
Biological Reasoning with Reinforcement Learning through Natural Language
Enables Generalizable Zero-Shot Cell Type Annotations

Xi Wang * 1 Runzi Tan * 1 Bo Wang 2 Simona Cristea 1 3

Abstract
Single-cell RNA-sequencing (scRNAseq) has re-
shaped biomedical research, enabling the high-
resolution characterization of cellular popula-
tions. Yet cell type annotation, a process typ-
ically performed by domain experts interpret-
ing gene expression patterns by manual curation
or with specialized algorithms, remains labor-
intensive and limited by prior knowledge. In
addition, while reasoning large language mod-
els (LLMs) have demonstrated remarkable per-
formance on mathematics, coding and general-
reasoning benchmarks, their potential in scR-
NAseq analyses remains underexplored. Here,
we investigate the advantages and limitations
of employing DeepSeek-R1-0528, a recently de-
veloped open-source 671B-parameter reasoning
LLM, for zero-shot scRNAseq cell type anno-
tation. We find that DeepSeek-R1 prompted
with a ranked list of 10 differentially expressed
marker genes per cluster of single cells outper-
forms both its reasoning-enhanced, non-reasoning
equivalent (DeepSeek-V3-0324) and GPT-4o in
cluster-level annotations. At the level of single
cells, DeepSeek-R1 prompted with the top 500
expressed genes in a cell outperforms its non-
reasoning counterpart DeepSeek-V3, illustrating
test-time scaling for bioinformatics tasks through
natural language. Running DeepSeek-R1 in zero-
shot classifier mode, with a prompt that presents
a broad catalogue of cell type labels to choose
from, improves its performance and generalizabil-
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ity across different datasets. On data curated by
the expert model scTab (termed in-domain data),
the DeepSeek-R1 classifiers perform better than
the expert model scGPT and on par with the spe-
cialized cell genomics LLM C2S-Scale-1B, but
lag behind scTab. On out-of-distribution data un-
seen by the two expert models, DeepSeek-R1 and
its classifier versions generalize better and outper-
form the other models in the majority of the eval-
uated datasets. Notably, DeepSeek-R1 supports
its cell type calls with interpretable textual biolog-
ical rationales underlying its reasoning, provid-
ing a learning opportunity for researchers. Nev-
ertheless, peak annotation performance remains
modest, highlighting the intrinsic complexity of
scRNAseq cell type annotation.

1. Introduction
Single-cell RNA-sequencing (scRNAseq) has transformed
modern biology, enabling the study of gene expression in
individual cells and revealing previously unrecognized cellu-
lar states. From immunology to developmental biology and
precision oncology, scRNAseq approaches are now integral
to addressing diverse research questions (Papalexi & Satija,
2018; Park et al., 2022; Tang et al., 2009; Patel et al., 2014;
Tirosh et al., 2016; Hwang et al., 2018). However, despite
immense algorithmic progress within the past 10 years, with
hundreds of advanced methods developed by the research
community, cell type annotation remains a bottleneck step in
scRNAseq bioinformatics pipelines. In practice, biomedical
researchers often resort to manually annotating scRNAseq
data by interpreting representative marker genes using their
domain expertise. But, human experts can also be subject
to bias in their annotations due to their specific expertise,
experience level, or different perceptions of the granularity
required for the task (Hou & Ji, 2024; Ergen et al., 2024;
Andreatta et al., 2024).

Alternatively, state-of-the-art (SOTA) supervised methods
or foundation models can accelerate cell type annotation.
Yet, an inherent limitation of such approaches is that models
can only recognize the cell identities present during train-
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ing. As a result, novel or out-of-domain (OOD) cells are
either forced into the closest known class or reported as un-
known. Therefore, the true extent to which such algorithms
generalize to novel datasets and offer practical utility for re-
searchers as an end-to-end solution for cell type annotation
remains unclear (Heumos et al., 2023; Luecken & Theis,
2019; Abdelaal et al., 2019; Stuart & Satija, 2019; Fischer
et al., 2024; Cui et al., 2024).

LLMs have captured extensive attention for their capacity
to reason through complex tasks using chain-of-thought
(CoT), performing particularly well in mathematics, cod-
ing, or clinical decision-making (DeepSeek-AI et al., 2025;
Zhang et al., 2022; Wei et al., 2023; Brown et al., 2020;
Vaswani et al., 2017; Radford et al., 2019; OpenAI et al.,
2024; Sandmann et al., 2025; Tordjman et al., 2025; Skar-
linski et al., 2024). DeepSeek-R1-0528 was recently intro-
duced as an open-source general-purpose 671B-parameter
reasoning model, specifically trained to strengthen its rea-
soning capabilities (DeepSeek-AI et al., 2025). Reasoning
models like DeepSeek-R1-0528 (referred to as DeepSeek-
R1 or simply R1 from here onwards) can parse new prob-
lems at inference time, a concept known as test-time scaling,
with little or no additional training (Wei et al., 2023). This
approach mirrors how human experts retrieve and synthesize
their domain knowledge, suggesting that reasoning LLMs
might contribute particularly well to tasks that rely on the
dynamic interpretation and aggregation of complex data,
such as scRNAseq cell type annotation.

As scRNAseq data presents itself in a quantitative format
of gene expression profiles, rather than a textual format, the
potential of applying out-of-the-box existing generic LLMs
to scRNAseq analysis tasks such as cell type annotation
remains underexplored (Hou & Ji, 2024; Lu et al., 2024;
Liu et al., 2024; Szałata et al., 2024; Chen & Zou, 2024;
Choi et al., 2024; Levine et al., 2024). Attempts at using
LLMs for cell type annotation include zero-shot cluster-
level labeling with GPT-4 by Hou & Ji (2024), generating
embedding representations via natural language prompts
with CELLama (Choi et al., 2024) or GenePT (Chen &
Zou, 2024), as well as fine-tuning LLMs with scRNAseq
data with Cell2Sentence and C2S-Scale (Levine et al., 2024;
Rizvi et al., 2025). Specifically, the Hou & Ji (2024) pa-
per showed how an early version of GPT-4 prompted with
the top 10 differentially expressed marker genes per cluster
can achieve near-expert accuracy and outperform existing
SOTA expert algorithms such as singleR (Aran et al., 2019).
However, none of the existing works investigate the CoT rea-
soning capabilities of very recent generic reasoning LLMs
such as DeepSeek-R1 for zero-shot scRNAseq cell type
annotation, at both the cluster and single-cell levels.

We hypothesized that DeepSeek-R1 is able to deploy its test-
time logical reasoning abilities to interpret its pre-training

biological knowledge and ultimately reliably annotate scR-
NAseq data, in a process conceptually similar to manual an-
notation by domain experts. Here, we tested this hypothesis
by zero-shot prompting DeepSeek-R1 with representative
marker genes for clusters or single cells, as either a stand-
alone model or as a classifier contextualized with cell type
labels to choose from. We focused specifically on assessing
zero-shot cell type annotation capabilities, i.e. without re-
lying on supervised fine-tuning, as supervised fine-tuning
would require access to both bioinformatics expertise and
labeled data, introducing practical real-world bottlenecks.

We compared DeepSeek-R1’s performance against non-
reasoning LLMs, the expert models scTab (Fischer et al.,
2024) and scGPT (Cui et al., 2024), as well as the special-
ized cell genomics pretrained LLM C2S-Scale-1B (Rizvi
et al., 2025). We documented the advantages and limita-
tions of annotating scRNAseq data with a general reasoning
LLM across various tissues and datasets, and identified gen-
eralization challenges faced by the specialized models on
unseen data (di Montesano et al., 2025). Due to its reasoning
nature, DeepSeek-R1 justified its annotations with biolog-
ically interpretable CoT, preserving the interpretability of
manual marker-based annotation workflows and providing
researchers with the opportunity to understand which genes
were relevant for annotation and how they linked to the pre-
dicted label. With the amount of scRNAseq data increasing
exponentially, reasoning LLMs such as DeepSeek-R1 can
be leveraged to re-frame the cell type annotation problem
altogether and identify the middle ground between gener-
alizability and contextual expertise needed for annotating
cells from novel experimental and biological setups.

2. Results
2.1. Reasoning with large language models for

interpretable cell type annotations

Broadly, scRNAseq cell type annotation analyses adopt one
of two main strategies: 1) a cluster-level approach, in which
a cell type label is given to an entire cluster of cells by
manual or reference-driven annotations, and 2) a single-cell
level approach, in which each cell’s expression profile is
mapped directly to a label, often using large classification
models, reference-based tools or, more recently, foundation
models. Despite the open-source availability of increasingly
sophisticated cell type annotation algorithms, researchers
still rely on manual inspection of canonical marker genes, re-
garded in practice by most molecular biologists and medical
professionals as the “gold standard” to ensure biological in-
terpretability. However, manual annotation remains a labor-
and time-intensive process.

