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Abstract

Time series forecasting plays a pivotal role in critical domains such as energy man-
agement and financial markets. Although deep learning-based approaches (e.g.,
MLP, RNN, Transformer) have achieved remarkable progress, the prevailing "long-
sequence information gain hypothesis" exhibits inherent limitations. Through
systematic experimentation, this study reveals a counterintuitive phenomenon:
appropriately truncating historical data can paradoxically enhance prediction ac-
curacy, indicating that existing models learn substantial redundant features (e.g.,
noise or irrelevant fluctuations) during training, thereby compromising effective
signal extraction. Building upon information bottleneck theory, we propose an
innovative solution termed Adaptive Masking Loss with Representation Consis-
tency (AMRC), which features two core components: 1) Dynamic masking loss,
which adaptively identified highly discriminative temporal segments to guide gra-
dient descent during model training; 2) Representation consistency constraint,
which stabilized the mapping relationships among inputs, labels, and predictions.
Experimental results demonstrate that AMRC effectively suppresses redundant
feature learning while significantly improving model performance. This work
not only challenges conventional assumptions in temporal modeling but also pro-
vides novel theoretical insights and methodological breakthroughs for developing
efficient and robust forecasting models. We have made our code available at
https://github.com/MazelTovy/AMRC.

1 Introduction

Time series forecasting, as a pivotal technology in critical domains such as energy management
and financial markets, directly influences decision-making quality and economic efficiency [11,
13, 19, 20, 23]. Recent breakthroughs in deep learning have driven revolutionary advancements in
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time series prediction. Contemporary frameworks including Multilayer Perceptron (MLP)-based
architectures [4, 7, 18, 29, 30, 33], Recurrent Neural Networks (RNNs) with their variants [9, 14, 22],
and attention mechanism-based models exemplified by the Transformer [2, 6, 17, 21, 36, 37, 39], have
achieved remarkable breakthroughs in modeling complex temporal patterns through the construction
of elaborate hierarchical temporal dependencies.

Current mainstream forecasting models predominantly adhere to the "long-sequence information gain
hypothesis," which posits that extending historical data length enhances the availability of temporal
dependencies [16, 34]. However, through systematic experimental analysis, this study challenges
this conventional assumption. As shown in Table 1, we observed a counterintuitive phenomenon
across multiple benchmark datasets and diverse model architectures: appropriately truncating early
segments of input sequences can significantly improve prediction accuracy. This finding reveals a
critical issue in modern predictive models: during training, models inadvertently capture a substantial
number of redundant features. These features not only fail to enhance performance but also interfere
with the learning process, thereby limiting the models’ potential to achieve optimal results.

Through systematic analysis, we have identified two typical manifestations of redundant features and
their underlying mechanisms. First, input truncation optimization experiments (as shown in Figure
2b and Table 1) demonstrate that selectively masking partial historical data can significantly improve
model prediction performance. This phenomenon reveals the current model’s inefficient utilization
of long historical windows. Second, representation similarity analysis (as illustrated in Figure 2a)
shows that both the model’s prediction results and intermediate embeddings exhibit an abnormally
concentrated distribution, which significantly deviates from the natural dispersion characteristics
of the input and label. Collectively, these observations indicate that existing models exhibit low
efficiency when processing long historical windows, often encoding substantial noise or irrelevant
variables rather than truly predictive signals.

Building upon information bottleneck theory [10, 24, 26, 27], this study proposes an innovative
method called Adaptive Masking Loss with Representation Consistency (AMRC). The core method-
ology comprises: 1) An adaptive masking mechanism that dynamically identifies key segments with
high discriminative power in sequential data and leverages these informative segments to guide the
gradient optimization process (as illustrated in Figure 3) ; 2) A representation consistency constraint
that establishes stable mapping relationships among the input feature space, label space, and predicted
outputs, thereby effectively enhancing the model’s generalization capability. Experimental results (as
shown in Table 2) demonstrate that the AMRC method significantly reduces the complexity of the
training solution space by suppressing the model’s reliance on redundant features, fully exploits the
performance potential of the model architecture, and consequently improves prediction accuracy.

The primary contributions of this study include:

• Theoretical Insight: Through rigorous experimental validation, We demonstrate that existing time
series forecasting models are prone to learning redundant features, which in turn constrain their
performance. Building on the theory of information bottlenecks, we construct a novel theoretical
framework for time series modeling and propose an innovative optimization pathway, offering a
new theoretical perspective for advancing the field of time series forecasting.

• Methodological Innovation: We propose an optimization framework Adaptive Masking Loss with
Representation Consistency. By dynamically selecting discriminative temporal segments to guide
gradient descent (as illustrated in Figure 1) while enforcing input-label-prediction consistency,
our method effectively suppresses redundant feature learning. Extensive experiments demonstrate
consistent performance gains across diverse benchmarks and architectures.

Our work advances the understanding of temporal pattern learning mechanisms while offering a
practical pathway to enhance the efficiency and reliability of time series forecasting systems.

2 Related Work

The Information Bottleneck (IB) method was first introduced by Tishby et al. [26] as an information-
theoretic framework that aims to compress input signals while preserving as much relevant information
as possible about the target output. In the field of machine learning, IB theory has been widely adopted
as a regularization technique. For instance, Alemi et al. [1] proposed the Variational Information
Bottleneck (VIB), which leverages variational inference to construct a tractable lower bound on the
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IB objective. Building upon this, Tishby and Zaslavsky [27]further explored the applicability of
information-theoretic objectives to deep neural networks. Research on IB has also extended into the
domain of clustering. Slonim et al. [24] developed a distributional clustering algorithm based on
mutual information maximization and demonstrated its effectiveness on the 20 Newsgroups dataset,
achieving substantial compression with minimal loss of relevant information. More recently, Hu et al.
[10] conducted a comprehensive survey of the IB literature, reviewing over two decades of theoretical
developments, methodological advances, and practical applications.

In the context of deep learning, time series forecasting methods can be broadly categorized into MLP,
RNN, and Transformer-based approaches. Among MLP-based models, DLinear [33] and TSMixer
[7] are representative examples, featuring relatively simple architectures while achieving strong
performance across multiple datasets. RNN-based methods, such as Segrnn [6] and LSTMlong [22],
focus on structural modifications to address challenges related to parallel prediction and long-sequence
modeling. Transformer-based models include Informer [37], Autoformer [21], and iTransformer [15].
Informer introduces a sparse attention mechanism to improve the scalability of traditional attention for
time series modeling; Autoformer incorporates frequency-domain information to enhance attention;
and iTransformer further extends attention across channels by embedding multivariate sequences for
variable-aware representation.

Another key research area concerns noise robustness and representation learning. Early work,
such as Informer [37], used sparse attention for information distillation in long sequences, while
TS2Vec [31] adopted contrastive learning to regularize temporal representations. More recently,
dedicated frameworks have been proposed. For instance, TS-CoT [35] employs a dual-encoder
architecture and a cross-view prototype alignment mechanism to achieve global semantic consistency.
Similarly, DECL [38] guides contrastive learning to acquire denoising capabilities by constructing
positive samples from denoised data and leveraging an adaptive denoiser.

3 Analysis of Redundant Feature Learning

Given a multivariate time series X ∈ RT×D, where T is the number of timesteps and D is the
number of variables, the objective of time series forecasting is to learn a mapping function fθ that
transforms historical observations Xt−L:t ∈ RL×D (where L denotes the input length ) into future
values Xt+1:t+H ∈ RH×D (where H represents the forecasting horizon).

