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ABSTRACT

In this paper, we rethink memorization in large language models (LLMs). Memo-
rizing when learning is considered undesirable for two distinct reasons: first, from
a privacy perspective, memorization raises concerns about potential leakage of
sensitive information in training data. Second, from a learning perspective, mem-
orization raises concerns of sub-optimal learning and over-fitting. We find that
existing measures of memorization, namely recollection-based and counterfac-
tual measures, are designed to capture privacy concerns, but they ignore optimal
learning concerns. We propose a new memorization measure, called contextual
memorization that captures LLMs tendency to locally over-fit some strings in the
training data before during multiple epochs of training.
Applying these measures when training LLMs leads us to two interesting conclu-
sions. First, a systematic analysis of all the measures shows that our new measure
avoids a major pitfall of prior measures, by distinguishing context-based recollec-
tion from memorization-based recollection of a training string. Using our mea-
sure, we revisit prior reported instances of training data memorization by real-
world LLMs and find that many instances can be explained away by contextual
learning-based recollection, i.e., the prior memorization reports are likely exag-
gerated. Second, we find that when LLMs learn a language optimally, they in-
evitably end up memorizing some portions of the training data. We support our
conclusion with extensive experiments training 18 LLMs from 6 model families
to learn a variety of formal languages.

1 INTRODUCTION

“Every teacher knows that there is a profound difference between a student learning a
lesson by rote and learning it with understanding, or meaningfully.” – Herbert Simon

The unsupervised training and fine-tuning of generative models, particularly autoregressive large
language models (LLMs), can lead to learning of the training data by rote (Bender et al., 2021)
and with understanding (Bubeck et al., 2023). Memorization by rote is considered the ugly cousin
of contextual learning with understanding; an undesirable side effect of learning that should be
avoided. The central question that motivates our work here is can memorization be avoided when
learning? The answer we find is that learning a language without memorization is infeasible. At
the same time, we find that estimates of memorization by LLMs today are likely exaggerated.

We arrive at our conclusion by re-examining how researchers operationalize memorization, i.e., the
frameworks they use to understand, measure, and distinguish between the instances when the gen-
eration of a string by an LLM is attributed to memorization versus learning. Our contention is that
many measures of memorization in use today are quantifying the undesirable effects of memoriza-
tion rather than the underlying causal phenomenon, i.e., memorization itself.

Recollection-based Measures. Privacy researchers, who are concerned about the risks of extracting
sensitive information from training data by prompting LLMs, have proposed to estimate memoriza-
tion by how well LLMs can recollect training strings (Schwarzschild et al., 2024; Carlini et al., 2021;
Tirumala et al., 2022)1. However, there can be cases when such recollection is not based on mem-
orization. For example, consider asking an LLM to count from 1 to 1000. Many LLMs will

1We provide an extended discussion on existing memorization measures in the Appendix C.
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likely generate 1, 2, · · · , 1000 based on simple reasoning. To refer to such generation as grey area
for memorization, as done in Schwarzschild et al. (2024), risks mis-classifying contextual learning
as memorized recollection. In Section 5, we reanalyze strings that prior works have reported as hav-
ing been memorized by LLMs. We find that most strings are predictable with contextual reasoning
and few have privacy sensitive information (that is typically not in public domain). Put differently,
estimates of memorization by LLMs today are greatly exaggerated.

The Case for Contextual Measures. How else could one quantify memorization? Let’s first con-
duct a thought experiment to illustrate a challenging desideratum for memorization measures. Imag-
ine an English speaker and a German speaker commit a paragraph in German to memory. When rec-
ollecting the paragraph, do the two speakers rely on memorization to the same or different extents?
Intuitively, the German speaker understands the syntax and semantics of the tokens in the paragraph,
while the English speaker sees the paragraph as a sequence of alphabet tokens. Even before reading
the paragraph, given some prefix, the former is more likely to predict the next token correctly than
the latter. So it stands to reason that the extent of memorization involved in recollecting the para-
graph is higher for the English speaker than the German speaker. A good memorization measure
should account for the ability of an LLM to predict the next token in a string based on the context.

We now propose a measure, contextual memorization, which can disentangle the effects of context-
based recall from those of memorization-based recall. The key intuition, shown in Figure 1, is
the following: for each string s in the training dataset D, we first estimate its optimal contextual
recollection, obtained by repeatedly training over a dataset D′ that excludes s from D and finding s’s
best recollection. We declare s as being contextually memorized, if its recollection when included
in training exceeds its optimal contextual recollection.
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Figure 1: Contextual and counterfactual memorization of a
string along training epochs. Solid curve is training loss, and
dotted curve is the counterfactual loss of the same string when ex-
cluded from training. Horizontal dash-dot lines mark the thresh-
old for memorization, and vertical dot lines mark the starting
epoch of memorization. The start of contextual memorization
(red) follows the start of counterfactual memorization (blue), and
contextual memorization score is overestimated by counterfac-
tual memorization.

Comparing with Counterfactual Measures. Contextual memorization differs from the recently
proposed counterfactual memorization (Zhang et al., 2021), which also relies on comparing recol-
lection of s on training dataset D and dataset D′ that excludes s, in two subtle but important ways.
First, counterfactual measures capture the per-epoch divergence in the recollection performance of
s over training on D and D′, while contextual measures capture the all-epoch best recollection per-
formance of s for training on D′. Consequently, contextual measures impose a stricter threshold
than counterfactual measures. Second, the inspiration for counterfactual measures comes from dif-
ferential privacy and the potential for inferring the membership of a string s in a training dataset
D. In contrast, the motivation for contextual measures is rooted in concerns that memorization is
an undesirable form of learning, i.e., it represents a type of local over-fitting to string s that harms
generalization locally (van den Burg & Williams, 2021).

Learning-Memorization Tradeoffs. Given that memorization is a local phenomenon measured at
the level of individual strings s in training dataset D and learning is a global phenomenon measured
over a test dataset over some language L from which D is sampled, a natural questions that arises is
can we learn a language L without memorizing any strings s in L? Based on extensive analyzing,
using different memorization measures, we conclude that learning without memorization is infea-
sible. The key underlying intuition is the following: every string s in L has its own training epoch
es, when its starts to be memorized and these vary significantly across different strings. The train-
ing epoch e∗ corresponding to globally optimal learning often occurs after some (and often many)
strings have been memorized.

Contributions and Implications of our Study. Our first contributions are our two main findings.
One questions if the quest to train LLMs without memorization is an impossible one (Section 4) and
the other questions the current assessments of the threat of LLM memorization (Section 5).
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The second contribution is our justification of these arguments through a critical re-examination of
existing measures of memorization, filling the gaps with new measures, and evaluating them over
18 LLMs across 6 model families and multiple formal languages. We have several key findings that
highlight how the precise memorization measure used can impact the determination of when a string
s starts to be memorized and to what extent (Section 3).

The third contribution is the controlled setup where an LLM is trained on strings from a formal lan-
guage. This setting enables precise control over data generation, avoids contamination, and allows
manipulation of language entropy to probe the nuances of different memorization measures.

Finally, while memorization mitigation methods like training data deduplication (Kandpal et al.,
2022; Lee et al., 2021) are not the main focus of this study, we call for critically re-investigating them
(Appendix G). Such methods are increasingly being used to mitigate memorization, as quantified by
recollection-based measures. We establish that recollection measures, while easy to use, can lead
to misleading conclusions compared to other measures. Therefore, we advise caution against using
recollection measures as the target for memorization mitigation, by recalling Goodhart’s law that
states when a measure becomes a target, it ceases to be a good measure (Strathern, 1997).

2 ON COMPARING MEASURES OF MEMORIZATION IN LLMS

As the phenomena of memorization arises from an LLM repeatedly training over a dataset, there
should be an epoch (iteration) of training when each string in the training dataset begins to be
memorized. In subsequent epochs after memorization begins, the extent (measure) of the string’s
memorization will likely increase till memorization is maximized. Our hypothesis is that comparing
how well different memorization measures capture when contextual learning stops and rote learning
begins during training would offer us insights into their relative strengths and weaknesses.