Here, we propose an alternative cell type annotation ap-
proach that leverages the general-purpose reasoning LLM
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Figure 1. Overview of the proposed reasoning LLM-based cell
type annotation framework (A) and illustrative CoT biological
reasonings (B, C). A: Standard pipelines rely on a combination
of manual marker gene inspection, reference-based methods or
deep learning classifiers. Our approach employs a general-purpose
reasoning LLM (DeepSeek-R1) to process ranked gene signatures
for both clusters (top 10 differentially expressed genes) and single-
cells (top 500 highest expressed genes). B: DeepSeek-R1 (correct
prediction) vs. DeepSeek-V3 (incorrect). C: DeepSeek-R1 pro-
poses the correct label, despite it being outside the labels that the
model is instructed to choose from.

DeepSeek-R1 (DeepSeek-AI et al., 2025) (Fig. 1A). We
adopted a prompt engineering technique similar to that of
Hou & Ji (2024) and Lu et al. (2024) that exploits the LLM’s
zero-shot cell type annotation capabilities at inference (Hou
& Ji, 2024; Levine et al., 2024). We prompted the LLM
with either a cluster’s top 10 differentially expressed marker
genes, or a single cell’s top 500 expressed genes, along
with relevant metadata (e.g., species or tissue), and asked
it to identify the granular cell type label. DeepSeek-R1 re-
sponded with CoT reasoning, culminating in an annotated
cell type label (Fig. 1B, C). Furthermore, we investigated
the impact of prompt engineering on cell type annotation by
comparing “long” prompts against “short” prompts asking
for more concise responses.

2.2. LLM reasoning enhances cluster-level cell type
annotations

Our cluster-level analysis used the 1, 130 single-cell clus-
ters from the work by Hou & Ji (2024) for benchmarking.
This aggregated dataset originates from different studies
encompassing multiple tissues and cell types from human
and mouse, including lung, skin, blood, prostate, fetal de-
velopment, and many others (Fig. 2A). For performance
evaluation and benchmarking, we adapted scTab’s evalu-
ation framework (Fischer et al., 2024) with an additional
label-matching step, as done by Hou & Ji (2024). Specifi-
cally, for each cluster, given a label predicted by a model and
a ground truth label provided by the original dataset, we first
matched both labels to their corresponding Cell Ontology
(CL) database terms (Côté et al., 2006), to remove potential
ambiguities in LLM outputs. Then, using Ubergraph (Bal-
hoff et al., 2022), we compared the ground truth label first
with the LLM output matched against CL, then further with
all its child descendants in the ontology tree. If a match was
recorded between the ground truth label and either the LLM
label or the label of any of its descendants, the prediction
was recorded as TRUE. Otherwise, the match was unsuc-
cessful, and the prediction was recorded as FALSE. Lastly,
we aggregated these TRUE/FALSE predictions across all
the 1,130 tested clusters (Methods A.3).

As the Hou & Ji (2024) study showed that a now-outdated
version of GPT-4 was superior to SOTA expert models
such as SingleR (Aran et al., 2019), scType (Ianevski et al.,
2022), and CellMarker 2.0 (Hu et al., 2023) for cluster-
level cell type annotation, in our cluster-level analysis we
benchmarked DeepSeek-R1 only against the contempo-
rary GPT-4o (version 2025-0326) and DeepSeek-V3-0324.
DeepSeek-V3-0324 is an updated version of DeepSeek-V3,
the instruction-tuned and Reinforcement Learning with Hu-
man Feedback (RLHF)-fine-tuned version of the DeepSeek-
V3-base model (unavailable at the time of testing). No-
tably, DeepSeek-V3-0324 incorporates reasoning enhance-
ments from the first version of DeepSeek-R1 (DeepSeek-R1-
0120) via improved post-training and RL insights. However,
while both DeepSeek-R1 and DeepSeek-V3-0324 can ex-
plain their answers step-by-step, the R1 models were built
from the ground up as reasoning models, while V3-0324
learned to reason by distilling DeepSeek-R1-0120’s CoT
(DeepSeek-AI et al., 2025). Therefore, the R1 models are
placed in the Arena’s reasoning tier, while V3-0324 is con-
sidered reasoning-enhanced but classified as non-reasoning.
In contrast, GPT-4o has not been explicitly trained with
techniques like long-form CoT distillation or targeted RLHF
that reward internal reasoning steps and is considered a full
non-reasoning model.

Our evaluations revealed that both DeepSeek models out-
performed GPT-4o in annotation accuracy, with the highest
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Figure 2. Benchmarking performance of DeepSeek-R1 on clus-
ter level cell type annotation against DeepSeek V3 and GPT-4o.
A: Treemap of the cluster-level dataset composition across cell
types and tissues; the color scale and the area of each box indi-
cate the number of clusters per each unique tissue and cell type
combination. B: Bar plots comparing the accuracy and Macro-F1
score of the tested models on cluster-level cell type annotation
across the 1,130 clusters. GPT-4o-0326 was tested using the same
short prompts as R1 and V3. C: Bar plots showing the average
token count for cluster-level cell type annotation, averaged across
clusters. For reasoning models, the darker color represents the
reasoning token count (unique to reasoning models, representing
the computational steps during the internal thought process), and
the lighter bar shows the completion token count (representing all
the final generated answer text); for non-reasoning models, the bar
shows the completion token count.

cluster-level accuracies of 46.28% and 45.84% obtained by
DeepSeek-R1 with the long reasoning and short prompt
respectively, and the lowest accuracy of 36.99% obtained
by GPT-4o (Fig. 2B). DeepSeek-R1’s accuracy also con-
sistently surpassed DeepSeek-V3-0324 under the same
prompt (46.28% vs 41.77% for long prompts and 45.84%
vs 38.23% for short ones), with Macro-F1 evaluations fol-
lowing a similar trend (Fig. 2B; Supplementary Table S1).

We further examined how different prompting strategies
affected test-time computation by investigating the average
token count per query (Fig. 2C). For DeepSeek-R1, the
output includes internal reasoning tokens (representing the
model’s step-by-step thought process before generating the
final answer) along with the final output tokens intended for
the user. The completion token count for R1 is the sum of
both reasoning and final output tokens. In contrast, V3-0324
does not have explicit internal reasoning tokens; rather its
output consists solely of completion tokens. We found that,
on average, R1 used far more tokens than V3-0324: 5.27
times more for the long prompt, and 8.56 times more for the
short prompt. The absolute 0.44% increase in R1’s accuracy

when using a long versus a short prompt came at the cost of
average reasoning and completion token increases of 1.68
and 1.77-fold respectively, while for V3-0324, an absolute
3.54% accuracy gain came at the cost of 2.88-fold more
completion tokens.

Altogether, these results show that: 1) enhanced LLM logi-
cal reasoning during inference, particularly longer test-time,
translates into improved biological interpretation of cluster-
level differential gene signatures compared to lack of reason-
ing, and 2) the performance benefit of full reasoning (R1)
comes at a high token cost compared to learned reasoning
capabilities (V3-0324), and similarly for long versus short
prompts, in line with recent reports of sub-optimal token
consumption of full reasoning models (Nayab et al., 2025;
Lee et al., 2025; Fu et al., 2024; Han et al., 2025; Ballon
et al., 2025). Lastly, the performance metrics reported here
were lower than those of Hou & Ji (2024) for similar models
ran on the same cluster-level data because of the different
scoring strategy employed by Hou & Ji (2024), in which
they also considered partial matches between ground-truth
and predicted labels.

2.3. DeepSeek-R1 and its variants overperform expert
models on out-of-domain single-cell data and scTab
excels on known data

Compared to cluster-level annotation, the annotation of in-
dividual cells is more challenging due to higher granularity
and lower signal-to-noise ratio. Here, using the same eval-
uation methodology as for the cluster-level analysis, we
benchmarked DeepSeek-R1 first against the non-reasoning
model DeepSeek-V3, and further against three specialized
models: the two expert models scTab (Fischer et al., 2024),
a multi-class classifier, and scGPT (Cui et al., 2024), a
scRNAseq foundation model, and the single-cell-genomics-
pre-trained LLM C2S-Scale-1B (Rizvi et al., 2025). For
benchmarking, we chose DeepSeek-V3 as it is the back-
bone for both DeepSeek-V3-0324 and DeepSeek-R1 and
it does not incorporate any reasoning objective, scTab and
scGPT as recent SOTA models for scRNAseq single-cell
annotation, and C2S-Scale-1B as a representative tool for
LLM scRNAseq cell-type annotation using similar gene-list
prompts. C2S-Scale-1B is based on the Pythia-1B architec-
ture and fine-tuned with the Cell2Sentence (Levine et al.,
2024) framework on a wide array of scRNAseq datasets.

