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ABSTRACT

A fundamental challenge in physics-informed machine learning (PIML) is the
design of robust PIML methods for out-of-distribution (OOD) forecasting tasks.
These OOD tasks require learning-to-learn from observations of the same (ODE)
dynamical system with different unknown ODE parameters, and demand accurate
forecasts even under out-of-support initial conditions and out-of-support ODE
parameters. In this work we propose to improve the OOD robustness of PIML via a
meta-learning procedure for causal structure discovery. Using three different OOD
tasks, we empirically observe that the proposed approach significantly outperforms
existing state-of-the-art PIML and deep learning methods (with 2× to 28× lower
OOD errors).

1 INTRODUCTION

Physics-informed machine learning (PIML) (e.g., (Willard et al., 2020; Xingjian et al., 2015; Lusch
et al., 2018; Yeo & Melnyk, 2019; Raissi et al., 2018; Kochkov et al., 2021)) seeks to combine the
strengths of physics and machine learning models and has positively impacted fields as diverse as
biological sciences (Yazdani et al., 2020), climate science (Faghmous & Kumar, 2014), turbulence
modeling (Ling et al., 2016; Wang et al., 2020a), among others. PIML achieves substantial success in
tasks where the test data comes from the same distribution as the training data (in-distribution tasks).

This work expands on existing PIML approaches to forecast a parametric dynamical system (ODE),
with a focus on out-of-distribution (OOD) scenarios. In our tasks, OOD robustness is tied to interven-
tions over the initial system state and the unknown ODE parameters (illustrated in Figure 1(a,b)), not
arbitrary interventions as the system evolves from the initial state (see (Rubenstein et al., 2016) for
the effect of arbitrary interventions in physics models). In this setting, we observe that existing state-
of-the-art PIML models perform significantly worse OOD than in-distribution, with some scenarios
being challenging even for PIML methods designed with OOD robustness in mind (Wang et al.,
2021b; Kirchmeyer et al., 2022). This is because the standard ML part of PIML still learns spurious
associations and performs poorly in our OOD setting. While there are PIML methods (Brunton et al.,
2016; Martius & Lampert, 2016) robust to OOD initial conditions, they are not robust to shifts in
ODE parameters as they are transductive, i.e., they do not combine knowledge from diverse training
trajectories with different ODE parameters.

We then propose an approach for more robust dynamical system forecasting that leverages causal
structure discovery (e.g., Zheng et al. (2018)) combined with invariant risk minimization (Arjovsky
et al., 2019; Krueger et al., 2021) to learn the underlying ODE structure, and uses meta-learning to
learn from different trajectories of the same dynamical system. More precisely, our contributions are:

1. We show that state-of-the-art PIML and deep learning methods fail in test examples with OOD
initial conditions and/or OOD system parameters. Prior work (Wang et al., 2021a) showed that
deep learning-only methods fail in OOD tasks, and argued physics models and PIML methods
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Figure 1: Dynamical system OOD problem definition. (a) Training data consists of multiple
observations from the same dynamical system with different initial conditions and parameters. (b) At
test, we are given observations till tr (red solid) and the goal is to predict the future observations till
tT (gray dashed). The initial conditions and the ODE parameters can be OOD in test.

would succeed, including a proposed solution (Wang et al., 2021b). Here we show that PIML
methods also fail (or perform poorly) OOD, including the solution in Wang et al. (2021b).

2. Meta-learning framework for learning from diverse training trajectories: By meta learning we
mean the definition in (Thrun & Pratt, 1998, Chapter 1.2) adapted to our setting. Given (a) a family
of M tasks or experiments observing the same dynamical system with different parameters, (b)
training observations or trajectory X

(i)
t0 , . . . ,X

(i)
tT , for each task i, and (c) a performance measure

(prediction error) for each task; our algorithm will meta learn such that performance on each task
improves with more observations per task and with the number of tasks. Our architecture uses
parameters shared across all tasks to allow transfer of knowledge between multiple tasks.

3. Learning the ODE via causal structure discovery: We define a family of structural causal models,
each identifying a different ODE, and perform a search to find the underlying dynamical system
(assumed to be in the family). We propose a causal structure discovery approach via continuous
optimization with ℓ1-regularization and an invariant risk minimization-type penalty (Krueger et al.,
2021), both of which are empirically shown to be necessary. We further show in Theorem 1 that
the proposed approach learns the true causal structure under certain identifiability conditions.

The proposed method is then empirically validated using three commonly-used simulated physics
tasks (with measurement noise): Damped pendulum systems (Yin et al., 2021), predator-prey sys-
tems (Wang et al., 2021a), and epidemic modeling (Wang et al., 2021a).

2 DYNAMICAL SYSTEM FORECASTING: OOD SETTING

We formally describe the dynamical system forecasting problem under out-of-distribution scenarios.
Definition 1 (Dynamical system forecasting problem). The dynamical system is described as an
ordinary differential equation (ODE) as follows:

dxt

dt
= ψ(xt;W

∗) , (1)

where xt ∈ Rd is the hidden state of the system at time t, ψ is an unknown deterministic function
with unknown ODE parameters W ∗. We define noisy observations of the dynamical system Xt ∼
N (xt, σ

2
εI) where σ2

ε is the noise variance. xt0 denotes the initial state at time t0.

1. Training data (Figure 1a): In training, we are given a set of M tasks (or trajectories) from the
dynamical system in Equation (1), T (i) := X

(i)
t0 , . . . ,X

(i)
t
T (i)

, i ∈ {1, . . . ,M}, of lengths T (i) +1

respectively, with
x
(i)
t0 ∼ P tr(xt0) , W(i)∗ ∼ P tr(W∗) , (2)

where for each task i, x(i)
t0 is the initial state at time t0, W(i)∗ are the (hidden) task-specific ODE

parameters, and {t0, . . . , tT (i)} are regularly-spaced discrete time steps.
2. OOD test data (Figure 1b): At test, we are given (r + 1)-length initial observations T (te) :=

X(te)
t0 , . . . ,X

(te)
tr , from the same dynamical system in Equation (1) with an arbitrary initial state x(te)

t0

and ODE parameters W(te)∗ possibly outside their respective training supports, supp(P tr(xt0))
and supp(P tr(W∗)).

Forecasting goal is to predict the future observations X(te)
tr+1

, . . . ,X(te)
tT (te)

till some time T (te).
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Figure 2: Shows OOD challenges of existing methods. (a) Standard Neural networks (e.g., (Chen
et al., 2018)), when trained on the motion of damped pendulum, predict accurately in the training
domain (green shaded), but predict a linear function outside the training domain. (b) Transductive
PIML methods (e.g., (Raissi et al., 2017a; Brunton et al., 2016)) assume all training/test trajectories
have the same dynamical system parameters W (i)∗, which is not the general setting. (c) Inductive
PIML methods (e.g., (Yin et al., 2021; Mehta et al., 2021)) use a neural network to predict parameters
of a known physics model and another neural network as residual correction. These two neural
networks face the same robustness issues discussed in (a).

In summary, we are given training trajectories from that may have (a) different initial conditions, and
(b) different unknown ODE parameters. We observe a test trajectory from time t = t0, . . . , tr and we
wish to forecast its future after time tr. The test trajectory can have an OOD initial condition and
OOD ODE parameters.

Illustrative example. Figure 1 shows an example of an out-of-distribution task for forecasting the
motion of a pendulum with friction. The state xt = [θt, ωt] ∈ R2 describes the angle made by the
pendulum with the vertical and the corresponding angular velocity at time t. The true (unknown)
function ψ describing this dynamical system is given by ψ([θt, ωt];W

∗) = [ωt,−α∗2 sin(θt)−ρ∗ωt]
with W ∗ = (α∗, ρ∗) denoting the ODE parameters relating to the pendulum’s period and the damping
coefficient. They are task-dependent, e.g., different tasks can have different damping coefficients.

1. In training, we observe M noisy trajectories (tasks) of motion over time t = 0, 0.1, . . . , 10 from
experiments where a pendulum is dropped from different acute angles 0 < θ

(i)
t0 < π/2 in materials

with different damping coefficients ρ(i)∗ .
2. In test, the pendulum is dropped from nearly vertical angles, π − 0.1 < θ(te)

t0 < π in a material
with much higher damping coefficient ρ(te)∗. The test trajectory is observed over a smaller time
window t ≤ 3 and the goal is to predict future pendulum states till time t = 10.

An ML or PIML model for this forecasting task must be able to learn from diverse trajectories of the
same dynamical system, and be robust to shifts in distribution between training and test.

3 RELATED WORK & THEIR LIMITATIONS

Next we describe different classes of existing approaches that are commonly used for the dynamical
system forecasting and their inherent challenges out-of-distribution.

3.1 NEURAL NETWORK METHODS

Deep learning’s ability to model complex phenomena has allowed it to make great strides in many
physics applications (Lusch et al., 2018; Yeo & Melnyk, 2019; Kochkov et al., 2021; Dang et al.,
2022; Brandstetter et al., 2022b). However, standard deep learning methods are known to learn
spurious correlations and tend to fail when the test distribution of the inputs are different from
that in training (Wang et al., 2021a; Geirhos et al., 2020). Figure 3b depicts the out-of-distribution
failure of several deep learning methods from NeuralODE (Chen et al., 2018) to more complex meta
learning approaches (Wang et al., 2021b) in our damped pendulum example (more details of the
experiment is in Section 5). While DyAd (Wang et al., 2021b) and CoDA (Kirchmeyer et al., 2022)
use meta-learning to adapt to new ODE parameters, they are not robust to OOD initial conditions.