Conventional time series forecasting models follow the long-sequence information gain hypothesis
[3, 5, 32, 37], which holds that increasing the input length L improves forecasting accuracy. However,
our experiments (Table 1) on multiple standard benchmarks reveal a counterintuitive result: truncating
the input—such as masking the first k timesteps—often improves forecasting performance, which is
measured by Mean Squared Error (MSE). We found that models tend to learn redundant features,
which degrade model performance even after convergence. This finding is supported by two key
observations:

Figure 1: Illustration of the effect of AMRC method. Without regularization, the model tends to
overfit redundant input features, leading to suboptimal convergence. By suppressing redundant input
features, AMRC restructures the optimization landscape, promoting more efficient representation
learning and facilitating better convergence.
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3.1 Input Truncation Optimization

Based on the baseline model configuration (input length L = 48, forecasting horizon H = 48), we
design an input truncation comparative experiment by applying a masking operatorMk(·) to the
input sequence. When we have an input sequence of length L at time step t, denoted as X(L)

t , the
masking operatorMk(·) is mathematically defined as:

Mk(X
(L)
t ) =

{
0 if i ≤ k

X
(L)
t otherwise

(1)

Here, k ∈ {1, . . . , L} denotes the masking step size.

To probe redundant features, we employ an Optimal Masking strategy: Given an input sequence of
length L, we generate L masked variants {Mk(X

(L)
t )}Lk=1 (zero-padded to preserve dimensionality).

For instance, k = 5 yields L′ = 43 (first 5 positions zeroed). The optimal mask length k∗ is selected
as the configuration minimizing MSE, thereby defining the theoretical upper bound for redundancy
elimination:

k∗ = argmin
k∈{1,2,...,L}

E
[∥∥∥fθ(Mk(X

(L)
t )

)
− Y

(H)
t

∥∥∥2] (2)

Table 1: Performance Gains via Optimal Masking Across Time Series Models. Ratio quantifies the
percentage of training samples demonstrating prediction error reduction through Optimal Masking,
calculated as number of masked series/number of total series ×100%.

Model ETTh1 ETTh2 Solar-Energy Weather

Metric MSE MSE* Ratio MSE MSE* Ratio MSE MSE* Ratio MSE MSE* Ratio

SOFTS Train Set 0.278 0.254 56.54% 0.318 0.259 61.65% 0.182 0.155 11.80% 0.421 0.400 45.10%
Test Set 0.408 0.365 64.24% 0.326 0.303 28.73% 0.293 0.184 41.58% 0.205 0.185 54.93%

iTransformer Train Set 0.298 0.270 57.87% 0.315 0.261 64.19% 0.410 0.281 61.97% 0.436 0.389 62.98%
Test Set 0.413 0.289 60.07% 0.329 0.299 32.16% 0.395 0.271 68.43% 0.209 0.170 80.26%

PatchTST Train Set 0.343 0.303 65.57% 0.329 0.269 69.35% 0.366 0.277 35.89% 0.227 0.180 45.55%
Test Set 0.424 0.402 65.51% 0.327 0.298 42.46% 0.374 0.344 51.66% 0.215 0.180 42.43%

TSMixer Train Set 0.372 0.342 55.79% 0.544 0.431 73.96% 0.233 0.195 26.30% 0.363 0.348 37.57%
Test Set 0.402 0.372 59.19% 0.324 0.289 42.13% 0.288 0.250 40.12% 0.222 0.195 70.88%

TimeMixer Train Set 0.290 0.262 57.96% 0.309 0.251 59.36% 0.142 0.112 13.58% 0.403 0.353 63.93%
Test Set 0.393 0.366 58.04% 0.318 0.285 44.52% 0.288 0.253 36.25% 0.197 0.172 66.13%

As demonstrated in Table 1, the experimental results confirm that masked models consistently
achieve lower MSE, with more than 50% of samples exhibiting improved predictive performance
(Ratio > 50%). Notably, the phenomenon of redundancy learning shows strong architecture-agnostic
characteristics. On the Weather dataset, both iTransformer (a Transformer-based model) and TSMixer
(an MLP-based model) demonstrate similar relative improvements: iTransformer achieves an MSE
reduction from 0.209 to 0.170 (−18.7%), while TSMixer improves from 0.222 to 0.195 (−12.2%).
These results indicate that the effectiveness of our masking strategy is not dependent on specific
model architectures.

3.2 Representation Similarity Paradox

To further investigate the redundant feature learning phenomenon, we apply t-SNE to project the
SOFTS model’s high-dimensional representations of the input, embedding, prediction, and label onto
a 2D plane (Figure. 2a), after normalizing all features to the [0, 1] range.

As illustrated in Figure. 2a, Normalized input (Zin ∈ RL) and output (Zout ∈ RH ) embeddings
show a clear contrast: inputs remain dispersed, while embeddings and preds cluster tightly despite
large differences in their corresponding labels. This suggests that the model encodes redundant,
task-irrelevant features that misrepresent semantic relationships and distort the input-output mapping.

3.3 Information Bottleneck Constraints on Redundancy

In time-series forcasting models, the input sequence X is typically encoded into a latent representation
Z, from which a decoder then predicts the target sequence Y . The optimization objective is to learn
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(a) Normalized t-SNE Projections of Input, Embedding, Prediction, and Label

(b) Masked vs. Unmasked Prediction Performance

Figure 2: Embedding Distributions and Masking Effects of Our Method.

an optimal representation Z that maximally preserves information relevant to Y while discarding
irrelevant details from X . According to the Information Bottleneck (IB) Theory [24], this process
can be viewed as a bottleneck that compresses input information. The informational relationships
among X , Y , and Z, which are governed by the model’s learnable parameter θ, can be quantified
using mutual information. The objective can be thus formally expressed as maximizing the mutual
information between the representation Z and the target Y :

I(Z, Y ;θ) =

∫
dx dy p(z, y | θ) log p(z, y | θ)

p(z | θ)p(y | θ)
. (3)

Due to inherent limitations in the data and model capacity, the amount of information that can be
extracted and transmitted during training is bounded. Consequently, the representation capacity is
subject to an upper information constraint Ic. Based on this, the objective of the time series prediction
model can be equivalently formulated as the following constrained optimization problem:

max
θ

I(Z, Y ;θ) s.t. I(X,Z;θ) ≤ Ic. (4)

This constrained optimization problem can be transformed into an unconstrained form using the
method of Lagrange multipliers, leading to the maximization of the following objective [1]:

RIB(θ) = I(Z;Y ;θ)− βI(Z;X ;θ). (5)
There are two implementation paths under this objective: one is to maximize the mutual information
I(Z;Y ) between Z and Y ; the other is to minimize the mutual information I(Z;X) between Z and X .
Most current sequential prediction models focus on improving I(Z;Y ) through iterative training, but
have not explicitly optimized performance by penalizing redundant features via minimizing I(Z;X).
Therefore, we propose an adaptive loss function that aims to minimize the mutual information
between X and Z, offering a novel optimization path for improving the performance of sequential
prediction models.

4 Proposed Method

4.1 Adaptive Masking Loss (AML)

As discussed in Section 3.1, applying ideal masking to input data reduces the information I(X) while
improving prediction accuracy. This indicates that the representation Zk∗ , generated by encoder pθ
from masked features Xt,k∗ , contains less redundancy and better approximates the minimal sufficient
statistics (i.e., with smaller I(X,Zk∗ ; θ)). Based on this insight, we propose the Adaptive Masking
Loss (AML) to explicitly reduce mutual information I(X,Z; θ) by guiding the encoder’s output
representation Z toward Zk∗ , thereby suppressing redundant feature learning and unleashing model
potential. The overall framework of AML is illustrated in Figure 3.
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Figure 3: Overview of the Adaptive Masking Loss (AML) framework. The upper half illustrates
how the optimal mask length K∗ is selected by evaluating prediction losses over sampled masks. A
weighting coefficient β is computed based on the gain over the unmasked loss. The lower half shows
the AML loss, calculated as the sum of representation differences between the original input and the
K∗ masked input across embedding, backbone, and predictor layers.

