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ABSTRACT

Indoor visual relocalization plays a key role in emerging spatial and embodied
Al applications. However, prior research has predominantly focused on methods
based on low-level vision. Despite notable progress, these methods inherently
struggle to capture scene semantics and compositions, limiting their interpretability
and interactivity. To address this limitation, we propose ObjLoc, a camera relo-
calization system designed to provide an intuition of scene object compositions
and accurate pose estimation, which can be seamlessly reused in high-level tasks.
Specifically, leveraging recent foundation models, we first introduce a multi-modal
strategy to integrate open-vocabulary semantic knowledge for effective 2D-3D
object matching. Additionally, we design an object-oriented reference frame and
a corresponding retrieval strategy for pose priors, enabling extension to scalable
scenes. To ensure robust and accurate pose optimization, we also propose a novel
dual-path 2D Iterative Closest Pixel loss guided by object geometry. Experimen-
tal results demonstrate that ObjLoc achieves superior relocalization performance
across various datasets. Our source code will be released upon acceptance.

1 INTRODUCTION

Indoor visual relocalization has been a fundamental problem in 3D computer vision over recent
decades, especially with trending applications such as virtual/augmented reality (VR/AR), robot-
environment interaction, and navigation, which targets estimating the 6-DOF camera pose given a
sensor observation in a known map. At present, facing increasingly challenging requirements for
embodied agents, an indoor relocalization system is desired to evolve beyond just accuracy, towards
scalability, compactness, and most importantly, semantic awareness, to improve its versatility and
adaptability in various downstream tasks such as robot-object interaction.

Previous visual relocalization solutions [Kendall et al.| (2015)); |Szegedy et al.| (2015)); [Brahmbhatt
et al.| (2018); Kendall & Cipolla| (2017); |Camposeco et al.[(2017);/Cheng et al.[(2019) mainly rely
on low-level vision features and are limited by the absence of scene semantic understanding and
memory-accuracy balance. As a result, they inevitably overlooked the inherent characteristics of
indoor scenes and struggled to support high-level applications. By contrast, humans can relocalize
themselves by recognizing surrounding objects, implying object elements can serve as valuable cues
for relocalization. An indoor scene is essentially a spatial composition of 3D objects, characterized
by rich semantics, regular geometry, and a distinct layout, which all concentrate at the object level. In
addition, an object-oriented map typically collects basic geometry attributes (3D bounding boxes,
colorless point clouds, efc.) of objects, thereby remaining highly compact. Meanwhile, objects are
also fundamental units that can be interpreted and interacted with by a robot. Therefore, performing
camera relocalization in an object-oriented map is highly promising, especially for indoor scenarios
rich in diverse objects.

However, as an novel task setting, there are only a few emerging attempts [Wang et al.| (2024);
Matsuzaki et al.| (2024b) to exploit objects in 6-DOF camera relocalization, and they still stay in the
preliminary stage. Specifically, existing works primarily suffer from the following three drawbacks:
(1) Existing landmark association techniques suffer from non-discriminative and information-poor
object descriptors, which may lead to severe outliers in object matching. (2) Reliable pose prior is
necessary for relocalization in scalable indoor scenes, yet it is absent in existing object-level works.
(3) Previous works often optimize poses via aligning 2D-3D bounding box centers, which results
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Figure 1: ObjLoc, an object-level camera relocalization system, can achieve robust and accurate
relocalization performance on various indoor scenes, based on an open-vocabulary object map.
As shown in the figure, in an extremely large multi-floor scene, the robot observes a tiny corner
containing a small radio and long-tailed animal ornament, and our system successfully identifies their
3D correspondences among hundreds of landmarks in the map. Next, initializing a pose prior, we can
optimize the camera pose with a novel loss design.

in significant ambiguity and errors in the case of few object correspondences. A dedicated pose
optimization technique tailored for object-level camera relocalization is still lacking.

To address the above challenges, we propose a semantic-aware, memory-efficient, and scalable indoor
camera relocalization framework based on open-vocabulary object-level mapping, i.e., ObjLoc.
ObjLoc constructs a novel and well-designed object-oriented map suite that consists of a global
scene graph, open-vocabulary object descriptors, object geometry, and reference frames. At first, by
leveraging open-vocabulary descriptors and the global scene graph, ObjLoc enables robust multi-
modal object matching to overcome the landmark association issue. Specifically, we employ an
advanced off-the-shelf foundation model, CLIP Radford et al.| (2021), to embed both visual and
textual concepts into object descriptors. These descriptors capture high-level semantic knowledge
such as affordance, material, efc., enabling accurate recognition of class-agnostic objects. Meanwhile,
the global scene graph can be utilized to incorporate the layout context as an informative modality to
further improve landmark association. Secondly, to expand to scalable scenes, ObjLoc introduces
object-oriented reference frames, a compact and efficient representation that records only observed
object IDs and 2D bounding box coordinates instead of redundant appearance color. Based on this
representation, a new DIoU-based (Distance-IoU) retrieval strategy is derived to measure frame
similarity between query and database images, providing reliable pose priors. Finally, we propose
an object-level tracker with a novel dual-path 2D ICP (Iterative Closest Pixel) loss, which estimates
accurate camera poses by aligning observed and projected pixel areas of objects. This fine-grained
loss can provide strong pose guidance even under sparse object correspondences. Benefiting from
this innovation, ObjLoc achieves exceptional accuracy gain beyond existing works.

We evaluate our system on benchmark indoor datasets, including ScanNet and
ScanNet++|Yeshwanth et al.| (2023)). Furthermore, we synthesized multiple large-scale scenes based
on the Habitat |Savva et al.| (2019); |Puig et al.| (2023)); [Szot et al.| (2021) simulator to cover a wide
range of object categories. To the best of our knowledge, ObjLoc is the first object-level method that
can work in such large-scale scenes. (See in Fig.[I). Extensive experiment results demonstrate that
our ObjLoc outperforms existing approaches, yielding superior performance in visual relocalization.
Overall, our contributions can be summarized as follows:

* We present a comprehensive framework that maintains object semantics, relocalization accu-
racy, and map compactness, offering a fresh perspective for indoor camera relocalization.

