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Abstract

A recently released Temporal Graph Benchmark is analyzed in the context of
Dynamic Link Property Prediction. We outline our observations and propose a
trivial optimization-free baseline of "recently popular nodes" outperforming other
methods on medium and large-size datasets in the Temporal Graph Benchmark.
We propose two measures based on Wasserstein distance which can quantify the
strength of short-term and long-term global dynamics of datasets. By analyzing our
unexpectedly strong baseline, we show how standard negative sampling evaluation
can be unsuitable for datasets with strong temporal dynamics. We also show
how simple negative-sampling can lead to model degeneration during training,
resulting in impossible to rank, fully saturated predictions of temporal graph
networks. We propose improved negative sampling schemes for both training
and evaluation and prove their usefulness. We conduct a comparison with a
model trained non-contrastively without negative sampling. Our results provide a
challenging baseline and indicate that temporal graph network architectures need
deep rethinking for usage in problems with significant global dynamics, such as
social media, cryptocurrency markets or e-commerce. We open-source the code
for baselines, measures and proposed negative sampling schemes.

1 Introduction and related work

Temporal Graphs (TGs) are ubiquitous in data generated by social networks, e-commerce stores,
video streaming platforms, financial activities and other digital behaviors. They are an extension of
static graphs to a dynamic temporal landscape, making it possible to capture evolution of graphs.
A number of machine learning methods on TGs have been developed recently [Rossi et al., 2020],
[Trivedi et al., 2019], [Wang et al., 2022], [Wang et al., 2021], [Cong et al., 2023]. However, their
reliable benchmarking is still on open issue. Poursafaei et al. [2022] discovered that TG benchmarking
methods do not reliably extrapolate to real-world scenarios. Huang et al. [2023] identified further
problems: small size of datasets, inflated performance estimations due to insufficient metrics.

Temporal Graph Benchmark (TGB) by Huang et al. [2023] is a collection of challenging and
diverse benchmark datasets for realistic evaluation of machine learning models on TGs along with a
well designed evaluation methodology. It incorporates datasets with orders of magnitude more nodes,
edges and temporal steps compared to previously available ones. We build upon the Temporal Graph
Benchmark to further improve TG model benchmarking methods.

Dynamic Link Property Prediction is a problem defined on TGs aiming to predict a property
(usually existence) of a link between a pair of nodes at a future timestamp. In our work we focus on
this problem, as we believe it is of fundamental nature for quantifying the behavior of models.
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Table 1: Percentage of perfect 1.0 scores for top K destination nodes with most interactions in
previous N interactions. Values improved by RP-NS are underscored. * denotes our contribution.

K N TGN DyRep TGN+RP-NS* DyRep+RP-NS*

tgbl-comment tgbl-coin tgbl-comment tgbl-coin tgbl-comment tgbl-coin tgbl-comment tgbl-coin

50 5000 90.10% 63.68% 87.14% 19.83% 2.08% 3.09% 0% 0.66%
100 5000 86.46% 59.43% 86.91% 18.44% 2.18% 2.21% 0% 0.54%
1000 5000 69.55% 22.87% 86.11% 9.7% 3.05% 0.41% 0% 0.13%

50 20000 92.0% 64.06% 87.90% 20.1% 2.19% 3.07% 0% 0.67%
100 20000 88.40% 60.42% 87.75% 18.76% 2.27% 2.23% 0% 0.56%
1000 20000 71.67% 32.42% 87.20% 13.14% 3.14% 0.49% 0% 0.17%

50 100000 87.00% 64.62% 87.99% 20.24% 2.10% 3.06% 0% 0.68%
100 100000 84.75% 61.73% 88.01% 19.07% 2.38% 2.25% 0% 0.56%
1000 100000 71.10% 39.17% 87.90% 15.31% 3.55% 0.54% 0% 0.19%

Negative sampling is a method commonly used to train and evaluate TG methods. Poursafaei et al.
[2022] identify weaknesses in widely used uniform random sampling and propose to sample historical
negatives - past edges absent in the current time step for TGs. TGB also employ this strategy in their
evaluation protocol.

