
Leveraging Two-Stream Cause-Effect Relation for Emotion-Cause Analysis

Anonymous ACL submission

Abstract

Emotion Cause Analysis (ECA) is a task to001
analyze corresponding causes for certain emo-002
tions expressed in text, which heavily depends003
on the context as the model needs to find the004
deep cause-effect relations between emotions005
and their causes. Previous research typically006
focused on extracting emotions first and then007
their corresponding causes, or vice versa. How-008
ever, these approaches fail to integrate these009
two streams of thought into a unified model,010
so we propose a novel two-stream reasoning011
model to unify them for better performance.012
We leverage discourse connectives as bridges013
between these two streams, incorporating their014
discourse information to reveal cause-effect re-015
lations and enhance the reasoning ability of our016
model. Further, we employ the connectives pre-017
dicted by ChatGPT to help our model achieve018
better results, and our research demonstrates019
that our model achieves SOTA results in ECA020
and proves the superiority of our model.021

1 Introduction022

Emotion-cause analysis (ECA) aims to extract emo-023

tional expressions and identify the reasons behind024

the emotions, which is helpful to the application of025

human-computer interaction, companionship, de-026

pression treatment, etc. As an example shown in027

Table 1, C2 and C3 are corresponding cause clauses028

of emotion clause C4. In this work, we mainly fo-029

cus on the Emotion-Cause Pair Extraction (ECPE)030

(Xia and Ding, 2019) task, which intends to ex-031

tract all possible emotion-cause pairs consisting of032

emotions and their corresponding causes.033

Previous methods on ECA can be divided into034

two categories, i.e., clause pairing matrix methods035

and sequence labeling methods. The clause pairing036

matrix methods identify the emotion-cause pairs037

from a matrix of all clause combinations (Ding038

et al., 2020a,b; Wei et al., 2020), causing a sparse039

matrix and high computational cost. The sequence040

C1 yesterday morning -

C2

(because) a policeman
Cause 1visited the old man with

the lost money

C3
and (because) told him Cause 2that the thief was caught

C4
(so) the old man was Emotionvery happy

C5
and deposited the money -in the bank

Emotion Extraction Result C4

Cause Extraction Result C2,C3

ECPE Result (C4,C2),(C4,C3)

Table 1: An example text with the connectives predicted
by ChatGPT and its results of ECA. Words in “()” rep-
resent predicted implicit connectives. Blue ones are
connectives marking reasons and red ones are connec-
tives marking results. These connectives are not allowed
to coexist simultaneously, so we only consider one situ-
ation at a time.

labeling methods (Chen et al., 2020a; Yuan et al., 041

2020) explore some novel tagging schemes for 042

identifying emotions and causes, but cannot well 043

model the relations between emotions and their 044

corresponding causes. 045

Though these works have made progress in ECA, 046

they to some extent ignore that ECA in essence 047

is a causal reasoning problem with consideration 048

of emotional cause-effect relations. The cause 049

and effect are in essence the two sides of a coin 050

(Humphreys, 2005), so we need to explore “what 051

is the cause of a given emotional effect” and “what 052

is the emotional effect of a given cause” simultane- 053

ously. To this end, we design a two-stream reason- 054

ing model including emotion-cause stream (ECS) 055

and cause-emotion stream (CES) as shown in Fig- 056

ure 1(a). These two streams share parameters for 057

identifying emotions, causes, and emotion-cause 058

pairs, which can be seen as a multi-task learning 059
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(a) Model Overview

Text 𝑇𝑇
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𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐

Clause 1 Clause 2 Clause n…

T5 & GAT

Hidden States of Clauses 𝐻𝐻
ℎ1 ℎ2 ℎ𝑐𝑐…

(b) Model Structure

Figure 1: Model architecture. We use the example shown in Table 1 to describe our model. Cyan lines and orange
lines denote emotion-cause stream (ECS) and cause-emotion stream (CES), respectively. Modules with the same
color and name share parameters with each other. Lemo, Lcau, Lpair denote linear layer for emotion, cause and pair
classification, respectively. yemo, ycau, yecp, ycep denote probability vector of emotions, causes, emotion-cause
pairs, and cause-emotion pairs respectively. hconn denotes the hidden state of connective. h1, h2 are the hidden
states of the emotion clause and candidate cause clause for ECS, and of the cause clause and candidate emotion
clause for CES. Three lines pointing to h1 means using predictions yemo or ycau to extract corresponding hidden
states of predicted emotion clauses or cause clauses from overall hidden states H. The dotted line pointing from
hidden states H to h2 denotes the process of sequentially choosing the hidden state of each clause as the hidden
state of a candidate clause.