In standard deep learning tasks, Xu et al. (2021) show that an MLP’s failure to extrapolate to out-of-
distribution can be traced to an absence of algorithmic alignment, which is an appropriate combination
of basis and activation functions within the architecture for the task. For example, the outputs of an
MLP with ReLU activations will be linear far from the training domain even when trained to predict
a sine/quadratic function. For dynamical system forecasting, our Figure 2a depicts the results of a
similar experiment for a standard sequence model (NeuralODE): the model can approximate the
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(a) In-distribution predictions of θt
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(b) Predictions of θt under OOD Xt0

Figure 3: (Damped pendulum.) Predict pendulum motion (a) in-distribution, when dropped from
acute angles and (b) OOD w.r.t initial conditions and parameters, when a different pendulum is
dropped from nearly vertical angles. Figures show ground truth curve (blue stars) in- and out-
of-distribution along with predictions from different models. Existing methods perform well
in-distribution, but perform poorly OOD even in this simple example.

target sine function in the training domain (green region) but predicts a linear function far outside
the training domain. This means that we need algorithmic alignment (i.e., to include appropriate
basis functions) in order to make accurate forecasts in OOD tasks. In Appendix D.6 we show
that even our proposed method without algorithmic aligment cannot properly extrapolate OOD (but it
still does better than baselines).

3.2 PHYSICS-INFORMED MACHINE LEARNING (PIML)

To alleviate the challenges of standard neural networks, several PIML methods have been proposed
(e.g., (Willard et al., 2020; Wang et al., 2020a; Faghmous & Kumar, 2014; Daw et al., 2017)) that
utilize physics-based domain knowledge for better predictions. The physics-based knowledge vary
across methods, for example, (a) a dictionary of basis functions (e.g., sin, cos, d

dt ) (Schmidt & Lipson,
2009; Brunton et al., 2016; Martius & Lampert, 2016; Raissi, 2018; Cranmer et al., 2020a) related
to the task, (b) a completely specified physics model (Raissi et al., 2017a; Raissi, 2018; Jiang et al.,
2019) or with missing terms (Yin et al., 2021), and (c) different domain-specific physical constraints
such as energy conservation (Greydanus et al., 2019; Cranmer et al., 2020b) or symmetries (Wang
et al., 2020b; Finzi et al., 2021; Brandstetter et al., 2022a). While these PIML methods improve upon
standard neural networks, damped pendulum results in Figure 3b show that they are generally not
designed for OOD forecasting tasks. To study reasons for this failure, we categorize these methods
into inductive and transductive based on their assumptions over ground-truth ODE parameters W ∗.
Transductive PIML methods. Transductive inference focuses on predicting missing parts from
the observed data. In PIML, transductive inference methods focus on forecasting tasks with the same
dynamical system parameter, and treat a test task with a different parameter as an unrelated task. For
instance, SINDy (Brunton et al., 2016), EQL (Martius & Lampert, 2016), and related methods (Raissi,
2018; Chen, 2021), learn the ODE based on a dictionary of basis functions for a specific ground-truth
ODE parameter W (i)∗. These transductive methods (Figure 2b) do not transfer knowledge learnt in
training to predict test examples with a different W (j)∗. This forces these methods to forecast simply
based on the initial observations of the test task alone, often leading to poor performance. Another
class of transductive methods (Raissi et al., 2017a;b; Yu et al., 2022) assume that the ODE parameters
W ∗ remain constant across all training and test tasks, and regularize neural networks to respect a
given physics model. They have also been shown to be challenging to train for harder differential
equations (Krishnapriyan et al., 2021) or return trivial solutions (Leiteritz & Pflüger, 2021). Causal
PINNs (Wang et al., 2022) ensure that predictions at any time less than t are accurately resolved
before predictions at time t, but do not allow for causal interventions to initial states and unknown
parameters of the dynamical system. These methods will perform poorly if different training tasks
have different ODE parameters.

Inductive PIML methods. Taking the opposite approach, inductive inference focuses on learning
rules from the training data that can be applied to unseen test examples. Inductive methods dominate
PIML approaches but are fragile OOD, since the learned rules are learned within the scope of
the training data and are not guarantee to work outside the training data scope. For example,
APHYNITY (Yin et al., 2021) and NDS (Mehta et al., 2021) are such inductive methods that augment
a neural network to a known incomplete physics model where the parameters of the physics model
are predicted inductively using a recurrent network. As illustrated in Figure 2c, these methods are
able to learn from training tasks with different ODE parameters W (i)∗. However, the recurrent
network in APHYNITY fails OOD and often returns incorrect physics parameters OOD. Further,
the augmented neural network suffers from the same extrapolation issues discussed in Section 3.1
leading to poor OOD performance as seen in Figure 3b. Concurrent work by Park et al. (2023) aligns
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with our meta-learning architecture but lacks an IRM-type penalty that we empirically demonstrate
as crucial for identifying the true causal structure.

With these key reasons identified for the fragility of existing methods to OOD scenarios, we propose
an approach (MetaPhysiCa) that includes basis functions in the architecture for algorithmic alignment
and can inductively transfer knowledge from varied training tasks to an OOD test task.

4 PROPOSED APPROACH: METAPHYSICA

We first describe a family of structural causal models describing dynamical systems (Section 4.1),
then discuss the proposed architecture along with a causal structure discovery approach (Section 4.2)
to learn the correct causal model for improved OOD performance.

4.1 STRUCTURAL CAUSAL MODEL

We describe the dynamical system using a deterministic structural causal model (Peters et al., 2022)
with measurement noise over the observed states and explicitly define the assumptions over the
unknown function ψ of Definition 1. The causal diagram is depicted in Figure 4 in the plated notation
iterating over time t = t0, . . . , tT (i) for each task i. As before, the hidden state of the dynamical
system is x(i)

t ∈ Rd for task i. We define the causal process at each time step t for task i as follows.

Not causally related
to future states

Figure 4: SCM for a dynamical system
defined as an unknown linear combina-
tion of basis functions. We allow arbi-
trary interventions over initial conditions
xt0 and ODE parameters W ∗.

Let fk(·; ξk) : Rd → R, 1 ≤ k ≤ m, be m linearly
independent basis functions each with a separate set of
parameters ξk acting on an input state x

(i)
t . Examples of

such basis functions include trigonometric functions like
f1(x

(i)
t ; ξ1) = sin(ξ1,1x

(i)
t,1 + ξ1,2), polynomial functions

like f2(x
(i)
t ; ξ2) = x

(i)
t,1x

(i)
t,2, and so on. The corresponding

outputs from these basis are shown as z(i)k,t := fk(x
(i)
t ; ξk)

in Figure 4. The derivative dx
(i)
t,j/dt for a particular di-

mension j ∈ {1, . . . , d} is only affected by a few basis
function outputs z(i)k,t (green arrows in Figure 4). These
selected basis functions along with their parameters ξk are
shared across all the tasks i = 1, . . . ,M , i.e., the causal
structure remains the same. The derivative is a linear com-
bination of these selected basis functions with task-specific
coefficients W (i)∗ and dictates the next dynamical system
state. We observe the dynamical system with independent
measurement noise X

(i)
t := x

(i)
t + ε

(i)
t , where ε

(i)
t ∼ N (0, σ2

εI).

We assume that we are given the collection of m possible basis functions fk(·; ξk), k = 1, . . . ,m,
with unknown ξk and no prior knowledge of which {fk}mk=1 causally influence dx

(i)
t /dt. The need

for basis functions stems from our analysis in Section 3.1, where we show that appropriate basis
functions must be incorporated within the architecture in order to extrapolate to OOD scenarios.

4.2 META LEARNING & MODEL ARCHITECTURE

Given the training data {(x(i)
t )t}Mi=1 generated from the unknown SCM described above, our goal

is two-fold: (a) discover the true underlying causal structure, i.e., learn which basis functions fk
causally affect dxt,j/dt for j = 1, ..., d, along with their parameters ξk, and (b) learn the ground
truth task-specific parameters W (i)∗ that act as coefficients in linear combination of the selected
basis functions. In the following, we propose a meta-learning framework that introduces structure
parameters Φ that are shared across tasks and task-specific coefficients W (i) that vary across the
tasks:

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (3)

where ⊙ is the Hadamard product and

• F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
is the vector of outputs from the basis func-

tions with parameters ξ = {ξ1, . . . , ξm},
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Figure 5: Schematic diagram of MetaPhysiCa and its training/test methodologies. We observe M
trajectories in training from the same dynamical system with different initial conditions and ODE
parameters. In training, Φ, denoting the causal structure, is shared among all tasks i = 1, . . . ,M ,
while W (i) are the task-specific parameters, both learnt using Equation (4). During test, given small
initial observations of the test trajectory from time t0, . . . , tr, we use Equation (5) to adapt W (te)

keeping the learnt causal structure Φ̂ fixed. Final forecast for the test trajectory for t > tr is given by
solving the ODE in Equation (3) with optimal Ŵ (te) and Φ̂.

• Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal structure across all tasks
such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists in Figure 4,

• W (i) ∈ Rd×m are task-specific parameters that act as coefficients in a linear combination of the
selected basis functions.

Figure 5 shows a schematic diagram of MetaPhysiCa along with the training/test methodologies
(described next). Additional implementation details are presented in Appendix C.