* We develop a novel and well-designed object-level map suite that enables robust multi-modal
landmark association to ensure sufficient inliers, while also supporting coarse pose prior
search in scalable scenes along with a DIOU-based retrieval strategy.

* We propose a novel dual-path 2D ICP loss tailored for pose optimization with object-level
correspondences, which can significantly improve relocalization accuracy and robustness.

» Experiments on various datasets demonstrate that our object-level system consistently
achieves state-of-the-art performance in indoor camera relocalization.
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2 RELATED WORK

Open-Vocabulary Semantic Mapping. Traditional semantic mapping commonly trains a neural
classifier on fixed object categories. While effective on known scenes and objects, they fail to
generalize to long-tail categories and complex scenarios. Recent progress in 2D vision-language
foundation models, such asRadford et al.| (2021)); Jia et al.|(2021));/Girdhar et al.|(2023)), has advanced
the shift in semantic mapping from closed-set approaches to open-vocabulary ones. This enables
robust zero-shot recognition and alleviates the need for labor-intensive annotations. OpenScene Peng
et al| (2023) introduces the open-vocabulary scene mapping and understanding task. It directly
projects 2D CLIP features onto dense 3D point clouds. However, point-wise feature alignment is
prone to noisy and incomplete segmentation results. ConceptFusion Jatavallabhula et al.| (2023)) also
builds a point-level map but enriches it with additional modalities. Takmaz et al.|(2023); Nguyen et al.
(2024) adopt a 3D model to first generate class-agnostic instance proposals, then extract instance-
wise open-vocabulary features, which improves the accuracy of object recognition. Nevertheless,
pre-trained 3D models struggle to ensure reliable segmentation performance. Following |Yang et al.
(2023);|Yan et al.[(2024); Yin et al.| (2024); |Lu et al.| (2023) utilize powerful 2D segmentation models
to produce 2D class-agnostic masks, and merge them into instances. Lifting 2D segmentations into
3D space can effectively enhance instance quality. The above works provide references for how to
build an object-oriented map in an object-level relocalization system, but they lack relocalization
task-oriented designs when handling challenging indoor situations, such as similar or repeated objects.

Object-Level Relocalization. Recently, object-level SLAM has gained widespread attention. By
matching the mapping frames with 3D instances and minimizing the projection error, object-level
SLAM [Salas-Moreno et al.|(2013); Yang & Scherer| (2019b); [Zins et al.|(2022b)); 'Yang & Scherer|
(2019a); |Wu et al.| (2020); [Wang et al.|(2021) shows satisfactory pose results. Although object-based
SLAM methods have been researched, object-based relocalization remains relatively underexplored.
Zins et al.| (2022a) first proposes an object-level relocalization pipeline by matching the object
category in the query and the pre-built map. However, object-level matching is prone to incorrect
associations, which may lead to degradation in relocalization accuracy. GOReloc [Wang et al.| (2024)
considers the semantic uncertainty and consistency in a graph to facilitate object matching. However,
such graph-based object descriptors only record close-vocabulary neighbor categories and numbers
and thus remain confused and non-discriminative in the association. Clip-Loc|Matsuzaki et al.|(2024a)
first tried to introduce open-vocabulary features as object descriptors, and Clip-Clique Matsuzaki
et al.[(2024b) further proposed to combine maximal clique finding with CLIP to improve matching
performance. Unfortunately, they lacked a complete map suite and a systematic pipeline, which
prevented them from fully exploring the potential of this research line. This is also the reason for
their limited performance and scalability.

3 METHOD

Problem Statement.The overview of our proposed object-level camera relocalization framework is
shown in Fig[2} Given a collection of posed RGBD images from a scene, and an unseen query RGB
image from the same scene, the topic of the object-level camera relocalization task is to estimate
the 6-DoF camera pose of this query image solely based on key attributes of scene objects, such as
high-level semantics, neighbor relationships, and geometric shapes.

Step-by-step Overview. (1) Object-oriented Mapping (Sec[3.1I): Given a set of posed RGBD images
from a scene, the task is to process these RGBD observations and output an object-centric 3D map
suite, including a 3D instance segmented point cloud, per-object feature descriptor, object-oriented
reference frames, and a global scene graph. (2) Landmark Association (Sec : Given a pre-built
map from the last step and an unseen RGB query image, we analyze this query image and find
correspondences between observed objects in the query image and those objects (landmarks) in the
3D map. (3) Relocalization (Sec[3.3): Given the 3D map, 2D query image, and object matching pairs
between them, we employ a coarse-to-fine strategy to accurately and robustly estimate the 6-DoF
camera pose of this query image.

3.1 OBIJECT-ORIENTED MAPPING

Object-oriented mapping is the first and pivotal step in our framework, where a well-structured map
suite and high-quality reconstruction serve as the core foundation. In this section, we introduce a
sequential object-level mapping pipeline and the principles behind each module.
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Figure 2: System Overview. As shown in this figure, our system includes three main steps: (1) We
lift a RGBD-S (RGBD-Segmentation) sequence into 3D space to obtain object landmarks O, and
reference frames /C. Well visible patches S of a landmark at different views are fed into CLIP for
its descriptor f3¢. Finally, based on 3D bounding box collisions and nearest neighbors, we derive a
global scene into a graph G. (2) In a query image, detected object regions and their descriptions from
LLM are both fed into CLIP for query features f24. = f24  We distinguish similar objects by the
scene graph analysis, i.e., layout context. (3) DIOU-based retrieval can find a reference frame most
similar to the query image for initialization. Then, leveraging the geometric shapes of objects, the
camera pose is optimized under the guidance of aligning the projected and target pixel areas.