Datasets we use for our experiments include: tgbl-wiki (small) a network of editors editing
Wikipedia pages, tgbl-review (small) a network of users rating Amazon products, tgbl-coin
(medium) a network of cryptocurrency transactions, tgbl-comment (large) a network of Reddit
users replying to other users. For further details on datasets we refer to Huang et al. [2023]. Since
publication of TGB benchmark, tgbl-wiki and tgbl-review have been modified. We report
results on both versions: v1 originally reported in Huang et al. [2023] and v2 from TGB Website
[2023].

Our contributions: We build upon TGB 0.8.0 available at the time of writing, to further analyze
and improve training and evaluation methods for TGs. We identify a strikingly simple and effective
baseline that shows inadequacies of current training and evaluation protocols. We propose improved
negative sampling protocols for training and evaluation and demonstrate their effectiveness. We
identify weaknesses in existing TG models on a class of datasets with strong global dynamics. We
introduce efficient measures of global dynamics strength for TGs allowing a better understanding of
how temporal a TG dataset is. We conduct a comparison with a non-contrastive method and report its
superiority.

Replicability: Our code is available at: github.com/temporal-graphs-negative-sampling/TGB

2 Observations of perfectly saturated scores

By analyzing predictions of TGN [Rossi et al., 2020] and DyRep [Trivedi et al., 2019] models we
find that recently globally popular destination nodes have frequently oversaturated scores (perfectly
equal to 1.0). We define the class formally, as top K destination nodes with the most interactions,
in the previous N interactions in the temporal graph. We report exact percentages of oversaturated
scores for different K and N in Table 1.

Perfect 1.0 scores cannot be distinguished and their relative ranking is uninformative, which becomes
a significant issue in link prediction tasks. In scenarios such as e-commerce, predicting the next
item to recommend is critical. However, the inability to differentiate among recently popular items
when several of them share a perfect score of 1.0 negatively affects precise predictions. This scenario
necessitates a scoring mechanism that offers a finer granularity in ranking, facilitating more accurate
link predictions. Furthermore, the identified class of oversaturated nodes may inspire a good baseline
model. Before we address these observations, we will measure the degree of informativeness of
recent popularity in datasets.
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Figure 1: Short-horizon measure of global temporal dynamics Wshort with N = 100 timesteps.

Figure 2: Long-range measure of global temporal dynamics Wlong with N = 100 timesteps.

3 Measures of global temporal dynamics in datasets

We wish to measure how much information recent global node popularity provides for future edges in
a temporal graph dataset, a type of autocorrelation on temporal graphs. As a reasonable simplification,
we model a dataset’s destination nodes as the result of a discrete stochastic process, where at every
timestep Ti, K samples are independently drawn from some categorical distribution PTi . For
efficiency purposes, and to ensure an equal comparison we set K for each dataset, so that it is divided
into exactly N time windows Ti, and within each time window we calculate the frequency distribution
of destination nodes at time step Ti called QTi

, which serves as an empirical approximation of the
underlying categorical distribution’s probability mass function (PMF). To compare these PMFs at
different time steps Ti we employ the W1 Wasserstein Metric, also known as the Earth Mover’s
Distance. Classic divergences such as Kullback-Leibler are unsuitable, because they assume non-zero
values in PMFs, an assumption which does not hold when working with frequency distributions.

3.1 A short-horizon measure of global dynamics in datasets

To measure how much the most recent historical information can inform future timesteps in a dataset’s
evolution, we can calculate the distances of neighboring timesteps sequentially. We propose the
following measure, where W1 denotes the Earth Mover’s Distance:

Wshort =
1

N
·
N−1∑
i=0

W1(QTi
, QTi+1

)

The lower this value, the more informative are historical global node popularities for the immediately
next timestep. We report the measure’s results, as well as plot all the individual distances for
all datasets in Figure 1. It can be observed that tgbl-wiki has the highest measure, implying
that global temporal correlations are low. This can likely be attributed to a lack of major social
effects on Wikipedia, compared to the remaining three datasets: tgbl-comment, tgbl-coin and
tgbl-review, where user behaviors are more likely to be driven by trends, hype cycles or seasonality.
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3.2 A long-range measure of global dynamics in datasets

The Wshort measure captures only short-term effects. We may also be interested in a longer time-
range of influence. We can extend Wshort to a mid and long-term context with:

Wlong =
N × (N − 1)

2
·

N∑
i=1

i−1∑
j=0

W1(QTi
, QTj

)

A low Wlong value indicates strong medium-term or even long-term stability of the node frequency
distribution. We report results, as well as plot heat maps of long-term distances in Figure 2. From
an inspection of the heat maps, it becomes apparent, that tgbl-comment and tgbl-review data
generating processes follow a very smooth long-horizon evolution. The behavior of tgbl-wiki is
chaotic with no obvious patterns, tgbl-coin forms a checkered pattern – possibly some abrupt
switching between different dominant modes of behavior with sudden reversals.