Next we describe a procedure to learn the structure parameters Φ. Finding whether an edge exists or
not in the causal graph is known as the causal structure discovery problem (e.g., Heinze-Deml et al.
(2018)). We use a score-based causal discovery approach (e.g., Huang et al. (2018)) where we assign
a score to each possible causal graph. We wish to find the minimal causal structure, i.e., with the least
number of edges, that also fits the training data. This balances the complexity of the causal structure
with training likelihood, and avoids overfitting the training data.

Prediction loss & sparse structure. A sparse structure for Φ implies fewer terms in the RHS of
the learnt equation for the derivatives in Equation (3). Several causal discovery approaches have
been proposed that learn such minimal causal structure via continuous optimization (Zheng et al.,
2018; Ng et al., 2022). We use the log-likelihood of the training data with ℓ1-regularization term to
induce sparsity that is known to perform well for general causal structure discovery tasks (Zheng
et al., 2018). Note that since the direction of all the edges are known (i.e., zk,t → dxt,j/dt), we do not
need the acyclicity constraints. and the causal graph is uniquely identified by its Markov equivalence
class (Pearl, 2009, Chapter 2).

The prediction error is given by R(i)(W (i),Φ, ξ) := 1
T (i)+1

∑t
T (i)

t=t0 ||X̂(i)
t −X

(i)
t ||22 where X̂

(i)
t =

X
(i)
t0 +

∫ t

t0
(W (i) ⊙ Φ)F (X̂

(i)
τ ; ξ)dτ are the predictions obtained using an ODE solver to integrate

Equation (3). In practice however, we found the squared loss directly between the predicted and
estimated ground truth derivatives, i.e., R̃(i)(W (i),Φ, ξ) = 1

T (i)+1

∑t
T (i)

t=t0 ||dX̂(i)
t /dt − dX(i)

/dt||22,
leads to a stable learning procedure with better accuracy in-distribution and OOD. As discussed
before, we use an ℓ1-regularization term ||Φ||1 to learn a causal structure with the fewest possible
edges zk,t → dxt,j/dt, j = 1, . . . , d, while minimizing the prediction error in training.
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Learning Φ that induces equal risk across all tasks. Our structure discovery task comes with
an additional challenge as each training task is obtained with potentially different initial condition
x
(i)
t0 and ODE parameter W (i)∗. Existing causal discovery approaches via continuous optimization

(e.g., (Zheng et al., 2018)) may not learn the correct structure. For example, if the (unknown)
ground-truth weight for a basis function fk is nonzero only for a small percentage of training tasks,
standard approaches may learn a structure without this basis function (i.e., sacrificing accuracy for a
few training tasks to learn a simpler model). This will impact OOD performance if many of the test
tasks now have (unknown) nonzero ground-truth weight for the basis function fk.

Our goal then is to learn a structure that minimizes the prediction error across all training tasks
simultaneously, similar to learning robust representations via invariant risk minimization-type meth-
ods (Arjovsky et al., 2019; Krueger et al., 2021). We use a V-REx regularization (Krueger et al., 2021)
that minimizes the variance of prediction errors across tasks. We empirically show in an ablation
study (Table 7 in Appendix D.2) that V-REx penalty is necessary to learn the true causal structure.

Meta-learning objective. Now we are ready to describe our final optimization objective. Similar to
standard meta-learning objectives (Finn et al., 2017; Franceschi et al., 2018; Hospedales et al., 2021),
we propose a bi-level objective that optimizes the structure parameters Φ and the global parameters ξ
in the outer-level, and the task-specific parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t.∀i, Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) , (4)

where λΦ and λREx are hyperparameters. We approximate the discrete structure parameters Φ using
deterministic binarization techniques (Courbariaux et al., 2015; 2016). We reparameterize Φj,k :=

1(σ(Φ̃j,k) > 0.5) where Φ′ ∈ Rd×m, σ(·) is the sigmoid function, and the gradients are estimated
via straight-through-estimator. The bi-level optimization in Equation (4) can be approximated by
alternate optimization steps for (Φ, ξ) and {W (i)}Mi=1 in outer and inner loops respectively (Borkar,
1997; Chen et al., 2021). In our experiments, jointly optimizing all parameters instead resulted in
comparable performance with considerable computational benefits (Appendix D.2.3). We choose the
hyperparameters λΦ and λREx that result in sparsest model (i.e., with the least ||Φ̂||0) while achieving
validation loss within 5% of the best in-distribution validation loss. Use of in-distribution data for
validation is a key requirement for OOD tasks as we do not have access to the test distribution.

In what follows, we show that MetaPhysiCa learns the true causal structure in Figure 4 given a set of
assumptions described in Assumption 1 (Appendix A).
Theorem 1 (MetaPhysiCa identifies the true causal structure). Under Assumption 1 (Appendix A)
there exists a λΦ > 0 in the optimization objective of Equation (4) such that the optimal Φ̂ learns the
true causal structure in the SCM of Figure 4, i.e., Φ̂j,k = 1 iff there exists an edge zk,t → dxt,j/dt in
the true causal graph.

Proof in Appendix A shows that, given a small enough λΦ > 0, the true causal structure Φ∗ is the
unique minimizer of the objective in Equation (4). While Theorem 1 holds only for SCM in Figure 4,
MetaPhysiCa can be extended to more expressive SCMs by composing basis functions (e.g., to obtain
sin(x2t,1)). MetaPhysiCa with such an expressive SCM shows OOD performance gains on a complex
ODE task (Appendix D.4), but can suffer from learning stiff ODEs due to the complexity of such a
2-layer composition procedure. Better optimization techniques may help alleviate this problem.

4.3 TEST-TIME ADAPTATION

After learning the optimal causal structure Φ̂, we adapt the model’s task-specific parameters for
each test task using the initial test observations available up to time tr. The test task may involve
(unknown) out-of-support ground-truth parameters W (te)∗ and out-of-support initial conditions x(te)

t0 .
Keeping Φ̂, ξ̂ fixed, we optimize the following to adapt the model’s task-specific parameters W (te),

Ŵ (te) = argmin
W (te)

1

tr + 1

tr∑
t=t0

||X̂(te)
t −X(te)

t ||22 , (5)
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Table 1: (Epidemic model results) Test NRMSE ↓ for different methods. NaN∗ indicates that
the model returned errors during test. MetaPhysiCa outputs 28× and 9× more robust OOD
predictions for the two OOD scenarios respectively.

Test Normalized RMSE (NRMSE) ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.005 (0.000) 1.139 (0.031) 1.073 (0.102)

Meta Learning
DyAd (Wang et al., 2021b) 0.006 (0.001) 1.147 (0.044) 1.207 (0.202)
CoDA (Kirchmeyer et al., 2022) 0.004 (0.001) 1.341 (0.389) 1.090 (0.274)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.151 (0.150) 0.544 (0.249) 0.898 (0.211)
SINDy (Brunton et al., 2016) 1.999 (0.046) 2.746 (0.476) NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.009 (0.004) 0.019 (0.002) 0.100 (0.080)
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Figure 6: (Epidemic model results) Ground truth curves (blue stars) in- and out-of-distribution along
with corresponding predictions. Only MetaPhysiCa (orange) closely follows the true curve OOD.

where X̂(te)
t = X(te)

t0 +
∫ t

t0
(W (te) ⊙ Φ̂)F (X̂(te)

τ ; ξ̂)dτ are the predictions obtained using the optimal
structure Φ̂. The final predictions for t > tr are obtained with the adapted parameters Ŵ (te) and the
fixed global parameters Φ̂, ξ̂ (see Figure 5 bottom).

Two key aspects of the test-time adaptation: (a) Only the task-specific model parameters W (te) are
adapted whereas the meta-model Φ̂ learnt during training is kept fixed, and (b) only the observations
from time t0, . . . , tr of the given test trajectory is used to adapt the parameters W (te). This allows the
model to be robust to out-of-distribution ground-truth ODE parameters W (te)∗.

5 EMPIRICAL EVALUATION

We evaluate MetaPhysiCa1 in synthetic forecasting tasks based on 3 different dynamical systems
(ODEs) from the literature (Yin et al., 2021; Wang et al., 2021a) adapted to our OOD scenario,
namely, (i) Damped pendulum system, (ii) Predator-prey system and (iii) Epidemic model. We
compare against: (a) NeuralODE (Chen et al., 2018), a deep learning method for learning ODEs,
(b) DyAd (Wang et al., 2021b) (modified for ODEs), that adapts to different training tasks with a
weakly-supervised encoder, (c) CoDA (Kirchmeyer et al., 2022), that learns to modify its parameters
to each task with a low-rank adaptation, (d) APHYNITY (Yin et al., 2021), that augments a known
incomplete physics model with a neural network, (e) SINDy (Brunton et al., 2016), a transductive
PIML method that uses sparse regression to learn linear coefficients over a given set of basis functions,
(f) EQL (Martius & Lampert, 2016), a transductive PIML method that uses basis functions within a
neural network and learns a sparse model (details on all models in Appendix C).

Dataset generation. For each dynamical system, we simulate the respective ODE as per Definition 1
to generate M = 1000 training tasks each observed over regularly-spaced discrete time steps
t = 0, ..., tT with ∆t = 0.1. For each training task i, we sample an initial condition x

(i)
t0 ∼ P tr(xt0)

and W (i)∗ ∼ P tr(W ∗). At OOD test, we generate M ′ = 200 test tasks by simulating the dynamical
system over timesteps t = 0, ..., tr with ∆t = 0.1 with r = T/3 or T/10. For every test task j, we
set initial conditions x(j)

t0 and test ODE parameters W (j)∗ outside their respective training supports.

