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ASRC-SNN: Adaptive Skip Recurrent Connection Spiking Neural Network
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Abstract

In recent years, Recurrent Spiking Neural Net-
works (RSNNs) have shown promising potential
in long-term temporal modeling. Many studies
focus on improving neuron models and also inte-
grate recurrent structures, leveraging their syner-
gistic effects to improve the long-term temporal
modeling capabilities of Spiking Neural Networks
(SNNs). However, these studies often place an
excessive emphasis on the role of neurons, over-
looking the importance of analyzing neurons and
recurrent structures as an integrated framework.
In this work, we consider neurons and recurrent
structures as an integrated system and conduct a
systematic analysis of gradient propagation along
the temporal dimension, revealing a challenging
gradient vanishing problem. To address this issue,
we propose the Skip Recurrent Connection (SRC)
as a replacement for the vanilla recurrent struc-
ture, effectively mitigating the gradient vanishing
problem and enhancing long-term temporal mod-
eling performance. Additionally, we propose the
Adaptive Skip Recurrent Connection (ASRC), a
method that can learn the skip span of skip re-
current connection in each layer of the network.
Experiments show that replacing the vanilla re-
current structure in RSNN with SRC significantly
improves the model’s performance on temporal
benchmark datasets. Moreover, ASRC-SNN out-
performs SRC-SNN in terms of temporal model-
ing capabilities and robustness.

1. Introduction
In artificial neural networks (ANNs), activation values are
continuous, and computations involve numerous compu-
tationally expensive multiply-accumulation (MAC) opera-
tions. In contrast, in spiking neural networks (SNNs), the
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activation is represented by binary spike signals, where most
MAC operations can be replaced by energy-efficient accu-
mulation (AC) operations. Moreover, the sparse generation
of spikes (Roy et al., 2019; Nunes et al., 2022) in SNN
further reduces the number of AC operations. As a result,
SNNs have a significant advantage in energy consumption
compared to ANNs. This theoretical advantage has been
validated in practice with SNNs deployed on neuromorphic
hardware that demonstrate fast inference and low power
consumption (Akopyan et al., 2015; Davies et al., 2018; Pei
et al., 2019).

Leaky Integrate-and-Fire (LIF) neuron model (Gerstner &
Kistler, 2002), due to their computational efficiency and sim-
ilarity to biological neurons, have become the most widely
used in SNN. Furthermore, the favorable temporal dynamics
of LIF neurons makes LIF neuron-based SNNs well suited
for handling temporal tasks. Nowadays, for static image
classification tasks, replicating the image multiple times
along the temporal dimension to introduce simple temporal
features has enabled SNNs to achieve performance compa-
rable to that of ANNs (Ding et al., 2021; Zhou et al., 2023;
Yao et al., 2024; Zhou et al., 2024). For tasks that align
with the event-driven paradigm and incorporate intrinsic
temporal features, such as neuromorphic image datasets
like CIFAR-10-DVS (Li et al., 2017) and DVS-128-Gesture
(Amir et al., 2017), which are captured using Dynamic Vi-
sion Sensors (DVS) (Leñero-Bardallo et al., 2011), SNNs
have demonstrated exceptional performance (Deng et al.,
2023; Ma et al., 2023; Wang et al., 2023; Huang et al., 2024).

The tasks mentioned above are characterized by short time
steps and simple temporal dependencies. For complex tasks
that require the establishment of long-term temporal depen-
dencies, such as speech recognition and sequence recogni-
tion, SNNs that rely solely on LIF neurons to capture tem-
poral relationships are generally less competitive in terms
of performance compared to ANNs (Yin et al., 2021). To
enhance the competitiveness of SNNs, a common approach
is to introduce the recurrent structure (Elman, 1990) and
improve the neuron model based on simple SNNs (Yin et al.,
2021; Bittar & Garner, 2022; Zhang et al., 2024; Baronig
et al., 2024). In analyzing the temporal modeling capabili-
ties of these improved models, these studies primarily focus
on the function of neurons, while treating the recurrent con-
nection as an additional mechanism aimed at enhancing
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the model performance. We believe that both the recur-
rent connection and the neuron play a synergistic role in
capturing temporal dependencies. This work is the first
to treat both components as a unified system for gradient
analysis along the temporal dimension. This reveals that
vanilla recurrent spiking neural networks (RSNNs) based on
LIF neurons suffer from vanishing and exploding gradients
when gradients propagate along the temporal dimension. At
the same time, we provide the corresponding solutions to
address these issues. Specifically, the exploding gradient
problem, which arises from the recurrent structure, can be
mitigated by orthogonal initialization (Henaff et al., 2016);
the challenging vanishing gradient problem, which arises
from both the LIF neurons and the recurrent structure, can
be alleviated by replacing the vanilla recurrent connection
with the skip recurrent connection (SRC). Experiments show
that SRC-SNN significantly outperforms vanilla RSNN in
long-term temporal tasks.

