β is the learning rate for the optimization in Line 11 of
Algorithm 1, θr is the regularization target, ℓmin and ℓmax are the
bounds for the distribution over trajectory window lengths, λr is the
regularization term for (4), K is the minibatch size, and nθ is the
size of the adaptation vector.

β θr ℓmin ℓmax λr K nθ

0.001 14 1.2 [s] 30 [s] 0.1 70 4

TABLE III: Control coefficients for both controllers (Φ is constant
and Φ is a DNN) for the tracked vehicle.

kpx kpy kdx kdω kψ Γ0 diag Q diag R diag λ

0.8 0.8 0.5 1.6 2.3 0.2 0.1 5.0 0.01

is the size of the adaptation vector that matches the number
of terms in the control matrix. The hyperparameters for the
training algorithm are shown in Table II.

2) Online Adaptation: At runtime, the downward-facing
camera2 is used to capture images of the terrain at 20 Hz.
These images are then processed by the VFM explained
in Sec. V to extract the features. The extracted features are
then concatenated with the robot’s velocity and are then fed
into the DNN basis function Φ. This function, together with
an online-adapting vector, is then employed to dynamically
adjust the residual B matrix (18), (19) in real time to account
for the different terrains.

The benefits of the terrain-informed basis function can been
seen by comparing the performance of a constant and non-
constant basis function controller as the robot traverses slopes.
Both controllers are based on (18) and the adaptation law
in (19). The first controller uses a constant basis function,
defined in (44). We choose this structure for the constant Φ
to capture both the direct and cross-term effects on the robot’s
velocity. The second controller uses a terrain-dependent DNN
basis function trained as explained in Sec. VII-B1. The control
coefficients for both controllers are presented in Table III. The
initial adaptation vector θ0 = θ(0) for the constant basis
function is 0nθ , while θ(0) for the terrain-dependent basis
function is the converged value from Algorithm 1.

Each experiment was carried out five times, with the results
detailed in Fig. 13. For repeatability, we used a rake to re-
distribute the gravel on the slopes between runs and alternated
back and forth between running the two controllers. For this
experiment, the desired trajectory is a straight line that spans
the entire length of the two slopes (see Fig. 12).

Fig. 13 shows that when the robot traverses the first slope
(flagstone resulting in minimal slippage), both controllers have
comparable tracking errors. However, a notable change in
performance appears when the robot transitions to the second
slope, which has an increased tendency for the soil to slump
down the hill, causing slippage. In Table IV, we present the
Root Mean Square Error (RMSE) between the actual position

and the desired position computed as
√

1
L

∑L
i=1 ||pI

i − pI
di||22,

where L is the length of the trajectory. The results demonstrate
that the integration of a VFM in an adaptive control framework

2To mitigate the purple tint in the RGB images (a common issue for Intel
Realsense cameras), the RGB cameras were outfitted with neutral density
filters to maintain the integrity of the VFM features.
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Fig. 12: a) The GVR-Bot traversing two slopes with different textures and terrain-induced dynamic behaviors at the JPL Mars Yard. b) The
GVR-Bot with the sensing and compute units highlighted. Note that the forward facing camera is used for state estimation, while the top
camera is used for taking terrain images for MAGICVFM. The rear camera is not used in this work. c) The Traxxas robot traversing two
different terrains that induce different dynamic behaviors. d) The Traxxas robot with its main sensing and compute units highlighted.
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Fig. 13: Tracking error for the two controllers (constant basis function
and terrain-dependent basis function) on the slopes for a tracked
vehicle. The error is computed as the Euclidean distance between
actual and desired positions in the I frame. For both colors, the
thick line outlines the mean of the 5 experiments, the shaded area
represents 1 standard deviation, and the thin and transparent lines
denote the 5 experiments.

TABLE IV: Statistics for the tracked vehicle on Mars Yard slopes.

Controller Tracking error (RMS [m])
Φ constant 0.130± 0.038

Φ DNN (ours) 0.061± 0.022

enhances tracking performance, yielding an average improve-
ment of 53%.

3) Computational Load: A significant bottleneck in deploy-
ing VFMs onboard robots is the computational requirements
of the inference stage of the models, especially as typical
controllers need to run at 10s-100s Hz. To minimize the
inference time and allow high controller rates, we employ
the smallest visual transformer architecture of the DINO V1,
consisting of 21 million network parameters. This architecture
allows us to run the controller at 20 Hz on the Graphics
Processing Unit (GPU) on-board an NVIDIA Jetson Orin.