In contrast, prior studies proposing memorization measures avoided carefully examining the training
dynamics of the model (Schwarzschild et al., 2024; Carlini et al., 2021; Zhang et al., 2021; Carlini
et al., 2022). While these measures allowed the studies to determine whether some pre-trained LLM
memorized some string without access to training traces, they also overlooked nuanced differences
between how the measures evolve over the course of model training. Specifically, we ask the fol-
lowing two questions.

Formal Setup. An LLM M is trained on a finite dataset D repeatedly over multiple epochs. D is
a random sample of strings from an underlying language L, as explained shortly, and may contain
duplicated strings. For each string s ∈ D, we wish to answer the following two questions:

• RQ1 (Memorization Detection Question): At what epoch es does M start to memorize s?
• RQ2 (Memorization Score Question): What is the degree of memorization or memorization

score, mem(s, e) ∈ [0, 1], of string s at an epoch e ≥ es? Trivially, mem(s, e) = 0 if e < es.

We propose to answer RQ1 and RQ2 by applying three measures of memorization, as detailed in
Section 3. Below, we discuss the experimental setup needed to operationalize these measures.

Experimental Setup. We train an LLM on strings from a formal language, focusing on learning
syntactic patterns defined by a formal grammar. We choose formal grammar based languages be-
cause they can be fully learned without any memorization. Furthermore, they offer a controlled
setup where we can ensure that learning and memorization are unaffected by prior training of the
models, free from data contamination, and guided by a tunable string distribution – enabling detailed
comparisons of the memorization measures. While some prior studies have adopted similar setups,
their goals differed from ours, such as exploring the representation capabilities of LLMs (Delétang
et al., 2022; Bhattamishra et al., 2020) and investigating the difficulty of learning specific languages
by certain transformer architectures (Borenstein et al., 2024; Hahn, 2020; Cotterell et al., 2018).

Specifically, we consider probabilistic and hierarchical context-free languages, which mimic the re-
cursive structure of natural language (Allen-Zhu & Li, 2023). Formally, a probabilistic formal lan-
guage L is defined on a set of allowed tokens or alphabet T , and specifies a probability distribution
PL over strings, PL : T ∗ → [0, 1], where T ∗ is the set of all strings. Throughout, we use the entropy
of a language as a key dimension for studying memorization vs. learning. Adjusting entropy alters
the frequency of strings, which is a factor central to many memorization measures (Zhang et al.,
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2021). The entropy H(L) of a language L is the entropy of the probability distribution of strings,
H(L) = −

∑
s∈T∗ PL(s) logPL(s) (Cover, 1999; Carrasco, 1997).

We experiment with 18 open-source LLMs from 6 families, such as Mistral (Jiang et al., 2023),
Llama (Dubey et al., 2024), Qwen (Yang et al., 2024), Gemma (Team et al., 2024), Pythia (Biderman
et al., 2023), and Opt (Zhang et al., 2022), ranging from 0.5B to 13B parameters. All reported results
are averaged over three experimental runs, except in Figure 39 where variance is for different strings.
Due to space limit, we defer discussion on formal languages and training details to the Appendix E.
Informally, our experiments are based on 8 languages {L1, . . . , L8} of varying entropy and alphabet
(numerical vs. Latin alphabet).

3 ON OPERATIONALIZING MEMORIZATION NOTIONS

In this section, we first discuss the motivating contexts and then propose operationalizations (i.e.,
ways to detect and measure) for three distinct notions of memorization, including a new notion of
contextual memorization. We then apply the measures in our experimental setup and show that they
result in very different and contradictory conclusions for when individual strings are memorized and
in what order. We also discuss the challenges with using them in practice.

3.1 NOTIONS AND THEIR OPERATIONAL MEASURES

(a) Recollection-based Memorization. The potential for extracting sensitive information contained
in training data strings, i.e., privacy risks, motivates this notion of memorization. Consequently, its
operationalization is related simply to how well the information in a training data string can be
recollected or generated. Here, we operationalize recollection performance using cross-entropy loss
of generating each token in the string (Mao et al., 2023).

Recollection-based memorization uses a predefined threshold τ to determine memorization. Let
loss(Me, s) be the recollection loss of string s by model M at epoch e, where loss(Me, s) de-
creases monotonically with training. We say that s starts to be memorized at epoch e = erecs when
loss(Me, s) < τ . The memorization score is binary: memrec(s, e) ≜ 1(loss(Me, s) < τ), where
1 is an indicator function. Hence, memorization score is 1 when loss(Me, s) < τ , and 0 otherwise.

(b) Counterfactual Memorization. Counterfactual memorization is inspired by differential pri-
vacy, where the success of membership inference of a string determines its memorization. This
measure is effective on rare strings, which are less likely to be recollected (Zhang et al., 2021).
Specifically, a string s is counterfactually memorized if the LLM can recollect s better than what it
might in the counterfactual scenario when it is not included in training. Thus, at each training epoch,
counterfactual memorization reflects the difference in the model’s loss on s with and without s in
the training dataset.

Counterfactual memorization compares loss(Me(D), s) and loss(Me(D
′), s), where D′ = D \

{s}. The counterfactual loss, loss(Me(D
′), s), of string s at epoch e serves as a string-and-epoch

dependent threshold of memorization. We say that s starts to be counterfactually memorized at
epoch e = ecfs when loss(Me(D), s) < loss(Me(D

′), s). For e ≥ ecfs , memorization score is:

mem
cf(s, e,D) ≜

loss(Me(D
′), s)− loss(Me(D), s)

loss(Me(D′), s)
∈ [0, 1]. (1)

memcf(s, e,D) is parametric on the dataset D. Hence, we compute the expected counterfactual
memorization of a string by sampling muliple D’s from the language L and taking expectation over
them: memcf(s, e) ≜ ED∼L,s∈D[memcf(s, e,D)].

Note that our formal language-based setup allows us to independently sample D from a known
language L. In contrast, Zhang et al. (2021) lacked access to L and relied on subset sampling,
where D ⊂ D is drawn from a larger dataset D. Moreover, unlike our approach, they did not define
per-epoch counterfactual memorization, by loosely associating epochs within the training algorithm.

(c) Contextual Memorization. Contextual memorization is related to learning as opposed to
privacy concerns, where memorization is a result of locally overfitting to individual training
strings (van den Burg & Williams, 2021). We argue that during repeated training, an LLM not only
overfits locally, but also learns to generate unseen strings in the language by contextual learning.
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Figure 2: Disagreement Among Memorization Measures. Start of memorization (vertical dotted
line) of strings s0, s1, and s2 of decreasing frequency (RQ1). Respective memorization score (RQ2)
is in Figure 14. Recollection-based memorization starts when training loss in the solid curve is
lower than the threshold, τ = 0.2 (Figure 2a). Counterfactual memorization starts when training
loss deviates from counterfactual loss of si, shown in the dotted curves (Figure 2b). Contextual
memorization starts when training loss of si is lower than the string-specific optimal contextual
loss, i.e., the lowest counterfactual loss of si (Figure 2c). Interestingly, the optimal contextual loss
of the mid-frequent string s1 is close to the overall test loss of the language L.

To disentangle memorization from contextual learning, we introduce a threshold, called the optimal
contextual recollection, which is the best possible extent of recollecting s ∼ L from its context by
learning the language L without explicitly training on s. Hence, a training string is contextually
memorized if its recollection due to training exceeds the respective optimal contextual threshold.

In operationalization, we define the optimal contextual loss of a string as mine∗ loss(Me∗(D
′), s),

which is the lowest counterfactual loss of s in all epochs. This is a string-dependent but epoch-
independent threshold for memorization. Contextual memorization starts at an epoch e = ectxs
when loss(Me(D), s) < mine∗ loss(Me∗(D

′), s). For e ≥ ectxs , the memorization score is

mem
ctx(s, e,D) ≜

mine∗ loss(Me∗(D
′), s)− loss(Me(D), s)

mine∗ loss(Me∗(D′), s)
∈ [0, 1]. (2)

And, the expected contextual memorization is memctx(s, e) ≜ ED∼L,s∈D[memctx(s, e,D)]. We
formally state the relation between contextual and counterfactual memorization in Lemma 1.