Instance Segmentation. In the object-level relocalization task, instance segmentation plays an
important role in identifying individual objects. Based on depth observations, we can reconstruct the
scene mesh by TSDF-Fusion Zeng et al. and convert vertices into the scene point cloud P.
Then, CropFormer Qi et al.| (2022) is utilized to predict 2D mask proposals on input RGB images
as graph nodes V,,,. Edge affinity &,, is calculated with a simplified view consensus rate proposed
in (2024). Through progressive graph clustering in G(V;,|€,,), we can merge mask nodes
into clusters, each representing an instance. Instance segmentation module lifts 2D segmentations
into 3D space and generates landmarks {O} = (P;, B3, C;)|i = 1,2, 3..N} including point clouds
P;, 3D bounding boxes B3?, and centers C;. Some qualitative results are presented in theE

Distribution of Reference Frames. In order to adapt to scalable scenes, we innovatively create object-
oriented reference frames and distribute them as initial pose anchors. Unlike the RGB reference
frame, we replace the redundant color with landmark IDs i and 2D bounding box coordinates B¢ in
our design. We define our reference frames K as Eq. equation [T]and visualize them in Fig.

K=1{(i,B?*)]i=1,2,.,Nc}, e

where Ny represents the number of objects observed in K. We select reference frames based on
detected object difference, e.g., a fresh object is observed or a historical object becomes much more
visible. Such object-oriented reference frames effectively alleviate storage pressure caused by color
images, especially in large-scale indoor scenarios.

Multi-view Object Descriptor. Very recently, the advanced CLIP model can work as an effective
object descriptor encoder. We project point clouds P; as point prompts in SAM [Kirillov et al.| (2023)
to find patches S of the same landmark in different views. Top-k segmentation patches with maximal
visibility are input into a CLIP visual encoder and an average pooling layer to obtain a multi-view
CLIP feature f3%:

k
= Z CLIP(S ©

??'M—‘
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These discriminative features f37, rich in open-vocabulary semantics, can serve as descriptors of
class-agnostic objects. Notably, we slightly scale up each patch to involve some surroundings.

Invalid Object Recognition We have noticed that some indoor objects do not carry valuable infor-
mation and still occupy a large portion of the map, such as the wall and floor. We consider these
objects to be invalid or even negative, and it is necessary to ignore them in subsequent steps. To avoid
additional computational complexity, we recognize these objects based on their frequency in existing
reference frames. If an object appears in the majority of reference frames, it cannot assist our system
in narrowing down the pose retrieval region. Qualitative results are presented in [D}

Scene Graph Extraction. We believe that spatial arrangement is an essential cue for indoor object-
level relocalization. As an interpretable representation, a scene graph can clearly describe object
relationships and the contextual layout to disambiguate the landmark association. In our global scene
graph G(V|€), edges £ are added between each object node V with its nearest neighbors or those
objects exhibiting 3D bounding box collisions.

3.2 LANDMARK ASSOCIATION

Landmark association refers to a process where our system searches for observed 2D objects in the
query image within a pre-built object-level 3D map. This has historically been challenging, especially
in large-scale scenes. In this section, we discussed how to establish 2D-3D object correspondences in
terms of vision, language, and layout context.

Open-vocabulary Matching. In a query image, to fully discover objects in it, we adopt the powerful
Florence2 Xiao et al.[(2024) model to perform object region proposal. These found object regions (2D
bounding boxes) are fed into CLIP to obtain visual features f2L. . We can quantify the uniqueness
7 of a region with its cosine similarity variance with all landmarks, as shown in Eq. equation [3]

2d 3d
viston’ J 1

)y ey cOS( 2d 3d)) , 3)

vision’ J N

v = Var(cos(

where Var(-) is the variance and cos(+) is the cosine similarity. Only 2D Object regions with
sufficient uniqueness will be retained for subsequent recognition and matching.

Next, we hope to automatically annotate text descriptions on these salient 2D objects O,. Large
Language Models (LLMs) have exhibited remarkable common-sense reasoning ability. This is the
reason why we use GPT-4o |Hurst et al.[(2024) as an agent for object analysis. Nevertheless, we
still need to craft a reasonable LLM prompt to raise its task orientation and response quality. It
is well known that the placement environment of an object is closely related to its functionality.
However, too many surroundings may lead to visual interference, which affects the agent’s inference.
Consequently, as shown in Fig. 2] we simultaneously pass two images into the agent: the query image
and a segmented 2D object. Our agent should pay attention to both surroundings and the object itself.
We similarly fed agent responses to the CLIP for language descriptors f2¢,. We can now correlate

query features fgsion, fe‘it with 3¢ for Top-3 landmark candidates O,;s, Oyt respectively:

cos(fd 3 0) = 04is={0F, 012,03} (4a)

vision’ Ji=1,..,

COS(fEeit? 1',3=dl,..,N) = Ot@ﬂct:{Olﬂv Olt27 Ofd} . (4b)

If visual and language cues indicate the same 3D object (O! = O!!'), we regard it as confident
enough to be inserted into the final landmark association results L. Otherwise, we give a set of 3D
object candidates U={(Oy;s N Otert) U OYL U O} to be further checked in scene graph analysis.

Sub-graph Matching. As in Fig. |2} frequent repeated or similar objects in an indoor scene are the
root cause of the uncertainty set U. We resort to scene graph analysis to address this problem by
leveraging neighborhood relationships. For a 2D object in the query image, its subgraph G, will be
constructed by connecting the nearest or other intersecting 2D object regions. For a candidate in U, it
is regarded as an origin in the global scene graph G(V|£) to extract a Breadth-First 3D subgraph G,
with a path length 7. We can determine the best candidate from U by identifying a 3D subgraph G;
that is most similar to the G,.

Another problem is how to measure subgraph similarity, which is formulated as a linear sum
assignment problem (LSAP). The goal is to solve an optimal neighbor nodes assignment from G, to
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Figure 3: Subgraph Similarity and DIOU Metric. (a) We compute the cosine similarity of all
possible neighbor pairs between two subgraphs, from which we solve an assignment to maximize the
total matching score as the subgraph similarity. (b) This figure visualizes relevant variables by, b, c
and the principle of DIOU metric.