C. Experiments On-board an Ackermann Steering Vehicle

We performed similar experiments to those described
in Sec. VII-B using an Ackermann steering vehicle. Here,

TABLE V: Control coefficients for the lateral control of the Acker-
mann steering vehicle.

Controller kp kd Γ diag. Q diag. R diag. λ

(a) nonlinear PD 1.0 1.0 - - - -
(b) Φ constant 1.0 1.0 1.5 1.0 0.01 0.05
(c) Φ DNN 1.0 1.0 1.5 1.0 0.01 0.05

the robot traverses two different terrains, as seen in Fig. 12,
which induce different dynamic behaviors onto the robot (grass
is more slippery than concrete). Our experiments on both
vehicles showed that, on flat ground, the car experiences
more significant slippage and terrain disturbances compared
to the tracked vehicle. Therefore, for this experiment, we
validated MAGICVFM on flat ground.

In Fig. 14, we show the product Φθ̂ for the constant basis
function of the nonlinear tracking controller in (36). As the
robot transitions between the two terrains, we see that the
robot effectively adapts to each terrain during this transition.
This behavior mirrors that observed in the simulation plots
(Fig. 8). Note that we maintained nθ = 4, to be consistent
with the DNN model of the basis function, even though all
four parameters are identical in this instance. In Fig. 15, we
emphasize the adaptation coefficients (left) and the DNN basis
function output (right) for the nonlinear tracking controller
in (36) as the robot transitions between the two terrains (grass
and concrete) several times. The DNN basis function switches
depending on the type of environment it operates in, while
the corresponding adaptation coefficients θ̂ remain mostly
constant. This behavior also mirrors that observed in the
simulation plots (Fig. 8) when a DNN with VFM is employed.
Lastly, in Fig. 16, we present the lateral position error (e⊥) and
lateral velocity (vBy ) for the 3 controllers (a) nonlinear PD ((36)
without the adaptation), (b) MAGIC with constant Φ in (36)
and(19), (c) MAGICVFM with DNN Φ in (36) and (19). Our
method shows superior performance compared to the baseline
nonlinear PD controller. The control coefficients for the three
controllers are outlined in Table V.
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denoted with the white (concrete) and gray (grass) bars.

D. Indoor Track Degradation Experiments

Indoor experiments were conducted at Caltech’s Center for
Autonomous Systems and Technologies (CAST) (Fig. 17).
The primary objective of these experiments was to evaluate
the robustness and performance of our proposed controller
under artificially-induced track degradation. Specifically, the
experiments quantify the extent of degradation that our con-
troller can effectively manage and demonstrate its advantage
over baseline controllers in similar scenarios. We compare
three controllers: (a) nonlinear PD ((18) without the adap-
tation), (b) MAGIC with constant Φ in (18) and (19), and
(c) MAGICVFM with DNN Φ in (18) and (19). The DNN
is not retrained on the new ground type, but the previously
trained DNN from Sec. VII-B is employed.

To simulate track degradation, a scalar factor is applied to
one track that reduces its commanded rotation speed down-
stream of (and opaquely to) the controller. In this case, we
apply a 70% reduction in speed to the right track using a
step function with a period of 3 seconds, while keeping the
left track operating ‘nominally.’ The GVR-Bot is commanded
to follow a figure 8 trajectory, and the results are shown in
Fig. 17, with the RMSE in position tabulated in Table VI.
The results show that both constant Φ and DNN Φ controllers
outperform the tracking of the baseline PD controller by 23%
and 31%, proving the robustness to model mismatch of both
DNN and non-DNN controllers.

E. Performance at DARPA’s Learning Introspection Control

The DARPA LINC program [96] develops machine
learning-based introspection technologies that enable systems
to respond to changes not predicted at design time. LINC took
place throughout 2023 at Sandia National Laboratories.
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Fig. 16: Convergence of the lateral error e⊥ and lateral velocity
vBy for a circular trajectory traversing two terrains like the one seen
in Fig. 12 with vBx = 1.5 m/s. The velocity of the desired trajectory
is limited by the performance of the Visual Inertial Odometry (VIO)
at higher speeds.
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Fig. 17: a) Tracking error for the three controllers during track degra-
dation. (left) the performance for the nonlinear PD (the baseline).
(middle and right) performance for the constant basis function and the
terrain-informed basis function. b) The figure 8s trajectories for eval-
uating track degradation performance conducted indoors at CAST.
The consistent floor of CAST ensures any slippage is consistent both
within the figure 8 and between tests.

