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ABSTRACT

While the difficulty of reinforcement learning problems is typically related to the
complexity of their state spaces, Abstraction proposes that solutions often lie in
simpler underlying latent spaces. Prior works have focused on learning either a
continuous or dense abstraction, or require a human to provide one. Information-
dense representations capture features irrelevant for solving tasks, and continuous
spaces can struggle to represent discrete objects. In this work we automatically
learn a sparse discrete abstraction of the underlying environment. We do so using
a simple end-to-end trainable model based on the successor representation and
max-entropy regularization. We describe an algorithm to apply our model, named
Discrete State-Action Abstraction (DSAA), which computes an action abstraction
in the form of temporally extended actions, i.e., Options, to transition between
discrete abstract states. Empirically, we demonstrate the effects of different ex-
ploration schemes on our resulting abstraction, and show that it is efficient for
solving downstream tasks.

1 INTRODUCTION

Reinforcement learning (RL) provides a general framework for solving search problems through the
formalism of a Markov Decision Process (MDP); yet with that generality, it sacrifices some basic
properties one might expect of a search algorithm. In particular, one should not explore a state
multiple times, which is why basic search, such as Dijkstra’s algorithm, keeps track of the explored
frontier. Basic search methods perform well when state and action spaces are small and discrete, but
don’t necessarily translate to more complex environments, such as large or continuous ones.

Humans have several intuitive ways to efficiently explore in complex scenarios. One is by abstract-
ing states, thereby exploring a simpler, more structured model of the environment. For example,
consider searching for an exit in a large room using only touch: we would never blindly roam the
center, but rather follow the walls. By abstracting states based on the property “can contain exit”, we
greatly reduce the set of states we have to explore in the first place. Another closely related way we
explore efficiently is by abstracting actions. Ingrained skills, or temporally extended actions, im-
pose a prior on the types of action sequences that help solve problems. For example, when exploring
we don’t move forward and then immediately backwards. Randomly choosing the next direction to
move is rarely a good idea, and so skills ensure that we explore new environments efficiently. In
this work we are concerned with incorporating the intuitive concepts of state abstraction and action
abstraction into reinforcement learning.

Our method for state abstraction is based on the Successor Representation, which intuitively charac-
terizes states based on “what happens after visiting this state”. By learning a discrete state abstrac-
tion, we take advantage of a simple and natural definition for action abstraction: abstract actions
are policies which help the agent navigate between pairs of abstract states (Abel et al.| |2020). We
motivate our interest in discrete abstractions in two ways. Firstly, many of the decisions an agent
must make in the world are discrete and depend on discrete objects or properties. For example, the
length of the optimal path out of a room does not change continuously as a function of the number
of doors. While we can still model such decision problems using continuous representations, it is
known that discrete metrics cannot be perfectly embedded in continuous spaces (Bourgainl [1985),
and it has been shown empirically that policies trained in such continuous spaces struggle precisely
at points of discontinuity (Tang & Hauser, 2019).
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The second motivation is that classical algorithms for planning in discrete spaces are better under-
stood and provide stronger guarantees; in fact, we often deal with continuous spaces by discretizing
them with the help of local planners (Kavraki et al., |[1996). Our action abstraction is like a local
planner, except learned rather than specified ahead of time. Moreover, our discrete abstraction rep-
resents an explicit reduction in the size of the state space, in which both the depth and branching
factor of future search can be easily controlled. Thus, it is simpler and more efficient to reuse it to
navigate the environment.

1.1 CONTRIBUTIONS

Our main contribution is a novel method to learn a discrete abstraction by partitioning an arbitrary
state space from a dataset of transitions which explore that same space. In particular, we cluster
states with a similar Successor Representation (SR) as being part of the same abstract state. In-
tuitively, if the dataset of transitions was generated by some policy, states from which that policy
visits similar states are in turn marked as similar. Unlike prior works on the SR (e.g., Machado
et al.| (2018b); Ramesh et al.|(2019))), our approach is end-to-end trainable and uses a comparatively
weaker max-entropy regularization. Our neural network model resembles a discrete variational au-
toencoder, in which an encoder computes the abstraction and a decoder computes the SR.

To demonstrate the effectiveness of our method, we propose an algorithm, Discrete State-Action Ab-
straction (DSAA), which creates a discrete state-action abstraction pair, using options for modeling
the action abstraction. Since the SR depends on the policy used to generate data, we report the effect
of changing the exploration method on the resulting abstraction, in contrast to prior work which has
focused on uniform random exploration. We additionally compare DSAA to related works on both
discrete and continuous tasks, demonstrating the value of learning a simple reusable representation.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We consider the model-free reinforcement learning (RL) problem with an underlying infinite-
horizon Markov Decision Process (MDP): M = (X, A,p,r,~,xo), with state space X, action
space A, unknown environment dynamics p(z’ | x,a) giving the probability of transitioning to
state =’ having taken action « at state x, reward function r : X x A — [0, 1], discount factor
0 < v < 1, and initial state zo. Let z; € X,a; € A be the agent’s state and action respec-
tively at time ¢, and 7(as | 2¢) be the agent’s policy, determining the probability distribution of
agent actions at state x;. Given a policy 7, the expected return (i.e., discounted sum of rewards)
the agent would obtain if action a is taken at initial state x, is described by the Q-value function:

Q" (2,a) = Epr {z;’ie V(e ar)

The agent’s goal is to compute a policy 7w which maximizes the expected return from the starting
state zg, i.e., 7 € arg maxz Eqoz(.|2)[Q7 (20, a)].

ap = a,Tp = x], where a; ~ 7(-|x¢) and xp 11 ~ p(-|ze, ar).