1Code is available at https://github.com/PurdueMINDS/MetaPhysiCa
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Figure 7: (Predator-prey results) Ground truth curves (blue stars) in- and out-of-distribution along
with corresponding predictions. Only MetaPhysiCa (orange) closely follows the true curve OOD.

We consider two OOD scenarios: (a) OOD Xt0 , when only the initial conditions are out-of-support,
and (b) OOD Xt0 and W ∗, when both initial conditions and ODE parameters are out-of-support.

We consider three dynamical systems in our experiments, with 3 to 6 RHS terms in their respective
differential equations: a damped pendulum system (Yin et al., 2021), a predator-prey system (Wang
et al., 2021a), and an epidemic (SIR) model (Wang et al., 2021a), with following OOD shifts in
their initial conditions respectively: acute initial angles in training to nearly vertical initial angles
in OOD test, initial prey population 10× less in OOD test than in training, and initial population
susceptible to a disease 10× more in OOD test than in training. For all three dynamical systems,
all ODE parameters are ≈ 1.5× higher OOD than in training (with non-overlapping support). We
generate the damped pendulum dataset with 1% zero-mean Gaussian noise and the rest with no noise
to show that OOD failure of baselines is unrelated to noise: existing methods fail OOD even with
clean observations. Detailed description of the datasets is presented in Appendix B.

Results. We report normalized root mean squared errors (i.e., RMSE normalized with ground
truth standard deviation) for the in-distribution (ID), OOD w.r.t. Xt0 , and OOD w.r.t. Xt0 and W ∗

in Tables 1, 2 and 3 (latter two in appendix) for the 3 datasets. Figures 3, 6 and 7 show example
predictions in- and out-of-distribution from all models. NeuralODE, DyAd, CoDA and APHYNITY
use neural network components and are able to learn the in-distribution task well with low errors.
However, the corresponding errors OOD are high as they are unable to adapt to OOD initial conditions
and OOD parameters. Example OOD predictions (Figures 3b, 6b and 7b) from these methods show
that they have not learnt the true dynamics of the system. For example, for epidemic modeling
(Figure 6b), most models predict trajectories very similar to training trajectories even though the
number of susceptible individuals is 10× higher in OOD test. SINDy and EQL, being transductive,
cannot use the training data and are fit on the initial test observations alone. Thus, they are unable
to identify an accurate analytical equation from these few test observations, resulting in prediction
issues due to stiff ODEs. MetaPhysiCa performs the best OOD across all datasets achieving 2× to
28× lower OOD NRMSE than the best baseline, and closely follows the true curve OOD.
Qualitative analysis. Appendix D.1 (Table 5) shows that MetaPhysiCa’s performance gains stem
from two factors: (i) The optimal meta-model Φ̂ learns the ground truth ODE for all 3 dynamical
systems, and (ii) the model adapts its task-specific parameters separately to each OOD test task.
The former is key for robustness over OOD initial states and the latter helps to be robust over OOD
parameters W ∗. Appendix D.2.1 shows ℓ1-regularization and test-time adaptation are necessary
components; OOD performance degrades significantly without either. Appendix D.2.2 shows that
V-REx penalty is necessary to learn the true causal structure, without which OOD NRMSE is 24×
worse. Appendix D.7 shows that MetaPhysiCa is able to learn the true dynamics for varying number
of basis functions, and Appendix D.6 evaluates MetaPhysiCa without full algorithmic alignment.

6 CONCLUSIONS
We considered the out-of-distribution task of forecasting a dynamical system (ODE) under new initial
conditions and new ODE parameters. We showed that existing PIML methods do not perform well
in these tasks and proposed MetaPhysiCa that uses a meta-learning framework to learn the causal
structure for the shared dynamics across all tasks, while adapting the task-specific parameters. Results
on three OOD forecasting tasks show that MetaPhysiCa is more robust with 2× to 28× reduction in
OOD error compared to the best baseline. Limitations & future work: We believe that forecasting
models should be robust to OOD shifts, and that our work takes a step in the right direction with
several potential avenues for future research: (i) Extending MetaPhysiCa to forecasting PDEs under
OOD scenarios requires an expanded set of basis functions that includes differential operators, and
considering OOD boundary conditions. (ii) Better optimization techniques to avoid learning stiff
ODEs when extending MetaPhysiCa to more expressive SCMs.
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Supplementary Material of “MetaPhysiCa: Improving OOD
Robustness in Physics-informed Machine Learning”

A PROOF OF THEOREM

Assumption 1. We are given M tasks generated from the structural causal model in Figure 4 with
infinite observations per task, i.e., T (i) → ∞, ∀i ∈ {1, . . . ,M}. Then, for all p ∈ {1, . . . , d} and
every basis function fk active in the true (unknown) casual model with Φ∗

p,k = 1, we assume there
exists ν > 0 and at least one task j ∈ {1, . . . ,M} such that,

• |W (j)∗
p,k fk(x

(j)
t ; ξ)| > ν for all t, and

• fk is linearly independent from all other basis functions in the domain of task j,

where W
(j)∗
p,k is the (unknown) ground truth parameter corresponding to the basis function fk to

predict dx
(j)
t,p/dt.

Theorem 1 (MetaPhysiCa identifies the true causal structure). Under Assumption 1 (Appendix A)
there exists a λΦ > 0 in the optimization objective of Equation (4) such that the optimal Φ̂ learns the
true causal structure in the SCM of Figure 4, i.e., Φ̂j,k = 1 iff there exists an edge zk,t → dxt,j/dt in
the true causal graph.

Proof. In what follows, we prove the statement for 1-dimensional trajectories, i.e., Xt ∈ Rd, d = 1.
The proof can be trivially extended for d > 1. Our optimization objective is

Φ̂ = argmin
Φ

L(Φ) = argmin
Φ

1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ),Φ, ξ) + λΦ||Φ||1 , (6)

where

• Ŵ (i)(Φ) := argminW (i) R̃(i)(W (i),Φ, ξ) denotes the optimal task-specific parameter
given a structure Φ. We use the notation Ŵ (i)(Φ) to explicitly denote the dependence of
the optimal task-specific parameter on a given structure Φ.

• R̃(i)(Ŵ (i)(Φ),Φ, ξ) = 1
T

∑tT
t=t1

||dX̂(i)
t /dt − dX(i)

/dt||22, with the predictions from the

proposed model given by dX̂
(i)
t

dt = (Ŵ (i)(Φ)⊙ Φ)F (X̂
(i)
t ; ξ).

• We assume that the parameters ξ of the basis functions are known.

• We set λREx = 0.

Let the true unknown causal structure be Φ∗. Note that from Assumption 1, Φ∗ has the property that
Φ∗

1,k = 1 if and only if there exists a task j ∈ {1, . . . ,M} such that the ground truth parameters

W
(j)∗
k ̸= 0, otherwise Φ∗

1,k = 0.

The inner optimization Ŵ (i)(Φ) := argminW (i) R̃(i)(W (i),Φ, ξ) is a linear regression problem.
Given the data for task i, (x(i)

t )
t
T (i)

t=t0 , we can define an T (i) ×m design matrix F(i) such that F(i)
t,k :=

fk(x
(i)
t ; ξk) for t = t1, . . . , tT (i) . Also, we define T (i)-length vector y(i) of noisy ground truth

derivatives where y
(i)
t := dx

(i)
t /dt+ ϵt, for t = t1, . . . , t

(i)
T , and ϵt is a zero-mean Gaussian noise

related to the noise in the ground truth observations. Then, with T (i) → ∞, Ŵ (i)(Φ∗) → W (i)∗

for all i ∈ {1, . . . ,M}, i.e., if we knew the true causal structure, the corresponding task-specific
parameters converge to the ground truth parameters W (i)∗.

Assume Φ̂ ̸= Φ∗, i.e., the optimal structure found in Equation (6) is not the true causal structure.
In the following, we will show that this leads to a contradiction. For any Φ, define the function
b(Φ) := {fk | Φ1,k = 1} denoting the set of basis functions that are active in Φ. Consider b(Φ̂) and
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b(Φ∗). K := b(Φ̂) ∩ b(Φ∗) denotes the basis functions that are shared by the true causal structure
and Φ̂. Then essentially, the basis functions in b(Φ∗) \ K are replaced by b(Φ̂) \ K (at least one of
these sets is non-empty).

Case 1: |b(Φ∗) \ K| = 0, i.e., all basis functions in the true causal structure are present in Φ̂ but Φ̂
contains at least one additional basis function.

Then, with T (i) → ∞, the optimal error R̃(i)(Ŵ (i)(Φ̂), Φ̂, ξ) ≥ R̃(i)(Ŵ (i)(Φ∗),Φ∗, ξ) with
equality achieved, for example, when for all k ∈ K, we have Ŵ (i)(Φ̂)1,k = Ŵ (i)(Φ∗)1,k and for all
k′ ∈ b(Φ̂)\K, we have Ŵ (i)(Φ̂)1,k′ = 0. Furthermore, ||Φ̂||1−||Φ∗||1 = |b(Φ̂)\K|−|b(Φ∗)\K| =
|b(Φ̂) \ K| > 0.

Thus, for any λΦ > 0,

L(Φ̂) = 1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ̂), Φ̂, ξ) + λΦ||Φ̂||1 >
1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ∗),Φ∗, ξ) + λΦ||Φ∗||1 = L(Φ∗) .

This is a contradiction as Φ̂ is the optimal solution of Equation (6).