Lemma 1. Contextual memorization is stricter than counterfactual memorization. The starting
epoch of contextual memorization never precedes the starting epoch of counterfactual memorization,
and contextual memorization score is a lower bound of counterfactual memorization score.

We defer the proof to Appendix D. Informally, we can find an epoch when counterfactual mem-
orization starts because training loss of a string deviates from counterfactual loss, but contextual
memorization does not start because training loss is not lower than the optimal contextual loss,
i.e., the lowest counterfactual loss. Also, due to higher loss threshold, counterfactual memorization
overestimates memorization score than contextual memorization (Figure 1 and 17).

3.2 OPERATIONALIZATIONS LEAD TO DIFFERENT ANSWERS FOR RQ1 AND RQ2

We demonstrate operationalization and conflicting outcomes of different memorization measures
when applied to the same training dynamic (see Table 2 for a summary). To mimic natural languages,
we consider a low entropy formal language, and examine how three strings of decreasing absolute
frequency, i.e., number of occurrences, {s0, s1, s2} are memorized, where freq(s0) > freq(s1) >

freq(s2). For each si, we train a model, e.g., Mistral-7B, on a dataset D = D′ ⊎ {{s(freq(si))i }},
where the multiset D′ is sampled from language L without including si, i = {0, 1, 2}. A separate
model trained only on D′ is used for contextual and counterfactual memorization. Each experiment
is repeated three times with independent samples of D′ ∼ L to assess robustness. We discuss the
findings of RQ1 below and defer the discussion of RQ2 to Appendix F.

Recollection-based measures are strongly correlated with occurrence frequency of strings. In
Figure 2a, the most frequent string s0 is memorized at the earliest epoch (erecs0 = 6) according to
recollection-based memorization, followed by less frequent strings (erecs1 = 10, erecs2 = 12), i.e.,
the order of memorization is s0 > s1 > s2. This occurs due to the fixed loss threshold used for
memorization, where more frequent strings tend to exceed the threshold earlier, highlighting the
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correlation between string frequency and the order of recollection-based memorization. Therefore,
in recollection-based memorization, the greater the frequency of a string, the earlier it is memorized.

Counterfactual and contextual measures are uncorrelated and at times, inversely correlated
with occurrence frequency of strings. In Figures 2b and 2c, the order of counterfactual and con-
textual memorization does not correlate with string frequency (s2 > s1 > s0). To explain this,
we focus on string-specific optimal contextual loss in Figure 2c, where more frequent strings have
lower optimal contextual loss, thereby needing more epochs to be memorized. While the presented
result is an artifact of the language – we observe a minor exception in another language (Figure 15)
– the important takeaway is that contextual (and counterfactual) memorization allows for naturally
finding per-string threshold for memorization, avoiding the error of manually setting an ‘one for all’
non-adaptive memorization threshold in the recollection-based memorization. In summary, different
measures can disagree on the start and order of memorization of varying frequent strings.

Contextual memorization is a stricter measure, i.e., applies a higher memorization threshold
(or lower loss threshold) than counterfactual memorization. In Figure 2b and 2c, while the start
of contextual and counterfactual memorization differ, there is a consistent pattern: counterfactual
memorization of a string starts no later than the start of contextual memorization. In addition, coun-
terfactual memorization often overestimates contextual memorization (see Figure 14). Both obser-
vations empirically support Lemma 1. Therefore, counterfactual memorization precedes contextual
memorization, and often overestimates memorization score.

3.3 CHALLENGES WITH OPERATIONALIZATIONS

Information Requirement Challenges. Recollection-based memorization is the simplest of all,
needing only the trained LLM and the target string. But, counterfactual and contextual memorization
additionally require access to the training dataset.

Computational Challenges. Recollection-based memorization has the lowest computational cost,
relying only on the training loss of a string. But, counterfactual and contextual memorization require
retraining the LLM separately without each target string, making them computationally expensive
and less practical. Below, we discuss a heuristic for approximating these measures.

Efficient Computation of Counterfactual and Contextual Memorization. Both measures require
retraining to compute counterfactual loss, as well as optimal contextual loss. We propose an efficient
approximation that avoids retraining. If the occurrence frequency of both training and test strings
are known in a training dynamic, which is the case of a formal language, we can find a test string as
similarly occurring to the training string, and use its test loss as counterfactual loss and the lowest test
loss as the optimal contextual loss. The hypothesis is that similarly occurring strings in a language
tend to yield similar losses from the LLM. In the next section, we apply this technique for efficient
computation of counterfactual and contextual memorization.

Takeaway. Recollection-based, contextual, and counterfactual memorization differ in information
requirement and produced outcomes. We suggest applying contextual or counterfactual memoriza-
tion in practice, which improve upon the fixed threshold error in the recollection-based measure.

4 ON LEARNING AND MEMORIZATION TRADEOFFS

Today, many perceive memorization as undesirable and assume that it is antithetical to learning.
Memorization can be viewed as some form of local overfitting the model to training data (van den
Burg & Williams, 2021). Consequently, some prior works advocated schemes, such as data dedu-
plication (Kandpal et al., 2022; Lee et al., 2021), to avoid memorizing strings in the dataset, even as
they attempt to learn the language underlying the training dataset. In this section, we revisit these
assumptions and perceptions through the lens of different memorization measures and ask a more
foundational question: can memorization be avoided when learning language optimally?

• RQ3: Suppose e∗ is the epoch of when a language has been optimally learned, i.e., the test loss
is minimized. Can models avoid memorizing strings before reaching epoch e∗?

• RQ4: Are more frequently repeated strings in training data more likely to be memorized before
epoch e∗? Does data de-duplication help reduce memorization?

6
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• RQ5: Increasing training dataset size improves optimal learning, but do we risk memorizing
more training strings (due to more repeated strings)?

Memorization Score of a Dataset. To answer these questions, we extend memorization score from
individual strings to a dataset. A direct approach is to compute the fraction of strings marked as
memorized after an epoch, memfrac(D, e) = Es∈D[1(mem(s, e) > 0)]. However, each string may
have different memorization score. Hence, we compute weighted memorization as the expected
memorization score of all strings in a dataset, memweighted(D, e) = Es∈D[mem(s, e)]. Both of these
scores are normalized in [0, 1], where a higher value indicates higher memorization.
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Figure 3: Memorization of training strings in
languages of different entropy across different
memorization measures. The vertical dotted line
denotes the epoch of optimal language learning
when test loss is the lowest (see Figure 20). Mem-
orization score is nonzero at optimal learning.

RQ3: Memorization is unavoidable when
optimally learning both high and low en-
tropy languages. In Figure 3, we study mem-
orization of languages with different entropy,
using different measures. Since contextual
and counterfactual memorization are related
(Lemma 1), we henceforth compare between
contextual and recollection-based memoriza-
tion. As shown in Figure 3a and 3b, the fraction
of memorized strings increases monotonically
with training epochs in both languages. We ob-
serve that at the optimal learning epoch e∗, al-
most all strings are contextually memorized in
the high entropy language, while a sizable sub-
set of strings are memorized in the low entropy
language. Weighted contextual memorization
in Figure 3c and 3d also confirms that some de-
gree of memorization is indeed needed for opti-
mal learning. It is hard to draw insights from
recollection-based memorization, as the arbi-
trarily chosen threshold influences memoriza-
tion score. For example, by setting τ = 0.2, no
strings are memorized in the high entropy lan-
guage at optimal learning, but almost all strings
are memorized in the low entropy language.
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(b) Contextual

Figure 4: Contradiction among measures on deter-
mining memorization of top 10% frequent strings
and bottom 10% infrequent strings in a low en-
tropy language, L2 (details in Figure 21).

However, across the different measures, a pat-
tern stands out. For the high entropy language,
where all strings occur with similar frequency,
all strings begin to be memorized within a nar-
row band (range) of epochs2. In contrast, for
the low entropy language, where strings occur
with widely different frequencies, the epochs
when strings begin to be memorized are spread
across a broad band. The optimal learning
epoch e∗ typically falls within the range of
these memorization bands. To avoid all memo-
rization, training needs to be terminated before
any string begins to be memorized. Such early stopping may yield acceptable learning performance
for high entropy languages, but will be highly sub-optimal for low entropy languages. Unfortunately,
most natural languages have low entropy, i.e., their strings occur with widely differing frequencies.

