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Abstract

Interactive medical segmentation reduces annotation effort by refining predictions through
user feedback. Vision Transformer (ViT)-based models, such as the Segment Anything
Model (SAM), achieve state-of-the-art performance using user clicks and prior masks as
prompts. However, existing methods treat interactions as independent events, leading to
redundant corrections and limited refinement gains. We address this by introducing MAIS,
a Memory-Attention mechanism for Interactive Segmentation that stores past user inputs
and segmentation states, enabling temporal context integration. Our approach enhances
ViT-based segmentation across diverse imaging modalities, achieving more efficient and
accurate refinements.
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1. Introduction

Figure 1: Segmentation accuracy (Dice %) vs. user inter-
actions on Han-Seg (Podobnik et al., 2024). SAM-Med3D
(3D medical-specific) shows poor zero-shot performance
and plateaus after few clicks (fine-tuned), revealing lim-
ited task specificity. Our method (MAIS:Ft ), leveraging
memory of past interactions, sustains improvement with in-
creasing clicks, approaching Oracle performance even with
10% training data.

Automated segmentation has transformed
medical imaging, enabling fast delineation
of anatomical structures and pathologies.
Deep learning models (Isensee et al., 2021;
Wasserthal et al., 2023; Hatamizadeh et al.,
2022, 2021) perform well on specialized
tasks with large, annotated datasets but
struggle with anomalies, where high vari-
ability in shape, texture, and location de-
mands robust generalization (Diaz-Pinto
et al., 2024). Additionally, their reliance on
extensive labeled data makes them costly
and labor-intensive in clinical settings.

To address these limitations, interac-
tive segmentation frameworks integrate hu-
man feedback—such as corrective clicks or
scribbles—to iteratively refine predictions
(Du et al., 2023; Diaz-Pinto et al., 2024).
Vision Transformer (ViT)-based architec-
tures, such as the Segment Anything Model
(SAM) (Kirillov et al., 2023), have emerged

© 2025 CC-BY 4.0, M. Orbes-Arteaga, O. Lucena, S. Ourselin & M.J. Cardoso.

https://creativecommons.org/licenses/by/4.0/


Orbes-Arteaga Lucena Ourselin Cardoso

as powerful tools for this purpose due to their prompt-driven design and zero-shot capabil-
ity. Recent efforts, such as fine-tuning SAM on medical images (Ma et al., 2024; Li et al.,
2024; Gong et al., 2023; Wang et al., 2024a), demonstrate promising results. However, a
critical bottleneck persists: most implementations process 3D volumes slice-by-slice in 2D,
significantly increasing clinician effort during inference (Mazurowski et al., 2023; Cheng
et al., 2023).

Efforts to extend SAM to 3D medical imaging face inherent challenges. For instance,
SAM2 (Ravi et al., 2024), originally designed for video segmentation, treats 3D scans as
stacks of 2D slices, akin to video frames. This approach assumes temporal consistency be-
tween adjacent slices—a flawed premise in medical imaging, where anatomical cross-sections
often exhibit abrupt spatial variations despite representing contiguous structures. Subse-
quent adaptations like Sam3D (Bui et al., 2024) attempt to mitigate this by extracting 3D
features slice-wise using SAM encoders and aggregating them via lightweight 3D decoders.
While this improves efficiency, segmentation quality remains suboptimal, particularly in het-
erogeneous regions like tumors. Domain-specific architectures such as SAM-Med3D (Wang
et al., 2024b), trained on large-scale medical datasets, enhance zero-shot capabilities but
still lack task-specific precision, often requiring excessive user prompts to achieve clinically
acceptable results (see Figure 1).

A key limitation of existing approaches is their treatment of user interactions as iso-
lated events. Models like SAM-Med3D handle each correction independently, disregarding
past interactions once the mask is updated. This lack of memory leads to redundant cor-
rections, diminishing returns in refinement, and eventual performance plateaus—even with
fine-tuning. Our preliminary experiments (see Figure 1) with off-the-shelf SAM-Med3D
show that while early interactions enhance segmentation, improvements taper off after a
certain point, highlighting the need for models that more effectively incorporate histori-
cal context. We hypothesize that incorporating temporal context from past user interac-
tions and segmentation states can overcome these limitations. To this end, we propose a
memory-attention mechanism that dynamically stores and retrieves embeddings from sparse
user prompts (clicks) and dense segmentation masks. By conditioning predictions on both
current inputs and a memory bank of prior interactions, our model enables coherent, incre-
mental refinements across user sessions. Built on top of SAM-Med3D, our method retains
the benefits of foundation models—including zero-shot adaptability—while addressing their
shortcomings in interactive settings.

