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Abstract—To fully leverage the capabilities of mobile manipula-
tion robots, it is imperative that they are able to autonomously ex-
ecute long-horizon tasks in large unexplored environments. While
large language models (LLMs) have shown emergent reasoning
skills on arbitrary tasks, existing work primarily concentrates
on explored environments, typically focusing on either navigation
or manipulation tasks in isolation. In this work, we propose
MoMa-LLM, a novel approach that grounds language models
within structured representations derived from open-vocabulary
scene graphs, dynamically updated as the environment is explored.
We tightly interleave these representations with an object-centric
action space. Importantly, we demonstrate the effectiveness of
MoMa-LLM in a novel semantic interactive search task in large
realistic indoor environments. The resulting approach is zero-
shot, open-vocabulary, and readily extendable to a spectrum
of mobile manipulation and household robotic tasks. Through
extensive experiments in both simulation and the real world, we
demonstrate substantially improved search efficiency compared to
conventional baselines and state-of-the-art approaches. We make
the code publicly available at http://moma-llm.cs.uni-freiburg.de.

I. INTRODUCTION

Interactive embodied AI tasks in large, unexplored, human-
centered environments require reasoning over long horizons and
a multitude of objects. Recent advancements have demonstrated
the potential of large language models (LLMs) in generating
high-level plans [1]–[4]. However, these efforts have predomi-
nantly focused on fully observed environments such as table-
top manipulation, or a priori explored scenes, struggling to
generate executable and grounded plans suitable for real-world
execution. This problem is strongly exacerbated in large scenes
with numerous objects and long time horizons [5], [6]. In turn,
this increases the risk of generating impractical sequences or
hallucinations [7], [8]. Furthermore, operating in interactive
scenes comprising articulated objects introduces a multitude
of potential states and failure cases.

To address these challenges, we propose grounding LLMs
in dynamically built scene graphs. Our approach incorporates
a scene understanding module that constructs open-vocabulary
scene graphs from dense maps and Voronoi graphs. These
diverse representations are then tightly interweaved with an
object-centric action space. Leveraging the current scene
representation, we extract structured and compact textual
representations of the scene to facilitate efficient planning
with pre-trained LLMs.

To evaluate our approach, we formulate an interactive seman-
tic search task, extending previous tasks [9] to more complex
scenarios. The agent is tasked with finding a target object within
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Fig. 1. MoMa-LLM performs long-horizon interactive object search in house-
hold environments from language queries using dynamically built scene graphs.

an indoor environment, encapsulating real-world challenges
where the agent must navigate through the environment, open
doors, and search inside cabinets and drawers to find the desired
object. This task is challenging as it requires reasoning about
manipulation and navigation skills, operating in unexplored
environments, spanning large apartments with numerous rooms
and objects. Furthermore, we introduce a novel evaluation
paradigm for object search tasks, employing full efficiency
curves to remove the dependency on arbitrary time budgets
and propose the AUC-E metric to distill these curves into a
single metric. We perform extensive experimental evaluations
in both simulation and the real world, outperforming state-
of-the-art approaches across diverse fields. Our approach is
zero-shot, open-vocabulary, and inherently scalable to various
mobile manipulation and household robotic tasks.

To summarize, our main contributions are
• A scalable scene representation centered around a dynamic

scene graph with open-vocabulary room identification.
• Structured compact knowledge extraction to ground LLMs

in scene graphs for large unexplored environments.
• Semantic interactive search task for large scenes with

numerous objects and receptacles.
• Novel evaluation paradigm for object search tasks through

full efficiency curves, instead of a single time budget.
• We make the code publicly available at

http://moma-llm.cs.uni-freiburg.de.

http://moma-llm.cs.uni-freiburg.de
http://moma-llm.cs.uni-freiburg.de
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You are currently in the bathroom. 
You are standing next to TV, picture ..

.. seen the folllowing rooms and objects so far:
bathroom-1: [mirror, shower, sink, toilet]
bedroom: [bed, nightstand, picture, pillow, shelf]
hallway: [carpet, flower, door]
....

Your 5 previous actions were: 
explore(bathroom) - success
go_to_and_open(hallway, door) - success
...
Rooms w/ unexplored space: [bathroom, bedroom]
Rooms with closed doors: [hallway, bathroom]
...