G so that the total matching score is maximized, as shown in Fig. [3|(a). After filtering via subgraph
matching, we can obtain the final landmark association results:

L={(0,0p)i1 € (1,..,Ny),iz € (1,...N)} . 6))
3.3 RELOCALIZATION

As the final pose estimation step, the object-level tracker directly influences the relocalization
success rate and accuracy. Our object-level tracker improves relocalization performance relying on a
coarse-to-fine strategy and a novel loss. Two relocalization stages are detailed below.

Coarse Pose Prior. For voting a reference frame most similar to the query image, we initially choose
the ones that contain the largest number of matched 3D landmarks. This often results in a co-visible
subset of reference frames, for which a DIOU metric is further calculated as follows:

_ 2
DIOU = 1 — 10U + Pa—Prll® czer ; ©)

where bg and b, represent 2D bounding box centers of the same object in the query and reference
frames respectively, and c is the diagonal distance of the smallest enclosing rectangle covering two
boxes, as shown in Fig. [3|(b). This metric is compatible with our reference frame design and it can
avoid failure cases from non-overlapping boxes (I0U=0). The lower the DIOU metric, the better. So
far, the reference frame /C with the best DIOU score offers a coarse pose prior.

Refined Pose Optimization. Previous object-level works always try to optimize poses by aligning the
center points of 2D and 3D bounding boxes. Although this approach can provide a rough optimization
trend, it is inherently unsuitable for an object-level system. In principle, it is prone to severe errors
or ambiguity due to sparse object center point correspondences. Inspired by the traditional 3D ICP
(Iterative Closest Point) algorithm, we evolved it into a 2D ICP variant on the image plane to optimize
camera poses {q, T}, i.e., quaternion rotation and translation. Specifically, as shown in Fig.[2} given
the point cloud P; of a landmark and its target mask area m; in the query. We can project P; into a
pixel set p; at the current pose and compute the bidirectional average distance between the closest
pixel pairs in p; and m;, as shown in Egs.[7a]and [Tb] To enable more robust and accurate pose
estimation, we impose a Huber kernel H with a hyperparameter ¢ on the 2D ICP loss to suppress
extreme outlier pixels.

forward = Ni Z H(sz - w(pz ami)||2?6) ) (7a)

Pi neEp;

. 1

‘C?)ackward = Ni Z H(Hm? - w(m??pl>||276) ) (7b)

Mi nem;

1 ) )
‘cic N lorwar + ‘Clac ward/) > 3
P NL ;( f d back d)

where N,,,, N, are the number of pixels in p; and m;, Ny, is the number of matching objects, and
1(+) outputs the closest peer of a pixel. Our dual-path 2D ICP loss in Eq. 8| can make full use of
object information to align not only centers of objects but also their entire 2D shapes. The importance
of bidirectional design lies in eliminating scale ambiguity arising from £ forward OF Loackward alone.
Benefiting from this loss, we can achieve stable and accurate pose optimization.
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Table 1: Relocalization Results on the ScanNet Dataset. Our system achieves the state-of-the-art
relocalization performance in terms of recall and accuracy in the ScanNet dataset.

Method Metric 0568 0101 0673 0108 0166 0378 0092 0603 Method Metric 0568 0101 0673 0108 0166 0378 0092 0603
@50cm @25cm

Recall%]t 36 17 32 18 61 44 38 33 Recall[%]t 6 3 8 4 21 17 6 9
CoordiNet MTE[m], 034 035 032 036 031 032 035 032 CoordiNet MTE[m], 021 021 018 023 017 02 018 0.17
MRE[FP], 136 178 105 216 113 148 145 113 MREF]L 192 82 90 3L1 114 141 82 125

Recall %It 76 37 14 82 52 41 45 40 Recall %]t 32 14 4 57 33 21 19 9
MS-Transformer ~ MTE[m]/ 028 031 032 021 023 026 025 032 MS-Transformer ~ MTE[m],  0.16 0.8 023 0I5 017 016 0.4 016
MRE[°]l 232 434 468 417 274 334 153 255 MRE[°]l 186 358 94 315 212 342 127 220

Recall[%]t 8 17 22 25 16 12 9 14 Recall[%]t 5 17 10 12 7 3 6 5
GoReloc MTE[m]} 023 021 029 026 023 030 023 029 GoReloc MTE[m], 0.4 021 014 012 013 016 014 0.14
MRE[°]L 46 49 102 45 70 95 86 268 MREP]L 21 49 45 37 49 52 74 61

Recal[%]t 79 68 64 8 72 8 6 65 Recall[%]t =~ 58 45 51 73 52 74 50 52
Ours MTE[m], 0.8 02 017 016 018 012 019 015 Ours MTE[m})) 013 014 012 011 012 009 012 010
MREF°], 40 47 46 39 60 36 60 57 MRE[°], 29 36 34 28 40 27 40 38

Table 2: Relocalization Results on the ScanNet++ Dataset. From this table, it is clear that our
system achieves a better relocalization success rate and lower translation/rotation errors.