The contributions of this work are threefold: (1) A memory-attention mechanism that in-
tegrates temporal context into interactive segmentation, enabling robust refinement across
user interactions; (2) A lightweight, modular architecture compatible with existing ViT-
based frameworks, requiring minimal computational overhead; and (3) Comprehensive val-
idation across multiple modalities and anatomical regions, highlighting the model’s adapt-
ability and superiority in low-data scenarios.

2. Methodology

2.1. Memory-attention for interactive segmentation (MAIS)

Our method is built on SAM-Med3D ViT-based as backbone for 3D interactive segmentation
(Wang et al., 2024b). In this framework, a mask decoder processes image embeddings and
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user prompts to generate 3D segmentation masks. Inspired by SAM2 (Ravi et al., 2024), we
introduce a memory attention mechanism that conditions the output on current prompts
and also on the memories from past predictions and interactions. Note that in this work,
we use the same architecture as SAM-Med3D for the image encoder, prompt encoders, and
mask decoder. However, the proposed memory attention mechanism is designed to work
with various architectures for these components. Figure 5 illustrates the proposed model,
with key components described as follows.

Figure 2: Overview of the proposed segmentation model incorporating memory attention: A
3D image encoder processes the input image generating a 3D embedding. Prompt encoders
transform user interactions—positive or negative 3D coordinates—and previous mask pre-
dictions into prompt embeddings, which are stored in a memory bank for future interactions.
The memory attention mechanism conditions the image embedding on the stored memory
before passing it to the mask decoder, which produces the final segmentation output.

2.1.1. 3D Image Encoder and Prompt Encoders

The image encoder is a 3D adaptation of the SAM encoder, originally based on ViT. It
replaces the 2D convolutional layers with 3D convolutions to process input images and
extends the 2D positional encoding by adding an extra dimension. Additionally, a 3D
relative positional encoding (PE) is integrated into the 3D attention blocks. During training
and inference, the image encoder processes each image once before prompting the model.

As with most interactive segmentation architectures, we use two types of prompts:
Sparse prompts: These consist of 3D coordinates derived from point clicks, which can be
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positive (indicating addition) or negative (indicating deletion). Dense prompts: These are
3D masks that represent the current state of the segmentation. Sparse prompts are repre-
sented by positional encodings combined with learned embeddings, whereas dense prompts
are embedded using convolutional layers.

2.1.2. Memory Bank

The memory bank is designed to store information about past predictions and user in-
teractions. After each user interaction, a new memory, composed of sparse and dense
embeddings, is created and added to the memory bank. The bank operates as a first-in,
first-out (FIFO) queue, retaining the latest N memories. Unlike SAM2, we omit the use of
a memory encoder for memory creation. Preliminary experiments show that omitting the
memory encoder reduces computational complexity while maintaining performance. The
memory bank can be: Sparse Memory: this memory bank consists only of click embed-
dings, meaning that the image embedding is conditioned solely on these sparse prompts
through cross-attention, Dense Memory: this memory bank consists of only of previ-
ous mask embeddings, with the image embedding conditioned on these dense prompts by
incorporating the self-attended output of the dense memories, or Sparse + Dense: the
proposed method (Figure 5), where the memory bank integrates both click and previous
mask embeddings. This is the final memory configuration used in MAIS.

2.1.3. Memory Attention

The memory attention block conditions the image embedding based on both the memory
bank and the current interaction. It first performs self-attention on the sparse and dense
memory stacks, generating a dense output, which is then added to the image embedding.
Next, a cross-attention is computed between both memory types. To perform self-attention
on the dense prompt stack, we employ a Convolutional Transformer block, ensuring com-
putational efficiency while maintaining effective attention processing.

2.1.4. Mask Decoder

The mask decoder receives memory-conditioned image embeddings along with the prompt
encodings and outputs the segmentation mask. It consists of a stack of “Two-way” Trans-
former blocks that apply both self-attention and cross-attention to contextualize the prompt
tokens with the memory-conditioned image embeddings. (Note that during the first inter-
action, the image embedding is unconditioned on memory and functions as in the original
SAM-Med3D model.) Finally, transposed 3D convolutional layers are used for 3D upscaling,
and an MLP is employed at the end to output the segmentation mask.