4.1.1 Implementation

The exhaustive search for optimal mask k∗ by enumerating all possible mask lengths k ∈ {1, ..., L}
results in prohibitive O(L) time complexity for long sequences. We therefore adopt an efficient
stochastic approximation strategy:

1. Random Mask Generation: Independently sample m mask indices {ks}ms=1 from uniform
distribution d(k) = Uniform{1, ..., L}, each generating a masked variant:

X̃
(L)
t,s =Mks

(X
(L)
t ) (6)

2. Loss Evaluation: Compute prediction losses for both masked and original data:

ℓs = L(fθ(X̃(L)
t,s ), Y

(H)
t ) (7)

ℓ = L(fθ(X(L)
t ), Y

(H)
t ) (8)

3. Optimal Representation Selection: If ∃ℓs < ℓ, the corresponding representation Z̃s = pθ(X̃
(L)
t,s )

satisfies I(X
(L)
t , Z̃s) ≤ I(X

(L)
t , Z), where Z = pθ(X

(L)
t ) is the original representation. It

signifies that a masked input variant can achieve better predictive performance than the original
input. This provides a clear indication that the removed information was redundant rather than
essential. The optimal mask variant is selected by:

s∗ = argmax
s

(ℓ− ℓs) (9)

4.1.2 Loss Formulation

To promote compact and informative representations, AML minimizes the distance between the
original representation Z and the optimal masked variant Z̃s∗ :

LAML = β · 1

D1 ×D2
∥Z − Z̃s∗∥2 (10)

The adaptive weight β = max(0, (ℓ−ℓs∗)/ℓ) ensures that this regularization term is only active when
a better-performing masked representation is found. Such a setup dynamically scales the optimization
intensity, guaranteeing a more substantial influence from mask variants with greater loss reduction.
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4.2 Embedding Similarity Penalty (ESP)

Time series forecasting models often encounter two issues: semantic inconsistency, where seman-
tically similar inputs lead to substantially different predictions, and representation collapse, where
dissimilar inputs result in nearly identical outputs. While consistency regularization methods like
Temporal Ensembling [12] and Mean Teacher [25] address stability for individual samples under
augmentation, they do not explicitly consider the relational structure between different samples. We
therefore introduce the Embedding Similarity Penalty (ESP), a strategy that directly addresses this by
comparing the geometry of the embedding space with that of the output space for pairs of samples
within a mini-batch.

Pairwise distances. For a batch B = {(Xi, Yi)}ni=1 we denote by Zi = fenc(Xi) ∈ RL×D the
encoder output and keep the ground-truth Yi∈RP×D. The (normalised) squared Frobenius distances
are

∆E
ij =

1

L×D
∥Zi − Zj∥2F , ∆O

ij =
1

P ×D
∥Yi − Yj∥2F , 1≤ i, j≤ n. (11)

Consistency penalty. Ideally ∆E
ij and ∆O

ij should match: semantically similar inputs (∆E
ij ≈ 0)

ought to produce similar outputs (∆O
ij ≈ 0), and vice versa. Deviation is quantified element-wise

through
Pij = ReLU

(
∆E

ij −∆O
ij

)
+ReLU

(
∆O

ij −∆E
ij

)
= |∆E

ij −∆O
ij |+, (12)

where ReLU(x) = max(0, x) and | · |+ denotes the non-negative part. The Embedding-Similarity
Penalty then reads

LESP =
1

n2

n∑
i=1

n∑
j=1

Pij . (13)

Equation (13) back-propagates smooth, unbiased gradients that jointly reshape the encoder and the
predictor so that input and output manifolds remain geometrically aligned. The detailed implementa-
tion of the Embedding Similarity Penalty (ESP) is provided as pseudocode in Appendix C Algorithm
1.

4.3 Overall Training Objective

Section 4.1 introduced the Adaptive Masking Loss LAML that discourages the learning of redundant
temporal prefixes, while Section 4.2 proposed the Embedding-Similarity Penalty LESP to enforce
semantic–behavioural consistency. Combined with the standard prediction loss Lpred (e.g., MSE
between the forecast Ŷ and the target Y ), our final objective is

Ltotal = Lpred + λAML LAML + λESP LESP, (14)

where λAML, λESP > 0 control the strength of each auxiliary term. Minimizing (14) jointly (i)
identifies the informative prefix for every sequence, (ii) preserves the intrinsic topology of the data,
and (iii) improves predictive accuracy and interpretability without adding inference-time overhead.

5 Experiment

5.1 Experiment Setup

Datasets. We evaluate our proposed method using seven widely recognized benchmark datasets for
multivariate time series forecasting: ETTh1, ETTh2, ETTm1, ETTm2, Solar-Energy, Electricity,
and Weather. These datasets encompass a variety of application scenarios with different temporal
resolutions, seasonality patterns, and dynamic structures. Detailed descriptions of each dataset,
including their specific characteristics and collection periods, are provided in the Appendix E.

Task formulation. In our experimental setup, the forecasting task is formulated as a sequence-to-
sequence regression problem, applicable to multivariate time series. Each model is trained to predict
a future sequence Y

(H)
t ∈ RH×D from a fixed-length historical input sequence X

(48)
t ∈ R48×D,
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where H denotes the prediction length and D is the number of variables. We adopt multiple prediction
horizons H ∈ {48, 72, 96, 120, 144, 168, 192}.
Baselines. Our method is compared against five diverse baseline models: SOFTS [8], iTransformer
[15], PatchTST [17], TSMixer [7], and TimeMixer [28]. These baselines are implemented us-
ing their official codebases and recommended hyperparameters to ensure a fair comparison under
consistent experimental conditions.

Implementation details. All models are implemented in PyTorch and trained on a single NVIDIA
A100 80GB GPU. To ensure a fair comparison and allow both baseline models and those augmented
with our proposed modules to fully exploit their capacity, we train each model for up to 100 epochs
using the Adam optimizer with an initial learning rate of 1× 10−4, a cosine annealing scheduler, and
a batch size of 32. Early stopping is applied based on validation loss with a patience of 20 epochs.
The best-performing checkpoint on the validation set is selected for final evaluation on the test set.

Hyperparameter selection. For the AML, the input sequence prefix length is configured as L = 48,
with the mask sampling cardinality parameterized as m = 12. We fix both λAML and λESP to 1 for
all experiments. These settings follow standard benchmark configurations commonly used in time
series forecasting.

5.2 Forecasting Results

We present the forecasting performance of our method—Adaptive Masking Loss with Representation
Consistency (AMRC)—in comparison with five representative baseline models across seven widely
used time series benchmark datasets. Table 2 reports the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) for each model, both with and without the incorporation of AMRC.

Table 2: Performance Comparison of Time Series Forecasting Models With and Without AMRC. In
the experimental results, we highlighted in bold the parts where the AMRC model improved by more
than 0.005 in MSE and MAE metrics compared to the baseline model. The detailed hyperparameter
configurations for each model can be found in Appendix B. Full results are listed in Appendix D.1
Table 5. Furthermore, a detailed statistical analysis presenting results as mean ± standard deviation
over 10 runs, along with significance tests, is provided in Appendix D.1 Table 6. To further validate
the robustness of AMRC, we conducted additional experiments on the ExchangeRate dataset and the
challenging, low-data Illness dataset, as detailed in Appendix 7.