Case 2: |b(Φ∗) \ K| > 0. There exists a task j ∈ {1, . . . ,M} such that

(Ŵ (j)(Φ̂)⊙ Φ̂) F(j) ̸= (Ŵ (j)(Φ∗)⊙ Φ∗) F(j) , (7)

where F(j) is the design matrix corresponding to task j (defined above), |W (j)∗
1,k fk(xt; ξ)| > ν > 0

for some k ∈ b(Φ∗) \ K, and fk cannot be written as a linear combination of other basis functions in
the domain of task j. There always exists at least one such task j, otherwise Assumption 1 is violated.
Let η(j)t be the difference between LHS and RHS of Equation (7), then |η(j)t | > ν′ for some fixed
ν′ > 0 and all t.

For this task j, the optimal error as T (j) → ∞,

R̃(j)(Ŵ (j)(Φ̂), Φ̂) = Et

[(
(Ŵ (j)(Φ̂)⊙ Φ̂) F(j) − yt − ϵt

)2
]

= Et

[(
(Ŵ (j)(Φ∗)⊙ Φ∗) F(j) − yt − ϵt + η

(j)
t

)2
]

= Et

[(
ϵt − η

(j)
t

)2
]

= Et[ϵ
2
t ] + Et[η

(j)2
t ] (Et[ϵt] = 0)

= σ2 + e

= R̃(j)(Ŵ (j)(Φ∗),Φ∗) + e ,

for some e > 0. Then,

1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ̂), Φ̂, ξ)− 1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ∗),Φ∗, ξ) >
e

M
, (8)

and ||Φ∗||1 − ||Φ̂||1 ≤ m− 1 (in the extreme case, when Φ∗ contains all m basis functions, but Φ̂
uses a single basis function). Then choosing any 0 < λΦ <

e
M(m−1) , we can rewrite Equation (8) as

1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ̂), Φ̂, ξ)− 1

M

M∑
i=1

R̃(i)(Ŵ (i)(Φ∗),Φ∗, ξ) >
e

M

> λΦ(m− 1)

> λΦ(||Φ∗||1 − ||Φ̂||1) .

Rearranging the terms, we get L(Φ̂) > L(Φ∗), leading to contradiction.

In both cases above, we have shown there exists a small enough λΦ > 0 such that the true causal
structure Φ∗ is the unique minimizer of L(Φ).
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B DESCRIPTION OF TASKS

For each dynamical system, we simulate the respective ODE to generate M = 1000 training tasks
each observed over regularly-spaced discrete time steps {t0, . . . , tT } where ∀l, tl = 0.1l. Our data
generation process is succinctly depicted in Table 4. For each dataset, the second column shows the
state variables Xt and the unknown parameters W ∗. For each training task T (i), i = 1, . . . ,M , we
sample an initial condition X

(i)
t0 ∼ P (tr)(Xt0) (shown under ID columns of the table). We sample a

different W (i)∗ ∼ U(Wparam, 2Wparam) for each task i with Wparam shown in Table 4.

At test, we generate M ′ = 200 test tasks by simulating the respective dynamical system over
timesteps {t0, . . . , tr}, where again ∀l, tl = 0.1l. For each test task j = 1, . . . ,M ′, we sample initial
conditions X(j)

t0 ∼ P (te)(Xt0) with a completely different support for the initial conditions X(j)
t0 than

in training. The distribution of the dynamical system parameters W ∗ is kept the same for “OOD
Xt0” scenario but is shifted for “OOD Xt0 and W ∗” scenario. In the latter, we sample a different
W (j)∗ ∼ U(2Wparam, 3Wparam) for each test task j with Wparam shown in Table 4.

Damped pendulum system (Yin et al., 2021). The state Xt = [θt, ωt] ∈ R2 describes the angle
made by the pendulum with the vertical and the corresponding angular velocity at time t. The true
(unknown) function ψ describing this dynamical system is given by dθt

dt = ωt,
dωt

dt = −α∗2 sin(θt)−
ρ∗ωt where W ∗ = (α∗, ρ∗) are the dynamical system parameters. We simulate the ODE over time
steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in training and over time steps {t0, . . . , tr} in test with
r = 1

3T . In training, the pendulum is dropped from initial angles θ(i)t0 ∼ U(0, π/2) with no angular
velocity, whereas in OOD test, the pendulum is dropped from initial angles θ(j)t0 ∼ U(π − 0.1, π) and
angular velocity ω(j)

t0 ∈ U(−1, 0).

Predator-prey system (Wang et al., 2021a). We wish to model the dynamics between two species
acting as prey and predator respectively. We adapt the experiment by Wang et al. (2021a) to our out-of-
distribution forecasting scenario according to Definition 1. Let p and q denote the prey and predator
populations respectively. The ordinary differential equations describing the dynamical system is given
by dp

dt = α∗p−β∗pq , dqdt = δ∗pq−γ∗q , where W ∗ = (α∗, β∗, γ∗, δ∗) are the (unknown) dynamical
system parameters. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps {t0, . . . , tr} in test with r = 1

3T . We generate M = 1000 training tasks
with different initial prey and predator populations with prey p(i)t0 ∼ U(1000, 2000) and predator
q
(i)
t0 ∼ U(10, 20) for each i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution

(OOD) test tasks with different initial prey populations p(j)t0 ∼ U(100, 200) but the same distribution
for predator population q(j)t0 ∼ U(10, 20).

Epidemic modeling (Wang et al., 2021a). We adapt the experiment by Wang et al. (2021a) to our
out-of-distribution forecasting scenario according to Definition 1. The state of the dynamical system
is described by three variables: number of susceptible (S), infected (I) and recovered (R) individuals.
The dynamics is described using the following ODEs: dS

dt = −β SI
N , dIdt = β SI

N − γI, dRdt = γI ,
where W = (β, γ) are the (unknown) dynamical system parameters and N = S + I + R is the
total population. We simulate the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in
training and over time steps r = 1

10T . We generate M = 1000 training tasks with different initial
populations for susceptible (S) and infected (I) individuals, while the number of initial recovered
(R) individuals are always zero. In training, we sample S(i)

t0 ∼ U(9, 10) and I(i)t0 ∼ U(1, 5) for each
i = 1, . . . ,M . At OOD test, we generate M ′ = 200 out-of-distribution test tasks with a different
initial susceptible population, S(j)

t0 ∼ U(90, 100), while keeping the same distribution for infected
population.

C IMPLEMENTATION DETAILS

In what follows, we describe implementation details of MetaPhysiCa and the baselines.
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Table 2: (Damped pendulum results) Normalized RMSE ↓ of test predictions from different methods
in-distribution and two OOD scenarios. NaN∗ indicates that the model returned errors during test-time
predictions, for example, because the learnt ODE was too stiff (numerically unstable) to solve.

Test NRMSE ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.083 (0.033) 0.591 (0.119) 0.717 (0.210)

Meta Learning
DyAd (Wang et al., 2021b) 0.078 (0.051) 0.834 (0.263) 0.804 (0.267)
CoDA (Kirchmeyer et al., 2022) 0.052 (0.032) 0.764 (0.201) 1.011 (0.226)

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.097 (0.020) 0.970 (0.384) 1.159 (0.334)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (ours) 0.049 (0.002) 0.070 (0.011) 0.181 (0.012)

Table 3: (Predator-prey results) Test NRMSE ↓ for different methods. NaN∗ indicates that the
model returned errors during test. Standard deep learning methods and physics-informed deep
learning methods fail to forecast accurately out-of-distribution. MetaPhysiCa outputs 8× and 2×
more robust OOD predictions in the two OOD scenarios respectively.

Test Normalized RMSE (NRMSE) ↓
Methods ID OOD Xt0 OOD Xt0 and W ∗

Standard Deep Learning
NeuralODE (Chen et al., 2018) 0.193 (0.024) 1.056 (0.141) 0.969 (0.172)

Meta Learning
DyAd (Wang et al., 2021b) 0.244 (0.025) 1.088 (0.373) 1.025 (0.403)
CoDA (Kirchmeyer et al., 2022) NaN∗ NaN∗ NaN∗

Physics-informed Machine Learning
APHYNITY (Yin et al., 2021) 0.421 (0.332) 3.937 (1.686) 1.281 (0.457)
SINDy (Brunton et al., 2016) NaN∗ NaN∗ NaN∗

EQL (Martius & Lampert, 2016) NaN∗ NaN∗ NaN∗

MetaPhysiCa (Ours) 0.049 (0.008) 0.129 (0.030) 0.434 (0.128)
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Datasets State variables ID OOD Xt0 OOD Xt0 and W ∗

Damped pendulum Xt = (θt, ωt)
θ0 ∼ U(0, π/2) θ0 ∼ U(π − 0.1, π) θ0 ∼ U(π − 0.1, π)
ω0 = 0 ω0 ∼ U(−1, 0) ω0 ∼ U(−1, 0)

W ∗ = (α, ρ) αparam = 1, ρparam = 0.2

Predator prey system Xt = (pt, qt)
p0 ∼ U(1000, 2000) p0 ∼ U(100, 200) p0 ∼ U(100, 200)
q0 ∼ U(10, 20) q0 ∼ U(10, 20) q0 ∼ U(10, 20)

W ∗ = (α, β, γ, δ) αparam = 1, βparam = 0.06, γparam = 0.5, δparam = 0.0005

Epidemic modeling Xt = (St, It, Rt)
S0 ∼ U(9, 10) S0 ∼ U(90, 100) S0 ∼ U(90, 100)
I0 ∼ U(1, 5) I0 ∼ U(1, 5) I0 ∼ U(1, 5)
R0 = 0 R0 = 0 R0 = 0

W ∗ = (β, γ) βparam = 4, γparam = 0.4

Table 4: Description of the dataset generation process. For each dataset, Xt denotes the state variable
of the dynamical system and W ∗ denotes its parameters. Column “ID” represents in-distribution
initial states while the last two columns represent the two out-of-distribution scenarios. In-distribution
ODE parameters W (i)∗ are sampled from a uniform distribution W (i)∗ ∼ U(Wparam, 2Wparam)

and the out-of-distribution ODE parameters are sampled as W (i)∗ ∼ U(2Wparam, 3Wparam). For
example, in the damped pendulum dataset, in-distribution parameters are sampled as α(i)∗ ∼
U(αparam, 2αparam) = (1, 2) and ρ(i)∗ ∼ U(ρparam, 2ρparam) = (0.2, 0.4) for each task i. Sim-
ilarly, the out-of-distribution ODE parameters (in the last column) are sampled as α(i)∗ ∼
U(2αparam, 3αparam) = (2, 3) and ρ(i)∗ ∼ U(2ρparam, 3ρparam) = (0.4, 0.6).