process.060

To enhance the causal reasoning capability of our061

two-stream model, we leverage predicted discourse062

connectives to serve as indicators with discourse063

information to assist in the identification of cause-064

effect relations. This approach draws inspiration065

from previous research that discourse relations can066

be classified with more than 94% accuracy from the067

discourse connectives alone (Pitler and Nenkova,068

2009). Table 1 shows one example: with “because”069

or “so” predicted by ChatGPT, which highlights070

the links between emotions and causes, the cause-071

effect relations are obvious.072

Experiments on the ECPE benchmark dataset073

(Xia and Ding, 2019) verify the effectiveness of our074

method, which exhibits good causal capability for075

the ECA task and outperforms other baselines. The076

main contributions of this paper can be summarized077

as follows:078

• To our best knowledge, we are the first to con-079

sider the ECA task as an emotional reasoning080

task and concentrate on the cause-effect rela- 081

tions to extract emotion-cause pairs. 082

• We propose a novel two-stream reasoning 083

model that considers emotion-to-cause and 084

cause-to-emotion relations in a unified way 085

and intuitively utilizes discourse connectives 086

predicted by ChatGPT to strengthen its analy- 087

sis ability of cause-effect relations in the ECA 088

task. 089

• The experiment results show that our method 090

incorporating ChatGPT has achieved SOTA 091

results and outperforms original ChatGPT re- 092

sults on the ECA task. It demonstrates the 093

potential of employing reasoning methods to 094

achieve better performance in the ECA task. 095

2 Methodology 096

2.1 Model Overview 097

Given a text with n clauses {C1, . . . , Cn}, where 098

Ci represents the i-th clause. ECPE aims to identify 099
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each emotion-cause pair (Cemo, Ccau), where the100

clause Ccau includes the reason causing the emo-101

tion occurring in clause Cemo. For this task, we de-102

sign a two-stream approach, as shown in Figure 1,103

which unifies the emotion-cause stream (ECS) and104

the cause-emotion stream (CES).105

As shown in Figure 1(b), our proposed method106

is a four-stage process, which sequentially consists107

of aggregation layers to obtain hidden states, joint108

linear layers Lemo and Lcau for emotion extraction109

or cause extraction, a pairing and connective pre-110

diction module, and joint linear layer Lpair for pair111

extraction.112

First, we leverage aggregation layers built up113

with a T5 model (Raffel et al., 2020) and a graph114

attention network (GAT) (Veličković et al., 2018)115

to obtain the aggregated hidden states of clauses H116

in text T . The T5 model is utilized to get hidden117

states efficiently and GAT combines graph neural118

networks and attention mechanisms to enable adap-119

tive aggregation on graph structures and therefore120

could build up the interaction among clauses and121

fuse contextual information.122

Second, with them, for emotion-cause stream123

(ECS) and cause-emotion stream (CES), we use124

Lemo and Lcau to obtain probability vectors yemo,125

ycau of emotions and causes, respectively, and ex-126

tract possible emotion and cause clauses. Our127

method leverages these joint linear layers to as-128

sist in predicting true emotion-cause pairs in the129

final stage.130

In the third stage, the extracted clauses are paired131

up with other candidate clauses, and our T5 or Chat-132

GPT module predicts their discourse connectives133

and gets the hidden states hconn of the connectives.134

In the final stage, our model concatenates the135

hidden states of paired clauses and the predicted136

connectives to judge which pairs are true emotion-137

cause pairs or cause-emotion pairs using Lpair with138

the help of the cause extraction linear layer Lcau139

or emotion extraction linear layer Lemo, where we140

consider all these linear classification modules as141

joint linear layers. Our method shares parameters142

on the T5 model, GAT, and joint linear layers Lemo,143

Lcau, and Lpair as a unified two-stream framework.144

2.2 Pairing and Connective Prediction145

We discovered that about two-thirds of the emotion-146

cause pairs do not contain any connectives in the147

Chinese ECPE benchmark dataset (Xia and Ding,148

2019), indicating that it is necessary to explore149

an effective way to predict connectives in order150

to leverage their discourse information. We show 151

how to build up pairs and predict connectives in the 152

emotion-cause stream (ECS) as a demonstration. 153

After getting the extracted emotion clauses with 154

linear layer Lemo, for each one of them, we pair up 155

this emotion clause with each clause in the same 156

text. These pairs have a format like (Cemo, Ccand), 157

where Cemo denotes emotion clause and Ccand de- 158

notes possible candidates cause clause. 159

For connectives prediction, We utilize ChatGPT 160

in the evaluation and a (Raffel et al., 2020) T5 161

masked language model in the training, consid- 162

ering its ability to construct bidirectional context 163

relationships. For the T5 module, we insert the 164

special masking [MASK] tokens or sentinel tokens 165

and estimate the probability of connectives using 166

the probability vocabulary of T5 masked language 167

models. 168

Pconn(ci|Cemo, Ccand) 169

= PT5([MASK] = ci|Cpair)/Psum, 170

Psum =
∑
i

PT5([MASK] = ci|Cpair), 171

Cpair = (Cemo, [MASK] Ccand), 172

where ci represents each possible connective, and 173

Pconn, PT5 denote the probability of connectives 174

and T5 masked language model likelihood, respec- 175

tively. We choose the connective conn with the 176

highest probability among all ci as our predicted 177

connective. 178

But for some pairs, causal connectives may al- 179

ready exist and we need only to extract them, there- 180

fore we set some rules for this situation; see Ap- 181

pendix A. These connectives revealing cause-effect 182

relations enable our model to get more discourse in- 183

formation to deal with the pair classification work. 184

Also, we do not intend these newly predicted con- 185

nectives to affect the results directly, so we use 186

the same model and leverage the hidden states of 187

connectives. 188

hconn = T5(Cemo, conn Ccand)|index, 189

where index represents position index of connec- 190

tive and hconn represents the hidden state of con- 191

nective. 192

2.3 Aggregation Layers 193

To address the ECA task, we need to obtain hidden 194

states of clauses with aggregated contextual rep- 195

resentation, and our method utilizes a T5 (Raffel 196
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et al., 2020) model, a clause-level attention layer,197