2.2. Datasets

We conducted experiments on publicly available medical imaging datasets, including Com-
puted Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. These datasets
contain annotations for multiple anatomical regions, such as the abdomen, head, neck, and
heart. Each dataset was split into training (70%) and testing (30%) sets. Notably, none of
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the images in these datasets were used during the pre-training of SAM-Med3D. Four med-
ical imaging datasets were used: ACDC (Bernard and Lalande, 2018) (MR, 70 training, 30
testing, 4 heart classes), HaN-Seg (Podobnik et al., 2024) (CT, 28 training, 13 testing, 30
head and neck classes), and the validation set of AMOS (Ji et al., 2022), which we split
into AMOS-CT (CT, 70 training, 30 testing, 15 abdomen classes) and AMOS-MR (MR, 14
training, 6 testing, 15 abdomen classes).

2.3. Experimental Design

We designed experiments to evaluate the impact of the proposed memory-attention module
on interactive segmentation performance and its effect on the few-shot learning potential
of foundation models. To investigate this, we adopted a two-stage approach. First, we
analyzed the effect of memory bank size and memory embedding types (sparse vs. dense)
on segmentation efficacy (Subsection 2.3.1). Second, we conducted extensive external val-
idation across multiple datasets and tasks of varying complexity to assess the robustness
and generalizability of our approach (Subsection 2.3.2).

In these experiments, MAIS leverages pretrained weights from SAM-Med3D (Wang
et al., 2024b), with the image encoder frozen to preserve foundational feature extraction
capabilities. During training, only the prompt encoder and mask decoder are fine-tuned,
while the memory attention module is trained from scratch in parallel. we simulate sparse
visual prompts by sampling them from regions where previous predictions were incorrect.
This approach mirrors human correction behavior, enabling the model to focus on areas
requiring refinement.

Training models from scratch on large datasets is out of our scope as it requires sub-
stantial resources, making them computationally prohibitive. Furthermore, while they can
gain representational capabilities, they may lost specificity for certain applications. Instead,
we are interested in improving the adaptive ability of generic interactive models to unseen
datasets where data is limited.

2.3.1. Memory Bank and Prompt Type Analysis

To investigate key design choices, we conducted experiments on the HaN-Seg dataset,
focusing on the “Cavity Oral” class. These experiments assessed how memory bank size and
prompt types (sparse vs. dense) memory embeddings influence segmentation performance.

Impact of Memory Bank Size: We examined whether increasing the memory bank
size improves the model’s ability to leverage past interactions for better segmentation and
how performance scales with additional memory capacity. To this end, we trained MAIS
with varying memory bank sizes, storing N = 10, 20, 30, 40, 50, 60 and 80 embeddings. The
model refined its predictions iteratively using user-provided clicks, accumulating informa-
tion at each step. Segmentation accuracy was measured using the Dice score (%) at each
iteration. Additionally, we included an oracle baseline (nn-UNet) to establish the upper
bound of achievable performance.

Sparse vs Dense Memory Embeddings To evaluate the influence of different prompt
types in constructing the memory bank, we compared three variations of our method, as
described in Section 2.1.2. Specifically, we assessed the impact of using sparse (click-based)
memory, dense (mask-based) memory, and their combination. A version of MAIS removing
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the memory attention block (no memory) was included as a baseline for comparison. The
models were trained on varying numbers of images (1, 2, 4, and 28) and evaluated using
different numbers of user clicks (5, 10, 20, and 50).

2.3.2. Segmentation Performance

We evaluated segmentation performance across the four datasets (section 2.2) by fine-
tuning models with varying amounts of training samples and assessing their performance
on validation sets. The following models were compared: MAIS: The proposed model
(Figure 5) with a memory size of N = 60, using both sparse and dense embeddings. Ft-
SAM3D: A variant of the model in Figure 5 with the memory attention module removed,
effectively reducing it to a fine-tuned version of vanilla SAM-Med3D. Similar to the MAIS
model, only the mask decoder and prompt encoder parameters were updated during fine-
tuning. Furthermore, we test two baseline models for performance comparison: Oracle:
nn-UNet (Isensee et al., 2021) trained from scratch on target data, providing a reference
for state-of-the-art performance in task-specific segmentation. SAM3D (Zero-shot): The
off-the-shelf SAM-Med3D model was used to segment the validation sets directly, serving
as a benchmark for zero-shot performance of foundation segmentation models on unseen
data.

3. Results

3.1. Memory Bank and Prompt Type Analysis

Impact of memory bank size Figure 3-a illustrates the effect of memory size on segmenta-
tion performance. The results demonstrate that increasing memory size generally improves
performance, with larger memory bank sizes (over 50) approaching/outperforming oracle
performance. In contrast, smaller memory sizes (10 and 20) show lower Dice scores, in-
dicating that limited memory restricts the model’s ability to refine predictions effectively.
The performance gap is most prominent in the early stages (fewer clicks), where larger
memory sizes exhibit steeper improvements. However, as the number of clicks increases,
the performance differences among larger memory sizes diminish, suggesting a saturation
effect. These findings highlight the critical role of the size of the memory bank in achieving
accurate and efficient segmentation. It important to note that larger memory sizes require
more computational resources due to increased attention computations, making the model
more resource-intensive. Thus, a tradeoff between memory size and efficiency is necessary
to balance performance and resource usage.