Model ETTh1 ETTh2 ETTm1 ETTm2 Solar-Energy Electricity Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SOFTS Original 0.408 0.414 0.326 0.359 0.484 0.434 0.210 0.285 0.293 0.314 0.169 0.255 0.205 0.234
AMRC 0.389 0.393 0.311 0.362 0.475 0.423 0.198 0.265 0.290 0.309 0.162 0.244 0.196 0.220

iTransformer Original 0.413 0.415 0.329 0.362 0.517 0.448 0.213 0.290 0.395 0.352 0.176 0.260 0.209 0.237
AMRC 0.402 0.399 0.324 0.356 0.502 0.447 0.211 0.280 0.392 0.342 0.163 0.239 0.201 0.221

TimeMixer Original 0.393 0.408 0.318 0.355 0.466 0.429 0.209 0.285 0.288 0.317 0.194 0.279 0.197 0.237
AMRC 0.388 0.401 0.316 0.339 0.447 0.405 0.204 0.269 0.284 0.317 0.188 0.277 0.186 0.228

PatchTST Original 0.424 0.424 0.327 0.358 0.461 0.422 0.211 0.287 0.374 0.382 0.211 0.283 0.215 0.280
AMRC 0.411 0.415 0.319 0.356 0.456 0.413 0.196 0.271 0.361 0.376 0.207 0.285 0.210 0.264

TSMixer Original 0.402 0.412 0.324 0.357 0.440 0.413 0.201 0.279 0.288 0.314 0.172 0.258 0.222 0.288
AMRC 0.386 0.397 0.319 0.340 0.432 0.412 0.196 0.257 0.280 0.313 0.169 0.247 0.212 0.281

Consistent Performance Gains. Across all models and datasets, our method consistently yields
performance improvements. For example, the MSE of the SOFTS model decreases from 0.408
to 0.389 on the ETTh1 dataset. Similar trends are observed in iTransformer, where the MSE on
Electricity drops from 0.176 to 0.163. The enhancements demonstrate that AMRC effectively
mitigates redundant or noisy temporal segments, thereby improving prediction stability and accuracy.

Architecture-Agnostic Effectiveness. AMRC delivers significant performance gains not only on
Transformer-based architectures such as iTransformer and PatchTST, but also on MLP-based models
including TimeMixer, SOFTS, and TSMixer. For instance, on the ETTm2 dataset, the MSE of
PatchTST model decreases from 0.211 to 0.196 (a reduction of approximately 7.11%), while the
MSE of SOFTS model drops from 0.210 to 0.198 (approximately 5.71% reduction). These results
demonstrate the strong architecture-agnostic generalization ability of AMRC, highlighting its broad
applicability across a wide range of time series forecasting models.
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Generalization on Low-Channel Datasets. On datasets with fewer input channels (ETTh1, ETTh2,
ETTm1, ETTm2), AMRC effectively enhances model performance. For instance, on ETTm1, the
MSE of iTransformer decreases from 0.517 to 0.502, and that of TSMixer drops from 0.440 to 0.432.
These results demonstrate AMRC’s ability to mitigate overfitting and improve prediction accuracy in
low-dimensional time series forecasting tasks.

Robustness on High-Channel Datasets. For high-dimensional datasets such as Weather (21 chan-
nels) and Solar-Energy (137 channels) see in Appendix E, AMRC consistently improves robustness
by reducing the impact of signal noise and inter-channel redundancy. On the Weather dataset,
TimeMixer’s MSE decreases from 0.197 to 0.186 and MAE from 0.237 to 0.228, while iTransformer
sees an MAE drop from 0.237 to 0.221. On Solar-Energy, PatchTST’s MSE drops from 0.374 to
0.361, and SOFTS sees a slight MAE reduction from 0.314 to 0.309. These enhancements highlight
AMRC’s effectiveness in managing complexity in multivariate time series with high channel counts.

Generalizable Training Framework. The consistent performance improvements observed across all
models validate the strong scalability and integrability of AMRC. As a constraint-based optimization
strategy, AMRC does not rely on any specific model architecture, making it highly generalizable. It
serves as a versatile training framework for enhancing both the efficiency and accuracy of time series
forecasting models.

5.3 Ablation Study

Setup. We evaluate ablation variants on four diverse datasets: ETTh1 and ETTh2, representing
hourly electricity load with varying degrees of seasonality; Solar-Energy, which exhibits weather-
driven variability and periodicity; and Weather, a multivariate meteorological dataset with complex
inter-variable dependencies. We adopt a fixed input horizon following standard benchmarks.We also
analyzed the sensitivity to the number of sampled masks, m, used in AML. While a larger m allows
for a more extensive search, it incurs greater computational cost. Our analysis, detailed in Appendix
Table 8, reveals diminishing returns as mincreases. Consequently, we set m = 12 for all experiments
to effectively balance performance and computational efficiency.

Evaluation protocol. For each dataset, we apply the ablation study to five baseline models SOFTS,
iTransformer, TimeMixer, PatchTST, and TSMixer under four configurations:1) baseline + AML, 2)
baseline + ESP, and 3) baseline + both AML and ESP. This design allows us to assess the standalone
effectiveness of each module as well as their combined synergy.

Findings. We evaluate the individual and joint effects of the AML and ESP components using five
representative forecasting architectures across four datasets. As shown in Table 3, both components
contribute measurable performance gains in isolation, while their combination AMRC consistently
leads to the best forecasting accuracy in terms of MSE and MAE. AML provides stronger improve-
ments across most settings, supporting its role in suppressing redundant prefixes during training.
ESP, while often delivering smaller standalone gains, remains beneficial by promoting geometric
alignment between embedding and output spaces. Together, these findings demonstrate that each
component addresses a distinct source of generalization error.

Component impact across architectures. The benefits of AML and ESP are consistently ob-
served across all backbone models, regardless of architectural differences. For instance, models
with strong expressiveness, such as iTransformer and TimeMixer, benefit significantly from AML,
achieving notable MSE reductions on datasets like Weather and ETTh2. Even architectures with-
out attention mechanisms, such as SOFTS and TSMixer, exhibit consistent gains, highlighting the
broad applicability of adaptive prefix masking. In contrast, the improvements from ESP are often
more dataset-dependent, being particularly effective on high-dimensional multivariate inputs where
representation alignment plays a critical role. For example, ESP yields non-trivial reductions in MAE
on Weather, where multiple variables evolve under shared dynamics. Notably, we observe relatively
smaller improvements on the Solar-Energy dataset for transformer-based models such as PatchTST
and iTransformer, which may be attributed to their reliance on longer input sequences for stable
attention computation.

Complementarity and synergy. The AMRC configuration, which jointly applies AML and ESP,
consistently outperforms its ablated variants across all benchmarks. The performance improvement
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Table 3: Ablation Study Results on Different Model Components
Model ETTh1 ETTh2 Solar-Energy Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE

SOFTS
AML only 0.401 0.405 0.322 0.358 0.297 0.309 0.192 0.228
ESP only 0.393 0.398 0.318 0.351 0.295 0.318 0.208 0.241
AMRC 0.389 0.393 0.311 0.362 0.290 0.309 0.196 0.220

iTransformer
AML only 0.410 0.413 0.328 0.363 0.398 0.347 0.205 0.230
ESP only 0.407 0.408 0.326 0.359 0.402 0.351 0.210 0.248
AMRC 0.402 0.399 0.324 0.356 0.392 0.342 0.201 0.221

TimeMixer
AML only 0.395 0.412 0.319 0.351 0.287 0.319 0.189 0.232
ESP only 0.391 0.406 0.317 0.347 0.293 0.325 0.202 0.248
AMRC 0.388 0.401 0.316 0.339 0.284 0.317 0.186 0.228

PatchTST
AML only 0.419 0.420 0.325 0.361 0.369 0.379 0.214 0.274
ESP only 0.417 0.418 0.323 0.357 0.375 0.384 0.217 0.281
AMRC 0.411 0.415 0.319 0.356 0.361 0.376 0.210 0.264

TSMixer
AML only 0.396 0.404 0.324 0.356 0.285 0.317 0.216 0.283
ESP only 0.390 0.399 0.322 0.352 0.291 0.323 0.224 0.292
AMRC 0.386 0.397 0.319 0.340 0.280 0.313 0.212 0.281

from combining both components generally exceeds the stronger of the two individual effects,
indicating synergistic interaction. This complementarity can be attributed to their distinct operational
scopes: AML operates on the input level by learning to suppress non-informative temporal segments,
while ESP regularizes the latent space to align representations across semantically related inputs.
As a result, AMRC improves both the quality of features learned from the data and the consistency
of their usage in prediction. The robust gains observed across datasets and architectures suggest
that jointly addressing input redundancy and representation inconsistency is critical for improving
generalization in time series forecasting.