4 Unexpectedly strong baseline for dynamic link property prediction

Based on the observation that recently globally popular destination nodes can be good candidates,
we construct an extremely simple and efficient baseline, we call PopTrack (Popularity Tracking).
The algorithm works sequentially in batches on a time-ordered temporal graph dataset. It maintains
a time-decayed vector P of occurrence counters for all destination nodes. Its hyperparameters are:
batchsize and decay factor λ. The motivation behind employing a time decay factor λ is to prioritize
recent popularity in our analysis. As our data is sorted chronologically, with older interactions coming
first and newer interactions coming last, applying a decay factor ensures that the popularity scores
are updated in a way that recent interactions are weighted more heavily, providing a more accurate
representation of a node’s current popularity. For prediction, the state of P from the previous batch
is taken as node scores. Afterwards, the counter is incremented with all destination nodes from the
current batch and multiplicative decay λ is applied to all entries in P . Note that the predictions are
generated independently of the specific node, and remain consistent for all nodes at a given timestep.
The baseline is a type of exponential smoothing of destination node popularity, its pseudocode is
shown in Algorithm 1.

Algorithm 1: PopTrack: A temporal popularity baseline for dynamic link property prediction
Data: dataloader - temporally ordered sequence of batches, λ - decay factor, K - number of

predictions per node
(1) P := V ect[num_nodes](0);
(2) foreach source_nodes, destination_nodes ∈ dataloader do

// Predictions for all nodes at the current batch
(3) predictions← GetTopK(P,K);
(4) foreach dst ∈ destination_nodes do
(5) P [dst]← P [dst] + 1;

(6) P ← P · λ;

Function GetTopK(P, K)
Input: Popularity vector P , Number of top nodes K
Output: Indices of top K nodes

1 Sort P in descending order and return the indices of the top K nodes.

4.1 Performance of the PopTrack baseline

We test Algorithm 1 on all dynamic link property prediction datasets, except for tgbl-flight, which
is broken in TGB 0.8.0 at the time of writing. We hold the batchsize fixed at 200 and perform a
grid search for optimal λ for each dataset on its validation set. Our method is fully deterministic.
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We establish new state-of-the-art results on tgbl-comment (λ = 0.96), tgbl-coin (λ = 0.94) and
tgbl-review-v1 (λ = 0.999), take the 2nd place for tgbl-review-v2 (λ = 0.999). Our baseline
outperforms a surprisingly large and diverse number of neural temporal graph models, as well as
the EdgeBank heuristics. We only note negative results on tgbl-wiki (λ = 0.38) datasets, which
are outliers with very high Wshort and Wlong measures, indicating weak global temporal dynamic
effects. We report detailed results in Table 2. Our results imply that existing TG models fail to learn
global temporal dynamics.

The baseline’s runtime is below 10 minutes on all datasets on a single CPU, with negligible memory
usage (only needing to store a single number for each node), in stark contrast to neural approaches
requiring days of training on powerful GPUs.

Table 2: Results for dynamic link property prediction task on various datasets from Huang et al.
[2023] and TGB Website [2023]. MRR (Mean Reciprocal Rank) is used as the metric, with higher
values indicating better performance.

Best results are underlined and bold, second best are bold. * denotes our contribution.

Method tgbl-coin tgbl-comment
Validation MRR Test MRR Validation MRR Test MRR

DyRep [Trivedi et al., 2019] 0.507 ± 0.029 0.434 ± 0.038 0.291 ± 0.028 0.289 ± 0.033
TGN [Rossi et al., 2020] 0.594 ± 0.023 0.583 ± 0.050 0.356 ± 0.019 0.379 ± 0.021
EdgeBanktw [Poursafaei et al., 2022] 0.492 0.580 0.124 0.149
EdgeBank∞ [Poursafaei et al., 2022] 0.315 0.359 0.109 0.129
PopTrack* 0.715 0.725 0.690 0.729

Method tgbl-review-v1 tgbl-review-v2
Validation MRR Test MRR Validation MRR Test MRR