Sparse vs dense memory embeddings The results are presented in Figure 3-b.
The Sparse Memory approach consistently underperforms compared to Dense Memory,
indicating that click embeddings solely are less effective for refining segmentations. The
Sparse + Dense configuration achieves the highest Dice scores, especially at higher click
counts (Figure 3-b4, 50 clicks), demonstrating the advantage of combining both memory
types. As the number of clicks increases, the performance gap widens, showing that more
interactions help the model better utilize stored information. The baseline without memory
attention performs worst, highlighting the importance of an effective memory mechanism
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Figure 3: Memory bank and prompt type analysis : Subplot (a) Impact of memory bank
size on segmentation performance. Dice score (%) is shown as a function of the number
of clicks for different memory sizes. Subplots (b) Sparse vs dense memory embeddings
comparison for the different number of clicks and images used for training.

3.2. Segmentation Performance

Table 1 summarizes the segmentation performance of the evaluated methods across three
datasets described in Section 2.2 (See qualitative results in Appendix C and B). The memory
bank configuration (Sparse + Dense) was selected based on its superior performance in the
previous analysis.

MAIS was found to consistently outperform Ft-SAM3D fine-tuning, particularly as the
number of interactions increases. The performance gap is most pronounced in low-data
regimes (10% and 50% of the data), where our model achieves significant improvements
over Ft-SAM3D, demonstrating its effectiveness when training data is limited. Additionally,
in the one-shot scenario, our method significantly outperforms Ft-SAM3D, except on the
ACDC dataset. Regarding the impact of interaction count, we observe that increasing user
interactions generally improves segmentation performance across all interactive methods.
Notably, the performance gap between MAIS and Ft-SAM3D widens as more interactions
are allowed, with Ft-SAM3D showing diminishing gains after 10 interactions, whereas our
method continues improving up to 50 interactions. This suggests that MAIS effectively
leverages a large memory capacity to enhance refinement.

Comparing interactive methods against the Oracle nn-UNet, we find that with sufficient
training data, the Oracle remains the best performer across all datasets. However, in several
cases (e.g., HaN-SEG and AMOS-MR), MAIS outperforms or closely matches the Oracle’s
performance, particularly when a higher number of interactions is allowed. Conversely,
the Oracle struggles when trained on limited data, often underperforming compared to
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One-shot 10 % of the data 50 % of the data 70 % of the data

# Clicks SAM3D Ft-SAM3D MAIS Oracle Ft-SAM3D MAIS Oracle Ft-SAM3D MAIS Oracle Ft-SAM3D MAIS Oracle

HaN-SEG - CT 1 files 3 files 14 files 28 files

Auto - - - 45.65 - - 50.57 - - 54.75 - - 58.22
1 23.26 35.51 36.61 - 38.92 39.24 - 44.5 44.63 - 44.56 45.57 -
10 34.0 40.04 42.82 - 41.45 43.96 - 45.46 47.55 - 45.33 49.68 -
20 36.06 40.34 44.98 - 41.56 45.86 - 45.51 49.49 - 45.33 51.78 -
50 39.07 40.56 48.51 - 41.68 48.98 - 45.56 52.46 - 45.43 55.7 -
150 41.01 40.81 51.75 - 41.85 52.58 - 45.59 56.4 - 45.48 59.54 -

ACDC - MR 1 files 7 files 35 files 70 files

Auto - - - 42.93 - - 89.47 - - 92.19 - - 93.25
1 46.94 62.65 61.38 - 73.95 70.82 - 77.12 74.93 - 78.73 78.02 -
10 68.33 72.61 70.46 - 79.23 81.03 - 81.36 82.98 - 82.52 84.86 -
20 73.39 73.49 71.85 - 79.84 81.72 - 81.51 84.21 - 82.76 85.75 -
50 75.98 74.66∗ 74.09 - 79.84 82.53 - 81.8 85.46 - 82.9 86.56 -
150 77.75 75.22 76.54∗ - 80.21 84.27 - 81.9 86.49 - 82.92 87.87 -