Table 4: AMRC Effectiveness with Prefix Masking at a Fixed Input Length (L = 48). Ratio is the
percentage of training samples with reduced MSE under prefix masking. Ratio* is the same metric
after training with AMRC. Average results across all lengths are in Appendix D.1 Table 10.

Model ETTh1 ETTh2 Solar-Energy Weather

Metric Ratio Ratio* Ratio Ratio* Ratio Ratio* Ratio Ratio*

SOFTS 64% 57.33% 28.72% 20.28% 41.58% 33.49% 54.93% 47.12%
iTransformer 60.07% 49.95% 32.16% 23.28% 68.43% 63.21% 80.26% 70.29%
TimeMixer 58.04% 46.29% 44.52% 34.17% 36.25% 27.90% 66.13% 52.28%
PatchTST 65.51% 51.63% 42.46% 26.19% 51.66% 47.64% 42.43% 30.78%
TSMixer 59.19% 46.62% 42.13% 27.98% 40.12% 28.36% 70.88% 58.23%

Effectiveness of AMRC in Reducing Redundant Features We evaluate the model’s robustness to
redundant input by computing the proportion of training samples with improved MSE under prefix
masking Ratio and compare it to the value after applying AMRC Ratio*. As shown in Table 4,
AMRC consistently improves or maintains this ratio, indicating its effectiveness in suppressing the
impact of redundant temporal information.

6 Conclusion

This study pioneers the investigation into the negative effects of redundant feature learning in time
series forecasting and introduces AMRC, a plug-and-play solution that suppresses such learning
without requiring architectural modifications. Unlike prior work focused on enhancing predictive
features, AMRC improves accuracy by reducing reliance on redundant features while maintaining
model flexibility. Its key advantages include: 1) seamless integration with existing models, 2) effective
suppression of feature redundancy, and 3) strong generalization performance across benchmark tests.
By addressing the long-overlooked issue of redundant learning, this research provides a novel and
practical methodology for optimizing forecasting models.
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A Limitations

Despite the demonstrated effectiveness (Table 2) of our approach, AMRC has several limitations
related to its underlying assumptions, interpretability, and practical trade-offs, which highlight
important directions for future work.

1. Limitations of AML AML’s efficacy is bound by two key factors: the temporal characteristics
of the data and the interpretability of its masking mechanism.

• The prefix-masking strategy assumes that redundant information often resides in the
initial segments of a time series. In scenarios where the most critical predictive informa-
tion lies exclusively in the later portions of the input sequence, AML’s core mechanism
becomes ineffective. Masking the prefix will not improve the prediction loss, causing
the adaptive coefficient β to remain zero and deactivating the regularization.

• A significant limitation is the "black box" nature of the masking process. While AML
is designed to identify and suppress redundancy, it is difficult to determine precisely
what kinds of patterns are being masked—whether they represent noise, outliers, or
simply outdated information. The adaptive-weight mechanism improves efficiency, but
the decision process is not transparent. Clarifying this is a crucial direction for future
work to enhance the method’s interpretability.

2. Dependency on Data Dimensionality and the Role of ESP

• We observe that ESP’s improvements are more pronounced on datasets with lower
feature dimensionality (e.g., the ETTh family). On higher-dimensional datasets like
Weather (21 channels) and Solar-Energy (137 channels), its standalone gains are
comparatively smaller.

• This occurs because ESP aligns the geometric structure between the embedding and
output spaces. As feature dimensionality increases, the optimization directions for
this alignment grow exponentially, introducing greater uncertainty during training and
potentially yielding diminished returns.

• This limitation is effectively mitigated within the combined AMRC framework. High-
dimensional datasets often contain significant feature redundancy, which is precisely
the condition where AML excels. Therefore, the two components are highly comple-
mentary: ESP is most effective in lower-dimensional settings, while AML provides
the primary benefit in higher-dimensional, redundant settings, ensuring that AMRC
remains robust across diverse data types.

3. Inherent Design Trade-offs The search for an optimal mask requires evaluating m variants
per batch, increasing the training cost by a factor of approximately m. This makes it less
suitable for latency-sensitive applications.
The optimal mask is found via stochastic sampling of m candidates, which is an approxima-
tion of an exhaustive search. This practical compromise means that some redundancy may
remain, though it strikes a balance with computational feasibility.

B Details of the Baseline Model

All models are reproduced based on their official open-source implementations:

1. SOFTS from https://github.com/Secilia-Cxy/SOFTS.

2. TimeMixer from https://github.com/kwuking/TimeMixer.

3. iTransformer from https://github.com/thuml/iTransformer.

4. PatchTST from https://github.com/yuqinie98/PatchTST.

5. TSMixer from https://github.com/ditschuk/pytorch-tsmixer.

The hyperparameters for each model on different datasets follow the official configurations provided in
their corresponding GitHub repositories. For the PatchTST model on the Solar-Energy dataset, since
no official configuration was provided, we adopted the hyperparameter settings from iTransformer.

14

https://github.com/Secilia-Cxy/SOFTS
https://github.com/kwuking/TimeMixer
https://github.com/thuml/iTransformer
https://github.com/yuqinie98/PatchTST
https://github.com/ditschuk/pytorch-tsmixer


C Model Detail

C.1 ESP

Algorithm 1: Embedding-Similarity Penalty (ESP) for Time Series Forecasting
Input: Mini–batch B = {(Xi, Yi)}ni=1, encoder fenc, predictor fpred
Output: Penalty loss LESP

1 1. Forward pass to compute encoder outputs
2 for i← 1 to n do
3 Zi ← fenc(Xi) #encoder output ∈ RL×D

4 end
5 2. Compute pairwise Frobenius distances
6 Initialize ∆E ,∆O ∈ Rn×n

7 for i← 1 to n do
8 for j ← i to n do
9 ∆E

ij ← 1
L×D∥Zi − Zj∥2F #embedding similarity

10 ∆O
ij ← 1

P×D∥Yi − Yj∥2F #output similarity
11 ∆E

ji ← ∆E
ij ,

12 ∆O
ji ← ∆O

ij #symmetry
13 end
14 end
15 3. Compute pairwise penalties
16 for i← 1 to n do
17 for j ← 1 to n do
18 Pij ← |∆E

ij −∆O
ij |+ #element-wise consistency penalty

19 end
20 end
21 4. Compute final regularization loss
22 LESP ← 1

n2

∑n
i=1

∑n
j=1 Pij

23 5. Backward pass and update
24 Update θ using forecasting loss +λESP · LESP
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D Full Results

D.1 Experimental Result Details

Table 5: Multivariate forecasting results with prediction lengths H ∈ {48, 72, 96, 120, 144, 168, 192}
and fixed input window length L = 48. Red highlights indicate performance improvements > 0.005
using our method, while blue highlights denote improvements > 0 but ≤ 0.005.