and a graph attention network (GAT) (Veličković198

et al., 2018) to do so. We first use the T5 model to199

get hidden states of all tokens in the text T . Then200

our model employs a clause-level attention layer to201

build up the hidden states of clauses. As the final202

step, we leverage a graph attention network (GAT)203

to build up the interaction among clauses and get204

our desired aggregated hidden states H . The whole205

process can be concluded as:206

H = GAT(Attn(T5(T ))),207

where T5, Attn and GAT denote the T5 model,208

the attention layer, and the graph attention network,209

respectively.210

2.4 Joint Linear Layers211

For our two-stream method, we use three joint lin-212

ear layers as the classifier as shown in Figure 1(b).213

For the emotion-cause stream (ECS), to incorpo-214

rate knowledge learned from the cause-emotion215

stream (CES), on the one hand, we use Lcau on216

the hidden state of cause candidate h2 to get a217

score of this candidate being a cause. On the218

other hand, we concatenate three hidden states219

hpair = (h1, hconn, h
2), where h1 represents the220

hidden state of emotion clause, and use pair classi-221

fier Lpair on hpair to get a score of this candidate222

being the cause of corresponding emotions. Con-223

sidering it as a multi-task process, we add output224

vectors of Lcau and Lpair. With this sum, we utilize225

the sigmoid function to gain the final probability226

of whether this pair is an emotion-cause pair.227

yecp = sigmoid(Lcau(h
2) + Lpair(hpair)),228

where yecp is the final probability of emotion-cause229

pairs with ECS.230

We can get the probability of cause-emotion231

pairs similarly.232

ycep = sigmoid(Lemo(h
2) + Lpair(hpair)),233

where ycep is the final probability of cause-emotion234

pairs with CES.235

2.5 Answer Prediction236

We summarize our approach to the answer predic-237

tion and define the loss of our model. We simply238

use Binary Cross-Entropy (BCE) Loss for back-239

propagation. Let’s take the emotion-cause stream240

(ECS) as an example. It starts with getting the241

hidden states of clauses H . We first use linear 242

layer Lemo and sigmoid function to predict emo- 243

tion clauses directly. 244

yemo = sigmoid(Lemo(hi)), 245

Lemo = BCE(yemo, yTemo), 246

where yemo denotes the predicted probability of 247

each clause being an emotion clause, while yTemo 248

denotes the true probability; Lemo is the loss of 249

emotion extraction step. We use a common thresh- 250

old 0.5 for yemo to determine whether the predicted 251

clause is an emotion clause. 252

Then, we pair up clauses and obtain hidden states 253

of connectives hconn. For emotion-cause pair ex- 254

traction, we consider it as a multi-task process 255

and predict emotion-cause pairs utilizing Lcau and 256

Lpair. 257

yecp = sigmoid(Lcau(h
2) + Lpair(hpair)), 258

ˆyecp = yemo · yecp, 259

Lecp = BCE(yecp, yTecp), 260

where yecp is the predicted probability of emotion- 261

cause pairs with ECS, while yTecp denotes the true 262

probability; ˆyecp represents overall probability of 263

emotion-cause pairs for evaluation; Lecp is the loss 264

of emotion-cause pair extraction step. We also use 265

the common threshold of 0.5 for ˆyecp to determine 266

whether a pair is an emotion-cause pair. 267

Similarly, we can obtain ycau, ycep as the pre- 268

dicted probability of each clause being a cause 269

clause and of cause-emotion pairs, ˆycep as the over- 270

all probability of cause-emotion pairs for evalua- 271

tion, and Lcau, Lcep as the loss of cause extraction 272

step and cause-emotion pair extraction step. Our 273

total loss L of model can be represented as 274

L = Lemo + Lecp + Lcau + Lcep. 275

3 Experiments 276

3.1 Dataset 277

We use the ECPE benchmark dataset (Xia and 278

Ding, 2019). It contains 1941 texts with indices of 279

emotion-cause pairs. We follow its classic 10-fold 280

dataset separation. We use precision P , recall R, 281

and F1 score defined in (Xia and Ding, 2019) as our 282

metrics to evaluate the performance of our model. 283

3.2 Experimental Settings 284

We use T5 (Raffel et al., 2020) Chinese model 285

Pegasus T5 (Su, 2021) to obtain hidden states and 286
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Method Emotion Extraction Cause Extraction Pair Extraction
F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%)

Indep (Xia and Ding, 2019) 82.10 83.75 80.71 62.05 69.02 56.73 58.18 68.32 50.82
Inter-CE (Xia and Ding, 2019) 83.00 84.94 81.22 61.51 68.09 56.34 59.01 69.02 51.35
Inter-EC (Xia and Ding, 2019) 82.30 83.64 81.07 65.07 70.41 60.83 61.28 67.21 57.05
PairGCN (Chen et al., 2020b) 83.75 88.57 79.58 73.75 79.07 69.28 72.02 76.92 67.91
IE-CNN+CRF (Chen et al., 2020a) 81.88 86.14 78.11 64.96 73.48 58.41 66.86 71.49 62.79
ECPE-2D (Ding et al., 2020a) 89.10 86.27 92.21 71.23 73.36 69.34 68.89 72.92 65.44
ECPE-MLL (Ding et al., 2020b) 88.86 86.08 91.91 76.30 73.82 79.12 74.52 77.00 72.35
ECPE-Fan (Fan et al., 2020) 84.74 87.16 82.44 69.74 75.62 64.71 67.99 73.74 63.07
RANKCP (Wei et al., 2020) 90.57 91.23 89.99 76.15 74.61 77.88 73.60 71.19 76.30
ECPE-Yuan (Yuan et al., 2020) 77.39 81.96 73.29 70.18 74.90 66.02 67.76 72.43 63.66
UTOS (Cheng et al., 2021) 85.56 88.15 83.21 74.71 76.71 73.20 72.03 73.89 70.62
MGSAG (Bao et al., 2022) 82.87 87.21 79.11 70.80 75.10 67.13 68.46 72.43 65.07
RSN (Chen et al., 2022a) 87.55 86.14 89.22 75.45 77.27 73.98 73.93 76.01 72.19
A2Net (Chen et al., 2022b) 90.80 90.67 90.98 78.35 77.62 79.20 76.34 75.03 77.80
UECA-Prompt (Zheng et al., 2022) 88.16 84.75 91.95 77.55 76.24 79.16 74.70 71.82 77.99
ECPE-MM-R† (Zhou et al., 2022) 93.70 97.38 90.38 81.35 83.28 79.64 80.62 82.18 79.27
EPO-ECPE (Hu et al., 2023) 95.00 97.87 92.32 76.20 77.11 75.43 75.64 76.21 75.19