GraphMixer [Cong et al., 2023] 0.411 ± 0.025 0.514 ± 0.020 0.428 ± 0.019 0.521 ± 0.015
TGAT [Xu et al., 2020] - - 0.324 ± 0.006 0.355 ± 0.012
TGN [Rossi et al., 2020] 0.465 ± 0.010 0.532 ± 0.020 0.313 ± 0.012 0.349 ± 0.020
NAT [Luo and Li, 2022] - - 0.302 ± 0.011 0.341 ± 0.020
DyGFormer [Yu, 2023] - - 0.219 ± 0.017 0.224 ± 0.015
DyRep [Trivedi et al., 2019] 0.356 ± 0.016 0.367 ± 0.013 0.216 ± 0.031 0.220 ± 0.030
CAWN [Wang et al., 2022] 0.201 ± 0.002 0.194 ± 0.004 0.200 ± 0.001 0.193 ± 0.001
TCL [Wang et al., 2021] 0.194 ± 0.012 0.200 ± 0.010 0.199 ± 0.007 0.193 ± 0.009
EdgeBanktw [Poursafaei et al., 2022] 0.0894 0.0836 0.024 0.025
EdgeBank∞ [Poursafaei et al., 2022] 0.0786 0.0795 0.023 0.023
PopTrack* 0.470 0.549 0.341 0.414

Method tgbl-wiki-v1 tgbl-wiki-v2
Validation MRR Test MRR Validation MRR Test MRR

GraphMixer [Cong et al., 2023] 0.707 ± 0.014 0.701 ± 0.014 0.113 ± 0.003 0.118 ± 0.002
TGAT [Xu et al., 2020] - - 0.131 ± 0.008 0.141 ± 0.007
TGN [Rossi et al., 2020] 0.737 ± 0.004 0.721 ± 0.004 0.435 ± 0.069 0.396 ± 0.060
NAT [Luo and Li, 2022] - - 0.773 ± 0.011 0.749 ± 0.010
DyGFormer [Yu, 2023] - - 0.816 ± 0.005 0.798 ± 0.004
DyRep [Trivedi et al., 2019] 0.411 ± 0.015 0.366 ± 0.014 0.072 ± 0.009 0.050 ± 0.017
CAWN [Wang et al., 2022] 0.794 ± 0.014 0.791 ± 0.015 0.743 ± 0.004 0.711 ± 0.006
TCL [Wang et al., 2021] 0.734 ± 0.007 0.712 ± 0.007 0.198 ± 0.016 0.207 ± 0.025
EdgeBanktw [Poursafaei et al., 2022] 0.641 0.641 0.600 0.571
EdgeBank∞ [Poursafaei et al., 2022] 0.551 0.538 0.527 0.495
PopTrack* 0.538 0.512 0.105 0.097

4.2 Analysis and intuition

We have shown that a simply tracking recent global popularity of destination nodes is a very strong
baseline on many dynamic link prediction tasks. The strength of the baseline is somewhat surprising,
especially given the immense expressive power of neural approaches it outperforms. This can be
caused either by inadequacy of existing graph models to capture rapidly changing, global temporal
dynamics, the way they are trained, or a mix of both.

The performance of our baseline compared to other methods strongly correlates with the measures
of global dynamics Wshort and Wlong. The sources of global dynamics are easy to pinpoint by
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analyzing the data generating processes of the datasets themselves. For instance, tgbl-comment
dataset consists of edges generated by (source) Reddit users responding to (destination) Reddit users’
posts. The nature of Reddit and other social networks is such that highly engaging content is pushed
to the top of the website (or particular subreddits), where it further benefits from high observability,
in a self-reinforcing cycle. The active lifetime of a piece of content is usually measured in hours or
days at most. After this period, the content loses visibility, becomes harder to discover and harder to
engage with.

The phenomenon of short-lived, self-reinforcing popularity is present in other areas of digital social
life such as X (Twitter), Facebook, and even e-commerce stores (fast fashion trends), cryptocurrency
trading activities (hype cycles). It is worth noting that users may have different tastes and interests
and be exposed to different subsets of currently popular information with varying dynamics. E.g.
a person interested in /r/Mathematics subreddit, may be exposed to lower-paced content, than
someone tracking /r/worldnews. A global baseline is unable to track those local effects, but it’s an
interesting avenue for future research.

