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Abstract
Diffusion models represent the cutting edge in im-
age generation, but their high memory and compu-
tational demands hinder deployment on resource-
constrained devices. Post-Training Quantization
(PTQ) offers a promising solution by reducing the
bitwidth of matrix operations. However, standard
PTQ methods struggle with outliers, and achiev-
ing higher compression often requires transform-
ing model weights and activations before quan-
tization. In this work, we propose HadaNorm,
a novel linear transformation that extends exist-
ing approaches by both normalizing channels ac-
tivations and applying Hadamard transforms to
effectively mitigate outliers and enable aggres-
sive activation quantization. We demonstrate that
HadaNorm consistently reduces quantization er-
ror across the various components of transformer
blocks, outperforming state-of-the-art methods.

1. Introduction
Diffusion models have emerged as the leading technique in
deep learning for image generation, offering unparalleled
visual realism. However, this advancement comes at a signif-
icant computational cost, primarily due to the large model
sizes and the iterative denoising procedures required for
each image generation. As the demand for scalable and effi-
cient deployment of these models grows both on the cloud
and on the edge where computational resources are scarce,
optimizing inference efficiency has become a critical area
of research.

Post-Training Quantization (PTQ) presents a promising
solution for enhancing inference efficiency by quantizing
weights and activations, especially for high-power demand-
ing operations such as linear layers and large matrix mul-
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Figure 1. HadaNorm reduces quantization error. We take an
illustrative setting of four channels with different distributions
(top-left). Normalization (bottom-left) improves quantization, but
it does not mix channels and hence cannot get rid of heavy tails.
Hadamard transform (HT) (top-right) suffers when the channels
have different means. HadaNorm (bottom-right) achieves better
whitening, by both normalizing and applying the HT. The more
Gaussian is easier to quantize.

tiplications. Despite its potential, PTQ faces substantial
challenges, particularly when pushing activation bitwidth
to 8-bits (A8) or weight to 4-bits (W4). Outliers are a ma-
jor hurdle for low-bitwidth quantization: they can only be
represented when a large quantization grid is used, lead-
ing to large bins and loss of precision for the majority of
data. One approach to reduce outliers and consequently
improve quantization is to apply invertible transformations
to weights and activations, which do not alter the overall
model output, but which do allow scaling outlier channels
(Xiao et al., 2023). Follow-up works (Ashkboos et al., 2024;
Liu et al., 2024; Ma et al., 2024; Zhao et al., 2025) use fast
Hadamard transforms to mix channels, which effectively
whitens the distribution and reduces outliers.

This paper extends previous work by introducing a sim-
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ple yet effective centering transformation, which can be
combined with existing approaches to further reduce quanti-
zation error.

Contributions. Our contributions are as follows:

1. We argue why the efficacy of the Hadamard transform
for activation quantization is reduced due to mean and
scale differences across channels (Figure 1).

2. We introduce HadaNorm, a simple transformation that
applies centering and rescaling of channels together
with a Hadamard transform to further improve perfor-
mance of activation quantization.

3. Empirically, we show that HadaNorm significantly im-
proves quantization performance in image diffusion
transformers (DiT), resulting in a state-of-the-art CLIP
score of 31.69 on PixArt-Sigma at W4A4.

2. Related Work
Transformations for better quantization are most explored in
the Large Language Models (LLM) space. Xiao et al. (2023)
find that activation quantization is harder than weight quan-
tization, and propose per-channel scales to move outliers
from activations to weights.

Ma et al. (2024); Shao et al. (2024) propose an affine
transformation, that effectively adds a static bias term for
LLM quantization. Ashkboos et al. (2024) propose to use
Hadamard transforms, which are cheap at inference time,
yet allow spreading of outliers across channels. (Zhao et al.,
2025) combines channel scaling and mixing to achieve
higher compression on DiT architectures, although mixed
precision is required to address quantization-sensitive com-
ponents in the architecture.

Li et al. (2024) further extends previous work on channel
scaling Xiao et al. (2023) by introducing high-precision
low-rank matrices to absorb the weight outliers prior to
weight quantization, achieving higher compression levels
at the cost of a small overhead. Shao et al. (2025) defines
time-dependent transformation to address changes in the
activation distribution during subsequent denoising steps,
by applying transformation tailored to the activation distri-
butions based on Lin et al. (2024), at the cost of additional
overhead at inference time. Our method further extends
the literature on transformation applied to DiT models by
introducing a simple centering strategy that does not require
additional calibration and introduces minimal overhead, yet
consistently improves upon existing strategies.

3. Method
3.1. Distributional differences between channels reduces

effectiveness of per-token quantization

Some of the related works use Hadamard transforms to mix
channels, thereby spreading outliers over multiple channels
and making each channel distribution approach a Gaus-
sian distribution (Liu et al., 2025). This can be intuitively
motivated by the central limit theorem: the Hadamard trans-
form (HT) effectively adds up different channels (with signs
flipped at times).