Models SOFTS TimeMixer iTransformer PatchTST TSMixer

original AMRC original AMRC original AMRC original AMRC original AMRC

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

48 0.354 0.381 0.334 0.359 0.333 0.372 0.324 0.365 0.353 0.381 0.344 0.365 0.373 0.394 0.363 0.388 0.345 0.375 0.331 0.361
72 0.379 0.397 0.364 0.380 0.361 0.389 0.356 0.384 0.381 0.396 0.367 0.377 0.387 0.406 0.375 0.396 0.376 0.395 0.363 0.382
96 0.394 0.407 0.377 0.388 0.376 0.399 0.372 0.394 0.401 0.408 0.393 0.387 0.411 0.417 0.397 0.405 0.389 0.405 0.376 0.393

120 0.418 0.421 0.400 0.401 0.398 0.410 0.397 0.404 0.419 0.419 0.410 0.403 0.428 0.426 0.415 0.418 0.406 0.415 0.386 0.401
144 0.426 0.425 0.404 0.402 0.416 0.421 0.412 0.413 0.434 0.427 0.420 0.409 0.443 0.434 0.432 0.424 0.419 0.422 0.406 0.405
168 0.438 0.434 0.416 0.409 0.426 0.427 0.420 0.417 0.443 0.434 0.431 0.421 0.456 0.441 0.441 0.429 0.433 0.431 0.412 0.416
192 0.450 0.435 0.427 0.410 0.439 0.435 0.435 0.430 0.458 0.443 0.449 0.431 0.468 0.448 0.455 0.444 0.446 0.440 0.427 0.421
Avg 0.408 0.414 0.389 0.393 0.393 0.408 0.388 0.401 0.413 0.415 0.402 0.399 0.424 0.424 0.411 0.415 0.402 0.412 0.386 0.397

E
T

T
h2

48 0.236 0.304 0.221 0.303 0.235 0.302 0.230 0.290 0.246 0.312 0.237 0.306 0.241 0.306 0.229 0.301 0.241 0.302 0.229 0.277
72 0.281 0.333 0.275 0.344 0.273 0.326 0.269 0.309 0.283 0.336 0.280 0.327 0.281 0.332 0.274 0.328 0.276 0.328 0.270 0.299
96 0.319 0.356 0.307 0.364 0.298 0.343 0.294 0.328 0.309 0.352 0.306 0.345 0.307 0.349 0.299 0.349 0.303 0.345 0.298 0.314

120 0.328 0.361 0.315 0.368 0.323 0.359 0.321 0.342 0.332 0.366 0.329 0.359 0.331 0.361 0.326 0.357 0.331 0.361 0.324 0.332
144 0.354 0.375 0.333 0.371 0.343 0.371 0.343 0.352 0.354 0.377 0.346 0.368 0.353 0.374 0.347 0.372 0.353 0.373 0.352 0.338
168 0.371 0.386 0.354 0.385 0.368 0.388 0.369 0.370 0.379 0.391 0.376 0.392 0.376 0.387 0.367 0.390 0.370 0.485 0.369 0.449
192 0.391 0.399 0.373 0.399 0.386 0.399 0.387 0.381 0.398 0.402 0.393 0.395 0.397 0.399 0.391 0.396 0.396 0.402 0.390 0.369
Avg 0.326 0.359 0.311 0.362 0.318 0.355 0.316 0.339 0.329 0.362 0.324 0.356 0.327 0.358 0.319 0.356 0.324 0.357 0.319 0.340

E
T

T
m

1

48 0.497 0.434 0.487 0.422 0.462 0.423 0.443 0.397 0.543 0.453 0.529 0.448 0.481 0.424 0.472 0.417 0.452 0.411 0.442 0.404
72 0.462 0.421 0.457 0.414 0.453 0.420 0.438 0.394 0.497 0.438 0.479 0.438 0.443 0.411 0.438 0.400 0.419 0.399 0.406 0.399
96 0.447 0.418 0.440 0.409 0.437 0.415 0.418 0.392 0.475 0.431 0.461 0.429 0.422 0.402 0.417 0.389 0.404 0.395 0.398 0.394

120 0.478 0.432 0.470 0.422 0.473 0.432 0.452 0.407 0.512 0.447 0.499 0.449 0.459 0.420 0.455 0.413 0.438 0.413 0.431 0.412
144 0.507 0.448 0.495 0.434 0.489 0.441 0.469 0.419 0.542 0.461 0.525 0.455 0.481 0.434 0.476 0.426 0.460 0.425 0.451 0.424
168 0.498 0.443 0.486 0.429 0.479 0.437 0.461 0.416 0.531 0.457 0.517 0.458 0.477 0.433 0.474 0.429 0.457 0.426 0.452 0.430
192 0.501 0.445 0.488 0.430 0.470 0.435 0.447 0.409 0.521 0.452 0.504 0.453 0.465 0.427 0.459 0.418 0.451 0.422 0.444 0.421

Avg 0.484 0.434 0.475 0.423 0.466 0.429 0.447 0.405 0.517 0.448 0.502 0.447 0.461 0.422 0.456 0.413 0.440 0.413 0.432 0.412

E
T

T
m

2

48 0.154 0.246 0.141 0.226 0.157 0.251 0.150 0.235 0.159 0.255 0.158 0.242 0.160 0.253 0.151 0.241 0.147 0.238 0.141 0.218
72 0.174 0.261 0.166 0.246 0.173 0.261 0.164 0.249 0.178 0.268 0.178 0.261 0.176 0.265 0.159 0.253 0.170 0.257 0.158 0.233
96 0.189 0.271 0.179 0.254 0.190 0.274 0.186 0.256 0.193 0.276 0.188 0.268 0.190 0.272 0.176 0.253 0.186 0.265 0.177 0.247

120 0.211 0.287 0.200 0.269 0.210 0.285 0.209 0.268 0.214 0.290 0.210 0.280 0.212 0.287 0.194 0.273 0.208 0.282 0.198 0.261
144 0.236 0.302 0.221 0.280 0.231 0.300 0.226 0.283 0.236 0.304 0.235 0.296 0.233 0.302 0.220 0.286 0.228 0.296 0.219 0.272
168 0.248 0.311 0.233 0.289 0.245 0.311 0.242 0.295 0.251 0.313 0.251 0.301 0.248 0.310 0.232 0.291 0.244 0.305 0.235 0.279
192 0.261 0.316 0.245 0.293 0.255 0.313 0.250 0.295 0.263 0.321 0.257 0.312 0.260 0.317 0.240 0.300 0.257 0.313 0.243 0.290
Avg 0.210 0.285 0.198 0.265 0.209 0.285 0.204 0.269 0.213 0.290 0.211 0.280 0.211 0.287 0.196 0.271 0.201 0.279 0.196 0.257

So
la

r-
E

ne
rg

y

48 0.256 0.294 0.253 0.289 0.264 0.296 0.259 0.292 0.357 0.344 0.354 0.337 0.362 0.386 0.347 0.378 0.248 0.283 0.240 0.282
72 0.311 0.333 0.313 0.333 0.293 0.341 0.292 0.342 0.441 0.381 0.442 0.373 0.429 0.430 0.418 0.425 0.305 0.327 0.298 0.328
96 0.308 0.324 0.308 0.322 0.309 0.343 0.304 0.342 0.446 0.374 0.443 0.363 0.409 0.417 0.392 0.409 0.308 0.334 0.301 0.346

120 0.283 0.302 0.282 0.299 0.288 0.307 0.283 0.311 0.385 0.345 0.382 0.330 0.364 0.376 0.353 0.369 0.290 0.315 0.283 0.309
144 0.296 0.316 0.291 0.309 0.288 0.305 0.284 0.305 0.369 0.331 0.366 0.322 0.344 0.355 0.331 0.351 0.280 0.304 0.275 0.301
168 0.293 0.311 0.288 0.304 0.279 0.307 0.273 0.309 0.373 0.337 0.367 0.326 0.339 0.356 0.326 0.347 0.286 0.312 0.274 0.306
192 0.304 0.316 0.298 0.308 0.296 0.317 0.293 0.319 0.392 0.351 0.391 0.342 0.369 0.356 0.360 0.352 0.297 0.321 0.289 0.319

Avg 0.293 0.314 0.290 0.309 0.288 0.317 0.284 0.317 0.395 0.352 0.392 0.342 0.374 0.383 0.361 0.376 0.288 0.314 0.280 0.313

W
ea

th
er

48 0.161 0.188 0.152 0.174 0.153 0.189 0.143 0.182 0.159 0.189 0.147 0.177 0.189 0.264 0.183 0.245 0.169 0.237 0.158 0.226
72 0.178 0.212 0.174 0.203 0.179 0.219 0.165 0.208 0.189 0.211 0.176 0.204 0.208 0.279 0.202 0.262 0.200 0.273 0.196 0.265
96 0.201 0.232 0.195 0.221 0.203 0.251 0.191 0.243 0.201 0.234 0.197 0.225 0.219 0.288 0.214 0.276 0.223 0.298 0.215 0.289