The main exercise, Combined Circuit (Fig. 18), evaluated
conditions such as track degradation, collisions, tip-over, and
reduced cognitive load on the driver across a variety of test
elements. Importantly, these exercises were completed with
a human driver as the global planner in order to introduce
additional challenges such as adversarial driving and driver
intent inference.

For this exercise, we implemented the MAGIC controller
from (18), (19) in which the basis function (44) was constant.
Trajectories (both position and velocity) were generated using
a sampling-based motion planner based on Monte Carlo Tree
Search (MCTS), with the desired goal locations generated
using a ‘driver intent’ module that generated a desired path
based on operator joystick inputs. The main modules of the
software stack and their interfaces are shown in Fig. 19, with
our MAGIC controller highlighted in blue.

To evaluate the performance of our MAGIC controller, we
compare the estimated state (linear and angular velocities)
from the VIO with the reference trajectory vref computed
from the desired trajectories generated by the MCTS planner,
as explained in Sec. IV-C. For the baseline, we compare the
desired command from the joystick with the actual state from
the VIO.

The following subsections discuss each of the components
of the Combined Circuit and the performance of our controller.
In Table VII, we present the performance metrics for the four
exercises of the LINC project. Each exercise was traversed 4
times and the RMSE of the linear and angular velocity was
computed.

1) Chicane Track: The Chicane Track highlighted the re-
jection of artificially induced track degradation, which was
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TABLE VI: Position tracking error statistics for the tracked vehicle
experiencing track degradation.

Controller Tracking RMSE [m] Improvement
(a) nonlinear PD 0.102 -
(b) Φ = constant 0.079 23%

(c) Φ = DNN 0.070 31%

Fig. 18: Combined Circuit for the DARPA Learning Introspective
Control (LINC) runs showing the full course with break outs of each
of the elements. Track credit: Sandia National Laboratories team.

applied dynamically and opaquely as the GVR-Bot traversed
the course. Due to the narrow track (the width is 0.9 m on
average, 0.25 m wider than the GVR-Bot on both sides), track
degradation leads to an increase in collisions with the chicane
walls if not quickly adapted to. Our MAGIC controller was
able to successfully adapt to these challenges, thus making this
artificially induced track degradation almost imperceptible to
the driver after a very short initial adaptation transient.

The effectiveness of the trajectory tracking on the Chicane
Track is shown in Fig. 20 for both the baseline and the
MAGIC controller. In the first two rows, the tracking of the
velocities is emphasized. The third row shows the amount
of degradation applied to the system. The bottom plot shows
the estimated adaptation parameters θ̂ changing in real time
to compensate for the track degradation. Table VII shows
the improved performance of the MAGIC controller on this
exercise. Our controller improved linear velocity tracking by
42%, and angular velocity tracking by 19%. Because the track
degradation information, Bn+Φθ̂ of (18), is estimated by the
MAGIC controller in real-time, the MCTS can successfully
generate trajectories that use this corrected control matrix,
thereby successfully avoiding collisions with the chicane walls.
When MAGIC was activated, the robot navigated the chicane
track more cautiously, moving approximately 2.5 times slower
than with the baseline controller. This reduction in pace was
a result of the software stack prioritizing safety.

2) Carpet Ramp: The goal of the Carpet Ramp exercise is
to restore and maintain control under track degradation and
variable slippage, all whilst mitigating the risk of tipping over.
The ramp had a slippery wooden surface with several patches
of carpet to alter the ground friction coefficient, causing the
tracks to slip asymmetrically. Additionally, as the roll angle
of the robot increases over the incline, the traction of one
of its tracks is reduced as more of the weight falls over one
of the tracks due to the high vertical center of gravity. This
imbalance in traction causes the dynamics of the GVR-Bot
to change significantly, especially affecting the ability to turn.
This restricted turning behavior is shown in Fig. 21. The plot in
the first column, second row shows that although the operator
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Fig. 19: Architecture for our DARPA LINC software stack, with the
MAGIC controller showcased in blue.
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Fig. 20: (Chicane Track) The left and right columns display tracking
performance without and with our MAGIC controller, respectively.

attempts to turn the GVR-Bot, very little control authority in
angular velocity is achieved. By comparison, when operated
with our MAGIC controller, the robot adapts to the terrain,
tracking safer turn commands that reduce the risk of tipping
(second column, second row). As seen in the bottom row of
Fig. 21, the adaptation coefficients, especially the one for the
angular velocity, greatly increase to compensate for slip. This
particular exercise demonstrates the greatest improvement in
performance relative to the baseline, as seen in Table VII.