BtOccupancy Map GVR GSVoronoi Graph
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Doors

Room
Classification
{carpet, door, towel-rack, sink}
             bathroom

Structured Knowledge 
Representation

Task

Find a desk.

go_to_and_open(room, object)

navigate(room, object)

explore(room)

close(room, object)

done()

LLM

Fig. 2. MoMa-LLM: From posed RGB-D images and semantics, we construct a semantic 3D map from which we extract a various occupancy maps in the
BEV space and construct a navigational Voronoi graph. Through room clustering and room-object assigments we then build up a hierarchical scene graph.
From this scalable scene representation, we extract the task-relevant knowledge and encode it into a structured language representation. A large language model
then produces high-level commands which are executed by low-level subpolicies. These in turn draw on and update the scene representations.

II. PROBLEM STATEMENT: EMBODIED REASONING

We introduce the task of semantic, interactive object search.
In contrast to most existing works [10]–[13], interactive object
search requires manipulation of the environment to navigate
and explore it. Doors may block pathways and objects may be
stored away in receptacles. We extend the interactive task [9]
to a much larger number of objects and receptacles and a
prior distribution of realistic room-object and object-object
relations. As a result, other objects in the scene can provide
valuable information about the position of the target. While
existing tasks such as the Habitat challenge and RoboTHOR
use semantic placements, they do not support any physical
interactions or objects placed within receptacles. The task is
deemed successful if the agent has observed an instance of the
target category and calls done(). Full details in Suppl. S.2.

III. MOMA-LLM

We propose MoMa-LLM, which grounds large-language
models in hierarchical 3D scene graphs G that hold object- and
room-level entities as well as a navigational graph. The LLM
provides high-level actions that are executed through low-level
skills as shown in Fig. 2. In general, we assume access to
ground truth perception as the focus of this work is on the
reasoning aspect.

A. Hierarchical 3D Scene Graph

To provide an LLM with structured input, we craft a hierar-
chical scene graph that includes a navigational Voronoi graph.
Dynamic RGB-D Mapping: The agent perceives posed
RGB-D frames {I0, . . . , It} including semantics from the
environment. The contained points are projected to a 3D voxel
grid. We turn the voxel grid into a two-dimensional bird’s-
eye-view (BEV) occupancy map Bt by inferring the highest
occupied positions except for those classified as navigable area
Ft, which are considered for exploration. As we tackle an
interactive problem, our map is dynamically updated based on
novel explored areas and object dynamics in the scene.
Voronoi Graph: Subsequently, we abstract from the created
dense maps by computing a navigational graph GV that is

used in downstream tasks to associate objects in close vicinity
or estimate geodesic distances. Based on Ft, we compute a
Generalized Voronoi Diagram (GVD) that holds a set of points
V with the same clearance to the closest obstacles drawn from
Bt. Given the paths of obtained medial axes, we construct
edges E among V and obtain our navigational Voronoi graph
GV = (V, E), that undergoes additional processing steps as
delineated in Suppl. S.4

3D Scene Graph: Our approach operates on an attributed
3D scene graph GS that holds different abstraction levels,
namely rooms and objects. We first separate the global Voronoi
graph GV into multiple regions covering distinct rooms. To
do so, we eliminate edges and nodes of GV near doors.
Using a mixture of Gaussians, we generate a two-dimensional
probability distribution over all observed doors. Edges of GV
are scored based on this distribution and disregarded when
exceeding a threshold along with isolated nodes. Following
this, we obtain the separated Voronoi graph GR

V . We then infer
the high-level connectivity among rooms by calculating the
shortest paths between nodes of GV that belong to disjoint
components of GR

V . Whenever a path traverses just two distinct
rooms as given by GR

V , they count as immediate neighbors.

Finally, we map objects to rooms. For each object o ∈ GS ,
we identify the node nR ∈ GR

V that minimizes the distance
to the closest viewpoint from which the object was seen. To
do so, we calculate the shortest path from the object o to this
viewpoint, which consists of the path on the Voronoi graph
and the Euclidean distance d from the Voronoi nodes to the
object and viewpoint, respectively. Objects are then assigned to
the room of the node nR in GR

V . This prohibits the erroneous
assignments of objects to a neighboring room through walls.
Doors may be connected to multiple rooms.