C.1 METAPHYSICA

Recall from Equation (3) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (9)

where ⊙ is the Hadamard product and

• F (X̂(i)
t ; ξ) :=

[
f1(X̂

(i)
t ; ξ1) · · · fm(X̂

(i)
t ; ξm)

]T
is the vector of outputs from the basis func-

tions with parameters ξ,
• Φ ∈ {0, 1}d×m are the learnable parameters governing the global causal structure across all tasks

such that Φj,k = 1 iff edge zk,t → dxt,j/dt exists,

• W (i) ∈ Rd×m are task-specific parameters that act as coefficients in linear combination of the
selected basis functions.

In our experiments, we use polynomial and trigonometric basis functions, such that

F (X̂
(i)
t ; ξ) :=[
1 X̂

(i)
t,1 . . . X̂

(i)
t,d︸ ︷︷ ︸

polynomial order 1

X̂
(i)2
t,1 . . . X̂

(i)
t,l−1X̂

(i)
t,l . . . X̂

(i)2
t,d︸ ︷︷ ︸

polynomial order 2

sin(ξ1,1X̂
(i)
t,1 + ξ1,2) . . . sin(ξd,1X̂

(i)
t,d + ξd,2)︸ ︷︷ ︸

trigonometric

]T

.

Equation (4) describes a bi-level objective that optimizes the structure parameters Φ and the global
parameters ξ in the outer-level, and the task-specific parameters W (i) in the inner-level as follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) ∀i = 1, . . . ,M ,
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where λΦ and λREx are hyperparameters. As discussed in the main text, the jointly optimizing
Φ, ξ and W (i), i = 1, . . . ,M, instead of alternating SGD resulted in comparable performance with
considerable computational benefits. We use the following joint optimization objective to approximate
Equation (4),

Φ̂, ξ̂, Ŵ (1), . . . , Ŵ (M) = argmin
Φ,ξ,W (1),...,W (M)

1

M

M∑
i=1

R(i)(W (i),Φ, ξ) + λΦ||Φ||1 (10)

+ λRExVariance({R(i)(W (i),Φ, ξ)}Mi=1)

We perform a grid search over the following hyperparameters: regularization strengths
λΦ ∈ {10−4, 10−3, 5 × 10−3, 10−2}, λREx ∈ {0, 10−2, 10−1, 1, 10}, and learning rates η ∈
{10−2, 10−3, 10−4}. We use a linearly increasing scheduler for λREx to avoid the V-REx penalty
dominating the loss during initial epochs. We choose the hyperparameters that result in sparsest
model (i.e., with the least ||Φ̂||0) while achieving validation loss within 5% of the best validation loss
in held-out in-distribution validation data.

Time complexity. For a single task i and time t, computing the predicted derivatives dX̂
(i)
t /dt in

Equation (3) has O(md) complexity to evaluate the Hadamard product and the matrix-vector product,
where m is the number of basis functions and d is the state dimension of the dynamical system. Since
there are M tasks/trajectories of maximum length T , the overall complexity per epoch is O(mdMT ).
However MetaPhysiCa could require a higher number of epochs to converge for higher values of m
(Figure 9).

C.2 NEURALODE (CHEN ET AL., 2018)

The prediction dynamics corresponding to the latent NeuralODE model is given by dX̂t

dt =

Fnn(X̂t, z≤r;W1) where z≤r = Fenc(Xt0 , . . . ,Xtr ;W2) encodes the initial observations using
a recurrent neural network Fenc (e.g., GRU), and Fnn is a feedforward neural network. The model
is trained with an ODE solver (dopri5) and the gradients computed using the adjoint method (Chen
et al., 2018). We perform a grid search over the following hyperparameters: number of layers for Fnn,
L ∈ {1, 2, 3}, size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, size of the encoder representation
z≤r, dz ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

C.3 DYAD (MODIFIED FOR ODES) (WANG ET AL., 2021B)

DyAd, originally proposed for forecasting PDEs, uses a meta-learning framework to adapt to different
training tasks by learning a per-task weak label. We modify their approach for our ODE-based
experiments. Since we do not assume the presence of weak labels for supervision for adaptation,
we use mean of each variable in the training task as the task’s weak label. We use NeuralODE
as the base sequence model for the forecaster network. The forecaster network takes the initial
observations as input and forecasts the future observations while being adapted with the encoder
network. The encoder network is a recurrent network (GRU in our experiments) that takes as input
the initial observations and predicts the weak label. The last layer representation from the encoder
network is used to adapt NeuralODE via AdaIN (Huang & Belongie, 2017). We perform a grid
search over the following hyperparameters: size of hidden layers for the forecaster and encoder
networks dh ∈ {32, 64, 128}, number of layers for the forecaster network, L ∈ {1, 2, 3}, batch sizes
B ∈ {32, 64}, and learning rates η ∈ {10−2, 10−3, 10−4}.

C.4 APHYNITY (YIN ET AL., 2021)

APHYNITY assumes that we are given a (possibly incomplete) physics model ϕ(·,Θphy) with
parameters Θphy. When the training data may consist of tasks with different W (i)∗, APHYNITY
predicts the physics parameters with respect to the task i inductively using a recurrent neural
network Gnn from the initial observations of the system as Θ̂(i)

phy = Gnn(Xt0 , . . . ,Xtr ;W2). Then,
APHYNITY augments the given physics model ϕ with a feedforward neural network component Fnn

and defines the final dynamics as dX̂
(i)
t

dt = ϕ(X̂
(i)
t ; Θ̂

(i)
phy) + Fnn(X̂

(i)
t ;W1). APHYNITY solves a
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constrained optimization problem to minimize the norm of the neural network component while still
predicting the training trajectories accurately. The model is trained with an ODE solver (dopri5) and
the gradients computed using the adjoint method (Chen et al., 2018). In our experiments, we provide
APHYNITY with simpler physics models:

• For damped pendulum system, we use a physics model that assumes no friction: dθt
dt = ωt,

dωt

dt =

−α2
phy sin(θt) where Θphy = αphy is the physics model parameter.

• For predator-prey system, we use a physics model that assumes no interaction between the two
species: dp

dt = αphyp ,
dq
dt = −γphyq where Θphy = (αphy, γphy) are the physics model parameters.

• For epidemic model, we use a physics model that assumes the disease is not infectious: dS
dt =

0, dIdt = −γI, dRdt = γI , where Θphy = γphy is the physics model parameter.

In each dataset, APHYNITY needs to augment the physics model with a neural network component
for accurate predictions.

We perform a grid search over the following hyperparameters: number of layers for Fnn, L ∈ {1, 2, 3},
size of each hidden layer of Fnn, dh ∈ {32, 64, 128}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.

C.5 SINDY (BRUNTON ET AL., 2016)

SINDy uses a given dictionary of basis functions to model the dynamics as dX̂t

dt = Θ(X̂t)W where
Θ is feature map with the basis functions (such as polynomial and trigonometric functions) and W is
simply a weight matrix. SINDy is trained using sequential threshold least squares (STLS) for sparse
weights W . We perform a grid search over the following hyperparameters: threshold parameter
used in STLS optimization, τ0 ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5}, and the regularization strength
α ∈ {0.05, 0.01, 0.1, 0.5}.

C.6 EQUATION LEARNER (MARTIUS & LAMPERT, 2016)

Equation learner (EQL) is a neural network architecture where each layer is defined as follows with
input x and output o

z = Wx+ b

o = (f1(z1), f2(z2), . . . , g1(zk, zk+1), g2(zk+2, zk+3), . . . , ) ,

where fi are unary basis functions (such as sin, cos, etc.) and gi are binary basis functions
(such as multiplication). We use id, sin and multiplication functions in our implementation. EQL
is trained using a sparsity inducing ℓ1-regularization with hard thresholding for the final few
epochs. We perform a grid search over the following hyperparameters: number of EQL lay-
ers, L ∈ {1, 2}, number of nodes for each type of basis function, h ∈ {1, 3, 5}, regulariza-
tion strength α ∈ {10−1, 10−2, 10−3, 10−4, 10−5}, batch sizes B ∈ {32, 64}, and learning rates
η ∈ {10−2, 10−3, 10−4}.