RQ4: Frequently repeated strings are likely to be memorized more based on recollection, but
both frequent and infrequent strings are almost equally susceptible to contextual and coun-
terfactual memorization. Deduplication delays memorization, but doesn’t reduce the wide
memorization band of low entropy languages. In Figure 4, we compare memorization of the
top 10% most frequent and bottom 10% least frequent strings in a low entropy language and ob-
serve a contradiction. As expected, recollection-based memorization identifies frequent strings as

2Formally, the memorization band is a range of epochs [emin, emax] containing the beginning of memorization
of all training strings, emin ≤ es ≤ emax,∀s ∼ L.
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more likely to be memorized. However, contextual (and counterfactual) measures show nearly equal
memorization across both frequency groups. Interestingly, Figure 4b shows slightly lower contex-
tual memorization for frequent strings – plausible, due to higher optimal contextual recollection of
frequent strings offsetting contextual memorization, as seen in Section 3. Therefore, contextual and
counterfactual memorization contradict with recollection-based memorization, particularly on the
impact of string-frequency on memorization susceptibility.
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(b) Contextual

Figure 5: Deduplication cannot reduce the
band of epochs when strings in a low entropy
language are memorized (marked as ‘base’),
i.e., strings are still memorized at different
epochs. Vertical lines mark optimal learning.

Data deduplication has been proposed and used as a
strategy, as it is believed to reduce memorization and
improve learning. Deduplication works by removing
repeated strings from the training set. In Figure 5,
we show that deduplication delays both memoriza-
tion and optimal learning. Also, it cannot reduce the
band of epochs when strings are memorized. If the
band were narrowed, such as the case in a high en-
tropy language (Figure 3a), one could have hoped to
stop training early to obtain a better tradeoff between
memorization and learning. A thorough analysis of
deduplication from both learning and memorization
perspectives is discussed in the Appendix G.

RQ5: Improved learning due to larger training
datasets does not necessarily increase contextual and counterfactual memorization of repeated
strings, but increases their recollection-based memorization. One can improve learning by in-
creasing training dataset size. However, do we risk memorizing more training strings, specially in a
low entropy language where repetition increases with training size?
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(b) Language L4

Figure 6: Memorization vs. optimal learning
(lowest test loss) while varying training dataset
size (∝ marker size). Lower test loss results in
lower contextual and counterfactual memoriza-
tion, and higher recollection-based memorization.

In Figure 6, as training size increases (larger
marker size), optimal learning improves (i.e.,
test loss decreases). Subsequently, recollection-
based memorization increases: because of
higher repetitions, more training strings achieve
lower loss than the fixed memorization thresh-
old. However, contextual and counterfactual
memorization does not increase, rather de-
creases with improved learning. Because, when
learning improves, the optimal contextual rec-
ollection of strings improves as well, resulting
in lower contextual memorization. Therefore,
by increasing training size in order to improve
learning, repeated strings are likely not memo-
rized according to contextual and counterfactual measures.

Takeaway. The precise measures used for memorization can lead to very different inferences when
investigating basic tradeoffs between memorization and learning. Current wisdom on these trade-
offs are based on recollection-based measure, where findings are vulnerable to subjectively chosen
thresholds by the experimenter. In contrast, using contextual and counterfactual measures, we find
that (a) memorization of some strings is unavoidable with optimal learning, (b) there is no strong
correlation between string-frequency and its susceptibility for memorization, (c) deduplication as a
memorization mitigation technique only delays memorization and learning, but cannot fundamen-
tally reduce or eliminate memorization, when learning optimally, (d) larger training datasets improve
learning and decrease memorization, even when some strings are naturally repeated more frequently.

5 ON PRIVACY RISKS WITH MEMORIZATION

A number of prior works have studied privacy risks with LLMs memorizing training data. They
relied on the recollection measure for memorization, as applying counterfactual or contextual mea-
sures would be computationally too expensive. We re-examine past reports of memorized strings
using recollection-based measures (Biderman et al., 2024), and ask the following two questions.
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Table 1: Reported memorized strings by recollection, containing predictable and non-PII strings.
Predictable strings (highlighted) are unlikely to be contextually memorized (extended list in Table 3).

Prompt + Generation Train Acc ContextualUB Acc Remark

, ’2014-07-22’ , ’2014-07-23’ , ’2014-07-24’ , ’2014-07-25’, ’2014-07-26’ , ’2014-
07-27’ , ’2014-07-28’ , ’2014-07-29’

1.00 1.00 Predictable

2008 Benoit Jacob ⟨jacob.benoit.1@gmail.com⟩ // This Source Code Form is subject
to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not
distributed // with this file, You can obtain one at

0.97 0.97 Common
License

• RQ6: Do reported memorized strings according to recollection contain any privacy-sensitive
personally identifiable information (PII)?

• RQ7: Do they pass the memorization test using contextual or counterfactual measures?

To answer RQ6 and RQ7, in Table 1, we study representative recollection-based memorized strings
by Pythia-1B-deduped, trained on the Pile dataset (Gao et al., 2020). Analyzing their nature, the
strings fall into two categories: repeated or predictable syntactic/semantic patterns, and frequently
occurring strings on the internet, such as licensing agreements, books, and code snippets. In both
categories, memorized strings do not contain privacy-sensitive PII, answering negatively to RQ6.

Proxy of Contextual Recollection via a Reference Model. Among reported memorized strings,
the predictable strings in highlighted rows might have high optimal contextual recollection and can
be filtered by contextual (or counterfactual) memorization. However, we lack access to the target
model M trained without a memorized string s, which is needed to measure contextual recollec-
tion. As a proxy, we approximate contextual recollection using a reference model Mref. If a string
memorized by M is generated by Mref with equal or higher recollection, it is unlikely to be contex-
tually memorized. This requires Mref to be trained on a dataset disjoint from M ’s to avoid shared
memorization, although ensuring such disjointness remains challenging. As such, the recollection
performance – specifically, accuracy (Biderman et al., 2024) – reported by Mref is not the exact but
an upper bound (UB) of the optimal contextual accuracy.

In our analysis, we use OLMo-1B as Mref, which is trained on a different dataset, Dolma (Groen-
eveld et al., 2024). Out of 10, 000 random memorized strings by Pythia-1B-deduped, OLMo-1B
recollects 52.39% strings with ≥ 90% accuracy. Furthermore, in 38.52% strings, OLMo-1B recol-
lects equally or more accurately than Pythia-1B-deduped. Therefore, predictable memorized strings
via recollection are unlikely to be contextually memorized, answering negatively to RQ7.

Takeaway. Most memorized strings via recollection nether contain any privacy-sensitive PII, not are
contextually (or counterfactually) memorized, resulting in an exaggeration of privacy risks. More-
over, sensitive information is rare and generally less predictable (i.e, having lower contextual rec-
ollection) than the non-sensitive part of the training data (Das et al., 2025). Therefore, contextual
measures might be better to detect privacy risks of memorization than recollection-based measures.

6 CONCLUSIONS

We establish that learning a language optimally without memorization is infeasible in current LLM
training, and existing privacy threats of memorization in LLMs are often exaggerated. To support
this view, we study three memorization measures: recollection-based, counterfactual, and a proposed
contextual memorization, where the first two focus on privacy concerns, while the last one focuses
on learning concerns. Importantly, contextual memorization avoids the pitfalls of existing measures,
by differentiating between context-based recollection and memorization-based recollection.

We demonstrate that different memorization measures vary in information requirement and out-
comes produced, even under the same training dynamic. Importantly, memorization is unavoidable
for optimal learning, with improved learning naturally leading to lesser contextual and counterfac-
tual memorization. We dismiss trivial cases of reported memorization that neither pose privacy
risks nor meet the criteria for contextual memorization. In addition, we expose the pitfalls of dedu-
plication as a method for mitigating memorization, where the spread of memorization does not
necessarily decrease. In the future, we plan on investigating memorization beyond the axis of string-
frequency, and developing improved memorization mitigation strategies.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The paper focuses on conceptual clarity on what constitutes memorization in LLMs. We illustrate
nuances of different privacy-focused and learning-focused measures of memorization using syn-
thetic formal languages. The paper has no human subject involvement or use of private data. As
such, the research study does not present immediate ethical risks from the data collection or model
training processes. The scientific results of this study have profound implications in choosing the
right measure of memorization when studying the consequences of memorization in LLMs.