Room Classification: Similar to Chen et al. [14], we perform
room classification by providing an LLM with the set of object
categories contained in each room. We perform this as open-
set classification, in which we let the LLM freely pick the
room categories deemed most appropriate. The resulting LLM
prompts are detailed in Fig. S.2. Classification is performed at
each high-level policy step, as the explored scene evolves.



system: You are a robot in an unexplored house. Your task is to find a stove .
You have the following actions available that you can use to achieve this task:
1. navigate(room_name, object_name): navigate to this object in this room.
2. go_to_and_open(room_name, object_name): go to articulated object, door or container and open it.
3. close(room_name, object_name): close this articulated object, door or container.
4. explore(room_name): explore unknown space near one of the rooms that is not fully explored yet.
5. done(): call when the task is completed or if you are unable to take any further actions.
Output Response Format:
Analysis: describe where you could find the objects of interest 
and what actions you need to execute to get there.
Reasoning: justify why the next action is important to solve the task.
Command: function call

user: You are currently in the living room. You are standing next to the following objects: 
[bottom-cabinet, carpet, coffee-table, console-table, picture, plate, sofa].
Furthermore, you have found the following rooms and objects in the house so far:
- bathroom-1: [mirror, shower, sink, toilet, towel-rack, wine-bottle]
- bathroom-2: [candle, mirror, sink, soap, toilet, towel-rack, unexplored area]
- bedroom: [alarm, 2 balls, bed, 2 closed bottom-cabinets, candle, carpet, 
2 console-tables, notebook, pencil, pencil-box, picture, pot-plant, sofa, 
straight-chair, swivel-chair, 4 tables, 3 table-lamps, 5 closed windows, opened window]
- living room: [armchair, closed bottom-cabinet, 2 carpets, coffee-table, 
console-table, floor-la mp, grandfather-clock, light-bulb, mirror, notebook,
4 pictures, plate, pot-plant, sofa, table, 2 opened windows, closed window, unexplored area]
- other room: []
Your 5 previous actions were: explore(living room) - success, explore(bathroom-2) - success,
explore(living room) - success, explore(living room) - success, explore(living room) - success.
These rooms have unexplored space leading out of the room: [ living room (near) ].
These rooms contain closed doors that might open up new space: [].
What is the best next action to complete the task as efficiently as possible?
I you don't think  that the object can be found in a known room,
prioritize opening doors over exploring a room. Remember:
1. Respond with a function call
2. You can only use the objects and rooms that you have already found.
Object names have to match the description exactly.
3. You can only explore rooms that are listed as having unexplored space
4. If you have found the object you are looking for, directly call done().
You do not need to navigate to it or interact with it.
5. If some actions failed repeatedly, they may not be possible.

assistant: Analysis: The stove is typically located in the kitchen, which has not been listed among
the discovered rooms so far. Since the living room has an unexplored area, it is possible that this
area could lead to the kitchen or another room that might contain the stove. Prioritizing the
exploration of unexplored areas over opening doors is the most efficient way to find new rooms, as it
may reveal the kitchen or a path leading to it.
Reasoning: Exploring the unexplored area in the living room is the next logical step because it could
reveal new rooms or areas, such as the kitchen, where a stove is likely to be found. Since the task
is to find a stove and the current known rooms do not contain one, exploring is the best option to
potentially discover the kitchen.
Command: explore("living room")

Task
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Dynamic
History

Chain-Of-
Thought

unexplored area

unexplored area

living room (near)

find a stove
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Fig. 3. High-level Reasoning Prompt: We encode the extracted scene to
provide structured information to a language model.

B. Grounded High-Level Planning

We design an object-centric action space, which is tightly
intertwined with the different granularities of the scene repre-
sentation. It consists of the following high-level actions: nav-
igate(room name, object name), go to and open(room name,
object name), close(room name, object name), ex-
plore(room name) and done(). The subpolicies then generate ac-
tions in the low-level action space and return once they succeed
or encounter a failure. Throughout execution, they continuously
update the scene representations, as described in Suppl. S.1.

We encode the knowledge of the scene graph into natural
language by extracting the relevant components and embedding
them in a problem-specific structured manner. Our method
fulfills three properties: (i) grounding - guiding the LLM to
adhere to the physical realities of the scene, (ii) specificity -
avoiding long or irrelevant context that increases hallucinations
and the difficulty of the planning problem [7], [8], and (iii)
open-set - our method is open-vocabulary and performs in a
zero-shot manner. An exemplary prompt is shown in Fig. 3.