Method Metric  Oa7cc 0al84 Od2ee 7¢094 7fddl 25f3b 8890d a08d9 Method Metric ~ Oa7cc 0al84 Od2ee 7¢094 7fddl 25f3b 8890d a08d9
@50cm @25cm

Recall(%]t 35 39 32 62 36 54 64 35 Recall[%]t 10 7 5 21 9 15 13 11

CoordiNet MTE[m}} 031 035 037 033 033 032 032 034 CoordiNet MTE[m}} 0.8 016 020 021 016 019 015 0.9
MRE[]L 133 134 261 62 113 101 64 118 MRE[], 140 122 225 59 131 82 65 137

Recall[ %]t 68 72 32 60 57 60 66 51 Recall[%]t 41 32 11 35 18 40 27 11

MS-Transformer MTE[m], 025 026 031 022 029 022 028 032 MS-Transformer ~ MTE[m]{ ~ 0.17 0.6 0.7 013 0.6 016 017 018
MRE[’]} 142 268 398 382 254 228 263 187 MRE[F]} 122 253 260 131 234 202 173 121

Recall[ %]t 70 74 62 92 75 71 81 70 Recall[%]t 60 59 54 80 68 65 70 54

Ours MTE[m], 011 012 013 011 0.09 013 0.09 0.16 Ours MTE[m]} 0.07 0.07 0.0 008 0.06 009 006 0.09
MREP]L, 40 41 42 37 31 71 37 80 MREPL 27 25 37 24 26 51 20 40

4 EXPERIMENTS

In this section, we describe our experimental setup and validate that our system can achieve significant
improvements in relocalization performance. We evaluate our system in single-room (Sec. 4.1)),
multi-room (Sec. [.2), and even multi-floor indoor environments. We analyze its map size (Sec. |4.3)

and confirmed the effectiveness of key module designs (Sec. . We color each cell as best ,
second best , and third best .

Datasets. In the single-room case, we utilize two real-world benchmarks: ScanNet Dai et al.|(2017)
and ScanNet++ | Yeshwanth et al.| (2023)), which contain 8§ challenging scenes respectively. To acquire
query images, in these two datasets, we split a continuous image sequence into two parts for mapping
and relocalization. In the multi-room case, for free query viewpoints and rich objects, we use the
Habitat simulator Savva et al.|(2019); |Szot et al.| (2021); [Puig et al.|(2023)) to generate 6 multi-room
and 2 multi-floor scenes based on available assets from the HSSD |[Khanna* et al.| (2023)).

Implementation Details. We run our system on a desktop equipped with an Intel 19-14900K and an
NVIDIA RTX 4090 GPU. We set the learning rate of {¢, 7'} to {0.025, 0.025} in the refined pose
optimization. During extracting 3D landmark descriptors, we select k=5 segmentation patches. In 2D
ICP loss, we use the hyperparameter 6 = 10 in the Huber kernel. The path length 7 is set to 7 = 1 in
the node search to extract 3D subgraphs from the global scene graph. Our system selects the official
ViT-L/14@336px CLIP model to embed 768-dimension open-vocabulary features. In ScanNet Dai
et al. (2017), ScanNet++ Yeshwanth et al.|(2023)), and Synthetic datasets, we sample mapping frames
at intervals of {20, 40, 10}. We sample query frames starting from the 10th frame with intervals of
{20, 80} in ScanNet and ScanNet++. For further implementation details, please refer to

Metrics. A relocalization system is most concerned about its success rate and pose accuracy. We
quantitatively evaluate these two aspects using different metrics. With respect to success rate, we
count the percentage of correctly relocalized query images within given translation thresholds: 50cm
and 25cm, i.e., Recall[%)] at 50cm and 25cm. As for accuracy, we calculated the mean translation
error (M T E[em]) and mean rotation error (M RE[°]) for those query images within Recall@Q50cm
and Recall@25cm, respectively.

Baselines. As a novel task setting, ObjLoc should be compared with some object-level 6-DOF
relocalization methods that similarly possess semantic awareness. However, very limited open-source
work is available in this emerging research field. Therefore, we primarily compare our method
with an open-source and SOTA object-level baseline, GoReloc |Wang et al.| (2024), which shares the
most relevant problem formulation with ours. Additionally, we also include some low-level vision
methods |[Moreau et al.| (2022)); Shavit et al.| (2021)) with comparable map sizes for completeness and
fairness . We reproduce and fine-tune all baselines on our own datasets and experimental settings.
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Table 3: Relocalization Results on the Synthetic Dataset. Our system outperforms other baselines
across various large-scale scenes. ‘-’ denotes failure results in GoReloc Wang et al.| (2024). *’
denotes an additional experiment group.

" Method Metric ~ Scenel Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8
Method Metric ~ Scenel Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8
@25cm
@50cm
Recall[% = G = 5 0 s 3 3 Recall[%]T 4 8 7 20 13 4 5 9
CoordiNet ;1;;3[ eIt TEEEE 043 I o3 W05 0;7 e MS-Transformer MTE[m], 0.16 021 0.7 0.8 0.4 016 0.16 0.17
‘oordiNet X . .43 X X . .3
ml} - MRE[°], 49 6.8 36 35 4.7 14.1 3.6 3.8
MRE[°]} 14.1 13.1 337 17.4 18.9 153 11.9 11.7

Recall[%]T 73 83 75 69 86 74 71 75
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Figure 4: Relocalization Results on Various Datasets. In this figure, we qualitatively show some
relocalization poses of our system and their ground truth on various datasets. It is obvious that our
system can achieve accurate relocalization in scalable scenes.

4.1 SINGLE-ROOM RELOCALIZATION

Evaluation on ScanNet [Dai et al.|(2017). We report relocalization results of our system across
8 ScanNet scenes in Tab. [I] Despite suffering from incomplete and noisy RGB-D observations,
excellent landmark association and innovative pose refinement promote a robust convergence of
our system to a decent solution. It is clear that our system surpasses all other baselines with a
notable margin in both success rate and accuracy at Recall@50cm and Recall@25cm. Against
GoReloc |Wang et al.[(2024), our method substantially increases the success rate by around 5~10
times. This breakthrough means that our system sets an upgraded benchmark for the object-level
camera relocalization task.

Evaluation on ScanNet++ |Yeshwanth et al. (2023). As shown in Tab. |2) we also evaluate the
relocalization performance of our system on ScanNet++. In GoRelocWang et al.| (2024), its mapping
relies heavily on the combination of YOLOvS8|Redmon et al.|(2016) and ORB-SLAM?2 Mur-Artal &
Tardods| (2017) features, and weak-texture conditions in ScanNet++ scenes seriously hinder its normal
operation. As a result, we only compare low-level vision approaches to ours in this dataset. Similarly,
our system can still achieve better relocalization performance, and the availability of high-quality
sensor data in ScanNet++ facilitates higher pose accuracy (MTE and MRE) of our system.