REPRODUCIBILITY STATEMENT

We are committed to making our paper reproducible. Below, we discuss specific details of the
reproducibility statement:

• The precise definition of different memorization measures are in Section 3.
• Theoretical proofs regarding the subtle relation between contextual and counterfactual memoriza-

tion is in the Appendix D.
• The definitions of formal languages and configurations of experiments are in the Appendix E.
• The source code for generating and sampling from synthetic formal languages, training LLMs on

strings from formal languages, evaluating memorization post-training, and generating plots are
attached as a supplemental material.
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A LIMITATIONS

Our goal of the paper is to systematically study different measures of memorization, inspired from
two principled aspects: privacy concerns captured by recollection-based and counterfactual memo-
rization, and learning concerns captured by contextual memorization. While our priority has been
on conceptual clarity regarding the notion, operationalization, and information/computational chal-
lenges of each measure, we acknowledge the following limitations:

• Multiple measures exist in the context of recollection-based memorization. Many memo-
rization measures related to recollection exist today, as detailed in Section C. Fundamentally,
these measures vary on the strictness of the threshold, determining whether a string is memorized
or not. In the paper, we operationalize recollection-based memorization using a fixed genera-
tive performance threshold using cross-entropy loss, capturing the essence of many recollection-
based memorization notions. A future study could consider more nuanced operationalizations of
recollection-based memorization measures, although we believe the key results would not change,
i.e., the correlation of string-frequency and the order of recollection-based memorization would
remain the same.

• Contextual (and counterfactual memorization) memorization measures are better, but at the
cost of additional information and computational resources. Contextual memorization avoids
the pitfall of recollection-based memorization by disentangling memorization-based recall from
contextual learning based recall. However, contextual memorization requires more information
(e.g. access to training dataset) and computational resources (e.g. re-training the LLM). We
demonstrate a heuristic to approximate contextual memorization by mapping similarly *frequent*
training and test strings. Still, such approximation relies on knowing the probability distribution
of strings in the language, which is hard to get for any natural language. Moreover, beyond fre-
quency, there are other dimensions such as information context within strings that can be used for
determining how well strings are learned/memorized. We leave these possibilities for a tractable
and informed heuristic of contextual (and counterfactual) memorization as a future work.

• Experiments are limited to formal languages. We propose formal language learning to precisely
study nuanced implications of different measures of memorization, where we can effectively con-
trol of the entropy of the language, design grammatical rules to mimic natural languages, and
produce results that avoid data contamination issues in natural language datasets. Moreover, the
current study focuses on a single language family (probabilistic and hierarchical context-free lan-
guages), and we leave the study of other language families as future work.

B LLM USAGE

In this paper, we use LLMs for the following purposes:

1. Improvement in Writing: We check grammatical mistakes in writing, and make minor
para-phrasing to improve the quality and flow of the paper.

2. Code Writing: We leverage LLM-based code assistants like Windsurf to write code.

The usage of LLMs is by no means a significant contribution to the paper.
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Table 2: Characteristics of memorization measures.

Memorization
Measure Motivation

Memorization
Threshold

Ease of
Operationalization

Strictness of
Measure

Recollection Disclosing private information Manual Easy Variable
Counterfactual Differential privacy Adaptive Hard Medium
Contextual (ours) Local over-fitting Adaptive Hard High

C EXTENDED RELATED WORK

Memorization in LLMs is an active area of research, studied from the perspective of privacy and
security risks (Carlini et al., 2021; Huang et al., 2022; Kim et al., 2023; Jagielski et al., 2022), un-
intended form of learning due to local over-fitting (van den Burg & Williams, 2021), and copyright
concerns related to verbatim reproduction (Bender et al., 2021; Henderson et al., 2023; Mueller et al.,
2024; Freeman et al., 2024), etc. With the goal of capturing undesirable effects of memorization, i.e.,
privacy ricks, multiple measures of memorization are proposed. Among them, majority belong to
the category of recollection-based memorization (Schwarzschild et al., 2024; Biderman et al., 2024),
in the form of perfect memorization (Kandpal et al., 2022), verbatim or exact memorization (Carlini
et al., 2021; 2019; Tirumala et al., 2022; Mireshghallah et al., 2022), approximate memorization (Ip-
polito et al., 2022; Peng et al., 2023; Duan et al., 2024), entity memorization (Zhou et al., 2024),
etc. For an extended taxonomy of memorization measures, we refer to a repcent paper (Satvaty
et al., 2024). For example, Tirumala et al. (2022) considered per-token training accuracy as the
proxy of memorization: given a training string as a prompt, an LLM memorizes it if it recollects
the next token in the string correctly. Carlini et al. (2022) proposed a relatively stringent measure by
imposing an exact recollection of the next 50 tokens. Therefore, a critical design choice an experi-
menter makes is to set the threshold on recollection to declare a string as memorized. The choice has
consequences on the interpretation of memorization, as we demonstrate in Secton 3, and Section 4.

In a related line of work, Zhang et al. (2021) defined counterfactual memorization as the change in a
model’s generative performance when a string is included in training versus excluded (Pappu et al.,
2024; Feldman & Zhang, 2020). This approach specifically highlights rare and less frequent strings,
which tend to cause larger performance shifts and are often missed by recollection-based memo-
rization measures. By introducing contextual memorization, we argue that all strings, regardless of
frequency, can be recollected to some extent based on their context (Haviv et al., 2022; Wang et al.,
2024; Fu et al., 2024; Chen et al., 2025; Speicher et al.; Dong et al., 2024; McCoy et al., 2023).
We define memorization as occurring only when a string’s training-time recollection exceeds its
optimal contextual recollection threshold, making contextual memorization a stricter criterion than
counterfactual memorization

Despite the abundance of memorization measures, their potentially conflicting implications remain
underexplored – we aim to address this research gap in this study.

D THEORETICAL ANALYSIS OF MEMORIZATION MEASURES

Lemma 1. Contextual memorization is stricter than counterfactual memorization. The starting
epoch of contextual memorization never precedes the starting epoch of counterfactual memorization,
and contextual memorization score is a lower bound of counterfactual memorization score.

Proof. We prove by considering loss as the metric of recollection. We assume that at any epoch, the
training loss of a string is not higher than the counterfactual loss of the same string when excluding
the string from training, which is a feasible assumption in practice.

For a string s, let the optimal contextual loss be mine∗ loss(Me∗(D
′), s), which is the lowest

counterfactual loss in all epochs.

Contextual memorization starts at an epoch ectxs when loss(Mectxs
(D), s) <

mine∗ loss(Me∗(D
′), s), i.e., the training loss of s is lower than the optimal contextual

loss of the string. For an epoch e < ectxs earlier than the start of contextual memorization,
loss(Me(D), s) ≥ mine∗ loss(Me∗(D

′), s).
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Counterfactual memorization starts at an epoch ecfs when loss(Mecfs
(D), s) < loss(Mecfs

(D′), s),
i.e., the training loss of s is lower than the counterfactual loss at the same epoch. For an epoch e <
ecfs earlier than the start of counterfactual memorization, training loss of s is equal to the counterfac-
tual loss, loss(Me(D), s) = loss(Me(D

′), s). Because, loss(Me(D), s) ≤ loss(Me(D
′), s)

for any training epoch e′, according to our assumption.

Let contextual memorization start earlier than counterfactual memorization, i.e., ectxs = ecfs − 1.

loss(Mecfs −1(D), s) < min
e∗

loss(Me∗(D
′), s)

Since, min
e∗

loss(Me∗(D
′), s) ≤ loss(Mecfs −1(D

′), s)

⇒loss(Me′−1, s) < loss(Mecfs −1(D
′), s)

But loss(Mecfs −1(D), s) = loss(Mecfs −1(D
′), s), which is a contradiction. Therefore, contextual

memorization cannot start earlier than counterfactual memorization.