Our benchmarking utilized four datasets derived from Cel-
lXGene: 1) An in-domain validation dataset: 10, 000 cells
randomly subsampled from the 3.5 million cells used as
curated validation data by scTab (Fischer et al., 2024); 2)
similar to 1), an in-domain test dataset consisting of 10, 000
cells randomly subsampled from scTab’s curated test dataset
of 3.4 million cells; 3) An out-of-domain (OOD) random
dataset: 10, 000 cells randomly subsampled from the 7.9
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million cells added to CellXGene after May 15th 2023, rep-
resenting data not seen by neither scTab nor scGPT during
training or testing (Program et al., 2024) (Fig. 3A; 4) simi-
lar to 3), an OOD balanced tissue dataset, with a different
subset of randomly sampled 10, 000 cells from the same
set of 7.9 million cells, this time covering eight different
tissues, with 1, 250 sampled cells per tissue (Fig. 4A; Sup-
plementary Table S2; Methods A.1.2). As the fine-tuning
cut-off date for C2S-Scale-1B was later than the release
dates of the OOD datasets, the OOD cells were likely ex-
plicitly seen by the model before inference, particularly
given C2S-Scale-1B’s fine-tuning strategy with cell sen-
tences consisting of lists of marker genes and corresponding
ground-truth labels sourced from CellXGene (Program et al.,
2024) and the Human Cell Atlas (Regev et al., 2017). In
contrast, even though DeepSeek-R1 could have in princi-
ple also encountered material related to the OOD datasets
during training, the DeepSeek pre-training corpus is almost
exclusively open-access text and excludes scRNAseq ma-
trices or preprocessed marker-gene tables. Therefore, any
potential exposure would have likely been limited to state-
ments linking selected canonical marker genes to cell types,
rather than to the verbatim comprehensive gene lists used in
our prompts.

Before benchmarking, we first identified the optimal number
N of highly expressed genes per cell to include in DeepSeek-
R1’s prompt, using 1, 000 randomly subsampled cells from
the OOD random dataset for multiple values of N, ranging
from 5 (corresponding to the top 5 most highly expressed
genes per cell) to the full set of all genes expressed in a
cell (Fig. 3B). We found that providing the top 500 highly
expressed genes in the prompt yielded the highest accuracy
and the second-highest Macro-F1 score, and we therefore set
N = 500 as prompt input for subsequent analyses. For the
in-domain and random OOD datasets, we computed confi-
dence intervals (CI) for performance metrics, as well as pair-
wise comparisons of model performance (Methods A.3.4).

2.3.1. IN-DOMAIN BENCHMARKING

We first evaluated the performance of the reasoning
model DeepSeek-R1 against its non-reasoning counterpart
DeepSeek-V3 on the in-domain validation dataset using
both long and short prompts (Methods A.2). R1 outper-
formed V3 in both accuracy and Macro-F1 score, while
long prompts performed similarly to short prompts, with a
significant boost in long prompting for R1 (Fig. 3C, Sup-
plementary Fig. S1). We then benchmarked DeepSeek-R1
with long prompts against scTab, scGPT and C2S-Scale-
1B. Recognizing the classifier nature of the expert models
scTab and scGPT, we also evaluated R1 in classifier mode
by constraining the model to choose a single label from a
pre-defined set of labels given in the prompt (Methods A.2).
scTab imposed stricter data curation restrictions than scGPT,

Figure 3. Benchmarking performance of DeepSeek-R1 on
single-cell level cell type annotation against DeepSeek-V3 and
specialized cell type annotation models on in-domain and OOD
random datasets. A: Treemap plot showing the tissue and cell
type composition of the 10, 000 cells in the OOD random dataset,
added to the CellXGene database after May 15th, 2023, the cutoff
for both scGPT and scTab development. The color scale and the
area of each box indicate the number of cells per each unique
tissue and cell type combination. B: DeepSeek-R1’s accuracy and
Macro-F1 score as a function of N, the number of top expressed
genes included in the prompt, based on a subset of 1, 000 ran-
domly sampled cells from the OOD random dataset. C: Accuracy
and Macro-F1 for DeepSeek-R1, the two DeepSeek-R1 classifier
versions with the cell type label set of either scTab or scGPT, the
two expert models scTab and scGPT and C2S-Scale-1B on the
in-domain test dataset consisting of 10, 000 randomly sampled
cells. D: Accuracy and Macro-F1 score of DeepSeek-R1, the two
classifier versions of DeepSeek-R1 using the cell type label set of
either scTab or scGPT, the two expert models scTab and scGPT and
C2S-Scale-1B on the in-domain test dataset consisting of 10, 000
randomly sampled cells. E: Performance of the same six models
as in (D) on the OOD random dataset on all cells, as well as split
by whether the ground-truth cell type labels were within scTab’s
or scGPT’s labels.

such as requiring any cell type to have at least 5, 000 unique
cells present in at least 30 donors. In consequence, scTab’s
label set consisted of 164 cell types versus 593 for scGPT.
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For in-domain testing, we used scTab’s test data. As ex-
pected, scTab outperformed all models on this curated
dataset, followed by the C2S-Scale and DeepSeek-R1 clas-
sifiers with scTab and scGPT labels, with the classifiers
performing better than C2S-Scale on Macro-F1 scores
(Fig. 3D). scGPT and the unconstrained DeepSeek-R1
scored similar accuracy (Supplementary Fig. S1), highlight-
ing the capacity of general reasoning LLMs to annotate
single cells at similar levels to SOTA expert models, even
in controlled settings where all ground truth cell type labels
are within the dictionaries of the expert models.

2.3.2. OUT-OF-DOMAIN (OOD) RANDOM SAMPLING
BENCHMARKING

When tested on 10, 000 cells randomly downloaded from
CellXGene after 15th 2023 and unseen by either of the two
expert models, scTab and R1 with scGPT classifier scored
statistically indistinguishable highest accuracy (Fig. 3E, up-
per left panel, labeled All Cells; Supplementary Fig. S1).
scTab’s random OOD accuracy dropped by 46% relative
to in-domain, and C2S-Scale’s accuracy dropped by 40%.
In contrast, R1’s performance was more robust in-domain
and OOD, with relative drops of 14% for R1 with scGPT
classifier, 24% for R1 with scTab classifier, and 27% for un-
constrained R1. Similarly, scGPT’s accuracy only dropped
19% OOD relative to in-domain. The Macro-F1 score was
highest for R1 with scGPT classifier labels, followed by
scTab and unconstrained R1 (Fig. 3E, lower panel labeled
All Cells). The difference in ranking between accuracy and
Macro-F1 score reflects different performances on more
frequent and less frequent cell types, with models scoring
higher on Macro-F1 generally having a more balanced per-
formance across cell types of various frequencies.

The change in the models’ performance on OOD relative to
in-domain data reflects variations in batch effects, data dis-
tribution and curation, annotation granularities and unseen
cell types. Since the OOD cells were novel to scTab and
scGPT, we investigated how much of the models’ decrease
in performance was due to a lack of label overlap (in-label
and off-label cells). As expected, the accuracy of scTab re-
bounded to 64.26% when only assessing on its labels and its
Macro-F1 score to 45.60%, closely followed by R1 in clas-
sifier mode with scTab labels (60.98%), which nevertheless
scored lower Macro-F1 (34.37%, Fig. 3E, panels labeled in
scTab Labels). When evaluating only on cell types among
scGPT’s labels, both scTab and R1 classifier with scGPT la-
bels performed best (55.47% and 55.36% accuracy, Fig. 3E,
upper panel labeled in scGPT Labels). For the subset of
cells with labels not among scTab’s labels, R1 with scGPT
classifier and unconstrained R1 had the highest accuracy
and Macro-F1 scores, substantially outperforming scGPT,
despite the expert model and the R1 classifier having access
to the exact same set of labels (Fig. 3E, panels labeled off

scTab Labels). The non-zero performance of R1 with scTab
classifier was a consequence of the rare situations of R1
proposing a cell type label outside its instruction list from
the prompt (3.79% of cases for R1 with scTab labels, and
0.63% for R1 with scGPT labels), and that prediction being
correct (Fig. 1C). On cells off scGPT labels, unconstrained
R1 was the only model with non-zero performance (Fig. 3E,
panels labeled off scGPT Labels), underscoring DeepSeek-
R1’s adaptability for labeling less commonly encountered
cell types.

In summary, on the OOD random data, R1 in classifier mode
with scGPT labels emerged as the most reliable overall cell
type annotation strategy, consistently scoring high in most
settings. The model also showed comparable accuracy and
Macro-F1 scores when tested on the two sets of curated
cells (164 cell type labels for scTab and 593 for scGPT)
and performed on par with unconstrained R1 on cells off
scTab labels. We note that the peak performance of all tested
models was modest on the OOD random data, reflective of
the realistic situation of employing LLMs or expert models
for zero-shot annotating scRNAseq data. Even though all
cells in this dataset had been QCed and assigned ground
truth labels by their respective studies, this data has not
undergone additional cell-type-targeted curation, and all
cell types were considered before sampling, regardless of
their relative frequencies and granularities, in contrast to
scTab’s in-domain data.