The poor performance of GoReloc in sing-room scenes primarily stems from its closed-vocabulary
semantics, ambiguous pose optimization method, and low-discriminability descriptors that only
encode neighbor categories. To sum up, extensive experiments on these two datasets illustrate the
strong ability and open-vocabulary advantages of our system to handle complex real-world scenes,
enhancing the practicality of object-level camera relocalization.

4.2 MULTI-ROOM RELOCALIZATION

With available assets and stages in the HSSD |[Khanna* et al.| (2023, we assembled a variety of more
challenging indoor scenes, consisting of multi-room (Scenel~6) and multi-floor (Scene7~8) cases
to fully explore the potential of our system in terms of generalization and scalability. In Tab. 3] we
quantitatively compare our system with baselines on the synthetic dataset. It can be seen that our
system exhibits superior robustness in this large-scale setting, excelling other baselines in all metrics.
These baselines struggle with large-scale scenes, experiencing a significant drop in their performance.
Especially for GoReloc Wang et al.|(2024) and CoordiNet Moreau et al. (2022), in such challenging
scenarios, their Recall@Q50cm is very poor, and they fail to localize the camera pose within 25cm.
Thus, we additionally add a more lenient condition, Recall@100cm, to examine them.

Multi-room experiments reveal that our framework can effortlessly adapt to large-scale indoor scenes,
a capability we attribute to our object-oriented reference frame and DIOU retrieval strategy. In
contrast, the lack of pose priors severely limits the scalability of GoReloc.
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Table 5: Ablation Study. To validate the effectiveness of our main module designs, we report ablation
results on scenes from different datasets [0568 | 0a7cc | Scenel]. ‘-* denotes failure cases.

@50cm @25cm
Setting Recall[%]1 MTE[m]| MRE[°]} Recall[%]1 MTE[m]| MRE[°]|
#1 w/o Refine Stage 62 45 6 025 0.15 043 85 110 297 46 41 0 0.18  0.09 - 6.1 11
#2 w/o Coarse Stage 27 0 29 0.29 - 0.17 83 - 5.0 11 0 20 0.15 - 0.09 33 - 29
#3 w/o Scene Graph 64 64 78 021 011 0.12 46 46 35 41 56 70 0.14 0.08 0.08 31 40 21
#4 w/o Language Modality 66 52 76 018 0.2 0.13 41 44 40 49 44 62 0.13  0.07 0.07 29 28 18
Ours Full 79 70 86 018 0.11 0.12 40 40 338 58 60 73 0.13 0.07 0.07 29 27 18

As shown in Fig. 4] we visualize relocalization results on some scenes of different datasets, which
qualitatively demonstrate the effectiveness and generalization of our proposed framework. Notably,
ObjLoc can recognize and match various objects in an open-vocabulary manner, which essentially
sets ours apart from GoReloc and low-level methods. Hence, we conducted a targeted evaluation
on this ObjLoc’s particular strength on open-vocabulary object sets as in[B] We also provide more
visualizations, lighting variance evaluation, and further system analysis in our appendix material.

4.3 MAP SIZE ANALYSIS

We report the map size of different methods Table 4: Map Sizes of Different Methods.
on the ScanNet ‘0568 scene in Tab. [ where Metric CoordiNet  MS-Transformer _ GoReloc
object-level methods (GoReloc Wang et al.
(2024) and Ours) can construct a significantly
more lightweight map compared to low-level methods (CoordiNet Moreau et al.| (2022) and MS-
Transformer|Shavit et al.|(2021)). Furthermore, compared to GoReloc Wang et al.[(2024), removing
object color and category likelihood saves an additional 80% of memory consumption in our system.

Ours

Map Size[MB] 714 63.1 17.2 35

4.4 ABLATION STUDY

To verify the rationality of our main module designs, we conduct ablation studies on scenes from
different datasets (0568, Oa7cc, and Scenel). We investigate the effectiveness of the coarse-to-fine
pose optimization, scene graph analysis, and language modality. Please refer to[D]for more ablations
on DIOU-based retrieval, invalid object filtering, and relocalization losses.

Effectiveness of Coarse-to-fine Pose Optimization. The coarse-to-fine pose optimization is a
reasonable and necessary strategy in camera relocalization, especially for large-scale scenes. To
demonstrate the necessity and effectiveness of coarse pose priors and pose refinement, we separately
conducted ablation studies on them in Tab. [5|#1#2. When ablating coarse priors, we use the average
of all ground-truth poses as a fixed initial value. Results show that removing either component
severely degrades performance: without coarse priors, poor initialization disrupts refinement, causing
the system to fail; without refinement, accuracy drops significantly. These results highlight the
contributions and complementary roles of coarse and refinement stages, which jointly ensure accuracy.

Effectiveness of Scene Graph. Scene graph analysis aims to address uncertain candidates in U.
Without scene graph analysis, the system is prone to being confused by similar or repeated objects,
thereby weakening its object recognition capability. As shown in Tab. [5]#3, if the scene graph module
is ablated, an obvious performance degradation will happen due to object mismatches.

Effectiveness of Language Modality. In Tab. |5|#4, we compare the system performance with
and without language modality. In the presence of visual occlusion and noise, relying solely on
visual cues to predict 3D object candidates is biased. However, text descriptions obtained from the
common-sense reasoning of an LLM model can fix this weakness. Ablation results indicate that the
language modality can effectively improve relocalization performance.