Furthermore, We identified two limitations of SRC: The
uniform skip connection span across layers in SRC-SNN
constrains the network’s temporal modeling ability; the hy-
parameter tuning process is complex. To address these limi-
tations, we propose the adaptive skip recurrent connection
(ASRC). For each layer in the ASRC-SNN, we introduce
a temperature-scaled Softmax kernel. This Softmax kernel
enables competition among multiple skip connections of
varying temporal spans, while the temperature parameter
gradually decreasing to intensify this competition. Specifi-
cally, initially, the kernel assigns equal weights to multiple
skip connections; as training progresses, the temperature
parameter decreases, and the Softmax kernel progressively
concentrates the weights on the most relevant skip con-
nection. Experiments show that ASRC-SNN demonstrates
superior long-term temporal modeling capabilities and ro-
bustness compared to SRC-SNN.

2. Related Work
2.1. Long-term temporal modeling in RSNNs

ALIF (Yin et al., 2021) extends the LIF neuron model by
incorporating a dynamic threshold mechanism, thereby en-
hancing their ability to model temporal sequences. (Bittar
& Garner, 2022; Baronig et al., 2024) argues that the dy-
namics of LIF neurons is relatively simple and proposes the
introduction of a second time-varying variable to model the
oscillatory behavior. (Zhang et al., 2024) propose a novel
biologically inspired two-compartment leaky integrative-
and-fire (TC-LIF) spiking neuron model, which integrates
specifically designed somatic and dendritic compartments
aimed at improving the learning of long-term temporal de-
pendencies. To further improve model performance, these
enhanced neuron models incorporate the recurrent structure
(Elman, 1990). Inspired by the success of gated recurrent

units (GRUs) in ANNs, (Dampfhoffer et al., 2022) have
proposed the spiking GRU model. (Wang & Yu, 2024) in-
troduces a novel spatial-temporal circuit (STC) model that
incorporates two learnable adaptive pathways, improving
the temporal memory capabilities of spiking neurons.

2.2. Long-term temporal modeling in other SNNs

By reformulating the neuronal dynamics without reset into
a general mathematical form, (Fang et al., 2024) introduces
a series of parallel spiking neuron (PSN) models, which
transform the membrane potential charging dynamics into
a learnable decay matrix. The parallel multi-compartment
spiking neuron (PMSN) (Chen et al., 2024) mimics biologi-
cal neurons by incorporating multiple interacting substruc-
tures, enabling effective representation of temporal informa-
tion across diverse timescales. Both of these studies propose
corresponding parallelization methods to enhance compu-
tational efficiency. The balanced resonate-and-fire neuron
(BRFN) (Higuchi et al., 2024) builds upon the resonate-
and-fire neuron by incorporating a dynamic threshold mech-
anism to simulate the refractory period, thus effectively
maintaining the stability of the oscillatory process. DCLS-
delays (Hammouamri et al., 2024) demonstrates strong per-
formance in speech datasets by learning synaptic delays.
Additionally, some studies have drawn inspiration from
successful architectures in ANNs and effectively applied
them to SNNs. For example, (Yao et al., 2021) introduces
the attention mechanism, (Sadovsky et al., 2023) utilizes
convolutional neural networks (CNNs), (Liu et al., 2024)
incorporates the legendre memory unit (LMU) and (Stan &
Rhodes, 2024; Shen et al., 2024) explore state space models
(SSMs).

3. Methods
In this section, we first introduce the LIF neuron and then
present the basic paradigm of RSNNs based on LIF neurons,
with a focus on analyzing gradient propagation over the time
dimension. Through this analysis, we identify the issues
of vanishing and exploding gradients. For the vanishing
gradient issue, we propose replacing the vanilla recurrent
structure with the SRC structure. Finally, we discuss the
limitations of the SRC-SNN model and introduce the ASRC-
SNN model to overcome these limitations.

3.1. Preliminary

3.1.1. LIF NEURON MODEL

The LIF neuron is the most commonly used neuron model
in the field of SNNs, known for its simplicity and computa-
tional efficiency while still capturing key aspects of neuronal
dynamics. Its mathematical expressions are given by the
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LIF neuron

Self recurrent connection of LIF neuron

Skip recurrent connection

a)

b)

c)

RSNN

SRC-SNN

ASRC-SNN initialization

ASRC-SNN during training

ASRC-SNN after training

Figure 1: This figure demonstrates the flow of temporal information within the LIF neurons of the vanilla RSNN, SRC-SNN,
and ASRC-SNN models. a) illustrates that in RSNN, recurrent connections are restricted to adjacent time steps. b) illustrates
that in SRC-SNN, recurrent connections can span multiple time steps. c) illustrates the dynamic evolution of skip recurrent
connections in ASRC-SNN from the start to the end of training. ASRC-SNN initialization: At the beginning of training, each
LIF neuron in ASRC-SNN is connected to Tλ skip recurrent connections, with their weights initialized to 1

Tλ
. ASRC-SNN

during training: During training, the weight distribution of the Tλ skip recurrent connections becomes more concentrated.
ASRC-SNN after training: After training, the weights of the Tλ skip recurrent connections converge onto a single skip
recurrent connection.

following equations:

U l[t] = αU l[t− 1] + I l[t] (1)