5 Towards a more reliable evaluation method for dynamic link prediction

We revisit the problem hinted at by results in Table 1. If up to 90% scores for the recent top 50
destination nodes are perfect 1.0 in a TGN model, they cannot be ordered meaningfully. This lack
of differentiation among popular nodes is limiting, especially in link prediction tasks where the
relative popularity can influence the likelihood of link formations, thereby necessitating a level of
granularity for more accurate link predictions. Our simple baseline PopTrack, despite achieving a
very high MRR, disregards the source node context, returning the same predictions for all nodes at a
given timestep. This scenario hints at a potential limitation in the evaluation protocol by Huang et al.
[2023], which may not accurately reflect the real-world usefulness of models as it relies on random
negative edges for evaluation, rather than incorporating more realistic, popular ones. The ability to
both accurately rank recently popular destination nodes, as well as to vary predictions depending on
the source node, seem to be reasonable requirements for a good temporal graph model.

5.1 The current evaluation method

The evaluation protocol proposed in Huang et al. [2023] consists of sampling 20 negative edges per
positive edge for validation and testing. The authors introduce two methods of choosing negative
edges: historical and random, where historical are edges previously observed in the training set, but
not at the current timestep, and random are just random. Both methods are utilized equally. We call
this original metric MRRnaive.

In datasets with strong non-stationary dynamics, there is a high probability that most of the negative
examples are stale (they do not belong to the class of recently popular destination nodes), while only
the positive sample is fresh, thus hard negative candidates are rarely observed.

5.2 An improved evaluation method

To bring evaluation results closer to real-world usefulness, we propose an improved evaluation
method, by sampling from top N recently popular items according to PopTrack model in addition to
the original method proposed by Huang et al. [2023]. Sampling e.g. 20 items from top 1000 recently
most-popular destination nodes, 5 items from historical edges and 5 random edges would constitute
a reasonable blend of methods. The combined approach remediates the lack of hard candidates, but
still ensures that easy candidates are scored correctly. Since results for the original MRRnaive are
already known, in our research we focus on benchmarking with pure top N part. With thoroughness
in mind, we perform a full MRR evaluation on all top 20, top 100 and top 500 recently most popular
candidates without sampling, denoted as MRRtop20, MRRtop100 and MRRtop500 respectively.
Similarly to Huang et al. [2023] we generate fixed lists of negative samples, to ensure reproducibility
and consistency when comparing across models.

We perform the evaluations on the 2 largest datasets with all heuristic models (EdgeBank variants
and ours) and the two most popular graph neural models: DyRep and TGN. Full evaluation quickly
becomes expensive, so we limit our analysis to two models and maximal N = 500. We report results
in Table 3. On all MRRtopN metrics, our PopTrack baseline performs poorly, an intended outcome,
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as it assigns high scores to recently popular items, which thrive on MRRnaive due to the presence of
many random, less popular nodes, but face a challenge in MRRtopN where the negative samples are
recently popular nodes. Both EdgeBank methods perform decently well, but performance of TGN and
DyRep models is very lacking. While they were somewhat good in discriminating hard candidates
from easy ones, they fail to rank hard candidates properly. Compared to EdgeBank baselines, their
performance drops more significantly as N , the number of top candidates, grows. This implies that
MRRnaive is a poor approximation of full MRR, as it fails to capture the models’ weaknesses in
ranking hard candidates.

6 An improved negative sampling scheme for training

Having improved the evaluation metric, we will now propose improvements to the training protocol.
Score oversaturation problems observed in Table 1 likely arise due to the sparsity of hard negative
candidates during training. The model training protocol employed in Huang et al. [2023] involves
uniformly randomly sampling a single negative edge with no temporal awareness.

6.1 Negative samples in non-stationary environments

For temporal graphs, the topic of negative sampling is largely unexplored, with the most recent
findings by Poursafaei et al. [2022]. The authors introduce the historical way of negative sampling,
which is already utilized by the TGB Benchmark in Huang et al. [2023] and as we have demonstrated
is insufficient to achieve good results.

Temporal graphs with non-stationary node popularity distributions pose an additional challenge,
which is not captured by prior methods. Node popularity distribution evolves over time and it becomes
necessary to track these shifts to generate high quality hard negative samples. To remedy this issue,
we propose an improved negative sampling scheme for dynamic link property prediction on temporal
graphs called Recently Popular Negative Sampling (RP-NS).