2.3.3. OOD BALANCED TISSUE BENCHMARKING

To more accurately mimic real-world scenarios that re-
searchers might encounter as daily bioinformatics tasks,
we created an OOD balanced tissue dataset, in which we
sampled 1, 250 cells from eight selected tissues (blood, pe-
ripheral region of retina, kidney, breast, lung, trachea, pan-
creas and cerebellum), amounting to 10, 000 cells (Fig. 4A;
Methods A.1.2; Supplementary Table S2). On this aggre-
gated data, the R1 classifiers were the most accurate models
across all meaningful settings (Fig. 4B, upper panels). R1
with scGPT labels performed best when tested across all
cells, on cells off scTab labels and on cells within scGPT
labels, while R1 with scTab labels scored highest when re-
stricting the evaluation only to cells within scTab labels.
The unconstrained R1 model emerged as top performing by
Macro-F1 scoring in all scenarios except when restricting to
scTab labels, further demonstrating how DeepSeek-R1 can
generalize and reliably zero-shot annotate a wide variety of
cell types of various frequencies and with widely different
phenotypes.

To better understand why the OOD balanced-tissue bench-
mark was more challenging for the specialized models, es-
pecially scTab, we investigated the label overlap between
the labels in these datasets and scTab’s label set (Supple-
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Figure 4. Benchmarking performance of DeepSeek-R1 on
single-cell level cell type annotation against specialized cell
type annotation models on the OOD balanced tissue dataset. A:
Treemap plot showing the tissue and cell type composition of the
10, 000 cells belonging to eight selected tissues (1, 250 cells per
tissue) in the OOD balanced tissue dataset used for benchmarking,
added to the CellXGene database after May 15th, 2023, the cutoff
date for both scGPT and scTab development. The color scale and
the area of each box indicate the number of cells per each unique
tissue and cell type combination. B: Performance of the same six
models as in Fig. 3D and E, with the same figure layout. C: Accu-
racy and Macro-F1 score of the same six models as in (B), split by
the eight selected tissues, as well as by whether the ground-truth
cell type labels were part of scTab’s labels. D: Stacked barplots
showing the distribution of cell-level annotations across all six
models and all eight tissues, split by whether the predicted and
the ground truth label either matched perfectly or predicted was a
child of ground truth (recorded as correct predictions), or ground
truth was a child of predicted (incorrect prediction), or there was
no direct child-parent relation between predicted and ground truth
(also incorrect). For the lung tissue dataset, 382 of the 1, 250 cells
had no match of the ground truth label in Cell Ontology and were
therefore excluded from accuracy (B and C) and frequency (D)
evaluations.

mentary Fig. S2). While scTab covered some lineages
well, with 0.08% of blood cells, 24.96% of kidney cells,
41.44% of trachea cells, and 42.86% of lung cells falling
outside its vocabulary, it missed a larger fraction of the

remaining four tissues, with 57.04% of retina, 62.24% of
breast, 74.08% of cerebellum and virtually the entire pan-
creas dataset (98.48%) falling outside of scTab’s 164 labels.
In total, 50.44% of cells with a ground truth Cell Ontology
match (Supplementary Fig. S3) were off label for scTab,
despite all eight tissues included in scTab’s classification.
This discrepancy might have happened either because the
newly added datasets included novel cell types that scTab’s
datasets did not include, or because these cell types were
not large or frequent enough to pass scTab’s strict curation
criteria.

Further detailed breakdown of tissue-specific performance
showed interesting patterns for the different models
(Fig. 4C). For blood cells, the two DeepSeek-R1 classi-
fiers yielded the best performance in both accuracy and
Macro-F1 score, while scTab and scGPT performed much
more poorly (Fig. 4C, panels labeled All Cells, first row), de-
spite almost complete cell type label overlap (99.92%) with
scTab and blood being the most frequent tissue in scTab’s
training set. A closer inspection of the cell-level predictions
(Fig. 4D) showed that the specialized models, especially
scTab and C2S-Scale-1B, often missed the right granularity
to match the ground-truth data (e.g. predicting leukocyte
for a ground-truth label of naı̈ve B cell). This suggests gen-
eralization challenges for the specialized models on novel
datasets, despite having access to the right labels and having
encountered a large number of similar cells during training.
In contrast, when given specific indications to choose from
either scGPT’s or scTab’s set of labels, DeepSeek-R1 in
classifier mode correctly labeled a much larger fraction of
cells, with even greater granularity than the ground truth
data, providing additional biological information.

For pancreas, scTab’s training corpus only listed six non-
specific and infrequent cell types: B cell, T cell, endothelial
cell, mast cell, mature NK T cell, and plasma cell (Supple-
mentary Table S3). In contrast, the pancreas OOD dataset
analyzed in this study (Muraro et al., 2016) consisted of ten
highly specific pancreatic cell types: pancreatic A cell, pan-
creatic D cell, pancreatic ductal cell, pancreatic PP cell, type
B pancreatic cell, endothelial cell, mesenchymal cell, pan-
creatic acinar cell, pancreatic endocrine cell, and pancreatic
epsilon cell. Endothelial cells, representing less than 5% of
all pancreatic cells, were the only common cell type between
the two datasets, while acinar cells represent 80−85% of the
entire pancreatic tissue mass. Due to very low cell type label
overlap (1.52%), scTab and the DeepSeek-R1 scTab classi-
fier performed poorly on this dataset (Fig. 4C). In contrast,
while scGPT’s performance was also poor (3.4%), contex-
tualizing DeepSeek-R1 with scGPT’s labels increased its
accuracy to 80.9% (compared to 50.7% for unconstrained
R1), further suggesting generalization struggles of expert
models. Closer inspection showed that the predictions of
the two expert models scTab and scGPT were too general,
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borrowing similar cell types from other tissues (Fig. 4D).

On the breast tissue, DeepSeek-R1 in scGPT classifier mode
showed the highest accuracy, while scTab had the high-
est Macro-F1 score (Fig. 4C). The performance of uncon-
strained R1 was particularly poor in accuracy (2.9%), due
to granularity issues such as predicting myoepithelial cell
instead of a ground truth of basal myoepithelial cell or mis-
taking the two lineages basal and luminal. The lung data
showed highest accuracy for scTab and highest Macro-F1
score for unconstrained R1, likely a consequence of high
cell type label overlap with scTab (Supplementary Fig. S2),
as well as many lung cells used in scTab’s training. For
cerebellum, the unconstrained R1 scored highest in both
accuracy and Macro-F1 score, with the overwhelming ma-
jority of their correct predictions having the exact same label
as the ground truth data, and very few incorrect predictions
of lower granularity (Fig. 4D). For trachea and kidney, scTab
yielded the highest accuracy and Macro-F1 score (Fig. 4C),
likely also a consequence of high cell type label overlap
(Supplementary Fig. S2). Lastly, results on the peripheral
region of retina tissue showed highest accuracy of R1 in
scGPT classifier mode (Fig. 4C) and high percentages of
perfect matches for all models except unconstrained R1
(Fig. 4D), even though unconstrained R1 was the model
with the highest Macro-F1 score.

Taken together, these analyses on the OOD balanced tis-
sue dataset revealed that balancing the tissue distribution
and assessing cell type annotation performance separately
for each tissue is essential for understanding model per-
formance. Overall, the DeepSeek-R1 model demonstrated
superior adaptability, especially in classifier mode when
contextualized with appropriate label constraints from the
large scGPT label vocabulary.

3. Conclusion and Discussion
Formulating the cell type annotation problem as a bench-
marking task is inherently difficult. A necessary ingredient
for successful cell typing is accurately labeling biological
knowledge as either known or novel. In practice, some cell
types are frequent, generic and display a distinctive marker
profile, making them relatively straightforward to annotate
regardless of the strategy employed (manually investigat-
ing a list of marker genes, querying an LLM, or running a
specialized cell type annotation model). On the contrary,
other cell types are infrequent across donors, their function-
ality is ambiguous, and their gene expression profiles are
non-specific. Annotating such cells turns out to be difficult
regardless of the approach used. Moreover, researchers of-
ten disagree on the most appropriate ground truth annotation
label, or even whether such groups of cells indeed represent
a novel cell type or are better characterized as an alternative
cellular state of an already-existing cell type (Domcke &

Shendure, 2023). Nevertheless, rare and ambiguous cell
types are crucial for novel biological discoveries (Alečković
et al., 2022). Such aspects turn cell type annotation into
a complex problem for which even evaluating the quality
of a given solution, is challenging and subject of on-going
debate (Domcke & Shendure, 2023). Therefore, the ideal
real-world cell type annotation procedure should not only
be accurate, but also versatile and adaptable to different
scenarios, some of which are hard to capture a priori as a
set of pre-defined rules.