120 0.204 0.235 0.197 0.223 0.195 0.237 0.185 0.227 0.213 0.202 0.205 0.196 0.222 0.291 0.217 0.274 0.228 0.300 0.214 0.299
144 0.221 0.249 0.210 0.233 0.202 0.243 0.193 0.232 0.219 0.247 0.212 0.238 0.215 0.287 0.215 0.273 0.236 0.313 0.224 0.304
168 0.224 0.254 0.213 0.238 0.212 0.251 0.206 0.243 0.233 0.258 0.229 0.247 0.237 0.263 0.234 0.248 0.235 0.261 0.241 0.255
192 0.244 0.266 0.232 0.249 0.233 0.269 0.219 0.261 0.245 0.271 0.241 0.260 0.214 0.288 0.205 0.270 0.263 0.331 0.235 0.329

Avg 0.205 0.234 0.196 0.220 0.197 0.237 0.186 0.228 0.209 0.237 0.201 0.221 0.215 0.280 0.210 0.264 0.222 0.288 0.212 0.281

E
C

L

48 0.146 0.233 0.138 0.221 0.172 0.259 0.164 0.256 0.151 0.238 0.136 0.216 0.189 0.264 0.188 0.264 0.148 0.236 0.141 0.224
72 0.161 0.247 0.158 0.241 0.188 0.274 0.183 0.272 0.168 0.253 0.158 0.228 0.208 0.279 0.202 0.278 0.165 0.251 0.157 0.236
96 0.171 0.256 0.166 0.248 0.199 0.284 0.194 0.283 0.178 0.262 0.161 0.236 0.219 0.288 0.211 0.294 0.175 0.260 0.172 0.248

120 0.176 0.261 0.170 0.251 0.203 0.287 0.194 0.284 0.183 0.267 0.172 0.249 0.222 0.291 0.221 0.290 0.180 0.265 0.177 0.257
144 0.175 0.261 0.165 0.247 0.200 0.283 0.191 0.281 0.182 0.267 0.173 0.245 0.215 0.287 0.210 0.291 0.180 0.265 0.176 0.254
168 0.176 0.262 0.166 0.248 0.199 0.285 0.194 0.284 0.182 0.266 0.165 0.249 0.211 0.284 0.206 0.286 0.181 0.265 0.177 0.252
192 0.181 0.266 0.170 0.252 0.200 0.283 0.196 0.279 0.186 0.270 0.176 0.250 0.214 0.288 0.212 0.291 0.184 0.267 0.184 0.258
Avg 0.169 0.255 0.162 0.244 0.194 0.279 0.188 0.277 0.176 0.260 0.163 0.239 0.211 0.283 0.207 0.285 0.173 0.258 0.169 0.247
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Table 6: Detailed statistical analysis of AMRC effectiveness. This table presents the mean ± standard
deviation over 10 runs for original and AMRC-enhanced models. The ’Conf (%)’ row indicates the
confidence level from significance tests comparing AMRC to the baseline.

Model Metric ETTh1 ETTh2 ETTm1 ETTm2

MSE MAE MSE MAE MSE MAE MSE MAE

SOFTS
Original 0.408± 0.004 0.414± 0.003 0.326± 0.003 0.359± 0.004 0.484± 0.004 0.434± 0.003 0.210± 0.002 0.285± 0.004
AMRC 0.389± 0.011 0.393± 0.009 0.311± 0.008 0.362± 0.004 0.475± 0.006 0.423± 0.005 0.198± 0.007 0.265± 0.006
Conf (%) 99 99 99 95 99 99 99 99

iTransformer
Original 0.413± 0.001 0.415± 0.002 0.329± 0.002 0.362± 0.002 0.517± 0.003 0.448± 0.001 0.213± 0.001 0.290± 0.002
AMRC 0.402± 0.004 0.399± 0.005 0.324± 0.005 0.356± 0.004 0.502± 0.004 0.447± 0.002 0.211± 0.003 0.280± 0.003
Conf (%) 99 99 95 95 99 95 95 99

TimeMixer
Original 0.393± 0.003 0.408± 0.005 0.318± 0.006 0.355± 0.008 0.466± 0.004 0.429± 0.006 0.209± 0.002 0.285± 0.004
AMRC 0.388± 0.006 0.401± 0.007 0.316± 0.008 0.339± 0.007 0.447± 0.008 0.405± 0.009 0.204± 0.007 0.269± 0.006
Conf (%) 99 99 99 99 99 99 99 99

PatchTST
Original 0.424± 0.003 0.424± 0.002 0.327± 0.001 0.358± 0.003 0.461± 0.003 0.422± 0.002 0.211± 0.002 0.287± 0.003
AMRC 0.411± 0.005 0.415± 0.003 0.319± 0.004 0.356± 0.004 0.456± 0.004 0.413± 0.003 0.196± 0.005 0.271± 0.004
Conf (%) 99 99 99 95 99 99 99 99

TSMixer
Original 0.402± 0.003 0.412± 0.005 0.324± 0.004 0.357± 0.004 0.440± 0.003 0.413± 0.006 0.201± 0.005 0.279± 0.003
AMRC 0.386± 0.010 0.397± 0.008 0.319± 0.007 0.340± 0.011 0.432± 0.010 0.412± 0.006 0.196± 0.007 0.257± 0.013
Conf (%) 99 99 99 99 99 95 95 99

Model Metric Solar-Energy Electricity Weather

MSE MAE MSE MAE MSE MAE

SOFTS
Original 0.293± 0.003 0.314± 0.004 0.169± 0.003 0.255± 0.004 0.205± 0.002 0.234± 0.003
AMRC 0.290± 0.007 0.309± 0.007 0.162± 0.006 0.244± 0.007 0.196± 0.005 0.186± 0.004
Conf (%) 95 95 99 99 99 99

iTransformer
Original 0.395± 0.002 0.352± 0.002 0.176± 0.002 0.260± 0.003 0.209± 0.003 0.237± 0.002
AMRC 0.392± 0.006 0.342± 0.005 0.163± 0.004 0.239± 0.007 0.201± 0.005 0.221± 0.008
Conf (%) 95 99 99 99 99 99

TimeMixer
Original 0.288± 0.003 0.317± 0.000 0.194± 0.010 0.279± 0.006 0.197± 0.010 0.237± 0.009
AMRC 0.284± 0.008 0.317± 0.008 0.188± 0.012 0.277± 0.008 0.186± 0.014 0.228± 0.011
Conf (%) 95 90 99 95 99 99

PatchTST
Original 0.374± 0.003 0.383± 0.004 0.211± 0.002 0.283± 0.002 0.215± 0.002 0.280± 0.003
AMRC 0.361± 0.006 0.376± 0.007 0.207± 0.004 0.285± 0.002 0.210± 0.003 0.264± 0.003
Conf (%) 95 99 99 95 99 99

TSMixer
Original 0.288± 0.004 0.314± 0.004 0.173± 0.005 0.258± 0.006 0.222± 0.002 0.288± 0.007
AMRC 0.280± 0.011 0.313± 0.005 0.169± 0.009 0.247± 0.006 0.212± 0.010 0.281± 0.009
Conf (%) 99 95 99 95 99 99

Table 7: Additional experiments on the Illness and ExchangeRate datasets using the SOFTS backbone.
Results are reported as mean ± standard deviation over 10 runs. Due to the small size of the Illness
dataset (967 samples), the experimental setup was adjusted (Input L = 48, prediction lengths H ∈
{24, 36, 48, 60}) following the PatchTST protocol [17].