Since the environment dynamics p is unknown, a common approach in RL is to iteratively improve
an estimate of the Q-value function, while simultaneously exploring the environment using the in-
duced policy. However, we highlight that when the reward function is sparse, such methods suffer
from a long and uninformed (unrewarding) random exploration phase.

2.2 OPTIONS FRAMEWORK

Sutton et al.|(1999) presented the options framework to extend the classic formalism of an MDP to a
semi-MDP, in which we can replace primitive single-step actions with temporally extended policies
in the form of options. An option in an MDP is a 3-tuple 0o = (Z,, 70, T5), where Z,,, T, C X are
the initiation and termination sets respectively, and 7, is a policy that initiates in some state z¢ € Z,
and terminates in any state in the set 7.

Intuitively, an option describes a local subproblem of navigating or funneling the agent between
regions of the state space. A common approach is to create options so that the termination set of one
lies in the initiation set of another, thus allowing for option chaining (Bagaria & Konidaris, 2019). In
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Figure 1: We provide intuition regarding the successor representation in a two room environment
with black walls where each room has 8 x 8 cells and a single open cell connecting them. We
compute the euclidean distance ||1)(s) — 1(3)|| between the SR of every cell s and the SR of a
fixed reference state s shown in blue. The top row shows distances computed for a uniform random
policy, and the bottom row for a uniform random policy augmented with a wall-hugging option. This
option initiates next to any wall, and follows it counterclockwise until there are no walls adjacent.

We observe that the SR partitions the environment based on agent dynamics, and options have a large
effect on the SR: relative distances are significantly smaller when using the wall-hugging option.

general, the quality of the options depends on the partition of the state space, such that each option
takes the agent to a useful sub-goal. Our work can be viewed as a method for designing such a
partition based on the successor representation.

2.3  SUCCESSOR REPRESENTATION

The successor representation (SR) of a state, also known as the discounted state occupancy, models
the visitation density of a given policy 7 starting from each state. In a finite discrete state space S
we can simply keep count of these visitation frequencies in a matrix ¥, € RISI*ISI whose (u,v)-th
entry is

U (u,v) =E, » So=u

00
P
t=1

The SR of state u is the u-th row of the matrix ¥, denoted ¥ (u).

Much like the Q-value function of an MDP, the SR satisfies a Bellman-like equation which relates
the SR of a state to its neighbors by

Vo (uv ’U) = ly—v + ’YESNp(~\u,7T(u))\IITF(S7 U)'

When the environment dynamics are unknown and we instead have a dataset D of transitions col-
lected using a policy =, this equation can be used to learn an estimate of the SR, ¢ : S — RISI
which minimizes the so-called temporal difference (TD) error E; o .p [¥0(s) — (1(s) + v (s’ DK
where 1(s) is a one-hot encoding of the discrete state s (the s-th standard unit vector).

We highlight that the SR depends heavily on the given policy 7 used to explore the environment.
Past work has focused on the setting where 7 is a uniform random policy (i.e., a random walk), and
so the properties and/or usefulness of the SR with more general policies remains an open problem.
We provide some intuition regarding the effects of changing the underlying policy on the SR in
Figure[I] We experimentally explore these effects on our abstraction in Section [6.1]

Prior works have focused on the eigenvectors of the SR, primarily taking advantage of its relation
to the graph Laplacian (e.g., Machado et al.| (2018b)), and to the decomposition of the MDP value
function in terms of the SR (Hansen et al.,2019; Blier et al.| [2021)). In this work we focus on the SR
itself rather than its eigenvectors. Figure[I]demonstrates that the SR acts as a state embedding where
distance between states corresponds to similarity between their successors. Moreover, options have
predictable effects on the SR; states in an option’s initiation set have a more similar SR relative to
states outside it. The above observations motivate our method: cluster using the SR as a similarity
metric, and then train options whose initiation sets correspond to each cluster.
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3 RELATED WORK

3.1 REPRESENTATION LEARNING

One of the primary motivations for abstraction is that complex real world MDPs have simpler latent
structure, and exploring this latent space is sufficient for solving environment tasks (Jiang et al.,
2017). For example, two different images may be equivalent with respect to maximizing reward
(e.g., the color of an object might be irrelevant for planning). As such, it is desirable to first compute
a latent space that preserves underlying structure, and only then solve tasks in that latent space (Lee
et al., [2020). One type of abstraction is Bisimulation, in which the aim is to preserve properties of
the original MDP, namely the value function or optimal policy (Biza et al.,[2020; Zhang et al.,[2021).