Building on this rationale, we hypothesized that recently
developed general-purpose reasoning LLMs could have the
potential to positively contribute to the scRNAseq cell type
annotation toolbox, by striking an interesting balance be-
tween accuracy and discovery. To this end, we examined the
feasibility of employing DeepSeek-R1-0528 to perform both
cluster-level and single-cell level annotations in scRNAseq
data in a zero-shot setting, without specialized fine-tuning.
Running the LLMs zero-shot is key, as fine-tuning requires
both existing labeled data and expert bioinformatics exper-
tise, which can be a bottleneck in real-world situations.

By prompting DeepSeek-R1 with a list of ranked marker
genes, we assessed its capacity to identify cell types through
interpretable CoT reasoning that captures canonical mark-
ers, biological functions, and tissue-specific knowledge. We
found that LLM reasoning enhanced cell type label pre-
diction at both cluster and single-cell levels. In single-cell
datasets, our results revealed that running DeepSeek-R1 in
classifier mode, with its prompt contextualizing a large set
of cell type labels to choose from, improved its performance,
leading to overall superior adaptability and generalizability
across tissues and datasets. When comparing DeepSeek-R1
and its classifier variants with the three specialized models
scTab, scGPT and C2S-Scale-1B on the curated scTab in-
domain data, general LLMs performed better than scGPT,
while lagging behind scTab and C2S-Scale-1B. However,
on random OOD data unseen by the expert models, the
DeepSeek-R1 scGPT classifier performed on par with scTab,
outperforming the other models. The expert models faced
generalization challenges on unseen data (di Montesano
et al., 2025) and were outperformed by DeepSeek-R1 and
its classifier versions on a separate OOD dataset consisting
of cells from eight relatively common tissues. Notably, half
of the cells in this OOD balanced tissue dataset fell outside
scTab’s 164-label vocabulary, highlighting how strict cura-
tion criteria can inadvertently exclude biologically relevant
but less frequent cell types, leading to decreased generaliza-
tion capabilities.

Our study demonstrated that annotating scRNAseq data with
general reasoning LLMs is reliable and interpretable. Em-
ploying such models for scRNAseq cell type annotation will
allow the single-cell community to directly benefit from
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the AI foundation models and biological reasoning innova-
tion wave (Fallahpour et al., 2025), with new SOTA general
LLMs released very frequently. In addition, DeepSeek-R1’s
interpretability and the biological context of its predictions
can provide a transparent rationale to cell type annotation
similar to manual marker-based annotations. In some situa-
tions, DeepSeek-R1 outputted correct predictions of higher
granularity than ground-truth labels, reframing the cell type
annotation process as a learning opportunity for researchers.
Its adaptability counteracted the traditional limitation of
tissue-specific training of expert models, allowing on-the-
fly generalization to real-world situations and potentially
revealing novel cellular biology.

At the same time, our study demonstrated that scRNAseq
cell type annotation remains a challenging problem to eval-
uate and solve. Peak cluster-level and single-cell-level per-
formance was overall modest for any dataset which was
not heavily curated by removing infrequent cell types. This
happened because real-world randomly-drawn unseen data
remains difficult to annotate at the level of granularity pro-
posed by the original study. Some proposed cell type labels
are by design very specific, with potentially highly simi-
lar expression profiles to other cell types, making accurate
differentiation challenging. Additionally, the evaluation
criterion employed here was stringent: we required the pre-
dicted label to be at least as granular as the ground-truth
label, leading to lower performance measures than reported
elsewhere.

As recent AI agentic workflows that use LLMs for cell
type annotation have been shown to perform better than
the models alone (Mao et al., 2025; Gao et al., 2024), we
hypothesize that the entire scRNAseq cell type annotation
process can be automated with a suite of specialized agents
orchestrated by an LLM reasoning “brain” (Fig. 5). For
example, the Data Ingestion Agent can take raw scRNAseq
data and run basic quality checks. Next, the Clustering
Agent can sort cells into subclusters, while an Annotation
Agent can assign preliminary labels at either the cluster
level or individual cell level. After that, a Quality Control
(QC) Agent, backed by an Ontology Agent, a Label Verifier
Agent, and a Reasoning Verifier Agent, can examine the
given labels against known marker references and ontol-
ogy databases. At any point, the orchestrator brain can call
for deeper checks or bring in human expertise. Finally, an
Output Agent can package the refined annotations, key per-
formance metrics, and a summary of how the decisions were
made for researchers to evaluate. Because DeepSeek-R1 is
flexible and requires no domain-specific training, it could
serve as the central orchestrator brain, iteratively integrating
and verifying knowledge from the individual sub-agents
with minimal human intervention. This multi-agent system
is both interpretable and adaptable: the actions and rationale
of each sub-agent remain clearly documented, preserving

Figure 5. Proposed multi-agent LLM-based workflow for scR-
NAseq cell type annotation. The LLM Orchestrator brain co-
ordinates specialized sub-agents, each handling a distinct step of
the scRNAseq bioinformatics pipeline from data ingestion and
clustering to annotation and quality control. The Data Ingestion
Agent loads raw scRNAseq data and performs initial checks; the
Clustering Agent partitions cells into groups; and the Annotation
Agent uses marker-gene prompts to assign preliminary labels. A
QC layer, supported by the Ontology Agent and various verifier
agents, cross-references known marker databases to flag potential
hallucinations. Finally, the Output Agent consolidates refined an-
notations, metrics, and summary reports for researchers’ review.
This orchestrated setup ensures transparency, modularity, and flex-
ibility in automating the cell type annotation process.

the transparency associated with manual marker gene re-
view, and the orchestrator’s reasoning capabilities allow it
to readily handle new OOD cell types. We anticipate that
such automations could substantially accelerate the rapidly
evolving landscape of single-cell research, boost efficiency,
and allow scientists to focus on deeper biological questions.
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Jané-Valbuena, J., Yoon, C. H., Rozenblatt-Rosen, O.,
Shalek, A. K., Regev, A., and Garraway, L. A. Dissecting
the multicellular ecosystem of metastatic melanoma by
single-cell rna-seq. Science, 352(6282):189–196, 2016.
doi: 10.1126/science.aad0501.

Tordjman, M., Liu, Z., Yuce, M., Fauveau, V., Mei, Y.,
Hadjadj, J., Bolger, I., Almansour, H., Horst, C., Par-
ihar, A. S., Geahchan, A., Meribout, A., Yatim, N.,
Ng, N., Robson, P., Zhou, A., Lewis, S., Huang, M.,
Deyer, T., , et al. Comparative benchmarking of the
deepseek large language model on medical tasks and clin-
ical reasoning. Nature Medicine, 31:1–1, 2025. doi:
10.1038/s41591-025-03726-3.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30 (NeurIPS 2017), pp. 5998–6008,
2017. doi: 10.48550/arXiv.1706.03762.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2023.

Wolf, F. A., Angerer, P., and Theis, F. J. Scanpy: large-scale
single-cell gene expression data analysis. Genome Biol-
ogy, 19(1):15, 2018. doi: 10.1186/s13059-017-1382-0.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic
chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493, 2022.

12

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf


Biological Reasoning through Natural Language Enables Generalizable Zero-Shot Cell Type Annotations

A. Methods
A.1. Benchmarking datasets

A.1.1. CLUSTER-LEVEL DATA

For the cluster-level analysis, we utilized the data curated by Hou & Ji (2024), a study which assessed GPT-4’s ability
to annotate single-cell clusters based on marker-gene information. The data had been derived from a comprehensive list
of human and mouse scRNAseq datasets spanning a wide range of tissues (Fig. 2A). We downloaded the annotated data
containing human and mouse clusters (excluding non-model mammals) through the GitHub repo associated with the paper:
https://github.com/Winnie09/GPTCelltype_Paper/blob/master/anno/compiled/all.csv. In
the study, each cluster was assigned a set of 10 marker genes identified by a Wilcoxon-based differential-expression analysis.
We used these top 10 marker genes per cluster to prompt the LLMs in a zero-shot manner. If metadata (e.g., tissue name
and/or disease) was available, we appended it to the prompt, as described below.

A.1.2. SINGLE-CELL LEVEL DATA

In-Domain scTab datasets We obtained the dataset from the scTab publication (Fischer et al., 2024), encom-
passing both validation and test pools of curated single cells. Specifically, we downloaded the data through the
training-data checkpoint from https://github.com/theislab/scTab/tree/devel using this specific link:
https://pklab.med.harvard.edu/felix/data/merlin_cxg_2023_05_15_sf-log1p.tar.gz. To
limit computational and API overhead, we randomly subsampled 10, 000 cells from both the validation and the test sets for
our benchmarking. We call these two pools of 10, 000 cells in-domain.