3) Narrowing Corridor: The aim of the Narrowing Corri-
dor mirrored that of the Chicane Track, assesing the robot’s
ability to consistently navigate through a tight corridor despite
track degradation. For the robot’s performance, see Table VII.

4) Wedge Track: Similar to the Carpet Ramp exercise
in Sec. VII-E2, the Wedge Track tests the ability of the
algorithms to maintain control and slow down under slippage
while minimizing the risk of tipping. When traversing discrete
wooden wedges, the robot often loses traction. Moreover, the
robot experiences sudden positive and negative accelerations
due to the downhill and uphill traversal of a wedge pair. As
shown in Fig. 22, with our controller’s assistance and safe
slowdowns from the planning, the robot can track velocities
more accurately than without our MAGIC controller. By
comparison, without assistance, the robot experiences large
velocity spikes as it traverses the wedges. These rapid changes
are caused by the VIO’s Kalman filter that integrates spikes
measured by the accelerometer when the robot bounces off
the wedges. The bottom row of Fig. 22 shows the adaptation
coefficients quickly adapting for the loss of traction.

5) MAGIC and Human-in-the-Loop: The LINC program
was different from many robotics projects in that the global
planner was human-driven rather than autonomous. This
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TABLE VII: Performance metrics for the four exercises of the DARPA LINC project.
Chicane Carpet Ramp Wedges Narrow Corridor

v error
[m/s]

ω error
[rad/s]

Time [s] v error
[m/s]

ω error
[rad/s]

Time [s] v error
[m/s]

ω error
[rad/s]

Time [s] v error
[m/s]

ω error
[rad/s]

Time [s]

LINC off 0.28 0.45 16.36 0.96 0.59 19.96 0.37 0.58 34.95 0.52 0.72 17.95
LINC on 0.16 0.36 44.36 0.36 0.32 39.22 0.25 0.34 39.72 0.19 0.44 23.73
Improvement 42% 19% 62% 46% 33% 41% 64% 39%
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Fig. 21: (Carpet Ramp) The left and right columns display tracking
performance without and with our MAGIC controller.
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Fig. 22: Trajectory tracking during the Wedge Track run. The right
and left columns display tracking performance without and with our
controller. No artificial degradation was introduced by the organizers.

presents a challenge as MAGIC must not degrade the user
driving experience but instead must augment it without the
forward-planning and control input smoothness assumptions of
typical robotic projects. The success of MAGIC in augmenting
a human driver was twofold: firstly, MAGIC consistently
ran fast enough such that there was no perceptible increase
between joystick input and robot, and secondly, much of the
adaptation to the changing terrain and vehicle were signifi-
cantly reduced by MAGIC.

VIII. CONCLUSION

We introduced a novel learning-based composite adaptive
controller that incorporates visual foundation models for ter-
rain understanding and adaptation. The basis function of this
adaptive controller, which is both state and terrain dependent,
is learned offline using our proposed meta-learning algorithm.
We prove the exponential convergence to a bounded tracking
error ball of our adaptive controller and demonstrate that in-
corporating a pre-trained VFM into our learned representation
enhances our controller’s tracking performance compared to
an equivalent controller without the learned representation.
Our method showed a 53% decrease in position tracking error
when deployed on a tracked vehicle traversing two different
sloped terrains. We further demonstrated our algorithm on-
board a car-like vehicle and showed that the learnt DNN basis

function captures the residual dynamics generated by the two
different terrains.

To gain insight into the inner workings of our full method,
we empirically analyzed the features of the pre-trained VFM
in terms of separability and continuity using support vector
classifiers. This analysis showed positive empirical evidence
that the DINO VFM is suitable for fine-grained discrimination
of terrain types in images containing only terrain, and thus
suitable for our control method.

We further tested our method under other perturbations,
such as artificially induced track degradation. We demon-
strated the effectiveness of our algorithm without terrain-aware
basis function in human-in-the-loop driving scenarios. Our
controller improved tracking of real-time human generated tra-
jectories both in nominal and degraded vehicle states without
introducing noticeable system delay as part of the DARPA’s
LINC project.
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