ChatGPT-Wang (Wang et al., 2023b) - - - - - - 52.44 54.13 50.86
ChatGPT-CoT (ours) 23.11 14.62 55.19 15.57 10.00 35.14 4.10 2.59 9.73

TSCER (ours) 93.12 98.42 88.46 83.28 87.63 79.44 79.73 82.55 77.27

Table 2: ECA main results. P , R and F1 denote precision, recall and F1 score, respectively. ECPE-MM-R† uses a
revised truncated dataset.

predict connectives during training. An AdamW287

optimizer is employed for training, with a weight288

decay of 0.01, an initial learning rate of 1e-5, and a289

warm-up rate of 0.1. For regularization, we use the290

dropout technique with a dropout rate of 0.1. We291

have experimented with various batch sizes and get292

the best results when the batch size is set to 4.293

Additionally, we follow (Wei et al., 2020) to294

use a sentimental dictionary to assist the model in295

identifying emotion clauses. Besides, We incor-296

porate the connectives predicted by ChatGPT in297

the evaluation for better performance. For direct298

experiments on ChatGPT, We utilize gpt-3.5-turbo299

API to conduct preliminary research on its perfor-300

mance of ECA task; see Appendix C for detailed301

information.302

3.3 Main Results303

Our results are shown in Table 2. To show the effec-304

tiveness of our model, we compare our results with305

other baselines, which are Indep, Inter-CE, Inter-306

EC (Xia and Ding, 2019), PairGCN (Chen et al.,307

2020b), IE-CNN+CRF (Chen et al., 2020a), ECPE-308

2D (Ding et al., 2020a), ECPE-MLL (Ding et al.,309

2020b), ECPE-Fan (Fan et al., 2020), RANKCP310

(Wei et al., 2020), ECPE-Yuan (Yuan et al., 2020),311

UTOS (Cheng et al., 2021), MGSAG (Bao et al.,312

2022), RSN (Chen et al., 2022a), A2Net (Chen313

et al., 2022b), UECA-Prompt (Zheng et al., 2022),314

ECPE-MM-R† (Zhou et al., 2022) and EPO-ECPE315

(Hu et al., 2023). 316

For more baseline information, see Appendix B. 317

Nowadays, ChatGPT is considered a strong base- 318

line for various NLP tasks, so we also conduct 319

experiments on it. We get our own ChatGPT evalu- 320

ation results based on the Chain-of-Thought (CoT) 321

prompt, which is represented as ChatGPT-CoT in 322

the table. We also refer to other ChatGPT re- 323

searches on ECA (Wang et al., 2023b). Due to 324

the lack of English datasets, we conducted English 325

experiments on the self-built toy dataset and the 326

results are in Appendix B. 327

Our TSCER model outperforms all the baselines 328

and achieves improvements in precision and al- 329

most all in F1 score in terms of all three tasks. This 330

validates the utility of our proposed two-stream 331

structure with predicted connectives. The perfor- 332

mance improvements highlight the importance of 333

connectives and cause-effect relations in analyzing 334

emotion-cause relations in ECA. 335

Other than the above, we have two interesting 336

findings in Table 2. 337

• Considering all three tasks, our TSCER mod- 338

els have significant improvements in the F1 339

score and precision, but we observe a slight 340

increase or even decrease in recall when com- 341

pared to other methodologies. This phe- 342

nomenon may be attributed to our models’ 343

stringent criteria for identifying cause-effect 344
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relationships, potentially leading to the exclu-345