6.2 Method

We introduce Recently Popular Negative Sampling (RP-NS) based on PopTrack. Instead of sampling
negative destination nodes uniformly, we sample 90% of candidates from a popularity distribution
given by our simple baseline, to the power of 3

4 (both numbers chosen empirically). The remaining
10% of candidates are sampled uniformly, to ensure that the model sees both hard and easy candidates
during training.

6.3 Results

In our study, we focused on evaluating the performance of TGN and DyRep models trained on
tgbl-coin and tgbl-comment datasets using our RP-NS scheme. Ensuring the robustness of our
results, we conducted five independent training runs for each model and reported the average scores
in Table 3. Both the original MRRnaive metric and our additional hard candidate metrics were
considered. The results show not only comparable or better outcomes for MRRnaive but also a
significant improvement in MRRtopN for both models across the datasets. However, it’s noteworthy
that the degradation in MRRtopN as N increases remains a substantial challenge, suggesting potential
areas for further architectural improvements in these models.

We also compare the level of scores oversaturation, which have initially motivated us to investigate the
problems. Results for models trained with the improved scheme are reported in Table 1. Comparing
the results to the values without RP-NS, we can see that the number of oversaturated scores drops
significantly across models and datasets. The improvements are very notable, but a small level of
oversaturation persists - an opportunity for future work on improving model architectures.

7 Alternatives to negative sampling

The number of nodes in the benchmark datasets is very large (up to 1 million), so both training and
evaluation with negative sampling seem justified. Nonetheless, we can see from the rapid degradation
of MRRtopN as N grows, that such evaluations may be a poor proxy for a full MRR calculation.
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Table 3: Comparison of models trained naively and with Recently Popular Negative Sampling
(RP-NS) under naive and topN evaluation schemes. * denotes our contribution.

Method tgbl-coin tgbl-comment
Val MRRnaive Test MRRnaive Val MRRnaive Test MRRnaive

DyRep [Trivedi et al., 2019] 0.507 0.434 0.291 0.289
DyRep [Trivedi et al., 2019] + RP-NS* 0.443 0.443 0.359 0.363
TGN [Rossi et al., 2020] 0.594 0.583 0.356 0.379
TGN [Rossi et al., 2020] + RP-NS* 0.643 0.628 0.441 0.393
EdgeBanktw [Poursafaei et al., 2022] 0.492 0.580 0.124 0.149
EdgeBank∞ [Poursafaei et al., 2022] 0.315 0.359 0.109 0.129
PopTrack* 0.715 0.725 0.690 0.729
EMDE [Dąbrowski et al., 2021] (non-contrastive)* 0.703 0.674 0.455 0.426

Val MRRtop20* Test MRRtop20* Val MRRtop20* Test MRRtop20*
DyRep [Trivedi et al., 2019] 0.159 0.147 0.097 0.098
DyRep [Trivedi et al., 2019] + RP-NS* 0.244 0.236 0.276 0.287
TGN [Rossi et al., 2020] 0.130 0.124 0.086 0.088
TGN [Rossi et al., 2020] + RP-NS* 0.521 0.507 0.336 0.329
EdgeBanktw [Poursafaei et al., 2022] 0.487 0.535 0.213 0.211
EdgeBank∞ [Poursafaei et al., 2022] 0.509 0.554 0.212 0.211
PopTrack* 0.117 0.113 0.066 0.065
EMDE [Dąbrowski et al., 2021] (non-contrastive)* 0.630 0.601 0.364 0.339

Val MRRtop100* Test MRRtop100* Val MRRtop100* Test MRRtop100*
DyRep [Trivedi et al., 2019] 0.053 0.046 0.022 0.022
DyRep [Trivedi et al., 2019] + RP-NS* 0.105 0.088 0.105 0.108
TGN [Rossi et al., 2020] 0.036 0.033 0.019 0.019
TGN [Rossi et al., 2020] + RP-NS* 0.369 0.336 0.150 0.118
EdgeBanktw [Poursafaei et al., 2022] 0.374 0.414 0.110 0.113
EdgeBank∞ [Poursafaei et al., 2022] 0.391 0.423 0.106 0.109
PopTrack* 0.092 0.088 0.032 0.031
EMDE [Dąbrowski et al., 2021] (non-contrastive)* 0.557 0.525 0.248 0.225