We emphasize that our approach is from the unsupervised learning perspective, in which the aim
is to learn a representation without reward, and then transfer this representation to arbitrary reward
functions on the same MDP. Many unsupervised representation learning methods attempt to capture
MDP dynamics via contrastive losses which bring states separated by short time differences closer
together (Stooke et al., 2021} |Erraqabi et al.,|2021)). These methods are said to capture features which
change slowly as the agent transitions in the environment, thereby yielding efficient exploration
(L1 et al., 2021). Jonschkowski & Brock| (2015) impose additional structure on the latent space,
motivated by real world priors such as Netwon’s Laws.

As observed in section[2.3] the SR is another method for capturing long term environment dynamics
with respect to an exploration policy. Like us, Ramesh et al.| (2019)) cluster states based on the SR,
yet their method is restricted to discrete inputs, whereas ours learns from arbitrary input spaces in a
fully differentiable manner. Also like us, |Giannakopoulos et al.|(2021]) learn a discrete abstraction,
but they follow the common paradigm of using observation reconstruction to inform the latent space,
which acts as a powerful regularizer encoding information irrelevant to planning.

3.2 INTRINSIC MOTIVATION

Abstraction falls under the broader category of Intrinsic Motivation (IM) methods. IM methods
provide an intrinsic reward to the agent to guide and structure the exploration process, which makes
exploration more efficient in the absence of environment rewards (i.e., when rewards are sparse).
Oudeyer & Kaplan|(2009) describe three types of IM: knowledge, competence, and abstraction.

Knowledge-based IM methods reward the agent for improving its knowledge of the environment.
Strehl & Littman| (2008)) and [Bellemare et al.| (2016) reward the agent for visiting novel states. Cu-
riosity (Sekar et al., [2020) rewards the agent for visiting states in which a trained transition model
has high uncertainty, thus encouraging the policy to sample in those regions and improve the model.
Competence-based IM methods reward the agent for accomplishing sub-tasks in the environment.
They often train a Universal Value Function Approximation (Schaul et al.,|2015) and employ strate-
gies such as Hindsight Experience Replay (Andrychowicz et all 2017) to iteratively improve the
agent’s competence. These goal conditioned policies often (e.g., Nasiriany et al.| (2019)) define
goals in a latent space trained from a variational autoencoder (VAE).

Abstraction-based IM methods typically reward the agent for exploring a latent space. For example,
Feudal Networks (Vezhnevets et al., 2017) trains a manager worker system, where the manager maps
observations to a latent space and produces a direction in that space, then the worker is rewarded for
achieving this desired direction. Eigenoption Discovery (Machado et al.| 2018b; 2021)) computes a
deep SR, then uses its eigenvectors as individual reward functions for a set of options. They train
the SR offline, using a uniform random exploration policy.

4 DISCRETE ABSTRACTION VIA END-TO-END SUCCESSOR LEARNING

In this section we describe our model My, , for learning a discrete abstraction given a dataset of
environment transitions D. See Figure 2| for a visual representation, and Appendix for a more
detailed derivation of our model loss.
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Figure 2: Our model My , resembles a discrete variational autoencoder in which we replace the
observation reconstruction decoder with a successor representation module. Red arrows indicate the
flow of gradients back through the models. The encoder ¢ maps a observations z to discrete abstract
states s, and 1) learns the SR based on next state samples x’ and the TD-error.

4.1 ABSTRACTION ¢

We implement our discrete abstraction as a feed-forward neural network encoder ¢ : X — A(N)
which maps observations x € X to points on the N-simplex (i.e., a distribution over [N abstract
states). Our model resembles the encoder of a Discrete Variational Autoencoder (D-VAE), where
we employ the Gumbel-Softmax (Jang et al.,2017)) to sample from the output distribution. Thus, we
regularize the distribution, as in a D-VAE, to be similar to a uniform distribution prior U (N) over
N discrete states, by minimizing the KL-Divergence over a dataset of collected samples D,

La(¢:;D) = E [Dxu(@( o) [[UN)] = E [-H(@([)], (D

z~D

which is equivalent to maximizing the entropy over D; H(¢(x)) = — >, ¢#(x); log(o(z);).

Intuitively, we motivate the use of such regularization as follows: a uniform prior encourages a par-
tition of the environment into similar sized parts. Segmenting the state space into abstract states
turns our original large MDP into a set of smaller sub-problems restricted to the pre-image of each
abstract state. From a divide and conquer perspective, we would prefer these problems to be approx-
imately the same size; otherwise, we may end up with very large abstract states, in which computing
the seemingly local options between them is just as hard as solving the original task.

To minimize Eq. [I] the Gumbel-Softmax allows us to sample from the distribution while still back-
propagating through it. We qualitatively verify in Appendix [A.4] that this is necessary, and that
treating ¢ as a classifier using simple softmax activation is insufficient.