sion of genuine emotion-cause pairs with less346

clearly defined cause-effect connections.347

• The results of ChatGPT-Wang (Wang et al.,348

2023b) and ChatGPT-CoT (ours) show that349

ChatGPT could not handle this task with a350

zero-shot CoT prompt. Our ChatGPT ap-351

proach points out many possible emotion-352

cause pairs with low-degree emotions and353

weakly associated causes, so it ends up with354

an exceptionally poor performance in terms355

of all three metrics in all three tasks.356

4 Analysis357

4.1 Ablation Study358

The results in Figure 2 have shown the effective-359

ness of our two-stream model. We are curious360

about how the performance changes when altering361

the two-stream structure of our model and without362

connective prediction. Thus, we design an ablation363

study and build up three more variants based on364

TSCER to check the effectiveness of our proposed365

method.366

• The CES-Only model only leverages the367

cause-emotion stream, and the ECS-Only368

model only leverages the emotion-cause369

stream. They no longer share parameters of370

Lemo, Lcau and Lpair. In addition, these two371

models don’t use the connective prediction372

module.373

• The TSCER (w/o connectives) model sets the374

connective prediction module unused.375

These three new models have some adaptive376

changes in their model structure and they are easy377

to understand, so we don’t elaborate on them here.378

Our results are shown in Table 3 and our insight379

can be organized as follows.380

• Comparing ECS-Only with CES-Only, emo-381

tion extraction first is more accessible and has382

better results than cause extraction first, while383

ECS-Only steadily outperforms CES-Only in384

most metrics.385

• Comparing TSCER with CES-Only and ECS-386

Only shows the superiority of our proposed387

two-stream structure. Two-stream cause-388

effect relations can instruct the model to think389

thoroughly to obtain higher precision in all390

three tasks.391

• Compared with TSCER (w/o connectives), 392

TSCER (w connectives) gains more improve- 393

ment in all precision, recall, and the F1 score 394

with the assistance of connectives. It shows 395

that connectives, as indicators of cause-effect 396

relations, can sift some pairs with ambiguous 397

cause-effect relations to gain higher precision, 398

and unveil those hidden cause-effect relations 399

to obtain higher recall. 400

4.2 Time Efficiency 401

Our TSCER model builds pairs like prior pairing 402

matrix methods, but our model builds much fewer 403

pairs as shown in Table 4. We organized a pre- 404

liminary time complexity analysis to elaborate on 405

this. 406

Denote the number of clauses, emotion clauses, 407

cause clauses, and window size of the sliding win- 408

dow are n, p, q, and w, respectively. The com- 409

plexity of former pairing matrix methods is O(n2) 410

since they need to build all possible pairs and is 411

O(wn) for those who use sliding windows. The 412

time complexity of our method is O(n + pq) for 413

we use a strong pipeline method to greatly reduce 414

meaningless pairs. 415

However, mathematical formulas linking n, p, q 416

and w still pose challenges. Therefore, we com- 417

pare the pairs built in the whole ECPE benchmark 418

dataset to reveal their differences. Ours only form 419

62618 pairs under the best circumstances, which 420

is much less than prior pairing matrix methods. 421

Consequently, we deduce that our method tends to 422

outperform the former pairing matrix approach in 423

complexity in most cases. 424

4.3 Error Analysis 425

Our model relies heavily on predicted connectives 426

and wrong connectives usually lead to wrong re- 427

sults. We make an error analysis to state this and 428

the results are shown in Figure 2. 429

The mistakes are mainly due to inappropriate 430

predicted connectives. Under some circumstances, 431

especially when two clauses in a pair are far apart 432

and the link between them is weak, our method 433

may predict poisoned connectives resulting directly 434

from language model likelihood instead of reason- 435

ing. It greatly stops us from achieving better per- 436

formance due to the lack of a particular Chinese 437

reasoning dataset for connective prediction fine- 438

tuning. 439
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Method Emotion Extraction Cause Extraction Pair Extraction
F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%)

CES-Only (w/o connectives) 86.48 90.83 82.64 76.01 81.99 70.92 71.22 74.77 68.10
ECS-Only (w/o connectives) 90.71 96.53 85.63 77.33 81.28 73.95 74.54 76.62 72.74

TSCER (w/o connectives) 90.77 97.28 85.23 77.45 82.59 73.12 75.07 78.56 72.21
TSCER (w connectives) 93.12 98.42 88.46 83.28 87.63 79.44 79.73 82.55 77.27

Table 3: ECA ablation study results. Connective prediction is unused for models tagged“w/o connective”.

Method Capability of Long-distance Pairs Time Complexity Estimated Pairing Count

Pairing Matrix ! O(n2) 490367
Pairing Matrix w/ Sliding Window # O(wn) 132003
TSCER (ours) ! O(n+ pq) 62,618

Table 4: Time efficiency analysis results. The number of clauses, emotion clauses, cause clauses, and window size
of the sliding window are n, p, q, and w, respectively. The estimated pairing count is evaluated by counting all pairs
built in the whole ECPE benchmark dataset (Xia and Ding, 2019) under the best circumstances.