5 CONCLUSION

We have proposed ObjLoc, a comprehensive indoor camera relocalization system based on open-
vocabulary object-level mapping, which is the first to handle scalable scenes at the object level.
Multi-modal analysis for objects supports our system in better associating observed items in the
query image with correct landmarks. Object-oriented reference frames and the DIOU-based retrieval
address the scalability bottleneck, providing reliable pose priors. Besides, the dual-path ICP design
effectively optimizes poses with sparse object correspondences, improving relocalization recall and
accuracy. Through extensive experiments, it can be concluded that our system achieves pioneering
progress and state-of-the-art performance in the object-level camera relocalization task.
Limitations. Our system cannot capture and locally update dynamic changes in a scene, which may
cause some inconvenience. It is an interesting direction for future work.
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REPRODUCIBILITY STATEMENT
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APPENDIX

In this appendix, we provide more details of our ObjLoc system, including 1) further implementation
details (A); 2) open-vocabulary object matching evaluation (B)); 3) lighting variance evaluation of our
system under different lighting conditions (C)); 4) ablation studies on the invalid object filtering, DIOU-
based retrieval, and relocalization losses %; 5) further system analysis @); 6) more visualization
results (F). We also provide a video attachment to visualize our framework and experimental results.

# System Prompt

You are ChatGPT, a large language model trained
by OpenAI. Now you act as a human who can give
brief and correct description for a specific object

in an indoor scene.
# Task Definition

You will be given an indoor scene image and a local
cropped mask image of a specific object in this
indoor scene. Please briefly describe this specific
object in terms of color and category. Your
response should be a brief description of the main
object in the cropped image, containing only key
information.

# Input Content

X

ot

Indoor scene image Cropped mask image

# Response Format

Your response should use the following format:
Brief Object Description:
###<Brief Object Description>##

Figure 5: LLM Prompt. In this figure, we provide a detailed description of the prompt and various
requirements that we input into our LLM agent.

A FURTHER IMPLEMENTATION DETAILS

Statement of the use of LLM. In our framework, considering the language modality, we employ
GPT-40|Hurst et al.|(2024) as an LLM agent to analyze observed objects in the 2D query image and
automatically annotate language descriptions for them. We elaborate on the prompt content we input
into this LLM agent in Fig.[5] In addition to providing both the object itself and its surrounding
environment as input, we also restrict the output format of the LLM agent to prevent excessively
long responses. CLIP has trouble with processing too long sentences, often resulting in information
confusion or semantic drift, which has a negative impact on language descriptors and landmark
association. Thus, LLM plays an 'Object-Agent’ module to provide language modality through
common-sense reasoning. Meanwhile, LLM is also used for linguistic polish and grammar checks.

Pose optimization. During object-level pose optimization, due to the limited number of object
correspondences, the presence of outliers is very detrimental to the final result. Therefore, in the
optimization process, we also apply a median filter strategy to remove matching pairs with an ICP
loss larger than 5x the median loss value. This enables a more stable pose refinement.

B OPEN-VOCABULARY OBJECT MATCHING

First, as an object-level method, ObjLoc can decompose diverse objects in a scene. Low-level
vision solutions naturally fall short in such capabilities, which reveals their essential difference from
ours. Furthermore, as an open-vocabulary method, ObjLoc can recognize class-agnostic objects,
involving common or long-tail categories. Oppositely, GoReloc/Wang et al.| (2024) is restricted to
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Table 6: Object Matching Results. Quantitative object matching performance on single- and multi-
room scenes.

Dataset (Metric) Scenel Scene2 Scene3 Scene4 Scene5 Scene6 Scene7  Scene8
Synthetic (Accuracy[%]17T) 88 93 85 89 95 97 89 94

Dataset (Metric) 0568 0101 0673 0108 0166 0378 0092 0603
ScanNet (Accuracy[%]71) 85 90 89 89 75 92 91 94

“Gray Toy Dolphin” “Red and Black Sword Set ” “Multicolored Toy Cash Register ”

Figure 6: Open-Vocabulary Landmark Association. Open-vocabulary object-level mapping allows
our system to leverage rich class-agnostic objects in the landmark association.

Table 7: Relocalization Results under Varying Lighting. We compare ours with CoordiNet Moreau|
(2022) under different lighting conditions. Experiment results illustrate that our method exhibits
better lighting invariance, enabling more robust relocalization.

. @50cm @25cm
Setting Method
Recal[%]t MTE[m], MRE[°]| Recall[%]t MTE[m]| MRE[]|
 CoordiNet 40 034 10.5 1 0.2 10.5
50% Lighting "¢ o 72 0.13 5.3 57 0.08 3.0
 CoordiNet 47 034 114 1 0.17 1.1
75% Lighting "¢ | ¢ 79 0.12 5.2 67 0.07 27
_ CoordiNet o4 032 64 13 0.15 6.5
100% Lighting "¢ | ¢ 81 0.09 37 70 0.06 2.0

100% Lighting 75% Lighting 50% Lighting

Figure 7: Lighting Variance. We respectively display scene appearance under 100%, 75%, and 50%
lighting in this figure.

close-vocabulary object sets and can only utilize a small number of categories, such as table and chair.
We evaluate our object matching performance by the percentage of successfully matched objects, i.e.,
Accuracy[%)]. This evaluation is performed on open-vocabulary object sets of single- and multi-room
scenes (ScanNet and Synthetic) in Tab. [f] We also qualitatively present some matched long-tail
objects and their LLM reasoning descriptions in Fig. [6]

C LIGHTING VARIANCE ANALYSIS

Object-level camera relocalization is highly robust to appearance changes. Even under varying
lighting conditions, our system can still achieve reliable and accurate relocalization based on the
geometry structure and semantic information. We evaluate relocalization performance under different
lighting conditions in the ScanNet++ [Yeshwanth et al.| (2023)) ‘8890d” scene. In our experiment, we
set a progressive light reduction to 75% and 50%. When the lighting decays significantly, our method
only experiences a slight performance drop. In contrast, CoordiNet Moreau et al.| (2022) shows a
noticeable decline of 20% in success rate. Experiment results in Tab.[/|demonstrate that our system
can effectively handle drastic lighting variance, further demonstrating its great potential for long-term
applications. We also qualitatively display some observations with reduced lighting in Fig.
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Table 8: Ablation on Invalid Object Filtering. The experiment results demonstrate the necessity of
filtering invalid objects in an object-level camera relocalization system.