Out-Of-Domain (OOD) random dataset To evaluate generalizability beyond the training distribution of scTab, we
curated a subset of scRNAseq data from CellxGene (Program et al., 2024) with the following characteristics: human, primary
(the study that originally generated the dataset), non-diseased, and added to the database after May 15th 2023 – the training
cutoff date for both scTab and scGPT development. We call such data Out-Of-Domain (OOD). A custom Python script first
built an index of new unique cell-specific identifiers absent from the 2023-05-15 release and present only in the 2024-07-01
release, then downloaded those cells in chunked form, storing the data in partitioned .h5ad files. After assembling all
downloaded cells, we filtered out the cells labeled as unknown cell type and randomly subsampled 10, 000 cells, reflecting
the random OOD pool of normal tissues from CellxGene that scTab’s training and testing had not yet encountered. All cells
passed our QC assessment.

OOD balanced tissue dataset Beyond random sampling, we also built a balanced OOD dataset of 10, 000 cells that more
evenly covered multiple tissue types. Specifically, from the same post–2023-05-15 normal data obtained as explained above,
we chose eight representative datasets of interest, as assessed by three criteria: (i) a relatively high number of unique cell
types profiled; (ii) a relatively low fraction of cells labeled as unknown; (iii) a relatively well-studied tissue. We randomly
drew 1, 250 cells from each tissue dataset, totaling 10, 000 cells (see Supplementary Table S2) for an overview of the
datasets we chose from). The tissues we chose were blood, peripheral region of retina, breast, lung, trachea, kidney, pancreas
and cerebellum. For the lung dataset, 382 of the 1, 250 cells had no match of the ground-truth label in Cell Ontology and
were therefore excluded from evaluations.

A.2. Prompting

We crafted prompt templates that encode key metadata (e.g., tissue of origin, disease status) and a ranked gene list (either
cluster-level marker genes obtained via differential expression or single-cell–level top highly expressed genes). We tested
both a long prompt, which encouraged a thorough rationale, as well as a shorter variant, which requested a briefer answer.

A.2.1. CLUSTER-LEVEL

We used a Python script to create prompts taking as input a CSV file in which each row described one cluster, including
the top 10 marker genes determined by the differential expression analysis performed by Hou & Ji (2024), as well as
relevant metadata (e.g. tissue, disease status, etc.). The script outputted a line-delimited JSON file suitable for ingestion by
downstream LLM pipelines.

We constructed both a long prompt and a short prompt. Below is the exact text used for the long prompt:
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"You are an expert in single-cell biology.\n\n"
"Below is metadata for one cluster of cells along with its marker genes:\n"
"Tissue: [TISSUE_PLACEHOLDER]\n"
"Disease: [DISEASE_PLACEHOLDER]\n"
"Development stage: [DEVELOPMENT_STAGE_PLACEHOLDER]\n"
"Marker genes: [GENE_LIST]\n\n"
"Please identify what cell type this might be, as granular and accurate as possible.\n"
"At the end of your response, strictly place the final lines in this format:\n\n"
"Cell type: X\n"

Conversely, the short prompt added the instruction to “keep your response concise and clear”, while otherwise preserving
the exact same structure:

"Please identify what cell type this might be, as granular and accurate as possible.\n"
"Keep your response concise and clear.\n"
"At the end of your response, strictly place the final lines in this format:\n\n"
"Cell type: X\n"

A.2.2. SINGLE-CELL LEVEL

Below is the skeleton of our long prompt for querying LLMs to annotate a single cell:

"You are an expert in single-cell biology.\n\n"
"Below is metadata for one cell, followed by a list of its genes in descending expression:\n"
"Tissue: [TISSUE]\n"
"Disease: [DISEASE]\n"
"Development stage: [DEVELOPMENT_STAGE]\n"
"Genes: [GENE_LIST]\n\n"
"Please identify what cell type this might be, as granular and accurate as possible.\n"
"At the end of your response, strictly place the final lines in this format:\n\n"
"Cell type: X\n"

As in the case of the cluster-level annotations, the short prompt contained the additional instruction: “Keep your response
concise and clear.”

A third variant of prompt incorporated a user-provided list of cell-type labels from which the LLM was tasked to choose,
effectively enforcing the model to act like a multi-class classifier. In our experiments, we used two different sets of classifier
labels: the labels curated by scTab (Fischer et al., 2024), and the labels provided by scGPT (Cui et al., 2024). The relevant
lines added to the prompt were:

"Here is a list of all possible cell types you must choose from:\n"
"[MULTILINE_STRING_OF_CELL_TYPES]\n\n"
"Please pick the single best matching cell type from this list.\n"

We tested multiple values of N (the number of top expressed genes) for prompting: 5, 10, 25, 50, 100, 200, 500, 1, 000,
2, 000, as well as all the non-zero expressing genes. We settled on top 500 most highly expressed genes for final input
prompts, as they achieved top accuracy and Macro-F1 score in our testing setting.

A.3. Performance evaluation

To evaluate the performance of the tested models, we considered as ground truth the labels curated and proposed by the
original dataset. In order to compare model predictions with ground-truth labels, we first harmonized both predicted and
ground-truth labels to official Cell Ontology (CL) terms, as done by Hou & Ji (2024). This step was necessary because,
unlike multi-class classifier models like scTab, where the predicted cell-type labels are standardized to CL terms, LLM
outputs could vary by case, wording, or description, even if conceptually in agreement with the ground-truth label. After the
harmonization process, we removed the cells with no match (empty match) of the ground-truth label with the OLS database,
specifically 94 cells from the in-domain validation pool, 87 cells from the in-domain test pool, 31 cells from the OOD
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random dataset, and 382 lung cells from the OOD balanced tissue dataset. Next, given the unambiguous ground-truth label
and unambiguous predicted label, we applied the scTab framework (Fischer et al., 2024) as described in their GitHub page
(https://github.com/theislab/scTab/tree/devel). Specifically, a match was achieved (return TRUE) if
the predicted label was either identical (exact match) or a Cell Ontology descendant (predicted subtype) of the ground-truth
label. Conversely, if the ground-truth label was a child of the predicted label or the classes shared no direct parent–child
relationship, the result was incorrect (return FALSE). In other words, the predicted labels were not penalized for higher
granularity than ground-truth labels. Finally, we compiled the cell-level binary TRUE/FALSE summary statistics to compute
overall prediction accuracies and Macro-F1 scores for each dataset and for each model, as detailed below.

A.3.1. ACCURACY

We computed the accuracy score as follows:

Accuracy =
number of cells correctly predicted

total number of cells

A.3.2. MACRO-F1

To obtain the macro-averaged F1 score, for every ground-truth cell-type label ℓ, we counted:

• TPℓ: cells whose ground-truth label is ℓ and were correctly predicted as either ℓ or an ontology descendant of ℓ
(TRUE),

• FNℓ: cells whose ground-truth label is ℓ and were incorrectly predicted (FALSE),

• FPℓ: cells whose ground-truth label is not ℓ but whose predicted label is ℓ (FALSE).

We compute the per-label precision and recall metrics:

Precisionℓ =
TPℓ

TPℓ + FPℓ
, Recallℓ =

TPℓ

TPℓ + FNℓ

And the per-label F1 score:

F1ℓ = 2× Precisionℓ × Recallℓ
Precisionℓ + Recallℓ

The Macro-F1 score is the average over all L ground-truth labels:

Macro-F1 =
1

L

L∑
ℓ=1

F1ℓ

A.3.3. WEIGHTED-F1

Weighted-F1 score gives each cell type label a weight proportional to its relative frequency in the dataset. Therefore, if for
every ground-truth label ℓ we define nℓ = TPℓ + FNℓ as the number of cells with the true label ℓ, then

Weighted-F1 =

∑
ℓ nℓ F1ℓ∑

ℓ nℓ

A.3.4. BOOTSTRAPPED CONFIDENCE INTERVALS

To complement the point estimates for the single-cell in-domain and random OOD evaluations, we report 95% confidence
intervals (CI) around accuracy and Macro-F1 values, obtained through a percentile bootstrap procedure. For each dataset
consisting of n cells (in-domain validation 9,906 cells, in-domain test 9,913 and OOD random 9,969), we drew 10,000
bootstrap resamples, each consisting of n cell indices selected with replacement from the original index set. The same
sampled indices were applied to the ground-truth vector and to the prediction vectors, to generate the bootstrapped evaluation
vectors for all models. On every bootstrapped evaluation vector, we recomputed the metric of interest (accuracy and
Macro-F1) for each model exactly as described above. For each model, we took the 2.5-th and 97.5-th percentiles of the
10, 000 bootstrap replicates as the lower and upper bounds of the 95% CI. As the OOD balanced tissue dataset was composed
specifically of eight tissues with only 1, 250 cells/tissue, we didn’t bootstrap CIs for this dataset.
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A.3.5. PAIR-WISE STATISTICAL SIGNIFICANCE TESTING

To determine whether performance differences between models were significantly different than expected by sampling
variability, we carried out pair-wise significance tests separately for each dataset and for each metric (accuracy and
Macro-F1). All p-values were adjusted for multiple testing by the Benjamini–Hochberg (Benjamini & Hochberg, 1995)
false-discovery-rate (FDR) procedure with α = 0.05.