D ADDITIONAL RESULTS

D.1 QUALITATIVE ANALYSIS

Recall from Equation (3) that the proposed model is defined as

dX̂
(i)
t

dt
= (W (i) ⊙ Φ)F (X̂

(i)
t ; ξ) , (11)

where F (X̂(i)
t ; ξ) is the vector of outputs from the basis functions, Φ ∈ {0, 1}d×m are the learnable

parameters governing the global causal structure across all tasks, and W (i) ∈ Rd×m are task-specific
parameters that act as coefficients in linear combination of the selected basis functions.
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Datasets State variables Ground truth ODE Learnt ODE (from Φ)

Damped pendulum Xt = (θt, ωt)
dθt
dt = ωt

dθt
dt =W1ωt

dωt

dt = −α∗2 sin(θt)− ρ∗ωt
dωt

dt =W2 sin(θt) +W3ωt

Predator prey system Xt = (pt, qt)
dpt

dt = α∗pt − β∗ptqt
dpt

dt =W1pt +W2ptqt
dqt
dt = δ∗ptqt − γ∗qt

dqt
dt =W3ptqt +W4qt

Epidemic modeling Xt = (St, It, Rt)

dSt

dt = −β∗ StIt
St+It+Rt

dSt

dt =W1StIt
dIt
dt = β∗ StIt

St+It+Rt
− γ∗It

dIt
dt =W2StIt +W3I

2
t +W4ItRt

dRt

dt = γ∗It
dRt

dt =W5StIt +W6I
2
t +W7ItRt

Table 5: (Qualitative analysis.) Ground truth dynamical system vs learnt ODE in the meta-model Φ.
Recall that Φ ∈ {0, 1}d×m dictates which of the basis functions affect the output dXt/dt. The weights
Wl in the learnt ODE column are learnable parameters that are optimized via test-time adaptation
in Equation (5). MetaPhysiCa learns the exact ground truth ODE for Damped pendulum and
Predator-prey system, and a reparameterized version of the true ODE for epidemic modeling
task.

After training, the ODE learnt by the model can be easily inferred by checking all the terms in Φ that
are greater than zero, i.e., Φj,k > 0 implies fk(xt; ξk) → dxt,j/dt exists in the causal graph. In other
words, RHS of learnt ODE for dxt,j/dt contains the basis function fk(xt; ξk).

Table 5 shows the ground truth ODE and the learnt ODE for the three experiments. For each
learnt ODE, we also depict the learnable parameters Wl that can be adapted using Equation (5)
during test-time. For damped pendulum and predator-prey system, the RHS terms in the learnt
ODE exactly matches ground truth ODE, and from Figures 3 and 7, it is clear that the method is
able to accurately adapt the learnable parameters Wl during test-time. For epidemic modeling task,
MetaPhysiCa learns a reparameterized version of the ground truth ODE. For example, MetaPhysiCa
learns dRt

dt = W ′
aItSt + W ′

bI
2
t + W ′

cItRt, which can be written as dRt

dt = WaIt (the ground
truth ODE) if W ′

a = W ′
b = W ′

c, because St + It + Rt = N is a constant denoting the total
population. While the learnt reparameterized ODE is more complex because it allows different
values for W ′

a,W
′
b,W

′
c, the test-time adaptation of these learnable parameters with the initial test

observations results in them taking the same values.

D.2 ABLATION RESULTS

D.2.1 ALL COMPONENTS

We present an ablation study comparing different components of MetaPhysiCa in Table 6. Table
shows out-of-distribution test NRMSE for MetaPhysiCa without each individual component on the
three dynamical systems (OOD w.r.t Xt0). We observe that sparsity regularization (i.e., ||Φ||1) and
test-time adaptation are the most important components. For two out of three tasks, the method
returns prediction errors without sparsity regularization.

When testing MetaPhysiCa without test-time adaptation, we simply use the mean of the task-specific
weights learnt for training tasks as the task-specific weight for the given test trajectory, i.e., ŴM+1 =
1
M

∑
i W

(i). This results in high OOD errors showing the importance of test-time adaptation. V-REx
penalty (Krueger et al., 2021) helps in some experiments and performs comparably in others.

D.2.2 V-REX PENALTY

We repeat the damped pendulum experiment described in Appendix B with modified training
distributions. Recall that the true function ψ describing this dynamical system is given by
dθt
dt = ωt,

dωt

dt = −α∗2 sin(θt)−ρ∗ωt where ρ∗ is the damping coefficient. In training, the pendulum
is dropped from initial angles θ(i)t0 ∼ U(0, π/2) with no angular velocity, whereas in OOD test, the
pendulum is dropped from initial angles θ(j)t0 ∼ U(π − 0.1, π).
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Test Normalized RMSE ↓ (OOD Xt0 )
Method Damped Pendulum Predator-Prey Epidemic Modeling

MetaPhysiCa 0.070 (0.011) 0.129 (0.030) 0.019 (0.002)
without ||Φ||1 NaN∗ 1.806 (0.736) NaN∗

without test-time adaptation 1.223 (0.741) 1.404 (3.794) 0.358 (0.554)
without V-REx penalty 0.070 (0.014) 0.129 (0.030) 0.042 (0.065)

Table 6: (Ablation.) Out-of-distribution test NRMSE for MetaPhysiCa without each individual
component on the three dynamical systems (OOD w.r.t. Xt0 alone). Sparsity regularization (i.e.,
||Φ||1) and test-time adaptation are the most important components.

Table 7: (Damped pendulum.) True casual model for the damped pendulum is given by dθt/dt =
ωt; dωt/dt = −α∗2 sin(θt) − ρ∗ωt, where ρ∗ is the damping coefficient. In training, we have
P (tr)(ρ∗ > 0) = 10−2, i.e., most training tasks have no damping. In OOD test, with arbitrary
interventions allowed on ρ∗, we consider P (te)(ρ∗ > 0) = 0.5. MetaPhysiCa without V-REx
penalty sacrifices performance on 1% of training tasks and learns the incorrect ODE with no
damping. With V-Rex penalty, the risks of all tasks are forced to be close to equal, and the
model learns the true causal structure.

Test Normalized RMSE ↓
Method Learnt Φ̂ ID OOD Xt0 and W ∗

MetaPhysiCa
without V-REx penalty dθt

dt =W1ωt 0.053 (0.009) 0.829 (0.106)
dωt

dt =W2 sin(θt)

with V-REx penalty dθt
dt =W1ωt 0.049 (0.008) 0.034 (0.007)
dωt

dt =W2 sin(θt) +W3ωt

In training, we sample the damping coefficient ρ∗ from a mixture distribution P (tr) such that ρ∗ = 0
with probability 0.99 and ρ∗ ∼ U(0.2, 0.4) with probability 0.01. This means that very few training
tasks have damping, but the model should still learn the true causal structure with the damping term.
In OOD test, with arbitrary interventions allowed on ρ∗, we consider P (te)(ρ∗ > 0) = 0.5.

Table 7 shows that MetaPhysiCa without V-REx penalty sacrifices performance on 1% of training
tasks and learns the incorrect ODE with no damping. On the other hand, MetaPhysiCa with V-REx
penalty forces the risks of all tasks to be close to equal (including the 1% tasks with damping), and
thus learns the true causal structure.

D.2.3 BI-LEVEL OPTIMIZATION VS JOINT OPTIMIZATION

Recall that Equation (4) describes a bi-level objective that optimizes the structure parameters Φ and
the global parameters ξ in the outer-level, and the task-specific parameters W (i) in the inner-level as
follows

Φ̂, ξ̂ = argmin
Φ,ξ

1

M

M∑
i=1

R(i)(Ŵ (i),Φ, ξ) + λΦ||Φ||1 + λRExVariance({R(i)(Ŵ (i),Φ, ξ)}Mi=1)

s.t. Ŵ (i) = argmin
W (i)

R(i)(W (i),Φ, ξ) ∀i = 1, . . . ,M ,

where λΦ and λREx are hyperparameters.

We evaluate two ways to optimize the above: (a) bi-level optimization using inner and outer loops,
and (b) joint optimization of all variables together.

Bi-level optimization. We use two loops where the outer loop optimizes the global parameters
Φ̂ and ξ̂, and the inner loop optimizes the task-specific parameters W (i)∗ for all i while keeping

22



Published as a conference paper at ICLR 2024

0 2 4 6 8 10
Percentage (%) of Gaussian noise

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

NR
M

SE
 (

)

NeuralODE
DyAd
APHYNITY
MetaPhysiCa

(a) Damped pendulum task

0 2 4 6 8 10
Percentage (%) of Gaussian noise

0.0

0.5

1.0

1.5

2.0

NR
M

SE
 (

)

NeuralODE
DyAd
APHYNITY
MetaPhysiCa

(b) Predator-prey system

Figure 8: (Performance with increasing noise.) Out-of-distribution NRMSE values for Damped
Pendulum and Predator-prey experiments with different percentages of Gaussian noise added
(0%, 1%, 5%, 10%). MetaPhysiCa is relatively robust to ≤ 5% Gaussian noise and outper-
forms the baselines. With a larger amount of noise, MetaPhysiCa is unable to identify the
dynamical system accurately but performs comparable to the baselines.

the global parameters fixed. Rather than running the inner loop till convergence, we only perform
a few gradient steps S of the inner optimization (S = 10 in our experiments). This is a standard
meta-learning technique to improve computation complexity.