4.2 SUCCESSOR REPRESENTATION

The successor representation acts as a decoder to the encoder ¢. We implement it as a feed-forward
neural network v : A(N) — R, and train using the TD error over a dataset of transitions D:

Lor(s,D)= E [0(6() — (6(x) +y(e(a)) ) 2

z,x'~D

where ()~ indicates a fixed target, treated as a constant during back-propagation.

Back-propagating through ) into the many-to-one ¢ ensures that when ¢ maps two input states to
the same abstract state, they should have similar SR under the induced abstraction. This effectively
clusters, much as was done by|Ramesh et al.|(2019)), but does so in a latent space. We note that zero is
a fixed point of Eq.[2] meaning ¢ = 0 and ¢y = 0 minimizes the loss. As a consequence, prior works
tend to compute their abstraction in other ways, e.g., by not back-propagating through ) (Machado
et al., 2018b)) or resorting to dense regularization such as observation reconstruction (Kulkarni et al.,
2016). Our work shows that with a discrete abstraction, and with Eq. E] as regularization, we can
avoid this degenerate case. In Appendix [A.4] we demonstrate that clustering in the latent space
learned by a D-VAE decoder yields abstractions not conducive to solving tasks in the environment.
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Figure 3: DSAA uses an exploration policy 7 (e.g., explore randomly with a set of options) to
generate a dataset of transitions in the environment. Then the successor learning module described
in Section computes a discrete abstraction of the environment according to v, the SR induced
by 7. Finally, we train a set of ¢-relative options which navigate between pairs of abstract states.
These options can be used to solve downstream tasks in the environment, or they can optionally be
used by some other exploration scheme to generate new data for a new abstraction.

Algorithm 1 Discrete State-Action Abstraction (DSAA)

1: function DSAA(integer N, transition dataset D = {(x,a,2’); | 2’ ~ p(- | z,a)})

2: Initialize models ¢, ¥ > With size IV latent space
3 La(d,0;D) = Ly(d; D) + Lsr(w; ¢, D) > Train abstraction with loss as Eq. + Eq.
4: Update (¢, ) € argmin £ 4 > e.g., with SGD over D
5: G=(V=[N],E={}) > Initialize directed abstract graph
6: E={(¢(z),d(x")) | (z,2") € D)} > Add an edge for each abstract transition in data
7 O = {0y | (u,v) € E} > Train option policy from ¢~ (u) to ¢~ (v)
8: return ¢, ), O’

9: end function > Note we can train a new abstraction by exploring with this new set of options

5 THE DSAA ALGORITHM

We provide pseudocode for our algorithm, Discrete State-Action Abstraction (DSAA), in Algo-
rithm[T]and a pictorial representation in Figure 3]

DSAA takes as input a dataset of transitions in the environment, trains an abstraction ¢ as described
in section and then produces a set of ¢-relative options O (Abel et al,|2020), which navigate
from primitive states in one abstract state to another. This induces an abstract graph G, in which
nodes correspond to abstract states and edges to options between them.

More specifically, for a fixed number of abstract states N and dataset D our algorithm produces:

1. The abstraction ¢ : X — [N]. Let ¢~ 1(s) = {z € X | ¢(z) = s}.
2. The successor representation model ¢ : [N] — R,

3. An abstract MDP represented by the abstract graph G = (V, E'). Much like Roderick et al.
(2018), for every abstract state transition that occurs in the dataset we add an edge to the
graph: V = [N]and E = {(¢(z), ¢(z")) € [N] x [N] | (z,2") € D}.

4. Option policies 05 s+ € O, where 05 ¢ = (¢ 1(5), 75, X \ ¢~ 1(s)) for each (s,s) € E.
Ts,s initiates in the preimage of abstract state s and terminates upon leaving it. 7, ¢ is
rewarded for transitioning into s” as follows: 7, ¢ (,a) = Ly )=y, Where 2’ ~ p(-|z, a).
We note that this is a slight departure from our previous discussion of options, since we
only reward the policy for specific transitions into the terminating set.
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Figure 4: My , on FourRooms with different exploration datasets. Each color is one abstract state.

5.1 USING AN ABSTRACTION TO SOLVE TASKS AND MAXIMIZE REWARDS

From some starting state o € A&, given a goal state v, € X, we can compute an abstract path
in G, Pyyz, = [50,51.000nn... ,Sklso = é(x0), sk = ¢(sg)]. To reach x4, we can now exe-
cute the corresponding sequence of options, {0, s, , f;ol, and finally explore solely within s;. In
other words, we have reduced the original exploration problem from the full state space X" to just
¢~ (¢(xy)) C X. We highlight that baseline exploration algorithms specifically struggle with long
trajectories through bottleneck states, and as we demonstrated intuitively in Figure[I|and experimen-
tally in Section[f] our SR based abstraction partitions the environment along bottlenecks.