On the other hand, contextual memorization can start later or in the same epoch as counterfactual
memorization, since for an epoch e ≥ ecfs ,

loss(Me(D), s) ≥ min
e∗

loss(Me∗(D
′), s)︸ ︷︷ ︸

contextual memorization does not start

and loss(Me(D), s) < loss(Me(D
′), s)︸ ︷︷ ︸

counterfactual memorization starts

Furthermore, the counterfactual memorization score is no less than the contextual memoriza-
tion score, since at any epoch e ≥ max(ecfs , ectxs ), i.e., after both memorization starts,
mine∗ loss(Me∗(D

′), s) ≤ loss(Me(D
′), s).

mine∗ loss(Me∗(D
′), s)− loss(Me(D), s)

mine∗ loss(Me∗(D′), s)︸ ︷︷ ︸
contextual memorization score

≤ loss(Me(D
′), s)− loss(Me(D), s)

loss(Me(D′), s)︸ ︷︷ ︸
counterfactual memorization score

Therefore, counterfactual memorization is likely to overestimate memorization than contextual
memorization, while reporting memorization at an earlier epoch than contextual memorization.

E EXPERIMENTAL SETUP

Each training (specifically, fine-tuning) is performed for 50 epochs with a batch size of 8 and a linear
learning rate scheduler with a warm-up ratio of 0.05. We fix the learning rate for Qwen, Gemma,
and Llama-3 families as 5×10−5, Mistral, Opt, and Llama-2 families as 5×10−6, and Pythia family
as 10−5. We consider training dataset sizes {16, 64, 256, 1024} and evaluate on 1024 test strings. In
each training, we find the epoch of best learning according to the lowest cross-entropy loss on the
test strings and report respective weighted memorization by different measures. All experiments are
conducted in compute clusters with Python as the programming language (version 3.10), where we
use 8x Nvidia H100 94GB NVL GPUs and 2x AMD EPYC 9554 CPU @ 3.1 GHz, 2x64 cores, and
24x 96GB RAM.

Below, we provide details of the formal languages used in our experiments, along with their formal
definitions. Intuitively, we carefully design languages to show the robustness of our results across
changing the entropy of the langauge and token types of the language.

Formal Languages and Grammars. In each fine-tuning, we provide the LLM with strings sam-
pled from a probabilistic formal language, with the learning task of generating unseen strings from
the same language via syntactic pattern recognition. Underneath, a probabilistic formal language is
represented by a probabilistic formal grammars, or simply grammars (Collins, 2013). Specifically,
a grammar consists of two sets of symbols called the non-terminals and terminals, a set of rules to
rewrite strings over these symbols that contain at least one nonterminal – also called the produc-
tion rules, and a probability distribution over the production rules. Formally, a probabilistic formal
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S → A16 [1]

A16 → A15 A14 A13 [0.50]

A16 → A13 A15 A14 [0.50]

A13 → A11 A12 [0.50]

A13 → A12 A11 [0.50]

A14 → A11 A10 A12 [0.50]

A14 → A10 A11 A12 [0.50]

A15 → A12 A11 A10 [0.50]

A15 → A11 A12 A10 [0.50]

A10 → A7 A9 A8 [0.50]

A10 → A9 A8 A7 [0.50]

A11 → A8 A7 A9 [0.50]

A11 → A7 A8 A9 [0.50]

A12 → A8 A9 A7 [0.50]

A12 → A9 A7 A8 [0.50]

A7 → 3 1 2 [0.50]

A7 → 1 2 3 [0.50]

A8 → 6 5 4 [0.50]

A8 → 6 4 5 [0.50]

A9 → 9 8 7 [0.50]

A9 → 8 7 9 [0.50]

S → A16 [1]

A16 → A15 A14 A13 [0.95]

A16 → A13 A15 A14 [0.05]

A13 → A11 A12 [0.95]

A13 → A12 A11 [0.05]

A14 → A11 A10 A12 [0.95]

A14 → A10 A11 A12 [0.05]

A15 → A12 A11 A10 [0.95]

A15 → A11 A12 A10 [0.05]

A10 → A7 A9 A8 [0.95]

A10 → A9 A8 A7 [0.05]

A11 → A8 A7 A9 [0.95]

A11 → A7 A8 A9 [0.05]

A12 → A8 A9 A7 [0.95]

A12 → A9 A7 A8 [0.05]

A7 → 3 1 2 [0.95]

A7 → 1 2 3 [0.05]

A8 → 6 5 4 [0.95]

A8 → 6 4 5 [0.05]

A9 → 9 8 7 [0.95]

A9 → 8 7 9 [0.05]

Figure 7: Production rules of G1 (left) and G2 (right). Compared to G1, the grammar G2 generates
more skewed distribution (or lower entropy) strings, since one out of two production rules for each
non-terminal is selected with higher probability.
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S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → 2 9 3 [0.3333]

B1 → 9 6 1 [0.3333]

B1 → 1 8 6 [0.3333]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → 5 6 5 9 [0.3333]

E1 → 1 8 6 6 [0.3333]

E1 → 1 5 1 5 [0.3333]

T11 → 1 [1]

T12 → 2 [1]

T13 → 3 [1]

T14 → 4 [1]

C11 → 5 [1]

C12 → 6 [1]

C13 → 7 [1]

C14 → 8 [1]

C15 → 9 [1]

S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → 2 9 3 [0.95]

B1 → 9 6 1 [0.025]

B1 → 1 8 6 [0.025]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → 5 6 5 9 [0.95]

E1 → 1 8 6 6 [0.025]

E1 → 1 5 1 5 [0.025]

T11 → 1 [1]

T12 → 2 [1]

T13 → 3 [1]

T14 → 4 [1]

C11 → 5 [1]

C12 → 6 [1]

C13 → 7 [1]

C14 → 8 [1]

C15 → 9 [1]

Figure 8: Production rules of G3 (left) and G4 (right). Compared to G3, the grammar G4 generates
more skewed distribution (or lower entropy) of strings, since one out of three production rules of
non-terminal B1 and E1 is selected with higher probability.
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S → A16 [1]

A16 → A15 A13 [0.50]

A16 → A13 A15 A14 [0.50]

A13 → A11 A12 [0.50]

A13 → A12 A11 [0.50]

A14 → A11 A10 A12 [0.50]

A14 → A10 A11 A12 [0.50]

A15 → A12 A11 A10 [0.50]

A15 → A11 A12 A10 [0.50]

A10 → A7 A9 A8 [0.50]

A10 → A9 A8 A7 [0.50]

A11 → A8 A7 A9 [0.50]

A11 → A7 A8 A9 [0.50]

A12 → A8 A9 A7 [0.50]

A12 → A9 A7 A8 [0.50]

A7 → 3 1 [0.50]

A7 → 1 2 3 [0.50]

A8 → 6 5 [0.50]

A8 → 6 4 5 [0.50]

A9 → 9 8 7 [0.50]

A9 → 8 7 [0.50]

S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → 2 9 3 [0.3333]

B1 → 9 6 1 [0.3333]

B1 → 1 8 6 2 [0.3333]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → 5 6 [0.3333]

E1 → 1 8 6 6 [0.3333]

E1 → 1 5 1 5 5 9 [0.3333]

T11 → 1 [1]

T12 → 2 [1]

T13 → 3 [1]

T14 → 4 [1]

C11 → 5 [1]

C12 → 6 [1]

C13 → 7 [1]

C14 → 8 [1]

C15 → 9 [1]

Figure 9: Production rules of G5 (left) and G6 (right). These grammars are adapted from G1 and
G3 respectively, by allowing non-uniform lengths of tokens in the lowest level production rules.
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S → A16 [1]

A16 → A15 A13 [0.50]

A16 → A13 A15 A14 [0.50]

A13 → A11 A12 [0.50]

A13 → A12 A11 [0.50]

A14 → A11 A10 A12 [0.50]

A14 → A10 A11 A12 [0.50]

A15 → A12 A11 A10 [0.50]

A15 → A11 A12 A10 [0.50]

A10 → A7 A9 A8 [0.50]

A10 → A9 A8 A7 [0.50]

A11 → A8 A7 A9 [0.50]

A11 → A7 A8 A9 [0.50]

A12 → A8 A9 A7 [0.50]