Accuracy For every pair of models, we formed a 2× 2 contingency table:

model B

correct wrong

model A correct n11 n10

model A wrong n01 n00

where n10 denotes cells called as correct by model A but wrong by model B and vice versa for n01. Under the null
hypothesis that the two models have identical accuracy, the number of discordant pairs favouring model A, n10, follows
a Binomial

(
N, 0.5

)
distribution with N = n01 + n10. We therefore applied the exact McNemar test (McNemar, 1947)

(two-sided, binomial formulation) implemented in statsmodels (Seabold & Perktold, 2010) 0.14.4. Given a total of k models
tested, the resulting exact p-values were FDR-adjusted across the

(
k
2

)
model pairs within the same dataset.

Macro-F1 Because Macro-F1 is not a per-cell statistic, we assessed significance via a paired non-parametric bootstrap
(Efron, 1979) with 10, 000 resamples. For each resample, we first sampled n cell indices with replacement from the
dataset (where n is the number of evaluation cells) as described at the beginning of this subsection. We then recomputed
the Macro-F1 score for every model on the resample and recorded the difference for each pair of models A and B as
∆ = Macro–F1A − Macro–F1B . The empirical distribution of ∆ over the 10, 000 replicates approximates its sampling
distribution. A two-sided p-value was obtained as

p = 2×min
{
Pr(∆ ≤ 0), Pr(∆ ≥ 0)

}
.

Bootstrap p-values for all model pairs were then FDR-corrected as described above.

A.4. scGPT

We employed the scGPT (Cui et al., 2024) single-cell foundation model for benchmarking cell-type annotation at the single-
cell level. Our approach utilized the scGPT package and followed established procedures from the scGPT GitHub tutorial for
zero-shot annotation via embedding-similarity search, available here: https://github.com/bowang-lab/scGPT/
blob/main/tutorials/Tutorial_Reference_Mapping.ipynb. The input data was provided as AnnData
objects (.h5ad files) containing raw gene-expression counts. Initial preprocessing involved filtering the genes present in the
input data to retain only those included in the scGPT model’s vocabulary, ensuring compatibility between the input-data
features and the pre-trained scGPT model. Subsequently, we identified the top 3,000 highly variable genes (HVGs) within the
filtered gene set using the scanpy.pp.highly variable genes function with the flavor=’seurat v3’ setting from the scanpy (Wolf
et al., 2018) Python package. The AnnData object was then subsetted to include only these 3,000 HVGs for downstream
processing.

Cell embeddings were generated using the scgpt.tasks.embed data function from the scGPT library, applying the pre-trained
scGPT whole-human model (checkpoint-0623 from scGPT GitHub) to obtain a low-dimensional representation for each
cell.

Zero-shot cell-type annotation was performed using a nearest-neighbor approach based on these cell embeddings, which is
the method recommended in scGPT tutorials. We utilized a pre-computed FAISS index built from reference cell embeddings
derived from the CellXGene atlas (downloaded following scGPT GitHub instructions). For each cell in our input dataset, we
queried the FAISS index to find the 50 nearest neighbors (k = 50) within the reference-atlas embedding space. The cell-type
labels associated with these 50 neighbors were retrieved from the reference metadata. A final cell-type prediction for each
input cell was determined by majority voting among the labels of its 50 nearest neighbors, using the voting function adapted
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from the scGPT repository’s utility scripts. The resulting single-cell-level predictions were saved alongside ground-truth
labels for subsequent evaluation.

A.5. scTab

We also employed the scTab (Fischer et al., 2024) multi-class classification model for benchmarking cell-type annotation at
the single-cell level, following the scTab GitHub tutorials available here: https://github.com/theislab/scTab.
Input data consisted of AnnData objects (.h5ad files) with raw gene-expression counts in the .X attribute. Consistent with
the scTab protocol, the feature space was first streamlined. Genes present in the input data were filtered and ordered to
match the reference gene set used for model training. This step ensured that the input-matrix dimensions and gene order
align precisely with the model’s expectations. The streamline count matrix function from the cellnet library was utilized for
this alignment (Fischer et al., 2024). Following gene alignment, the count matrix underwent normalization. Each cell’s
expression profile was scaled to a total count of 10, 000, followed by a log(x + 1) transformation. This normalization
method is standard practice for the scTab model.

For inference, we used the same pre-trained scTab checkpoint from their official GitHub tutorial (scTab-
checkpoints/scTab/run5/val f1 macro epoch=41 val f1 macro=0.847.ckpt). Corresponding model hyperparameters were
loaded from the associated hparams.yaml file within the same directory. The TabNet classifier architecture was initialized
using these parameters and loaded with the extracted state dictionary from the checkpoint. Inference was performed on
the normalized data using a PyTorch DataLoader for batch processing, leveraging GPU acceleration. The model outputs
raw logits, from which the predicted class index (representing the cell type) was determined using an argmax operation.
Finally, these numeric prediction indices were mapped to human-readable cell-type labels using the official mapping file
(merlin cxg 2023 05 15 sf-log1p minimal/categorical lookup/cell type.parquet). The resulting single-cell-level predictions
were saved alongside ground-truth labels for subsequent evaluation.

A.6. Cell2Sentence-Scale-1B

We followed the exact instructions on the cell2sentence official GitHub-page tutorials for zero-shot cell-type annota-
tions, especially tutorials 0 and 6 at the following link as of 10 June 2025: https://github.com/vandijklab/
cell2sentence/tree/master/tutorials. Explicitly, we did not perform the simple QC steps recommended in
tutorial 0, as the data we had were already QCed. In addition, we did not have ”batch condition” metadata for our samples,
and we used the “sex” metadata information when available. We used the newest release of the cell2sentence-scale model
C2S-Scale-Pythia-1b-pt (https://huggingface.co/vandijklab/C2S-Scale-Pythia-1b-pt) in our eval-
uation, as this was the only new model released by the cell2sentence-scale team at the time of testing. We used the default
number of 200 genes in the prompt, as shown in the GitHub tutorials.

B. Impact Statement
This paper presents work whose goal is to advance the field of Bioinformatics through advances in GenAI technologies.
There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.
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C. Supplementary Figures

Figure S1. Heatmaps of statistical significance tests for the in-domain validation (top), in-domain test (middle), and OOD random (bottom)
datasets for accuracy and Macro-F1 score, as described in Methods. For each dataset, we report two heatmaps: 1) Left-hand panels
(yellow-green colormap): Benjamini-Hochberg-adjusted (Benjamini & Hochberg, 1995) p-values from the exact McNemar (McNemar,
1947) test applied to per-cell accuracy. 2) Right-hand panels (orange–purple colormap): Benjamini-Hochberg-adjusted p-values from a
paired, non-parametric bootstrap (Efron, 1979) test on Macro-F1 score with 10, 000 bootstrap resamples.
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Figure S2. Bar plot showing the proportion of off-scTab-label (Fischer et al., 2024) cells by tissue types in the OOD balanced tissue dataset,
with shades of color showing whether they were outside the labels employed by scTab (darker color indicates off-label). Percentages show
the proportion of off-label cells for each tissue type, and absolute numbers show the number of cells in each category accordingly.

Figure S3. Bar plot showing the proportion of missing-label cells by tissue types in the OOD balanced tissue dataset, with shades of color
showing whether they don’t have a ground truth cell type from the Cell Ontology Database (Côté et al., 2006) (darker color indicates
missing-label). Percentages show the proportion of missing-label cells for each tissue type, and absolute numbers show the number of
cells in each category accordingly.
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D. Supplementary Tables

Table S1: Detailed Performance of Models

Dataset Model and Prompt Mode Accuracy Macro-F1 Weighted F1 Acc. CIlo Acc. CIhi Macro-F1lo Macro-F1hi