Scene Structure: We encode the main room-object structure
from the scene graph into a structured list of rooms and their
containing objects and encode path distances (based on an A∗-
planner) by binning them and mapping them to adjectives [15],
as detailed in Suppl. S.5. We then employ the following filtering
for compact text encodings: we summarize matching nodes with
a counter, filter out open doors that provide no new connectivity,
and encode object states directly within the object name.

Partial Observability: The initially unknown environment
requires explicit reasoning about exploration-exploitation trade-
offs. We identify frontiers to explorable areas [16], then

leverage the scene graph to provide them with semantic
meaning. We associate each frontier with a room, then apply a
hole-filling to the BEV map to differentiate whether a frontier
is an encapsulated area within a room or leading out to new
areas. The second type of unexplored space is receptacles that
may contain target objects. We find that the language model is
capable of inferring affordances from the object descriptions
and states. If trying to open objects that cannot be opened, the
according subpolicy will fail and the LLM has to reason about
an appropriate response.

History in Dynamic Scenes: We aim to find the most compact
representation of previous actions to fulfill the Markov property.
For each high-level decision, we encode the latest, dynamically
updated scene representation and start a new query to the LLM.
To account for previous interactions, we provide the LLM with
a history of the last h actions. As the scene graph changes
dynamically, we re-align the previous room- and object-centric
function calls to the current scene representation, see Suppl. S.5.

Re-trial and Re-planning: As meaningful feedback for failures
in the real world remains an open problem [2], we rely
on a simple success state for subpolicies, stating ”success”,

”failure”, or ”invalid argument” in case the output of the LLM
could not be matched to the scene graph. We differentiate
two cases of replanning: if the agent attempted interactions
or commands that are deemed invalid or infeasible before
execution, we have not gained any new information and
continue the conversation. After five failures without state
change, we terminate the episode as unsuccessful. If a subpolicy
attempted execution but failed, we re-encode the latest scene,
update the action history, and let the LLM make a normal next
decision with the updated state.

IV. EXPERIMENTS

Baselines: We provide all baselines except Unstructured LLM
with a ground truth done() decision. Random uniformly choses
among all available actions. Greedy triggers the closest feasible
action. ESC-Interactable scores frontiers based on object-object,
object-room co-occurrences and their distance [11]. We extend
it to interactive search by scoring openable objects the same
way. HIMOS learns to combine subpolicies with hierarchical
reinforcement learning and a semantic map memory [9].
Unstructured LLM provides the scene graph in a JSON format
without additional structure to the language model. The prompt
is adapted from SayPlan [7] to our scene graph. We use GPT-4
for the high-level reasoning and GPT-3.5 for the simpler room
classification task [17]. Refer to Suppl. S.6 for more details.

Metrics: We evaluate the success rate (SR) and success
weighted by path length (SPL) [18], which does not take
the costs of object interactions into account. Both metrics rely
on an arbitrary maximum allowed time budget. We argue that
the desired time budget depends heavily on the use case and
propose the use of a search efficiency curve. For each possible
budget (number of steps), we calculate the share of episodes
that succeeded with this or fewer number of steps. We further
reduce this to a single number by calculating the area under
the efficiency curve, termed AUC-E.



TABLE I
INTERACTIVE OBJECT SEARCH RESULTS IN SIMULATION

Model SR SPL AUC-E Object Distance Infeasible
Interactions Traveled Actions

Random 88.8 45.8 71.8 7.0 42.4 –
Greedy 81.1 47.2 68.8 8.6 24.7 –

ESC-Interactive 90.3 52.0 77.5 5.8 28.2 –
HIMOS 93.1 47.5 75.7 5.3 43.2 –

Unstructured LLM 81.4 55.0 72.8 3.9 19.2 0.51
MoMa-LLM (ours) 92.6 59.9 82.5 4.2 19.2 0.35

Notes: Object interactions, distance traveled and infeasible actions averaged
over all episodes - including early terminated failures. Infeasible Actions:
avg. number of steps the LLM produced an infeasible action, resulting in re-
planning with continued conversation (cf. Sec. IV-C.4). AUC-E score integrated
up to 5,000 steps, at which almost all methods make no further progress.
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Fig. 4. Interactive search efficiency curve in simulation. Each point depicts
the success rate for a given maximum time budget (x-axis).