A12 → A9 A7 A8 [0.50]

A7 → c a [0.50]

A7 → a b c [0.50]

A8 → f e [0.50]

A8 → f d e [0.50]

A9 → i h g [0.50]

A9 → h g [0.50]

S → S5 [1]

S5 → B4 C11 E4 T11 [0.25]

S5 → B4 C12 E4 T12 [0.25]

S5 → B4 C13 E4 T13 [0.25]

S5 → B4 C14 E4 T14 [0.25]

B4 → B3 [0.3333]

B4 → B3 B3 B3 [0.3333]

B4 → B3 B3 [0.3333]

B3 → B2 [0.3333]

B3 → B2 [0.3333]

B3 → B2 B2 [0.3333]

B2 → B1 [0.3333]

B2 → B1 [0.3333]

B2 → B1 B1 B1 [0.3333]

B1 → b i c [0.3333]

B1 → i f a [0.3333]

B1 → a h f b [0.3333]

E4 → E3 [0.3333]

E4 → E3 E3 [0.3333]

E4 → E3 E3 E3 [0.3333]

E3 → E2 [0.3333]

E3 → E2 E2 [0.3333]

E3 → E2 [0.3333]

E2 → E1 E1 [0.3333]

E2 → E1 [0.3333]

E2 → E1 E1 E1 [0.3333]

E1 → e f [0.3333]

E1 → a h f f [0.3333]

E1 → a e a e e i [0.3333]

T11 → a [1]

T12 → b [1]

T13 → c [1]

T14 → d [1]

C11 → e [1]

C12 → f [1]

C13 → g [1]

C14 → h [1]

C15 → i [1]

Figure 10: Production rules of G7 (left) and G8 (right). These grammars are adapted from G5 and
G6 respectively, by replacing numerical tokens with Latin character tokens.
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grammar, is defined as a quintuple.

G = (N,T,R, S,P)

where N is the set of non-terminals, T is the set of terminals (equivalently, tokens), R is the set of
production rules, S ∈ N is the start non-terminal, and P is the set of probabilities on production
rules.

Formal languages are divided into well-known classes based on the complexity of the language
membership problem, i.e., the complexity of the grammars needed to generate them (Chomsky,
1956). In this paper, we use one class of grammars, namely, hierarchical probabilistic context-free
grammars (HPCFGs) (Allen-Zhu & Li, 2023). Specifically, our experiments are based on teaching
LLMs languages represented by HPCFGs. We use HPCFGs because they are simple syntactically
and can represent languages that are structurally similar to natural languages (Allen-Zhu & Li, 2023;
Shi et al., 2022).

Description of Grammars and Identified Languages. In our experiments, we consider two
generic structure for the considered grammars, one adapted from Allen-Zhu & Li (2023), namely
G1, G2, G5, G7, and another is proposed by us, namely G3, G4, G6, G8.

In the first generic structure, each grammar has N = {S,A7, A8, . . . , A16} and T =
{1, 2, 3, . . . , 9}. The grammar has four levels of hierarchy: the non-terminals from top to bottom
levels are {A16}, {A13, A14, A15}, {A10, A11, A12}, and {A7, A8, A9}, followed by terminals
{1, 2, 3, . . . , 9}. Each non-terminal (except the start non-terminal) has two expansion rules, consist-
ing of non-terminals from the immediate lower level. Further, the expansion rules are probabilistic,
where the sum of probabilities of all expansion rules from a given non-terminal is 1.

The second generic structure is inspired by bridging two HPCFGs together, and simulating a long
range dependencies within the generated strings. Specifically, the sub-grammar at B4 and the sub-
grammar at E4 are connected by non-terminal C1i; and E4 ends with T1j . Long range dependen-
cies are communicated through C1i and T1j , by enforcing i = j at each expansion of S5.

In all cases, Gi produces a probabilistic context free language Li. Figure 11 denotes the length
distribution of different languages, and Figure 12 demonstrates how hierarchical non-terminals are
applied in different positions in the representative strings.

Sampling Strings from a Formal Language. Given a language L generated by a HPCFG, we first
need to obtain training samples, i.e., set of i.i.d. samples of strings from L. To sample a string
from the language, we start from a special string in the grammar containing a single, distinguished
nonterminal called the “start” or “root” symbol, and apply the production rules to rewrite the string
repeatedly. If several rules can be used to rewrite the string at any stage, we sample one such
rule from the probability distribution over the rules and apply it. We stop when we obtain a string
containing terminal tokens only. This string is a sample drawn from the language. We can repeat
this process to draw any number of i.i.d. samples from the language.
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Figure 11: Length distribution of considered probabilistic languages, based on 10000 sampled
strings per language.
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Figure 12: Representative strings from different languages, annotated with non-terminals applied in
different positions by the respective hierarchical grammar.
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Figure 13: Start of memorization of selected strings in Language L2.
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Figure 14: Memorization score of strings in language L2, respective to Figure 2. In different strings,
memorization score usually increases with epochs, with contextual memorization providing a lower
bound of counterfactual memorization.

F ADDITIONAL EXPERIMENTAL RESULTS

Memorization Scores of Individual Strings. In Figure 14, we demonstrate the memorization
scores of strings, corresponding to Figure 2, across multiple memorization measures. In all mea-
sures, the memorization score usually increases with epochs, and there is no substantial difference
among strings of varying frequency – different measures agree on the memorization score. Finally,
as we theoretically demonstrate, contextual memorization score provides a lower bound of counter-
factual memorization score.
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Figure 15: Start of memorization of selected strings in language L4 (specifically, a modified version
of L4 as explained below). The observation is consistent with language L2, as shown in figure 2,
where frequency of strings correlates with the start of recollection-based memorization. Similarly,
frequency often inversely correlates with counterfactual and contextual memorization, with an
exception that both s1 and s2 are memorized at the same epoch in the counterfactual memorization.
Thus, regardless of whether correlation or inverse correlation exists strongly between string
frequency and the order of memorization, a more consistent observation is that memorization
measures disagree with each other when applied to the same training dynamic on identical strings.

In this experiment, to better differentiate the strings s0, s1, s2 based on frequency, we modify
L4 to be even more skewed. We apply high probability to one random production rule in each
non-terminal in all levels, beyond the lowest level non-terminals in L4, as shown in Figure 8.
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Figure 16: Memorization score of strings in language L4.
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Figure 17: Contextual memorization is a stricter measure than counterfactual memorization. Red
horizontal dash-dot line is the optimal contextual loss. Contextual memorization starts at the same
or in a later epoch (red vertical dot line) than the start of counterfactual memorization (blue vertical
dot line). The contextual memorization score (gray arrow) is a lower bound of counterfactual mem-
orization score, intuitively by comparing the arrow-length.
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0 10 20 30

0

0.5

1

Recollection (0.2) Counterfactual

Contextual

Epoch

F
r
a
c
t
io

n
 o

f

M
e
m

o
r
iz

e
d
 S

t
r
in

g
s

7

(b) Pythia-6.9B
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(c) Qwen-2.5B
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(e) Pythia-6.9B
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(f) Qwen-2.5B

Figure 18: Memorization of training strings in languages of different entropy across different mem-
orization measures. Results are for language L1, which is a high entropy language.
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(b) Pythia-6.9B
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Figure 19: Memorization of training strings in languages of different entropy across different mem-
orization measures. Results are for language L2, which is a low entropy language.
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(a) Low Entropy
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(b) High Entropy

Figure 20: Continuing Figure 3, we demonstrate associated loss with weighted memorization.
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(a) Recollection, n = 64
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(b) Counterfactual, n = 64
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(c) Contextual, n = 64
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(d) Recollection, n = 256
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(e) Counterfactual, n = 256
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(f) Contextual, n = 256
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(g) Recollection, n = 1024
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(h) Counterfactual, n = 1024
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(i) Contextual, n = 1024

Figure 21: Continuing Figure 4, contradiction between recollection-based and contextual (or coun-
terfactual) memorization on determining memorization of top 10% frequent strings and bottom 10%
infrequent strings in a low entropy language. The results are for Mistral-7B on language L2, which
is a low entropy language.
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(a) Recollection, n = 64
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(b) Counterfactual, n = 64
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(c) Contextual, n = 64
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(d) Recollection, n = 256
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(e) Counterfactual, n = 256
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(f) Contextual, n = 256
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(g) Recollection, n = 1024
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(h) Counterfactual, n = 1024
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(i) Contextual, n = 1024