4.4 Case Study440

We analyze a text shown in Table 5 for demonstra-441

tion and show the internal steps of how our model442

solves the ECA problem.443

In the emotion-cause stream (ECS), our model444

first predicts the right emotion clause C14 and then445

predicts connectives between C14 and each clause446

in the text. For (C14, C11), according to our rules447

shown in Appendix A, our method first deletes448

“but” and predicts connective “because” for this449

pair, which helps model to figure out that this is450

an emotion-cause pair. It happens the same to451

(C14, C12), but our model understands that C12 is452

just an analogy leveraging semantic information453

and does not consider it as a cause. C14 does not454

have any event or action so it could not be the cause455

of itself. We could get the emotion-cause pair an-456

swer (C14, C11) from ECS.457

In the cause-emotion stream (CES), our model458

first predicts the right cause clause C11 and then459

predicts connectives between C11 and each clause460

in the text. Similarly, C11 does not have any emo-461

tion expressed so it cannot be the emotion of itself.462

Considering pair (C11, C14), with “so” predicted463

as an indicator, our reasoning model successfully464

links them as a cause-emotion pair.465

Finally, combining these two answers of two466

streams, we could get the correct emotion-cause467

pair answer (C14, C11).468

5 Related Work469

5.1 Emotion-Cause Analysis (ECA)470

Xia and Ding (2019) brought forward the Emotion-471

Cause Analysis (ECA) task and published the Chi- 472

nese Emotion-Cause Pair Extraction (ECPE) bench- 473

mark dataset, along with three original proposed 474

methods Indep, Inter-CE, and Inter-EC. Inter-CE 475

and Inter-EC made a preliminary attempt to en- 476

hance emotion extraction with cause extraction and 477

vice versa, obtaining limited results with immature 478

model architecture. Previous methods of ECA can 479

be divided into two categories. 480

One approach is to utilize a clause pairing ma- 481

trix. Ding et al. (2020a) consider emotion-cause 482

pair extraction as representation, interaction, and 483

prediction of joint two-dimensional clause vectors. 484

Ding et al. (2020b) use a sliding window approach 485

to identify emotion-cause pairs in text, which is 486

based on a multi-label learning method. Wei et al. 487

(2020) propose an end-to-end extraction model fo- 488

cused on effective inter-clause modeling and use 489

it to improve the pair extraction process from a 490

ranking perspective. However, they all suffer from 491

sparse label space and high computational costs. 492

Another approach is to utilize sequence labels. 493

Chen et al. (2020a) use a unified sequence labeling 494

method for emotion-cause pairs and use a unified 495

model to identify them. Yuan et al. (2020) also 496

consider ECA as a sequence labeling task and use a 497

unique labeling scheme to identify emotion-cause 498

pairs. However, once they model the task as a 499

sequence labeling task, they do not take the relation 500

between emotions and their corresponding causes 501

into consideration. 502

Some recent works try to use thoughtfully 503

crafted prompts to instruct models to extract 504

emotion-cause pairs. Zheng et al. (2022) develop 505
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Error Rate (%)

Emotion Prediction
w/ True Cause

Cause Prediction
w/ True Emotion Wrong w/ Bad Conn

Wrong w/ Good Conn

Unrecognized w/ Bad Conn

Unrecognized w/ Good Conn

Figure 2: Error analysis breakdown results. “Conn” represents connectives for short.

Clause Content ECS Conn CES Conn ECS Pair CES Pair
Prediction Prediction Prediction Prediction

C10 I bought these oysters for only 5 yuan namely and - -
C11 but I got 5 pearls ��but because ��but and (C14, C11) -
C12 like buying a lottery ticket and winning a prize ��like because ��like and - -
C13 mentioning this if if - -
C14 Mr. Zhang is very excited so so - (C11, C14)

Table 5: Case study. Text No.2025. Blue clauses denote predicted emotion clauses in ECS and red clauses denote
predicted cause clauses in CES. “Conn” is short for connective.

a universal prompt tuning method to solve differ-506

ent ECA tasks in a unified framework. Zhou et al.507

(2022) use a multi-turn machine comprehension508

framework, which uses a multi-turn approach to509

understand the context information and identify510

emotion-cause pairs on a revised truncated dataset,511

while the rethink mechanism allows the model to512

adjust its predictions. Though these works have513

made progress in ECA with additional model in-514

structions, they are limited by input length and to515

some extent ignore that ECA in essence is a causal516

reasoning problem that needs more than a simple517

query or prompt to deal with.518

5.2 Implicit Discourse Relation Recognition519

The publication of the PDTB dataset (Prasad520

et al., 2008) has stimulated much research in dis-521

course analysis, including implicit discourse re-522

lation recognition (IDRR), which inspires us to523

resolve ECA using implicit discourse information.524

With the development of deep learning, many tal-525

ented researchers have come up with novel ways to526

deal with IDRR. Some of them try to make use of527

implicit connectives in many different ways.528

Braud and Denis (2016) try to learn connective-529

based word representations and use them to deal530

with IDRR. Qin et al. (2017) use adversarial531

connective-exploiting networks for implicit dis-532

course relation classification. They propose a fea-533

ture imitation framework, in which an implicit534

relation network learns from another neural net- 535

work with access to connectives to extract similarly 536

salient features. Nguyen et al. (2019) use a multi- 537

task learning framework to enable relations and 538

connectives to be simultaneously predicted. Kur- 539

falı and Östling (2021) generate candidate explicit 540

discourse markers between sentences and score the 541

resulting segments using a large language model. 542

6 Conclusions 543

In conclusion, our research presents a novel two- 544

stream reasoning model that unifies the emotion- 545

cause and cause-emotion streams of thought, 546

thereby enhancing performance in emotion-cause 547

analysis (ECA). By leveraging discourse connec- 548

tives predicted by ChatGPT, our model uncovers 549

hidden cause-effect relationships, bridging the gap 550

between emotions and their causes. Consequently, 551

our model exhibits a superior understanding of 552

bidirectional cause-effect relationships between 553

emotions and causes. Our methodology offers 554

improved interpretability and aligns more closely 555

with human thought processes than conventional 556

approaches. This approach not only achieves state- 557

of-the-art (SOTA) performance but also introduces 558

a significant innovation by treating the ECA task as 559

an emotional reasoning challenge. It is exciting that 560

our research highlights the potential of applying 561

reasoning methods to advance the field of ECA. 562
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Limitations563