If instead of a goal state in the environment we are given a reward function to maximize, we simply
explore using the trained options. In other words, we perform a lazy random walk on G, in which
at every step we select a random neighboring edge and follow the corresponding option policy. The
walk is lazy because we allow for self-loop edges, whose options randomly explore without leaving
the abstract state. We observe that this approach introduces an exploration-exploitation trade-off:
at each step the agent either explores within its current abstract state, or exploits a trained option to
reach a new abstract state. The agent is trained in the standard semi-MDP fashion, where we take
sums of rewards over temporally extended actions (Sutton et al.|[1999)).

6 EXPERIMENTS

6.1 EFFECT OF CHANGING THE DATASET

In these first experiments we explore the effects of changing the input dataset on our model My, .
We report results in Figure [ on the FourRooms environment (Sutton et al., [1999) using (a) uniform
random exploration, (b) expert data that takes the agent to the bottom right corner, (c) random
exploration with two options which exit the first room, and (d) random exploration with noisy input,
where each state has a randomly sampled noisy bit that changes each time the state is visited making
different visits seem different. In each case we train with the same parameters (e.g., model size or
loss hyper-parameters) and only vary the number of abstract states N. Figure [(a)] demonstrates
that our abstraction learns the intuitive partition under random exploration. Figures f(b)] and
show how the initiation sets of options (including expert policies) get grouped together. Finally,
Figure [4(d)] demonstrates our model’s robustness to irrelevant features, as it successfully captures
environment dynamics (e.g., state proximity) despite the existence of distracting features.

6.2 COMPARISON TO RELATED WORKS

In these experiments we compare to two related works, Contrastive (Erragabi et all, [2021) and
Eigenoption (Machado et al.| [2018b). Contrastive is representative of a classic approach to rep-
resentation learning in RL, namely to use a contrastive loss to encode environment dynamics in a
latent space, and then guide agent exploration using distance to the latent goal as an intrinsic reward.
Figure [5(a)] shows an example of such a learned latent space. Eigenoption is representative of how
state of the art approaches use the SR, namely by taking the spectral decomposition of the SR (i.e.,
its eigenvectors) as a basis in which to represent arbitrary value functions. Specifically, Eigenop-
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(a) Contrastive encoding (b) An eigenoption (c) A DSAA option

Figure 5: On the left we visualize a 2-dimensional latent space learned through contrastive encoding
where each point corresponds to one state from FourRooms. In the center we show an example
eigenoption, see Appendix [A.5] for more examples. Finally, on the right we visualize an example
of a DSAA option. Notice our options are restricted to the preimage of a single abstract state
(this makes them easier to train than eigenoptions). Lighter color indicates states where the option
policies achieve higher value.

tions uses each eigenvector of the SR as an individual reward for an option. See Figure [5(b) for an
example of an eigenoption. Finally, Figure shows an example of an option output by DSAA.

We test on the FourRooms environment, where for all three algorithms we train using an initial
random exploration phase without environment provided reward, then transfer to new tasks in the
same environment. We highlight that the sparse nature of reaching a specific state in the environment
and the existence of bottleneck states in FourRooms makes this is a relatively difficult task for
standard RL. Figure [6] shows the average return of the three methods and Table [T] demonstrates
that DSAA is faster and more consistent in reaching a randomly chosen state in the environment.
Eigenoptions suffers by not having an abstract state representation to drive exploration towards the
goal. Contrastive is slowed down relative to DSAA because it trains an underlying policy over the
entire state space, and its shaped reward sometimes leads the agent into dead ends.

JW Method Mean Std

Random 30.30 45.94
Eigenoptions  8.66  10.61
Contrastive 5.37 4.36
random DSAA 148 077

contrastive
dsaa
eigenoptions

-
=}
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©

o
o

Average Return
I
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" Table 1: We report the first time each method
Figure 6: We report the average return each finds the goal (i.e., diffusion time (Machado
method achieves across episodes in the Four- et al.| [2018b))). This captures the minimum
Rooms environment. Results are averaged over 30 number of episodes before one can consis-
randomly chosen starts and goals with episodes of tently solve the task, thus evaluating explo-
length 200 steps each. The vertical line is the first ration efficiency while controlling for the ef-
time random exploration finds the goal. fects of training the underlying agent.

6.3 ARM2D: MAXIMIZING REWARDS IN A CONTINUOUS SPACE

In these final set of experiments we show the capability of DSAA to maximize rewards online in a
continuous control environment. Arm2D is a continuous control task for a three joint manipulator
(robot arm) on a 2D-plane (see Figure [7(a)). The arm must move an object (ball) down below a
certain height, despite the arm starting below the ball, at which point only it obtains a non-zero
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Figure 7: Arm2D environment experiments. In (b) we visualize arm positions at boundaries between
abstract states; and in (d) we show a 2D slice of the 5D state, colored by abstract state. In (c) we
visualize an example abstract graph for 8 abstract states. Finally in (e) we show return curves for
DSAA and a Soft Q-Learning baseline on both the “hard” and “easy” tasks shown in (a), averaged
over 10 random seeds. The standard deviations, which we only visualize for the ’easy” task, demon-
strate the consistency of our method.

reward: the lower the height the ball must reach, the more difficult the task, since the sparse reward
is more distant. The state space is 5-dimensional, including the three joint angles and the 2D object
position. For a more detailed description of the Arm2D environment, we refer to Appendix [A.6.1]

The results in Figure [7] demonstrate that we can simultaneously learn an abstraction and maximize
reward with few samples. Moreover, the iterative version of DSAA, in which the output options are
reused to train a new abstraction, makes exploration progress. In Appendix [A.7| we show examples
of abstractions for more complex versions of this environment.