AMOS - CT 1 files 7 files 35 files 70 files

Auto - - - 19.41 - - 78.12 - - 88.08 - - 89.37
1 79.85 77.58∗ 77.14 - 78.23 78.48∗ - 78.9∗ 78.89 - 79.33 79.38∗ -
10 83.79 80.55 82.19∗ - 81.73 82.82∗ - 82.31 83.88 - 82.82 84.1 -
20 84.29 80.97 82.92∗ - 82.15 84.34 - 82.89 85.08 - 83.44 85.54 -
50 84.77 81.35 83.24∗ - 82.32 85.41 - 83.24 86.87 - 83.77 87.35 -
150 85.09 81.68 83.5∗ - 82.58 86.24 - 83.38 88.11 - 83.94 88.63 -

AMOS - MR 1 files 2 files 7 files 14 files

Auto - - - 29.0 - - 44.75 - - 64.72 - - 85.52
1 74.66 70.18 71.09∗ - 72.07 72.29∗ - 73.69∗ 73.65 - 73.78 74.18∗ -
10 79.42 75.26 78.00∗ - 75.94 78.42∗ - 78.64 79.64 - 79.02 80.36 -
20 81.15 75.75 79.48∗ - 76.46 79.57∗ - 78.91 81.1 - 79.51 81.74 -
50 81.99 76.41 80.74∗ - 77.19 81.22∗ - 79.18 83.17 - 79.63 83.78 -
150 82.13 76.87 81.71∗ - 77.19 82.55 - 79.37 84.92 - 79.85 85.85 -

Table 1: Comparison of Dice performance for MAIS against Ft-SAM3D, and Baseline meth-
ods, Oracle, and SAM3D across multiple datasets when varying amounts of training data
for fine-tuning. The best-performing interactive method in each configuration is highlighted
in bold. Interactive results outperforming the Oracle are underlined, while those under-
performing SAM3D are marked with a (∗).

interactive methods. Finally, both Ft-SAM3D and MAIS consistently outperform the zero-
shot SAM3D baseline, demonstrating the effectiveness of fine-tuning foundation models for
medical image segmentation.

4. Conclusions

In this work, we introduced Memory-Attention for Interactive Segmentation (MAIS) to
address the limitations of traditional Vision Transformer (ViT)-based approaches in inter-
active segmentation. By incorporating temporal context through a memory bank that stores
past user interactions and segmentation masks, our method significantly enhances segmen-
tation performance across various medical imaging datasets, including MRI and CT scans.
The lightweight architecture of the proposed attention module enables effective training
even with limited data, achieving competitive performance against state-of-the-art task-
specific models such as nn-UNet. Our experiments demonstrate that increasing memory
capacity leads to more effective segmentation refinement as user interactions grow. These
capabilities are crucial for developing interactive segmentation tools that enhance clinical
workflows, allowing clinicians to improve labeling efficiency and accuracy in medical imaging
applications. Future work will integrate the proposed attention mechanism with additional
pretrained backbone architectures.
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Appendix A. Implementation and Computational Details

Our training settings follow those used in (Wang et al., 2024b), with some modifications.
We employ different learning rates for different parts of our model: the prompt encoders and
mask decoder are optimized with an initial learning rate of 8e-5, while the memory attention
parameters use an initial learning rate of 8e-4. Both learning rates follow a multi-step
scheduler, decreasing by a factor of 0.1 at epochs 129 and 180. We use the Dice loss function
and the AdamW optimizer, training our models for 200 epochs. Input images are cropped
into 128×128×128 3D patches centered on a foreground voxel. Training was conducted on
an NVIDIA GeForce RTX-4090(24GB). Training MAIS on a single image with one label
takes approximately 30 minutes (for 200 epochs). The training time scales proportionally
with the number of images and labels—for example, a dataset with 10 images and 3 labels
would require approximately 15 hours since each label is processed independently.

Appendix B. Qualitative results-MR

Figure 4: Qualitative result on AMOS-MR dataset For Liver with varying numbers of user
clicks. The first column shows the original MRI images, and the second column presents
the ground-truth segmentations. The remaining columns compare segmentations produced
by SAM3D, fine-tuned SAM3D (FT-SAM3D), and MAIS.
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Appendix C. Qualitative results-CT

Figure 5: Qualitative result on the HaN-SEG dataset (CT images) for Esophagus seg-
mentation with different numbers of user clicks. The first column shows the original CT
images, while the second column presents the ground-truth segmentations. The remaining
columns compare segmentations produced by SAM3D, fine-tuned SAM3D (FT-SAM3D),
and MAIS. It can be observed that SAM3D tends to oversegment the esophagus, while FT-
SAM3D undersegments it. MAIS provides more balanced results as the number of clicks
increases.
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