Simulation Experiments: We instantiate the task in the
iGibson simulator [19] with a Fetch robot. For each scene in
the test split of the iGibson challenge, we evaluate the agents
over 25 procedurally generated episodes with randomized start
poses, target objects, and object distributions. In general, we
found our policy to be robust to under-segmented rooms even
though objects from multiple rooms were, e.g., considered part
of a single room. By leveraging the pose from which an object
is observed, we reduce wrong object-room assignments through
walls to a minimum. Following the door-wise separation
of rooms, our approach however is prone to open room
concepts such as combined kitchen and living rooms. For
more evaluations and graph depictions, refer to Suppl. S.1.

The results and efficiency curves for the search task are
shown in Tab. I and Fig. 4. Given appropriate subpolicies, the
heuristics can complete a significant share of episodes. However,
they are not sufficient for an efficient search strategy, resulting
in low SPL and AUC-E. Similarly, while HIMOS achieves a
higher SR, it is unable to explore efficiently as the RL agent
struggled with the much larger action space that resulted from
the many more interactable instances in our scenes. ESC is
able to exploit the co-occurrences to improve over the other
baselines. However, given its pair-wise comparisons, it is unable
to optimize over longer action sequences. In contrast, MoMa-
LLM achieves similar success rates as HIMOS with a much
higher search efficiency, both in SPL and AUC-E. We find that
the structured prompt representation is essential for this, with
the Unstructured LLM performing much worse and resulting in
almost 50% more invalid actions. This picture is fortified by the
full efficiency curves in Fig. 4, which show that MoMa-LLM
achieves the highest performance for all given time budgets.
It travels much shorter distances and opens fewer objects,

TABLE II
INTERACTIVE OBJECT SEARCH RESULTS IN THE REAL WORLD

Model Success Navig Manip Distance Object
Rate Fails Fails Traveled Interact.

ESC-Inter. 80% 2 0 33.9 3.5
MoMa-LLM 80% 1 1 17.9 2.2

Notes: Dist. travelled is the average distance travelled per episode in meters.
Object interactions are the average number of object interactions per episode.

Fig. 5. We construct a real-world apartment covering four rooms and 54
objects and transfer the model to a Toyota HSR robot.

indicating efficient and target-driven behavior.

Real-World Experiments: We then transfer our policy to the
real world. We create a real-world apartment, consisting of four
rooms and use a Toyota HSR robot. For details see Suppl. S.3.
We evaluate both MoMa-LLM and the most efficient baseline,
ESC. The results are shown in Tab. II, Fig. 5, and the accom-
panying video. Both methods succeeded in 8/10 episodes and
we find that the Voronoi- and scene-graph construction directly
transfer to unseen and quite different layouts. Similarly, the
system directly transfers to the change in mobile manipulation
subpolicies as shown in Fig. 2. The two failures stemmed from
irrecoverable failures of the subpolicies: collisions of the base
during navigation or of the arm while opening a door. Compar-
ing the two methods, we find confirmation of the simulation
results, with MoMa-LLM moving and opening objects more
target-driven and efficient. Furthermore, the agent was able to
react to the (unseen) failure cases of the subpolicies, such as re-
trying to open a drawer when the gripper slipped off the handle.

In contrast to semantic heuristics, our approach is readily
expandable to a wide range of household and mobile
manipulation tasks. Representative of this, we introduce a
fuzzy search task, in which the robot only receives a fuzzy
task description such as ”Find me something for breakfast.”
(Tab. S.3). The agent is capable of finding objects that
satisfy respective queries, and correctly reasoning about task
completion. In addition to that, we observe that the agent
acknowledges whenever currently non-existing subpolicies
would have to take over to complete the task.

V. CONCLUSION

We developed a method to ground language models for
high-level reasoning with scalable, dynamic scene graphs and
efficient low-level policies. We demonstrated the importance
of extracting structured knowledge for large and unexplored
scenes, outperforming fully learned or co-occurrence-based
methods. Moreover, we showed the transfer to a real-world
apartment and the extendability to abstract tasks, opening the
door towards general household tasks.
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