H AMRC MSE AMRC MAE Original MSE Original MAE Conf-MSE (%) Conf-MAE (%)

Illness

24 1.633± 0.07 0.789± 0.06 1.776± 0.14 0.852± 0.03 95 95
36 1.858± 0.07 0.854± 0.06 1.942± 0.12 0.904± 0.04 90 95
48 2.035± 0.07 0.916± 0.05 2.153± 0.12 0.954± 0.03 95 95
60 2.054± 0.07 0.935± 0.03 2.113± 0.10 0.958± 0.03 90 90

ExchangeRate

48 0.03913± 0.001 0.13016± 0.007 0.04208± 0.001 0.13728± 0.008 99 95
72 0.05788± 0.002 0.16432± 0.008 0.06093± 0.003 0.17116± 0.009 95 90
96 0.07927± 0.002 0.18782± 0.005 0.08329± 0.004 0.20196± 0.001 99 99
120 0.10053± 0.001 0.21698± 0.002 0.10695± 0.001 0.22840± 0.001 99 99
144 0.12417± 0.002 0.24484± 0.002 0.12935± 0.002 0.25241± 0.001 99 99
168 0.14602± 0.002 0.25976± 0.001 0.16047± 0.003 0.28234± 0.003 99 99
192 0.17457± 0.007 0.29181± 0.006 0.18376± 0.007 0.30397± 0.007 95 99
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Table 8: Hyperparameter sensitivity analysis for the mask count (m) on the ETTh1 dataset with
the iTransformer backbone. We report the average MSE and MAE as m varies. The results show
diminishing returns, justifying our choice of m = 12.

Model m/L MSE (mean) MAE (mean)

SOFTS

1/8 0.407 0.416
1/6 0.407 0.409
1/4 0.389 0.393
1/3 0.384 0.388
1/2 0.381 0.385
3/4 0.380 0.384

iTransformer

1/8 0.412 0.412
1/6 0.411 0.417
1/4 0.402 0.399
1/3 0.398 0.395
1/2 0.395 0.392
3/4 0.394 0.390

TimeMixer

1/8 0.396 0.405
1/6 0.391 0.409
1/4 0.388 0.401
1/3 0.385 0.398
1/2 0.383 0.396
3/4 0.382 0.395

PatchTST

1/8 0.422 0.420
1/6 0.419 0.421
1/4 0.411 0.415
1/3 0.406 0.411
1/2 0.403 0.409
3/4 0.401 0.408

TSMixer

1/8 0.401 0.411
1/6 0.395 0.408
1/4 0.386 0.397
1/3 0.381 0.392
1/2 0.378 0.389
3/4 0.376 0.387

Table 9: The robustness of AMRC on SOFTS. Results are averaged over ten experiments, each tested
with different random seeds.

Dataset ETTh1 ETTh2 Solar-Energy Weather

Prediction MSE MAE MSE MAE MSE MAE MSE MAE

48 0.334± 0.003 0.359± 0.002 0.221± 0.001 0.303± 0.002 0.253± 0.002 0.289± 0.002 0.152± 0.001 0.174± 0.005
72 0.364± 0.001 0.380± 0.001 0.275± 0.002 0.344± 0.001 0.313± 0.001 0.333± 0.001 0.174± 0.003 0.203± 0.002
96 0.377± 0.002 0.388± 0.002 0.307± 0.002 0.364± 0.001 0.308± 0.002 0.322± 0.002 0.195± 0.002 0.221± 0.002

120 0.400± 0.002 0.400± 0.005 0.315± 0.001 0.368± 0.002 0.282± 0.002 0.299± 0.002 0.197± 0.001 0.223± 0.003
144 0.404± 0.002 0.402± 0.002 0.333± 0.002 0.371± 0.002 0.291± 0.002 0.309± 0.003 0.210± 0.002 0.233± 0.001
168 0.416± 0.002 0.409± 0.002 0.354± 0.002 0.385± 0.001 0.288± 0.002 0.304± 0.002 0.213± 0.003 0.238± 0.002
192 0.427± 0.002 0.410± 0.002 0.373± 0.002 0.399± 0.005 0.298± 0.001 0.308± 0.001 0.232± 0.003 0.249± 0.002
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Table 10: AMRC Effectiveness with Ideal Masking Averaged Across All Input Lengths. Ra-
tio is the percentage of samples with reduced MSE under ideal masking. Ratio* is the same
metric after training with AMRC. These results are averaged across all input lengths (L ∈
{24, 48, 96, 120, 144, 168, 192}) to show overall robustness.

Models SOFTS TimeMixer iTransformer PatchTST TSMixer

Metric Ratio Ratio* Ratio Ratio* Ratio Ratio* Ratio Ratio* Ratio Ratio*

ETTh1 57.14% 48.7% 49.69% 37.81% 51.88% 42.93% 57.81% 42.91% 52.92% 39.1%

ETTh2 30.99% 21.09% 47.16% 34.89% 33.28% 24.11% 43.54% 27.91% 44.29% 29.63%

Solar-Energy 44.87% 33.83% 37.52% 29.61% 71.18% 67.72% 53.26% 48.02% 41.66% 30.11%

Weather 54.63% 48.33% 67.39% 52.78% 79.4% 69.36% 41.98% 29.86% 69.32% 56.26%

D.2 Visualized Prediction Comparison Chart

(a) SOFTS in ETTh1 (b) SOFTS in ETTh2

(c) TimeMixer in ETTm1 (d) TimeMixer in ETTm2

(e) iTransformer in Solar-Energy (f) iTransformer in weather

(g) PatchTST in weather (h) TSMixer in ECL

Figure 4: Qualitative comparison of prediction performance. Each subplot provides a visual compari-
son of the ground truth, the baseline model, the optimal masking result, and the forecast from AMRC
on a specific model and dataset. The mask region highlights the prefix portion of the input.
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E Dataset description

Here we provide detailed descriptions along with download links for each dataset:

1. ETT (Electricity Transformer Temperature) [37]4: This collection includes two hourly-
resolution datasets (ETTh) and two 15-minute-resolution datasets (ETTm). Each dataset
captures seven key operational metrics (including oil and load measurements) from electricity
transformers, spanning from July 2016 to July 2018.

2. Electricity5: Comprising hourly power consumption records from 321 customers, this
dataset covers the period from 2012 to 2014.

3. Weather: Featuring 21 meteorological indicators (such as air temperature and humidity),
this dataset provides 10-minute-interval recordings throughout 2020, sourced from weather
stations in Germany.

4. Solar-Energy: Documents the solar power generation output of 137 photovoltaic plants in
2006, with measurements taken at 10-minute intervals.

Table 11: Detailed Dataset Descriptions. The table summarizes key characteristics of the time series
datasets, including the number of channels, prediction lengths, dataset splits, temporal granularity,
and application domains.

Dataset Channels Prediction Length Dataset Split (Train, Val, Test) Granularity Domain
ETTh1, ETTh2 7 {48, 72, 96, 120, 144, 168, 192} (8545, 2881, 2881) Hourly Electricity
ETTm1, ETTm2 7 {48, 72, 96, 120, 144, 168, 192} (34465, 11521, 11521) 15min Electricity
Weather 21 {48, 72, 96, 120, 144, 168, 192} (36792, 5271, 10540) 10min Weather
ECL 321 {48, 72, 96, 120, 144, 168, 192} (18317, 2633, 5261) Hourly Electricity
Solar-Energy 137 {48, 72, 96, 120, 144, 168, 192} (36601, 5161, 10417) 10min Energy

4https://github.com/zhouhaoyi/ETDataset
5https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are clearly written in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation of our method in Appendix A.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the theories and hypotheses we proposed are supported by experimental
and mathematical derivations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of the hyperparameters in the paper and
appendices, along with an anonymous link to the experimental demo in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included a link to an anonymous demo of our experiments in the
abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the experimental setup details in both the main text and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The margin of error is reported in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient computational resource details for each experiment in
both the main text and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our methodology and implementation fully adhere to the ethical code standards
set forth by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We have discussed the broader impact of time series forecasting in both abstract
and introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: This paper does not have this risk.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We included it in implementation details and appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: N/A.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We did not use any large language models (LLMs) in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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