Figure 22: Continuing Figure 21, contradiction between recollection-based and contextual (or coun-
terfactual) memorization on determining memorization of top 10% frequent strings and bottom 10%
infrequent strings in a low entropy language. The results is for Mistral-7B on language L2, which is
a low entropy language.
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Figure 23: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L1, which is a high entropy language.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(a) Mistral-7B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(b) Qwen-2.5-7B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(c) Llama-2-7B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(d) Llama-3.1-∗B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(e) Gemma-2-9B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(f) Pythia-6.9B

0 0.5 1

0.5

1

Recollection (0.2) Counterfactual

Contextual

Weighted Memorization

L
o
s
s

(g) Opt-6.7B

Figure 24: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L2, which is a low entropy language.
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Figure 25: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L3, which is a high entropy language.
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Figure 26: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L4, which is a low entropy language.
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Figure 27: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L5, which is a high entropy language.
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Figure 28: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L6, which is a high entropy language.
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Figure 29: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L7, which is a high entropy language.
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Figure 30: Tradeoffs between optimal learning and memorization among comparable ≈ 7B param-
eter size models on language L8, which is a high entropy language.
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Figure 31: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L1, which is a high entropy
language.
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Figure 32: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L2, which is a low entropy
language.
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Figure 33: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L3, which is a high entropy
language.
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Figure 34: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L4, which is a low entropy
language.
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Figure 35: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L5, which is a high entropy
language.
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Figure 36: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L6, which is a high entropy
language.
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Figure 37: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L7, which is a high entropy
language and contains Latin characters as tokens.
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Figure 38: Contextual memorization vs. optimal language learning, measured as test loss, across
models of different sizes within a family. Results are on language L8, which is a high entropy
language and contains Latin characters as tokens.
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Table 3: List of recollection-based memorized strings by Pythia-1B-deduped (Biderman et al.,
2024), where many strings can be contextually recollected, i.e., repeated words, predictable gen-
eration, etc. We report the upper bound (UB) of contextual accuracy using a reference model
OLMo-1B, which is trained on a different dataset than used in Pythia-1B-deduped. Considering
the high accuracy of the OLMo-1B on memorized strings by Pythia-1B-deduped, we suspect that
the highlighted generations are not contextually memorized.

Prompt + Generation Accuracy of Generation Remark
Training ContextualUB

( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

1.00 1.00 Repetitions

orem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum
lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum
lorem ipsum lorem ipsum lorem ipsum lorem ipsum lorem ipsum
lorem ipsum l

1.00 1.00 Repeated
LATEX code

29, int t30, int t31, int t32, int t33, int t34, int t35, int t36, int t37,
int t38, int t39, int t40, int t41, int t42, int t43, int t44, int t

1.00 1.00 Predictable

ICO CITY PLEASE COME TO MEXICO CITY PLEASE
COME TO MEXICO CITY PLEASE COME TO MEXICO CITY
PLEASE COME TO MEXICO CITY PLEASE COME TO MEX-
ICO CITY PLEASE COME TO MEXICO CITY PLEASE COME
TO MEXICO

1.00 1.00 Repetition

, ’2014-07-22’ , ’2014-07-23’ , ’2014-07-24’ , ’2014-07-25’,
’2014-07-26’ , ’2014-07-27’ , ’2014-07-28’ , ’2014-07-29’

1.00 1.00 Predictable

1.slim.min.js” integrity=”sha384-q8i/X+965DzO0rT7abK41
JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo”

1.00 1.00 Common
attribute

And suddenly there came a sound from heaven as of a rushing
mighty wind, and it filled all the house where they were sitting.
And there appeared unto them cloven tongues like as of fire, and
it sat upon each of them. And they were all filled with the Holy
Ghost, and began to speak with other tongues

1.00 1.00 Common
Bible Acts

xp‘, ‘skill19rank‘, ‘skill19lvl‘, ‘skill19xp‘, ‘skill20rank‘,
‘skill20lvl‘, ‘skill20xp‘, ‘skill21rank‘, ‘skill21lvl‘, ‘skill21xp‘,
‘skill22rank

1.00 1.00 Repetition

, 0xdf,
/* e0 */ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4,0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xeb, 0xec,

1.00 1.00 Predictable

: 477 is the determined cDNA sequence for clone 27711.
SEQ ID NO: 478 is the determined cDNA sequence for clone
27712.
SEQ ID NO: 479 is the determined cDNA sequence for clone
27713.
SEQ ID NO: 480 is the determined cDNA sequence for clone
27714.
SEQ ID NO

1.00 1.00 Predictable

arg1 , arg2 , arg3 , arg4 , arg5 , arg6 , arg7 , arg8 , arg9 , arg10 ,
arg11, arg12 , arg13 , arg14 , arg15 , arg16 , arg17 , arg18 , arg19 ,
arg20 , arg21 , arg

1.00 1.00 Predictable

2008 Benoit Jacob ⟨jacob.benoit.1@gmail.com⟩
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at

0.97 0.97 Common
License

64, 0x65, 0x66, 0x67, /* 0x60-0x67 */
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, /*

0.94 0.97 Predictable

BGP-LOCAL-IP-v6$”: null,
”$BGP-NEIGHBOUR-DESCRIPTION$”: null,
”$BGP-NEIGHBOUR-DESCRIPTION-v6$”: null,
”$BGP-NEIGHBOUR-

0.94 0.97 Predictable
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Figure 39: Deduplication (dedup) on a low entropy
language (base) does not result in a high entropy lan-
guage, since test strings are learned differently, i.e.,
high variance. But, training on the respective high en-
tropy language (dedup*) results in low variance of the
same test strings at optimal learning (vertical lines).
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Figure 40: Different training strings are be-
ing memorized at different epochs while
applying deduplication – an undesired re-
sult. Deduplication is only effective in de-
laying memorization, but not avoiding it.

G DEDUPLICATION: IMPACT ON LEARNING AND MEMORIZATION
TRADEOFFS

A critical observation of a low entropy language is that training strings are memorized at different
epochs (Section 3), and test strings are learned to different extent. The goal of an ideal memorization
mitigation mechanism should be two-fold: (1) Learning goal: an equal learning of all test strings,
and (2) Memorization goal: a simultaneous memorization of all training strings, so that training can
be stopped before memorization starts. These goals are the inherent characteristics of a high entropy
language. Herein, we investigate whether deduplicating training strings of a low entropy language,
i.e., by ensuring an equal string-frequency, achieves the behavior of a high entropy language.

RQ8. Does deduplication of training strings lead to an equal learning of test strings?
RQ9. Does deduplication lead to a simultaneous memorization of all training strings, and avoid
memorization completely before optimal learning?

Deduplication neither results in an equal learning of test strings, nor leads to a simultaneous
memorization of training strings. Applying deduplication on a low entropy language in Figure 39,
the frequency of training strings becomes uniform, similar to a high entropy language. Hence,
training loss decreases slowly than the low entropy language (marked as ‘base’) with non-uniform
string-frequency. However, different test strings are still learned differently at optimal learning,
as if the language is still a low entropy one. Moreover, in Figure 40, different training strings
are memorized at different epochs. The effectiveness of deduplication is thus limited to delaying
memorization, but not avoiding it completely before optimal learning. Therefore, our answers to
RQ8 and RQ9 are both negative; deduplication indeed cannot convert a low entropy language to
a high entropy one, where all test strings are often learned equally well (Figure 39, right), and
memorization occurs simultaneously to most training strings (Figure 3a and 3c).

Takeaway. Deduplication does not lead to the equal learning of test strings or the simultaneous
memorization of training strings. Our attempt to increase the entropy of strings from a low entropy
language (via deduplication) does not make them behave like strings from a high entropy language.
This implies that the language itself and not the frequency of the strings affects learning and mem-
orization. In fact, deduplication of low entropy samples is unique element sampling from a skewed
distribution, not uniform sampling from a uniform distribution – our results reflect this distinction.
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