We list some of our main limitations.564

• Still High Computational Cost565

Compared with models using clause pairing ma-566

trix (Ding et al., 2020a,b; Wei et al., 2020) consid-567

ering all possible pair combinations, our method568

build up much fewer pairs; see Section 4.2. How-569

ever, we still consider all clauses in the text as can-570

didate cause clauses in the emotion-cause stream571

(ECS) and as candidate emotion clauses in the572

cause-emotion stream (CES). Though our model is573

much better than previous ones, it still suffers from574

high computational cost, since our method needs to575

build 62618 pairs for the ECPE benchmark dataset,576

while only 2167 emotion-cause pairs are true ones.577

• Insufficient Hyper-parameters Selection Exper-578

iment579

Apart from the hyper-parameters of the model,580

our model has set many thresholds as hyper-581

parameters for judgment of extraction results; see582

Section 2.5. This leads to various possible choices583

of them in the space of hyper-parameters. Unfor-584

tunately, we don’t have so much computational585

resources to search for the optimized combination586

of hyper-parameters. Consequently, there is still587

room for improvement and the efficiency of our588

model is yet to be revealed.589

• Lack of English Dataset and Bad Performance590

on Self-built Toy Dataset591

Due to the lack of English datasets, we con-592

ducted English experiments on the self-built toy593

dataset and the results are in Appendix B. This toy594

dataset is built by directly translating the ECPE595

benchmark dataset (Xia and Ding, 2019) using a596

translator. Due to poor translation, we get poor597

performance on it. So this task urgently needs a598

high-quality dataset to push forward the English599

study of it.600
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International Conference on Computational Linguis-783
tics, pages 6726–6735, Gyeongju, Republic of Korea.784
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A Discussion on Connective Prediction787

A.1 Model Choice788

We could choose unidirectional language models789

like GPT to predict connectives. We can get the790

probability of connectives by directly estimating791

the language model likelihood of the complete pair792

with predicted connectives.793

Pconn(ci|Cemo, Ccand)794

= PLM(Cemo, ci Ccand)/Psum,795

Psum =
∑
i

PLM(Cemo, ci Ccand),796

where ci represents each possible connective, and797

Pconn, PLM denote the probability of connectives798

and language model likelihood, respectively. How-799

ever, in this preliminary method, these generation800

models only concern information about the previ-801

ous token sequence, so the information of candi-802

dates does not affect the prediction of connectives,803

and thus this model couldn’t represent the reason-804

ing process of connective prediction. Therefore,805

we choose to use a T5 masked language model for806

connective prediction at last, considering its ability807

to construct bidirectional context relationships.808

A.2 Rules for Connective Prediction809

Here are the rules we follow when predicting con-810

nectives.811

• We first search for several continuous se-812

quences of connectives from the beginning813

of the candidate clause to the end. For exam-814

ple, "but because" is a continuous sequence815

of connectives. We define sequence starting816

at the beginning of the candidate clause as the817

head sequence.818

• If the clause forms a pair with itself, we delete819

the head sequence if it exists. If there is a820

single-token causal connective in other se-821

quences of connectives, we directly choose822

it as our predicted connectives. If not, we pre-823

dict the connectives with the T5 model. And824

if there are multiple choices, we choose the825

first one.826

• Otherwise, if the head sequence exists, we 827

delete it. Then, we predict the connectives 828

with the T5 model. 829

B Baseline Comparison 830

B.1 Baselines 831

The results of baselines are shown in Table 2, and 832

here we conduct a brief introduction of them. 833

• Indep, Inter-CE, Inter-EC (Xia and Ding, 2019) 834

are three original methods proposed with the ECPE 835

benchmark dataset. Inter-CE and Inter-EC made a 836

preliminary attempt to enhance emotion extraction 837

with cause extraction and vice versa. 838

• PairGCN (Chen et al., 2020b) uses a graph 839

convolutional network with a sliding window ap- 840

proach. 841

• IE-CNN+CRF (Chen et al., 2020a) uses a uni- 842

fied sequence labeling method for emotion-cause 843

pairs and uses a unified model to identify them. 844

• ECPE-2D (Ding et al., 2020a) considers 845

emotion-cause pair extraction as representation, in- 846

teraction, and prediction of joint two-dimensional 847

clause vectors. 848

• ECPE-MLL (Ding et al., 2020b) uses a sliding 849

window approach to identify emotion-cause pairs 850

in text, which is based on a multi-label learning 851

method. 852

• ECPE-Fan (Fan et al., 2020) transforms the 853

ECA task into a parsing-like directed graph con- 854

struction procedure and generates labeled edges to 855

extract emotion-cause pairs. 856

• RANKCP (Wei et al., 2020) proposes an end- 857

to-end extraction model focused on effective inter- 858

clause modeling and uses it to improve the pair 859

extraction process from a ranking perspective. 860

• ECPE-Yuan (Yuan et al., 2020) considers ECA 861

as a sequence labeling task and uses a unique label- 862

ing scheme to identify emotion-cause pairs. 863

• UTOS (Cheng et al., 2021) uses a unified 864

target-oriented sequence labeling scheme. 865

• MGSAG (Bao et al., 2022) considers reducing 866

the position bias in the ECPE dataset. 867

• RSN (Chen et al., 2022a) uses emotion extrac- 868

tion and cause extraction to reinforce the result of 869

ECPE through explicit information transmission. 870

• A2Net (Chen et al., 2022b) develop a novel 871

paring matrix method with alignment mechanisms 872

leveraging Kullback Leibler (KL) divergence. 873

• ECPE-MM-R (Zhou et al., 2022) uses a multi- 874

turn machine comprehension framework, which 875
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Method Emotion Extraction Cause Extraction Pair Extraction
F1(%) P (%) R(%) F1(%) P (%) R(%) F1(%) P (%) R(%)

RANKCP (Chinese) 90.57 91.23 89.99 76.15 74.61 77.88 73.60 71.19 76.30
TSCER (ours) 93.12 98.42 88.46 83.28 87.63 79.44 79.73 82.55 77.27

RANKCP (English) 72.77 81.76 65.57 56.12 61.11 51.89 49.14 51.81 56.73
TSCER (English, ours) 74.87 84.12 67.45 56.71 61.20 52.83 49.76 51.50 48.13

Table 6: ECA English results on the self-built toy dataset. P , R and F1 denote precision, recall and F1 score,
respectively.