Joint optimization. We use the following joint optimization objective to approximate Equation (4),

Φ̂, ξ̂, Ŵ (1), . . . , Ŵ (M) = argmin
Φ,ξ,W (1),...,W (M)

1

M

M∑
i=1

R(i)(W (i),Φ, ξ) + λΦ||Φ||1 (12)

+ λRExVariance({R(i)(W (i),Φ, ξ)}Mi=1)

Both bi-level optimization with S = 10 and joint optimization in Equation (12) result in Φ̂ learning
the true dynamics for all 3 tested dynamical systems. However, joint optimization is 8.2× faster per
epoch than the bi-level optimization (taking 90ms vs 744ms on average on one Intel(R) Xeon(R)
CPU core).

D.3 ROBUSTNESS TO NOISE

We repeat the Damped pendulum and Predator-prey experiments with increasing amounts of noises.
Specifically, we add 1%, 5% and 10% Gaussian noise to all the trajectories, both in training and in test.
We use Total Variation Regularization (TVR) (Rudin et al., 1992; Chartrand, 2011) for estimating
derivatives from noisy data as done by Brunton et al. (2016). We report the normalized RMSE for
different models trained on the noisy versions of data in Figure 8. SINDy and EQL are not shown as
they returned errors during test-time predictions similar to the case with no noise because the learnt
ODE was too stiff (numerically unstable) to solve. In both tasks, the proposed method is relatively
robust to small amounts of noise and outperforms the baselines. With 10% noise, MetaPhysiCa is
unable to identify the dynamical system accurately, but performs comparable to the baselines.

D.4 COMPLEX ODE TASK

In this section, we extend MetaPhysiCa to consider significantly more expressive structural causal
models (compared to Figure 4) that allow for composition of the basis functions. This is achieved
with a 2-layer learnable basis function composition procedure. For example, given basis func-
tions f1(xt; ξ1) = sin(ξ1,1xt,1 + ξ1,2), and f2(xt; ξ2) = xt,1xt,2, one can construct more ex-
pressive basis functions with compositions: f̃3(xt; ξ3) = sin(ξ3,3 sin(ξ3,1xt,1 + ξ3,2) + ξ3,4),
f̃4(xt; ξ4) = xt,1xt,2 sin(ξ4,1xt,1 + ξ4,2), etc., where ξj are global parameters that remain con-
stant for all training/test tasks. The rest of the SCM remains the same and the derivative dx

(i)
t,j/dt for a

particular dimension j ∈ {1, . . . , d} is a sparse linear combination of the original basis functions and
the more expressive second layer ones.
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Test Normalized RMSE (NRMSE) ↓
Methods ID OOD Xt0

NeuralODE (Chen et al., 2018) 0.034 (0.008) 0.296 (0.064)
APHYNITY (Yin et al., 2021) 0.027 (0.010) 0.684 (0.117)
MetaPhysiCa (Ours) 0.188 (0.035)* 0.203 (0.046)*

Table 8: Test NRMSE ↓ for different methods. * indicates that the method returned errors during
predictions due to learning a stiff ODE.

Initial conditions Xt0 ODE parameters W ∗ Learnt Φ

ID-1 θ0 ∼ U(0, π/2), ω0 = 0 α∗ ∼ U(1, 2), ρ∗ ∼ U(0.2, 0.4)
dθt
dt =W1ωtID-2 θ0 ∼ U(π/4, π/2), ω0 = 0 α∗ ∼ U(1, 2), ρ∗ ∼ U(0.2, 0.4)

ID-3 θ0 ∼ U(0, π/2), ω0 ∼ U(0, 1) α∗ ∼ U(1, 2), ρ∗ ∼ U(0.2, 0.4) dωt

dt =W2 sin(θt) +W3ωt
ID-4 θ0 ∼ U(0, π/2), ω0 = 0 α∗ ∼ U(2, 3), ρ∗ ∼ U(0.2, 0.4)
ID-5 θ0 ∼ U(0, π/2), ω0 = 0 α∗ ∼ U(1, 2), ρ∗ ∼ U(0.3, 0.6)

Table 9: (Damped pendulum) Under various training ranges for initial conditions and parameters,
MetaPhysiCa learns the true structure for the damped pendulum system.

We evaluated MetaPhysiCa on a more complex ODE task from Chen (2020) adapted to our setting. We
consider a two-dimensional ODE with state Xt = [pt, qt] ∈ R2: dpt

dt = a∗ sin(pt)+b
∗ sin(q2t );

dpt

dt =
c∗ sin(pt) cos(qt), where W ∗ = (a∗, b∗, c∗) are the dynamical system parameters. We simulate
the ODE over time steps {t0, . . . , tT } with ∀l, tl = 0.1l, T = 100 in training and over time steps
{t0, . . . , tr} in test with r = 1

3T . In training, we sample initial states pt, qt ∼ U(0.5, 1), whereas in
out-of-distribution test, we sample pt, qt ∼ U(1, 1.5). The dynamical system parameters are sampled
as a(i)∗, b(i)∗, c(i)∗ ∼ U(1.0, 1.5).
Table 8 shows the results for this task. First, we note that due to the complexity of a 2-layer learnable
basis function procedure, we sometimes need to use validation data (held out from training) to cross-
validate the learned model (and reject meta-models that do not do well in validation). MetaPhysiCa
learnt a stiff ODE for 2 out of 5 folds of cross-validation, resulting in no predictions for in-distribution
validation data, which were rejected (marked as superscript ∗). In these experiments MetaPhysiCa
performs 1.5× to 1.7× better than the competing baselines. We believe there is room for improvement
in the optimization procedure of these more complex models.

D.5 METAPHYSICA WITH DIFFERENT IN- AND OUT-OF-DISTRIBUTION DATA

In this subsection, we evaluate MetaPhysiCa for different in- and out-of-distribution ranges for the
initial conditions Xt0 and ODE parameters W ∗. Table 9 shows that under a variety of training
ranges for initial conditions and parameters, MetaPhysiCa is able to learn the true structure of
the damped pendulum dynamical system. Furthermore, given the learnt structure, Table 10 shows
that MetaPhysiCa outputs robust predictions for different OOD ranges of initial conditions and
parameters.

Initial conditions Xt0 ODE parameters W ∗ OOD test NRMSE

OOD-1 θ0 ∼ U(π − 0.1, π), ω0 ∼ U(−1, 0) α∗ ∼ U(2, 3), ρ∗ ∼ U(0.4, 0.6) 0.181 (0.012)
OOD-2 θ0 ∼ U(π/2, π), ω0 = 0 α∗ ∼ U(2, 3), ρ∗ ∼ U(0.4, 0.6) 0.103 (0.016)
OOD-3 θ0 ∼ U(π/2, π), ω0 = 0 α∗ ∼ U(1, 2), ρ∗ ∼ U(0.6, 0.8) 0.029 (0.005)
OOD-4 θ0 ∼ U(π − 0.1, π), ω0 ∼ U(−1, 0) α∗ ∼ U(1, 2), ρ∗ ∼ U(0.6, 0.8) 0.039 (0.002)

Table 10: (Damped pendulum) OOD test performance of MetaPhysiCa for various OOD test ranges
for initial conditions and parameters. Using test-time adaptation, MetaPhysiCa is robust to different
OOD ranges for the ODE parameters W ∗.
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Test NRMSE ↓
Methods OOD Xt0 OOD Xt0 and W ∗

NeuralODE 0.591 (0.119) 0.717 (0.210)
MetaPhysiCa without sine/cosine basis 0.290 (0.137) 0.468 (0.059)
MetaPhysiCa with all basis terms 0.070 (0.011) 0.181 (0.012)

Table 11: (Damped pendulum results) Normalized RMSE ↓ of test predictions from MetaPhysiCa
with and without appropriate basis functions. While MetaPhysiCa without sine/cosine basis terms
performs 1.5× to 2× better OOD than the best baseline, it is unable to extrapolate properly
and is worse than MetaPhysiCa with these basis terms included.

D.6 METAPHYSICA WITHOUT APPROPRIATE BASIS TERMS

In this subsection, we evaluate MetaPhysiCa without algorithmic alignment, i.e., appropriate basis
functions required to learn the ground truth dynamics are not present. We repeat the damped pendulum
experiment without sine/cosine basis functions.

In the absence of sin(θt) term to learn the true dynamics of the damped pendulum system,
MetaPhysiCa learns a truncated Taylor series approximation of this term via θt and θ3t terms:
dθt
dt = W1ωt;

dωt

dt = W2θt +W3θ
3
t +W4ωt. Table 11 shows that after test-time adaptation, the

learnt model achieves 1.5× to 2× better OOD test NRMSE than the best baseline, but is worse than
MetaPhysiCa with sinusoidal basis functions included.

D.7 METAPHYSICA WITH DIFFERENT NUMBER OF BASIS FUNCTIONS

We repeated our damped pendulum experiments with increasing numbers of basis functions. We
begin from 7 basis terms (sinusoidal terms and polynomial terms up to power 1) to 32 basis terms
(sinusoidal terms and polynomial terms up to power 6) for the two output dimensions in the damped
pendulum system (θt and ωt).

Figure 9 shows the loss and ||Φ̂||1 over epoch. Note that when number of basis functions is m,
||Φ̂||1 begins from 2m as all basis functions are initialized to be active for both the input dimensions.
MetaPhysiCa converges to the true dynamics of the damped pendulum system with 3 basis terms
for all the different values of m tested. However, as m increases, model requires a higher number of
epochs to reach convergence.
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(a) ||Φ̂||1

(b) Training loss

Figure 9: (Damped pendulum.) ||Φ̂||1 and training loss vs epochs for different number of basis
functions. MetaPhysiCa learns the true dynamics of the damped pendulum with 3 terms in all
the cases; however it takes longer to converge for higher values of m.
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