Method @50cm @25cm
Recall[%]t MTE[m]] MRE[°]| Recall[%]t MTE[m]] MRE[°]{
w/o Invalid Object Filtering 77 0.18 42 55 0.13 2.9
w/ Invalid Object Filtering (Ours) 79 0.18 4.0 58 0.13 2.9

Table 9: Ablation on DIOU-based Retrieval. The experimental results demonstrate that the DIOU
metric is more appropriate for an object-level camera relocalization system.

Setting @50cm @25cm
Recall[%]t MTE[m]] MRE[°]] Recall[%]t MTE[m]l MRE[°]]
Completeness 74 0.19 42 50 0.13 3.0
DIOU (Ours) 79 0.18 4.0 58 0.13 2.9

Table 10: Ablation on Relocalization Losses. The experimental results demonstrate the superiority
and rationality of our loss design.

Setting @50cm @25cm
Recall[%]t MTE[m]] MRE[°]] Recall[%]T MTE[m]| MRE[°]|
Center Alignment 62 0.24 6.9 34 0.14 4.9
2D ICP + Center Alignment 75 0.19 4.3 51 0.13 3.0
2D ICP (Ours) 79 0.18 4.0 58 0.13 2.9

D FURTHER ABLATION STUDIES

For other designs in our system, such as invalid object filtering, DIOU-based retrieval, and relocaliza-
tion losses, we investigate their effectiveness on the ScanNet 0568’ scene.

Effectiveness of Invalid Object Filtering. Invalid objects disrupt our landmark association and
global scene graph structure; for example, the wall or floor is connected to almost all nodes in a scene
graph. Results in Tab. [§|show that we can improve relocalization performance by saving only objects
that are valuable for relocalization. We also visualize filtering results in Fig.[§] Both quantitative and
qualitative experiments validate the effectiveness of the invalid object filtering.

Effectiveness of DIOU-based Retrieval. To explain the contribution of the DIOU-based retrieval
strategy, we set a completeness strategy as a comparison. Specially, the completeness strategy votes
for a reference frame based on the straightforward completeness of matched landmarks. As shown in
Tab. 9] our proposed DIOU-based retrieval can indeed provide a more appropriate pose prior for the
query image, thereby enhancing the object-level tracker.

Effectiveness of Relocalization Losses. We assess three different pose estimation losses in Tab.
including center alignment loss, 2D ICP loss and their weighted combination. The recall and accuracy
achieved by our 2D ICP design are much better than those of the others. The results demonstrate
the compatibility of our 2D ICP loss with the object-level camera relocalization task, as well as the
negative effect caused by center alignment loss.

E FURTHER SYSTEM ANALYSIS

In this section, we further compare our method with PixLoc [Sarlin et al.|(2021)), a SOTA approach
that estimates camera poses from low-level feature point correspondences. Unlike our system, PixLoc
requires substantially more memory and lacks high-level scene understanding, which makes direct
comparison less informative. We nevertheless include this feature-based baseline to provide a more
comprehensive analysis. While ObjLoc emphasizes semantic and geometric cues, PixLoc primarily
relies on appearance information. To ensure equal input quality in appearance and geometry, we
choose the Synthetic dataset for evaluation and report average results across all scenes in Tab.

15



Under review as a conference paper at ICLR 2026

[ wall
[] Floor

. e | | "o ‘”"J

w/o Invalid Object Filtering w/ Invalid Object Filtering

Figure 8: Invalid Object Filtering. In this figure, it can be observed that our invalid object filtering
module has correctly and cleanly removed the invalid floor and wall.

Table 11: Comparison with PixLoc on the Synthetic Dataset. This table shows average relocaliza-
tion results and map size across all multi-room/floor scenes.

Method @50cm @25cm Map Size  Single-frame Runtime
Recall[%]t MTE[m]} MRE[°]} Recall[%]f MTE[m]] MRE[°], [MBI]/ [slL
PixLoc 82 0.03 1.3 80 0.02 1.0 273.8 ~4.5s
Ours 87 0.10 39 81 0.06 22 24.5 ~6.0s

In terms of success rate, Recall@50cm and Recall@25¢m indicate that ObjLoc can successfully
recall more query frames, as semantic object matching helps mitigate the appearance sensitivity. In
terms of accuracy, since object-level correspondences are inherently less fine-grained than point-
level ones, ObjLoc exhibits slightly lower accuracy (MTE and M RE). In terms of map size,
PixLoc [Sarlin et al.| (2021)) requires a large number of RGB reference frames for pose priors and
a pre-trained CNN for point-wise low-level features, whose memory consumption exceeds ours
by approximately 1000%. In terms of runtime, as a training-free method, our system achieves
comparable efficiency to PixLoc. It is worth noting that LLM reasoning consumes a considerable
portion of inference time (2~3s) in our system. This is because GPT-40 is used through an API call in
our system, which incurs a request latency. Our system still holds efficiency potential through some
engineering tricks, such as CUDA acceleration, half-precision calculation, and local deployment of
the LLM agent.

In summary, for the camera relocalization task, ObjLoc can robustly recall camera poses based on
scene objects and provide a compact and semantically rich map representation, thereby presenting an
essentially different technical route compared to low-level vision methods.

F MORE VISUALIZATION RESULTS

Relocalization Results. Similar to Fig.[d]in the main paper, we visualize more relocalization results
obtained by our system across all datasets in Fig.[9] It is evident that our method can recover camera
poses that closely align with the ground truth in different indoor regions, which demonstrates the
superior accuracy and robustness of our system.

Instance Segmentation Results. The instance segmentation module initially identifies all objects
within a scene, playing a crucial role in determining the quality of object-oriented mapping. As
illustrated in Fig.[T0} we qualitatively present the instance segmentation performance of our system on
different scenes. These visualization results demonstrate that our system is able to perform thorough
and detailed segmentation for diverse objects with varying sizes.
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Figure 10: Instance Segmentation Visualization. We qualitatively show our instance segmentation
results on various datasets in this figure.
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