We make the simple observation that, after applying HT,
channels may still exhibit substantially different mean. This
is often the case in vision transformer models, as channels
tend to have substantially different moments. Since all
channels are quantized using the same quantization grid,
this results in sub-optimal quantization.

We illustrate this using a toy example. In Figure 1 top-left,
we plot the distribution of four channels. If we naively
choose a quantization grid based on all four channels, we
see that the quantization error is large, as many channels
collapse to just one or two values. When we apply a HT
(top-right), we find that indeed each channel is closer to a
normal distribution. However, due to non-zero mean of the
initial channels, we observe large difference in the means
across channels after applying the HT. For example, channel
2 corresponds to the row [+1,−1,+1,−1] of the HT, which
due to the large positive mean of the initial channel 2, and
large negative mean of the initial channel 3, leads to a large
negative mean after the HT.

The solution is to apply both channel normalization and
Hadamard transform. In the bottom-left figure, we show
the effect of normalizing the channels. Although the SQNR
is significantly better than before, channels are not mixed
and outliers can heavily affect the scale of the quantization
grid. Normalization alone does not affect the kurtosis of
the channel distributions. We propose HadaNorm, which
combines the dynamic channel normalization with the HT.
Though simple, we get the best of both worlds: the HT
mixes the channel distributions to reduce heavy tails, and
because channel distributions are normalized, per-token
quantization is more effective. Let us consider how this
can be applied to a transformer model.

3.2. HadaNorm

To reduce the distributional differences between channels,
ideally, we would want to both normalize the channels and
apply the Hadamard transform. Let us consider what this
means for a linear layer. Let us assume input vector X ∈
Rs×d, a linear layer with weights W ∈ Rd×m and bias
b ∈ Rm, a Hadamard transform represented as H ∈ Rd×d,
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Figure 2. HadaNorm reduces quantization error of all quantizers. Effect of activation quantization for various components of the DiT
architecture without (left) and with (right) HadaNorm transformations (indicated in purple). Activation Quantizers (circles) are colored by
the corresponding impact on the SQNR. The dynamic centering is not applied on the textual quantizer.

and assume vectors µ,σ ∈ Rd. We can write:

XW + b = (Xdiag
(
σ−1

)
H)(HT diag (σ)W) + b

= (Xdiag
(
σ−1

)
H − µ+ µ)(HT diag (σ)W) + b

= (Xdiag
(
σ−1

)
H− µ)︸ ︷︷ ︸

X̃

(HT diag (σ)W)︸ ︷︷ ︸
W̃

+(b+ µW̃)︸ ︷︷ ︸
b̃

.

(1)

Thus, we can maintain the original model output, but both
X̃ and W̃ have less outliers and will be quantized.

The per-channel mean µ can be computed dynamically for
each (transformed) batch element:

µ =
1

s
1T (Xdiag

(
σ−1

)
H). (2)

Note that the bias correction µW̃ can be computed effi-
ciently in parallel, by appending a new token µ to the trans-
formed sequence X̃ before performing the matrix multipli-
cation with W̃ .

The scale σ cannot be chosen dynamically: this would
require dynamically quantizing W̃ depending on the current
batch, which is undesirable. Instead, we follow Xiao et al.
(2023), and statically determine σ based on the relative
scales of X’s channels and W input channels determined
using a small calibration set:

σi = max(|Xi|)α/max(|Wi|)1−α. (3)

We place the HadaNorm layer throughout the network, be-
fore each linear layer (see Figure 2).

4. Experiments
Following Zhao et al. (2025); Shao et al. (2025); Li et al.
(2024), we evaluate a quantized PixArt-Sigma (Chen et al.,

2024) architecture on subset of captions from the COCO
2024 dataset (Lin et al., 2014) using 20 denoising steps. A
disjoint calibration set is used to determine the activation
statistics, which are used to tune the hyper-parameters α.

Quantization We quantize activations preceding each lin-
ear layer in the transformer blocks, which are indicated
with ovals in Figure 2, at 4 bits precision (A4). Follow-
ing Zhao et al. (2025), we dynamically compute a separate
quantization grid for each token based on the minimum and
maximum values. Weights in linear layers are also quantized
at 4 bits in blocks of size 128.

Metrics We evaluate model performance using Signal
to Quantized Noise Ratio (SQNR) computed in the latent
space, the CLIP score (Hessel et al., 2021), and CLIP IQA
(Wang et al., 2023) as a proxy of visual image quality based
on CLIP features (Radford et al., 2021).