7 CONCLUSIONS AND FUTURE WORK

We presented a new method to perform a discrete abstraction on the state and action spaces of a
reinforcement learning problem using a dataset of transitions in the environment. Our model is
based on the successor representation, grouping states together if the agent’s behavior after visiting
those states is similar. We showed that despite past concerns that gradients from the successor
representation would drive any abstraction towards a trivial fixed point, with simple max entropy
regularization we can learn a useful abstraction in the discrete setting, and do so in an end-to-end
manner. Finally, we showed that a DSAA agent equipped with our action abstraction can solve a
variety of downstream tasks.

A limitation of our work is that while our method may help an agent explore the environment ef-
ficiently, that exploration is still heavily biased towards the region that has already been explored.
Given this limitation, one direction for improvement is to train a higher level policy to bias the walk
over the abstract graph towards states which have been identified as the frontier (e.g., see[Sekar et al.]
(2020)). Another interesting line of future work would provide theoretical guarantees on the conver-
gence of clustering by successor representation, as well as other properties related to our method.
Finally, we recognize that despite their advantages, discrete representations can struggle to capture
very large spaces, and so combining our discrete abstraction with a continuous one could be fruitful.
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8 REPRODUCIBILITY STATEMENT

All code for running our experiments will be made publicly available along with the final version of
this manuscript. In particular, we will make available the reinforcement learning environments on
which we test, the random seeds used for generating different experimental runs, and the implemen-
tation code and configuration files for training our successor model and DSAA algorithm.
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A APPENDIX

A.1 REVISIONS - COMPARING TO RAMESH ET AL.|(2019)

We add a comparison to SuccessorOptions (Ramesh et al., 2019). Figure [§] shows the updated
comparison plot and table, Figure 9] shows a comparison of the state partitioning produced by Suc-
cessorOptions, as compared to DSAA. Figure[10[shows examples of the options learned by Succes-
sorOptions when using four clusters in FourRooms.

We emphasize that SuccessorOptions is implemented on the discrete MDP for which it computes a
discrete SR, whereas our method is only given transitions in the environment using the continuous
(x,y) coordinate of the state. Thus we simultaneously learn the discrete abstraction and the corre-
sponding SR. This means that while SuccessorOptions must separately cluster states after computing
the SR, we find the clustering end-to-end. Moreover, even though our state abstractions are com-
parable, our action abstraction performs significantly better since, while they navigate to individual
primitive states in the environment, we train options that transition between regions of the space.

-
o

o
©

e ,MM/\J\,MV Method Mean  Std
Al Random 3030 4594
SuccessorOptions  16.30 24.37
random Eigenoptions 8.66 10.61
contrastive Contrastive 5.37 4.36
dsaa DSAA 1.48  0.77

eigenoptions
successoroptions

N o
IS o

Average Return

o
N

0.0

0 20 40 60 80 100
Number of Episodes

Figure 8: This new returns chart will replace Fig- Table 2: This table will replace Table

ure 6] As expected, Successor Options (Ramesh Once again we emphasize the consistency of
et al., [2019) performs similarly to Eigenoptions, our method in finding the sparse reward. This
namely because both learn options which navigate consistency comes from the combination of
to specific primitive states. state and action abstraction.

A.2 REVISIONS - LEARNING AN ABSTRACTION FOR MONTEZUMA’S REVENGE

We train an abstraction for Montezuma’s Revenge, the notoriously hardest problem in the Atari
suite (Arcade Learning Environment Machado et al| (2018al)). We show results of training a 16
state abstraction in Figure [12| based on random exploration data. Notice that our model My . is
capable of learning an abstraction that captures intuitively relevant aspects of the problem, such as
the existence of ladders to climb. Moreover notice that relative to the results seen in Figure 5 of
Eigenoptions (Machado et al., |2018b), we can use a small number of abstract states and still learn
something useful, rather than learning hundreds of options which then would require significant
pruning for real applications. While these results don’t immediately show the usefulness of our state
and action abstraction in solving Montezuma’s Revenge, they demonstrate that M ,, generalizes
to significantly more complicated domains. Solving the full problem would require coupling our
approach with a proper exploration method which would produce the necessary dataset for learning
the abstraction; a subject of future work.