阅读下列段落：TEXT。找出其中含有情感的句子和其对
应的能解释其产生原因的句子，用列表表示其对应关系
并输出，比如“[1,4], [2,5]”。对应序号已在段落中做过标
记。让我们一步一步地思考。

Read the following paragraph: TEXT. Find the sentences 
containing emotions and their corresponding sentences 
that can explain the reasons for their occurrence, express 
their correspondence with a list and output, such as "[1,4], 
[2,5]". The corresponding ordinal number is marked in the 
paragraph. Let's think step by step.

Figure 3: ChatGPT-CoT prompt. “TEXT” denotes a text
in the corpus without labels and emotional annotations.

uses a multi-turn approach to understand the con-876

text information and identify emotion-cause pairs877

on a revised truncated dataset, while the rethink878

mechanism allows the model to adjust its predic-879

tions.880

• UECA-Prompt (Zheng et al., 2022) develops a881

universal prompt tuning method to solve different882

ECA tasks in a unified framework.883

• EPO-ECPE (Hu et al., 2023) uses multiple su-884

pervisions with a sliding window approach, which885

originated from ECPE-MLL (Ding et al., 2020b).886

B.2 English Study887

To the best of our knowledge, English datasets888

for this specific Emotion-Cause Pair Extraction889

(ECPE) problem do not exist. Consequently, our890

study has been confined to Chinese as a result of891

this limitation. Due to a lack of English datasets,892

we have made an effort to translate the ECPE893

benchmark dataset (Xia and Ding, 2019) into En-894

glish. But the translation quality is far from satisfac-895

tion as shown in Table 6, rendering the utilization896

of the translated data impractical.897

C Discussion on ChatGPT Approach898

C.1 Our ChatGPT Approach899

To explore the reasoning ability of LLM, we con-900

ducted a preliminary attempt to utilize ChatGPT901

and chain-of-thought (CoT) (Wei et al., 2023; Ko- 902

jima et al., 2023; Wang et al., 2023a) method to 903

identify emotions and their corresponding causes 904

directly. For experiments on ChatGPT, we utilize 905

gpt-3.5-turbo API and use the prompt as shown in 906

Figure 3. We set every parameter by default. 907

We don’t tell ChatGPT how to deal with the task 908

but only use a zero-shot COT prompt to ask ques- 909

tions. Figure 4 shows that ChatGPT understands 910

what to do without further instruction, thereby it 911

proves that our prompt should suffice. Figure 5 912

demonstrates the ChatGPT answer of the example 913

shown in Table 1. 914

C.2 Rules for Evaluation 915

We set some rules for the evaluation of the 916

ChatGPT-CoT method. 917

• If the output of ChatGPT for a text is irrele- 918

vant to our task after three attempts, we simply 919

ignore this section and don’t use it for evalua- 920

tion. 921

• If its final answer is right, but with a wrong 922

reasoning step, inappropriate reasoning, or 923

hallucination, we consider it as a false positive 924

instance. 925

• For ChatGPT to give a lot of wrong answers 926

without any reasoning step with zero-shot CoT 927

guidance, we simply judge them as false neg- 928

ative instances. 929

C.3 ChatGPT Performance Analysis 930

The performance of ChatGPT has already been 931

shown in Table 2. We also refer to other ChatGPT 932

researches on ECA (Wang et al., 2023b). Their 933

results are much higher than ours since they only 934

use texts with one emotion-cause pair and build 935

finely crafted prompts based on this. It may also 936

result from the performance gap between ChatGPT 937

API and ChatGPT itself. But in conclusion, these 938

results are still much worse than SOTA results. 939
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We have some conjectures about the poor per-940

formance of ChatGPT. ChatGPT works badly on941

some complex reasoning tasks, so it is within con-942

sideration that it works poorly for ECA, for this943

task involves emotion recognition, reasoning, and944

long-distance relation extraction.945

Nedilko and Chu (2023) demonstrate that the946

best macro F1 score of ChatGPT or GPT-4 is even947

lower than the baseline XGBoost Classifier (0.46948

compared to 0.51-0.56). LLMs perform much infe-949

rior to humans when it comes to more complex950

causal structures involving multiple events and951

multi-hop reasoning, it may also have a halluci-952

nation problem (Bang et al., 2023).953

Laskar et al. (2023) have hypothesized that Chat-954

GPT is prone to hallucination, and tends to answer955

based on memorization of the original task learned956

during its pre-training stage, instead of answering957

with proper reasoning when no step-by-step instruc-958

tion to solve a new task is provided. ChatGPT out-959

performs traditional neural networks such as CNN960

and GRU, showing its potential in mental health961

analysis and emotional reasoning in conversations.962

However, it significantly underperforms advanced963

supervised methods on all tasks, highlighting the964

challenges of emotion-related subjective tasks for965

ChatGPT (Yang et al., 2023).966

Compared to ChatGPT, our proposed method967

leveraging two-stream cause-effect relations and968

connectives successfully modeled the emotion-969

cause reasoning process, even for long-distance970

situations.971
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Figure 4: ChatGPT understanding of the prompt. We input the prompt without a text in the corpus and ChatGPT
seems to understand what to do without further instruction.

Figure 5: ChatGPT answer. We use the example shown in Table 1 for demonstration.
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