Baselines We compare HadaNorm against other quanti-
zation transformation strategies proposed in recent litter-
aure including SmoothQuant (Xiao et al., 2023), QuaRot
(Ashkboos et al., 2024), and the Static-Dynamic Channel
Balancing (SDCB) method proposed in (Zhao et al., 2025),
which combines HT with channel-wise scaling.

4.1. HadaNorm reduces outliers throughout the network

Set-up First we aim to isolate the source of quantization
error, and see how HadaNorm may help. In all transformer
blocks we switch off all quantizers except one activation
quantizer (at 4 bit), measure the quantization error in terms
of SQNR, and repeat this for all quantizers. Subsequently,
we repeat this experiment, but with each transformation
applied before each quantizer.
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Figure 3. Visualization of the denoised images for the W4A4 quantized model starting from the same noise input and the prompt "An
adorable cat attempts to hide in a purse to steal the persons identity".
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Figure 4. HadaNorm’s gain is mostly due to the combination of
centering and the Hadamard transform. Visualization of the
SQNR resulting from the quantization of specific activations in the
DiT architecture using various transformations.

Results. We see (Figure 2, left) that the largest quantiza-
tion error originates from the quantization of image inputs
to the attention and FFN blocks, and the OP layer. Adding
HadaNorm (right) consistently improves SQNR with the
exception of the Text quantizer (TX). Figure 4 reports the re-
sult of the same analysis for a range of transformations. We
find that the source of improvements can not be explained
by one individual transform, but rather by their composition.
In particular, this study shows that centering significantly
improves the performance of HT.

4.2. HadaNorm is SOTA at aggressive quantization

Set-up. In this experiment we compare the end-to-end
performance of HadaNorm when quantizing Pixart-Sigma
to W4A4. Transforms are applied as indicated in Figure 4
(right): each forward transform is applied online, while
inverse channel scaling and HT are fused into the linear
weights. Biases b̃ are also computed dynamically following
the expression in Equation 1 and Equation 2.

Results. We observe (Table 1) that quantization is hard:
without any transforms, the negative SQNR indicates that

Table 1. HadaNorm outperforms all baselines. Measure of
SQNR [dB], CLIP score and CLIP IQA Pixart-Sigma models
with 4 bits weights and activation quantization on a subset of the
COCO 2024 dataset.

Transform SQNR (↑) CLIP score(↑) CLIP IQA(↑)
Original ∞ 31.66 0.90
No Transform -2.88 19.22 0.11

SmoothQuant -2.03 18.79 0.12
QuaRot -0.39 30.88 0.76
SDCB 0.01 31.17 0.84
Dyn. Center -2.32 19.68 0.14
HadaNorm 0.92 31.69 0.86

the noise exceeds the signal. SmoothQuant and dynamic
channel centering alone do not help much as they can-
not reduce outliers by spreading them over multiple chan-
nels. HTs (QuaRot) results in a significant improvement
by mitigating the effect of outliers, although SQNR is still
poor. HadaNorm gives significant further improvements
over SDCB (HT + channel scaling) thanks to the additional
dynamic centering operation. The visual outputs correspond-
ing to the results reported in the table are visualized in Fig-
ure 3. Additional results for 6-bits activation and weight
quantization are reported in Appendix A.

5. Conclusion
Although Hadamard transforms and channel scaling have
been successfully used for improving quantization perfor-
mance, we have shown that they are more effective when
paired with a dynamic centering operation. The HadaNorm
transform is a promising tool for more aggressive quanti-
zation, whilst being simple to implement and cheap to use
during inference. Although this work has focused on the
transformer blocks in diffusion models, future work may
explore whether the HadaNorm transform provides the same
benefit for quantizing other models (e.g. LLMs), and non-
transformer layers (e.g. CNN blocks).
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A. Additional results

Table 2. Measure of SQNR, CLIP score and CLIP IQA Pixart-Sigma models with 6 bits weights and activation quantization on a subset of
the COCO 2024 dataset.

Transform SQNR (↑) CLIP score(↑) CLIP IQA(↑)
Original ∞ 31.66 0.90
No Transform 0.5 32.39 0.92

SmoothQuant 1.46 31.95 0.91
QuaRot 2.32 31.85 0.91
SDCB 2.61 31.81 0.91
Dynamic Centering 1.56 31.87 0.91
HadaNorm 3.05 31.82 0.91

Original W4A4
W4A4 +

SmoothQuant
W4A4 +
QuaRot

W4A4 +
SDCB

W4A4 +
HadaNorm

Figure 5. Additional mage generations for the W4A4 Pixart-Sigma model with several transforms and COCO prompts.
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Original W6A6
W6A6 +

SmoothQuant
W6A6 +
QuaRot

W6A6 +
SDCB

W6A6 +
HadaNorm

Figure 6. Image generations for the W6A6 Pixart-Sigma model with several transforms and COCO prompts.
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