Cluster-level R1 long 0.4628 0.3069 0.4876
Cluster-level R1 short 0.4584 0.2914 0.4811
Cluster-level V3-0324 long 0.4177 0.2996 0.4575
Cluster-level V3-0324 short 0.3823 0.2656 0.407
Cluster-level GPT-4o-0326 short 0.3699 0.1991 0.3838
sc in-domain val R1 long 100genes 0.4180 0.2492 0.4241 0.4082 0.4276 0.2357 0.2648
sc in-domain val R1 short 100genes 0.4044 0.2309 0.4050 0.3947 0.4142 0.2184 0.2458
sc in-domain val V3 long 100genes 0.3279 0.1501 0.3417 0.3185 0.3373 0.1392 0.1619
sc in-domain val V3 short 100genes 0.3273 0.1498 0.3411 0.3178 0.3366 0.1385 0.1616
sc in-domain test R1 500genes (unconstrained) 0.4596 0.2792 0.4988 0.4497 0.4691 0.2680 0.2970
sc in-domain test R1 500genes (scGPT classifier) 0.5517 0.2915 0.5676 0.5420 0.5614 0.2835 0.3091
sc in-domain test R1 500genes (scTab classifier) 0.5926 0.3083 0.5948 0.5827 0.6024 0.2978 0.3275
sc in-domain test scTab 0.8837 0.7900 0.8852 0.8773 0.8900 0.7726 0.8083
sc in-domain test scGPT 0.4708 0.2881 0.4684 0.4612 0.4808 0.2695 0.3027
sc in-domain test C2S-Scale-200genes 0.6188 0.2770 0.5740 0.6090 0.6281 0.2676 0.2943
OOD-random R1 500genes (unconstrained) 0.3362 0.2073 0.3572 0.3269 0.3457 0.2036 0.2290
OOD-random R1 500genes (scGPT classifier) 0.4721 0.2230 0.4829 0.4623 0.4820 0.2092 0.2370
OOD-random R1 500genes (scTab classifier) 0.4504 0.1667 0.4369 0.4405 0.4602 0.1663 0.1860
OOD-random scTab 0.4730 0.2158 0.4544 0.4630 0.4829 0.2105 0.2351
OOD-random scGPT 0.3817 0.1677 0.3895 0.3720 0.3914 0.1636 0.1855
OOD-random C2S-Scale-200genes 0.3736 0.1407 0.3434 0.3640 0.3833 0.1350 0.1551
OOD balanced-tissue R1 500genes (unconstrained) 0.2818 0.2327 0.3016
OOD balanced-tissue R1 500genes (scGPT classifier) 0.3771 0.2101 0.3728
OOD balanced-tissue R1 500genes (scTab classifier) 0.2375 0.1674 0.2493
OOD balanced-tissue scGPT 0.2167 0.1371 0.2339
OOD balanced-tissue scTab 0.2097 0.1598 0.1874
OOD balanced-tissue C2S-Scale-200genes 0.2262 0.1121 0.2245
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Biological Reasoning through Natural Language Enables Generalizable Zero-Shot Cell Type Annotations

Table S2: Dataset Tissue Cell Counts

tissue cell count unknown unique cell types dataset total

peripheral region of retina 1062127 0 29 1378557
macula lutea 300870 0 29 1378557
macula lutea proper 15560 0 23 1378557
dorsolateral prefrontal cortex 741446 0 18 741446
blood 685024 0 25 685024
frontal cortex 448964 8200 5 684621
cingulate cortex 72550 3257 5 684621
temporal cortex 64590 2312 5 684621
cerebral cortex 39001 255 4 684621
insular cortex 32659 1494 5 684621
primary motor cortex 8259 141 5 684621
lateral ganglionic eminence 6383 65 4 684621
caudal ganglionic eminence 4669 29 4 684621
ganglionic eminence 4120 6 3 684621
medial ganglionic eminence 3426 11 3 684621
breast 525298 26472 25 525298
decidua 121211 2373 21 283558
decidua basalis 85254 0 22 283558
placenta 66104 395 21 283558
blood 10989 0 12 283558
primary visual cortex 241077 0 18 241077
skin epidermis 99508 0 20 195739
dermis 96231 0 20 195739
lung 46325 0 59 193108
lower lobe of left lung 46091 0 57 193108
bronchus 42317 0 60 193108
upper lobe of left lung 29983 0 56 193108
trachea 28392 0 58 193108
dorsolateral prefrontal cortex 172120 0 25 172120
subcutaneous adipose tissue 86064 0 15 166149
omental fat pad 80085 0 16 166149
blood 158726 0 10 158726
cerebellum 120042 8653 24 153789
hemisphere part of cerebellar posterior lobe 15503 77 12 153789
cerebellar cortex 9551 98 15 153789
dentate nucleus 8693 666 11 153789
primary somatosensory cortex 153159 0 18 153159
primary auditory cortex 139054 0 18 139054
anterior cingulate cortex 135462 0 18 135462
entorhinal cortex 104240 0 10 124917
ganglionic eminence 20677 0 9 124917
cortex of kidney 70118 0 26 122444
renal medulla 34019 0 26 122444
renal papilla 17958 0 23 122444
kidney 349 0 21 122444
breast 117346 0 10 117346
angular gyrus 110752 0 18 110752
skin of forearm 32138 0 1 87732

Continued on next page
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Table S2: Dataset Tissue Cell Counts

tissue cell count unknown unique cell types dataset total

skin of body 27759 0 1 87732
skin of pes 9887 0 1 87732
skin of leg 3961 0 1 87732
hindlimb skin 3443 0 1 87732
skin of abdomen 2801 0 1 87732
skin of hip 2272 0 1 87732
skin of chest 1526 0 1 87732
lower leg skin 1475 0 1 87732
skin of cheek 1235 0 1 87732
skin of trunk 1161 0 1 87732
skin of shoulder 37 0 1 87732
skin of face 37 0 1 87732
skin of forehead 32099 0 25 82259
skin of cheek 21198 0 24 82259
skin of external ear 9366 0 23 82259
nose skin 6618 0 24 82259
arm skin 6529 0 25 82259
skin of temple 6449 0 23 82259
substantia nigra pars compacta 80576 0 1 80576
blood 58480 1604 29 77358
kidney 10437 1401 42 77358
adrenal tissue 6439 203 31 77358
perirenal fat 2002 119 30 77358
placenta 74685 0 7 74685
cerebellum 69174 0 18 69174
gingiva 60811 0 27 60811
breast 52681 0 6 52681
middle temporal gyrus 15519 636 18 47432
primary visual cortex 7851 201 18 47432
primary auditory cortex 6470 233 18 47432
primary motor cortex 5955 280 18 47432
anterior cingulate gyrus 5939 340 18 47432
primary somatosensory cortex 5698 295 18 47432
blood 45787 0 20 45787
cervical spinal cord white matter 19650 0 15 45528
white matter of cerebellum 15963 0 15 45528
Brodmann (1909) area 4 9915 0 15 45528
caudate lobe of liver 45186 0 3 45186
caudate nucleus 23999 0 10 44449
putamen 20450 0 10 44449
neural tube 43462 23 9 43462
kidney 43380 0 25 43380
frontal cortex 43033 0 6 43033
lamina propria of small intestine 21273 0 1 32926
lamina propria of large intestine 11653 0 1 32926
frontal cortex 30430 0 6 30430
perifoveal part of retina 25356 0 12 30401
fovea centralis 5045 0 12 30401
lamina propria of large intestine 19321 0 1 28758

Continued on next page
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Table S2: Dataset Tissue Cell Counts

tissue cell count unknown unique cell types dataset total

lamina propria of small intestine 9437 0 1 28758
occipital cortex 22835 0 6 22835
entorhinal cortex 16416 0 9 20470
ganglionic eminence 4054 0 8 20470
blood 19631 0 9 19631
occipital cortex 19270 0 6 19270
dorsolateral prefrontal cortex 18400 0 18 18400
lamina propria of large intestine 9289 0 1 17706
lamina propria of small intestine 8417 0 1 17706
submucosa of ileum 9200 0 1 16338
submucosa of ascending colon 7138 0 1 16338
caudate lobe of liver 13719 1497 8 13719
bone marrow 13299 19631 16 13299
caudate lobe of liver 11982 0 6 11982
tendon of semitendinosus 10533 0 11 10533
nasopharynx 8874 0 17 8874
caudate lobe of liver 8855 660 6 8855
caudate lobe of liver 8219 0 6 8219
bone marrow 6701 0 6 6701
brain white matter 5230 0 9 6591
brain 1361 0 9 6591
peripheral region of retina 4335 0 13 6061
fovea centralis 1726 0 11 6061
scalp 3029 0 5 3029
islet of Langerhans 2282 262 6 2282
pancreas 2126 0 10 2126
caudate lobe of liver 1073 168 3 1073
caudate lobe of liver 1051 116 3 1051
caudate lobe of liver 474 358 1 474
right cardiac atrium 1 0 1 1
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Table S3: Number of Cell Types of Tissues in scTab Dataset

tissue general label n unique cell types

abdomen 8
abdominal wall 7
adipose tissue 14
adrenal gland 8
ascitic fluid 8
axilla 8
blood 75
bone marrow 48
brain 54
breast 37
colon 54
digestive system 3
endocrine gland 41
esophagogastric junction 20
esophagus 39
exocrine gland 14
eye 27
fallopian tube 15
heart 31
immune system 16
intestine 8
kidney 43
lamina propria 25
large intestine 40
liver 54
lung 81
lymph node 65
mucosa 10
musculature 35
nose 46
omentum 29
ovary 15
pancreas 6
paracolic gutter 8
parietal peritoneum 8
peritoneum 8
placenta 11
pleural fluid 17
prostate gland 24
reproductive system 18
respiratory system 59
saliva 10
scalp 1
skeletal system 7
skin of body 40
small intestine 68
spinal cord 11
spleen 59

Continued on next page
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Table S3: Number of Cell Types of Tissues in scTab Dataset

tissue general label n unique cell types

stomach 29
tongue 8
trunk 1
uterus 9
vasculature 1
yolk sac 19
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