A.3  EXPLAINING MAX ENTROPY
We would like to solve the following optimization problem: given a state space X compute an

abstraction function ¢ : X — [N], and function ¢ : [N] — R¥, which minimizes the SR temporal
difference error (Eq. 2, subject to an entropy constraint:
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(e) DSAA with 8 states
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(f) DSAA with 16 states

Figure 9: As expected, DSAA and SuccessorOptions partition the state space similarly. Cluster cen-
ters for SuccessorOptions are highlighted in red (our approach does not explicitly define a center).

Figure 10: SuccessorOptions in FourRooms with 4 clusters and the corresponding 4 options

min By oyl [[9(6(2)) — (6(@) + 166
, 3)
st. H(px)>k

where p(- | ) = Eqp(- | z,a) and ¢ is the random variable over [N], which assigns probability
Do (1) = Ez(14(x)=i) based on the proportion of X’ that gets mapped to i by ¢.

We now use the method of Lagrange multipliers and optimize over a batch with stochastic gradient
descent to derive the loss £4 in Algorithm [I] Experimentally we find the method is sensitive to
batch size, if the batch size is too small we fail to properly capture the entropy constraint.

A.4 ADDITIONAL ABLATIONS FOR THE FOURROOMS ENVIRONMENT
In the set of ablations shown in Figure[T3] we qualitatively demonstrate the importance of stochastic

categorical reparameterization via Gumbel-Softmax as opposed to straightforward classification via
Softmax, applied to the output logits of the abstraction model ¢. We also explore the effects of
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10 12 14 16 18

Figure 11: We additionally train options to directly go to the cluster centers for each SuccessorOp-
tion. In[Ramesh et al| (2019) this is the option they motivate (in prose), though the reward they
provide mathematically (shown in Figure is an approximation of this goal. Surprisingly these
“desired” options perform worse, and so we display them here merely for completeness.

adding a weight coefficient 5 > 0 to the entropy term in the abstraction update loss as L4 =
Ly + BLSR.

In Figure [T4] we show that swapping our decoder with a classic reconstruction module and then
clustering does not yield good abstractions.

A.5 RELATED WORK IMPLEMENTATIONS

We implemented the comparison methods “generously”: for Eigenoption we used the analytical
Successor Representation based on the graph Laplacian in the discrete FourRooms environment
rather than an empirical deep SR. We then compute eigenoptions and their negatives shown in Fig-
ure[T3] For Contrastive we note that the original paper (Erraqabi et al} 2021)) only reports “acyclic”
environments, whereas FourRooms contains multiple distinct homotopy classes of trajectories. We
find that the method is harder to tune in such an environment, demonstrating the known result that
discrete metrics (of which a simple example is a cycle of 4 nodes with edge length 1) cannot be per-
fectly embedded in euclidean space [1985). Their method therefore struggles with certain
tasks because the shaped reward (which acts as a heuristic to bias exploration) sometimes leads the
agent into dead ends.

A.6 ARM2D ENVIRONMENT DETAILS

A.6.1 DESCRIPTION

We provide more detail about the Arm2D environment of Section[6.3] The action space consists of 6
discrete actions: each one of the 3 arm joints has two actions which increment or decrement its angle
by § degrees. For our specific simulations we set 6 = 1 degree. Each joint is limited between —90
and 90 degrees. The state spaces consists of 5 features: the 3 joint angles and the (X,y) coordinate
of the ball. While the joint angles are discretized (by §), the ball location remains continuous. Each
episode was limited to 5000 steps at which point we reset the environment by bringing the arm back
to joint angles [0, 0, 0] (horizontal position of the arm), and the ball to (z,y) = (13,13). The fixed
end of the robot arm is located at position (0, 0). The environment reward is a sparse O or 1, where
1 is only given to the agent if it moves the ball below the green line ("easy” task at height y = 11)
or red line ("hard” task at height y = 9) shown in Figure[7(a)]

A.6.2 MODEL ARCHITECTURES

Our algorithm trains three models: ¢, 1, w5 o-. We structure all three as simple feed-forward neural
networks. We report the specific values used for the experiments in Section [6.3]

* ¢ : X —» A(N) has two hidden layers with 128 and 256 neurons, and LeakyReLU acti-
vation functions. The input is the 5 dimensional primitive state =, and the output has N
neurons, one for each abstract state, which is passed through a Gumbel-Softmax activation
with temperature parameter 7. For these experiments we used N = 8,7 = 0.5.
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Figure 12: For each of 16 abstract states we visualize samples of of the character’s location in the
environment in red. The abstraction is trained after exploring the environment using uniform ran-
dom actions for 200,000 steps. The encoder-decoder model architecture used is the same as in other
experiments reported in the paper, with similar hyper-parameter settings. This qualitative evaluation
primarily demonstrates that despite the complexity of the environment our model (and correspond-
ing loss) is capable of learning an interesting environment partition. In particular, even without a
reconstruction error regularization term in our loss we do not collapse to the trivial abstraction.
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(a) Softmax with 5 = 1 (b) Softmax with 8
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(¢) Softmax with 3
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Figure 13: In these ablation experiments we train an abstraction with 4 abstract states and uniform
random exploration. As demonstrated in Figure[d] each abstract state should intuitively correspond
to one of the rooms. Replacing Gumbel-Softmax with Softmax leads to poor abstractions: we ob-
serve that abstract states occupy more than one room, including the bottleneck connections between
rooms, or are even disjoint across two rooms (e.g., abstract state 0 in (b)), which did not occur with
Gumbel-Softmax. Moreover, we observe that the size of each abstract state remains unbalanced
even with large weight coefficient 5 for the entropy term in the loss.
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(a) FourRooms, 4 abstract states (b) FourRooms, 8 abstract states