Val MRRtop500* Test MRRtop500* Val MRRtop500* Test MRRtop500*
DyRep [Trivedi et al., 2019] 0.014 0.013 0.005 0.005
DyRep [Trivedi et al., 2019] + RP-NS* 0.037 0.030 0.041 0.040
TGN [Rossi et al., 2020] 0.012 0.010 0.004 0.004
TGN [Rossi et al., 2020] + RP-NS* 0.188 0.146 0.058 0.030
EdgeBanktw [Poursafaei et al., 2022] 0.302 0.324 0.057 0.061
EdgeBank∞ [Poursafaei et al., 2022] 0.314 0.334 0.054 0.057
PopTrack* 0.088 0.083 0.026 0.025
EMDE [Dąbrowski et al., 2021] (non-contrastive)* 0.491 0.468 0.199 0.180

Val MRRall* Test MRRall* Val MRRall* Test MRRall*
EMDE [Dąbrowski et al., 2021] (non-contrastive)* 0.407 0.390 0.134 0.121

Methods which can be trained non-contrastively at scale exist. Efficient Manifold Density Estimator
(EMDE) [Dąbrowski et al., 2021] is one such model, combining the idea of Count-Sketches with
locality-sensitive hashes computed on static node embeddings. It approximates an extremely wide
Softmax output with multiple independent ones, like a Bloom Filter approximates one-hot encoding.

7.1 Experiment results

We train EMDE, generating embeddings with Cleora [Rychalska et al., 2021], an unsupervised node
embedding method, with 6 iterations on the training set, resulting in 70 locality-sensitive hashes and
20 random hashes of cardinality 512. This results in initial node representations of depth 90 and
width 512. To create temporal input to a neural network, for every source node we aggregate its
incoming edges from historic batches with a rolling decay factor of 0.7, and apply the same procedure
to outgoing edges, obtaining 2 sketches which are flattened and concatenated. Targets are initial
representations of the destination nodes (interpreted as single-element Bloom Filters) without any
temporal aggregation. The neural network has a hidden size of 4000 and consists of 6 layers with
LeakyReLU activations and Layer Normalization applied post-norm. Total number of parameters
of the network is ∼ 750M, majority taken up by in/out projection matrices. We train with AdamW
optimizer for 3 epochs with 1e−4 learning rate and a batch size of 512.

We report results in Table 3. We note that not only does EMDE outperform the other methods on both
datasets, but its lead grows as N grows for MRRtopN evaluation. Thanks to a static representation
of target candidates, it is the only method for which we are able to efficiently perform (within
hours) a full MRRall evaluation on all possible destination nodes. For TGN and DyRep methods
MRRfull evaluation would take more than a calendar year. We observe that results for MRRtop500

and MRRfull do not differ much, despite maximum values of N being well over 500, 000 for both
datasets. While unknown, it seems unlikely that the same would hold for TGN and DyRep, given
how sharply their scores decline as N grows.
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8 Limitations

We were unable to perform experiments on tgbl-flight which is broken in TGB ver. 0.8.0
and prior at the time of writing, pending a yet unresolved Github issue. Due to extreme compute
requirements of graph methods, we limited our experiments with models trained from scratch to
the most popular ones: TGN and DyRep and two most challenging datasets: tgbl-comment and
tgbl-coin. Calculation of MRRfull for any of the neural graph models is prohibitively expensive.
Nonetheless, we believe that our observations are valid for a broader class of datasets and neural
architectures. We invite the research community to extend our experiments to other temporal graph
network architectures.

9 Conclusion

Our results prove an insufficiency of prior metrics for TG models, being easily beaten by PopTrack -
our simple baseline on datasets with strong global temporal effects. The measures Wshort and Wlong

allow a quick estimation of temporal graph datasets’ autocorrelation. The improved MRR metrics we
propose are more robust and better capture the true performance of models. We show that negative
sampling during training of TG models is a subtle problem and propose improvements which deliver
improved results for the new metrics. Most importantly, we show that existing TG models trained
with negative sampling have problems with capturing global temporal dynamics on strongly dynamic
datasets, and their evaluation on negative examples may be an insufficient proxy for a full evaluation.
A comparison with a fundamentally different approach trained non-contrastively shows it to be more
suitable for real-world scenarios. We hope that our contributions will allow more robust and reliable
evaluation of TG models and inspire new model architectures.
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