Figure 14: Using a D-VAE (with a reconstruction loss instead of our SR TD error) generates ab-
stractions that do not take into account agent dynamics and are therefore poor for planning.

* ¢ : A(N) — R¥ has two hidden layers with 64 and 128 neurons and LeakyReLU activa-
tion functions. It takes as input the output from ¢ and maps it to /N neurons output.

* Finally, we group our option policies as a single model with shared parameters except for
the final output layer. More precisely, we train a neural network with four hidden layers
of 64, 128, 256, 512 neurons and LeakyReLU activation. It takes as input x concatenated
with s = ¢(x), which in our case of N = 8 abstract states with state vector of dimension 5,
results in 8 + 5 = 13 input states. Then for each option 7, ;- we have a single linear layer
with no activation that maps from the 512 neuron embedding to the discrete actions of our
agent, which in our case of N = 8 abstract states and |.4| = 6 discrete actions, results in
8 X 6 = 48 outputs. We note there are other ways we can model the option policies, for
example by not sharing parameters between each option policy.

A.6.3 HYPER-PARAMETER DETAILS
We now describe the hyperparameter settings we used in the experiments shown in Figure[7(e)] We

highlight that we did not conduct a large scale parameter search for the optimal configuration of the
hyperparameters. In this sense our results demonstrate our algorithm without excessive tuning.

16



Under review as a conference paper at ICLR 2023

0 2 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16
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(e) Option —e,,—2 (f) Option e,,—2 (g) Option —e,,—3 (h) Option e,,—3

Figure 15: The first four eigenoptions and their negatives. Terminal states are shown in black, and
regions of higher value are colored lighter (yellow as opposed to green).

We roll out each episode for 5000 steps and set the replay buffer size for the option policy to 100, 000
transitions (20 episodes). This is the same replay buffer which we use to train the abstraction, and
consequently we set the number of exploration steps (E-iters in Algorithm [I)) to 100, 000 as well.
We use Adam optimizer with learning rate 0.001 and batch size 512 for updating both 7, - and ¢, v
(which are updated in tandem as an encoder-decoder pair). Both the update equations for Q-learning
and the successor representation have a discount factor v, which we set to 0.95. We use a target Q
model for computing the temporal difference target, which updates with a delay behind the online
model of 20 iterations. We reward each option policy when it transitions to the correct next abstract
state with 200 reward points — this reward needs to be high enough to balance the entropy based
reward the soft policy receives on each transition, but is otherwise arbitrary.

We implement our models using PyTorch, without any external learning libraries or outside imple-
mentations of Soft Q-learning. We run on CPU using an Intel(R) Core(TM) i9-10980XE CPU @
3.00GHz. The code can be found as part of the Supplementary Material.

A.7 SCALABILITY OF My 4

As mentioned in the final sentence of Section [/ discretization is not always the best approach for
particularly large spaces in which one may want to combine discrete and continuous representa-
tions. Nevertheless, in this section we demonstrate that our method for abstraction scales to both
image representations and high dimensional agents. Figure[I6]demonstrates that when using a more
complex input representation, such as an image, our model is still capable of learning a reasonable
abstraction consistent with prior results. Figure|[l”/|shows a learned abstraction for a 10 joint robot
arm in the plane, with one joint fixed at a point and all others allowed to vary between —7 and .
Note that self collisions are not valid configurations.
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(a) FourRooms, 4 abstract states (b) FourRooms, 8 abstract states (c) Arm2D, 16 abstract states

Figure 16: Using the same environments reported in the main body of the paper, we demonstrate
that replacing the input representation with images still yields qualitatively reasonable (and similar to
previous) discretizations of the space. In FourRooms the input is 19 x 19 = 361 pixels, with a single
pixel sparsely marking the agent location. In Arm2D the joint angles are replaced by 62 x 62 = 3844
pixels depicting the arm. Note in Arm2D the resulting discretization is much less smooth relative to

Figure

Samples of arm positions at each of 16 abstract states

0 4 8
.
) 9
b 10 14
7 11 15

Figure 17: For each abstract state we visualize samples of configurations of a 10 joint arm. Notice
that some states, such as 0 and 4, have no arm configurations. One could increase the max entropy
coefficient term to encourage the model to more evenly distribute the samples. There is no obvious
intuitive partitioning of such a configuration space in the absence of narrow passages which would
be formed by obstacles.
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