Sl[t] = H(U l[t]− Vth) (2)

U l[t] = U l[t]− VthS
l[t] (3)

Here, U l[t] and I l[t] represent the membrane potential and
the input current of the neuron in the l-th layer at time step
t. α is a decay factor that controls membrane potential
leakage and ranges from 0 to 1. Eq. (1) describes how the
membrane potential evolves over time by integrating the
previous membrane potential with the input current, while
the decay factor reflects the natural leakage of the potential.
H(·) is Heaviside function. Sl[t] represent the spike state
of the l-th layer neuron at time step t, where Sl[t] = 1 if
the neuron fires a spike and Sl[t] = 0 otherwise. Eq. (2)
represents that if the membrane potential U l[t] exceeds the
threshold Vth, the neuron fires; otherwise, no spike occurs.
Eq. (3) describes the reset process of the membrane potential
after a spike is fired. This soft reset mechanism is designed

to preserve more information, as suggested by (Rueckauer
et al., 2017; Han et al., 2020; Huang et al., 2024).

3.1.2. PARADIGM OF LIF-BASED RSNN

The SNN without vanilla recurrent connections has I l[t] =
W l

1S
l−1[t], while the SNN with vanilla recurrent connec-

tions has I l[t] = W l
1S

l−1[t] +W l
2S

l[t− 1]. Here W l
1 and

W l
2 represent the parameters of the feedforward connec-

tions and recurrent connections, respectively, in the l-th
layer. This paper focuses on the mechanisms of RSNNs. By
substituting I l[t] = W l

1S
l−1[t] +W l

2S
l[t− 1] into Eq. (1)

and integrating Equations Eq. (1) and Eq. (3), the membrane
potential update equation for the neurons in the l-th layer of
the RSNN can be derived:

U l[t] = α(U l[t−1]−VthS
l[t−1])+W l

1S
l−1[t]+W l

2S
l[t−1]

(4)
In a vanilla LIF-based RSNN, the l-th layer can be described
by Eq. (4) and Eq. (2), with S0 considered as the network’s
input.
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3.2. Temporal Gradient Analysis of LIF-based RSNN

(Yin et al., 2021; Bittar & Garner, 2022; Baronig et al.,
2024; Zhang et al., 2024) treat the recurrent connection as
an additional mechanism aimed at improving the model’s
performance. In contrast, we consider the recurrent structure
and neurons as working synergistically, analyzing them
within a unified framework. Considering the propagation of
gradients across adjacent time steps, we have:

∂U l[t+ 1]

∂U l[t]
= α+ (W l

2 − αVth)
∂Sl[t]

∂U l[t]
(5)

The Heaviside function is non-differentiable, and a common
approach is to use a surrogate gradient function to approx-
imate its derivative (Neftci et al., 2019). Similar to (Deng
et al., 2022; Zhang et al., 2024), we use the triangle function
as the surrogate gradient function:

∂Sl[t]

∂U l[t]
≈ H(U l[t]) =

1

γ2
max(0, γ − |U l[t]− Vth|) (6)

where γ represents the constraint factor that governs the
range of samples required to activate the gradient. In this
work, we set γ = Vth. Considering the propagation of the
gradient over a longer time span, we have:

∂U l[t+ k]

∂U l[t]
=

∂U l[t+ k]

∂U l[t+ k − 1]

∂U l[t+ k − 1]

∂U l[t+ k − 2]
. . .

∂U l[t+ 1]

∂U l[t]

=

k−1∏
t′=0

(α+ (W l
2 − αVth)H(U l[t+ t′]))

(7)

Considering the extreme case where H(U l[t+ t′]) is always

equal to 1
Vth

, we have ∂U l[t+k]
∂U l[t]

= (
W l

2

Vth
)k. When the value

of k is sufficiently large, and |W l
2| > Vth, the gradient

explosion problem occurs in the temporal dimension. The
gradient explosion problem caused by the recurrent structure.
This issue can be addressed using recurrent neural networks
(RNNs) techniques (Pascanu, 2013; Henaff et al., 2016). To
mitigate this, we employ orthogonal initialization (Henaff
et al., 2016), a simple and effective approach.

When |W l
2| ≤ Vth, combining Equations Eq. (6) and Eq. (7),

we have:

|∂U
l[t+ k]

∂U l[t]
| ≤ max(αk, |W

l
2

Vth
|k) ≤ 1 (8)

When k is large enough, the problem of gradient van-
ishing in the temporal dimension can be avoided only if
both inequality signs in Eq. (8) become equalities. To
meet this condition, it is essential that |W l

2| = Vth and
H(U l[t+ t′]) = 1

Vth
for 0 ≤ t′ < k, which is a very strin-

gent requirement. As a result, RSNNs are prone to vanishing

gradients in the temporal dimension, limiting their ability to
capture long-term dependencies. To mitigate the gradient
vanishing problem, improvements can be made from either
the LIF neuron or the recurrent structure perspective while
maintaining their coordination. This work primarily focuses
on optimizing the recurrent structure.

3.3. Skip Recurrent Connection

Skip recurrent connections (SRC) can alleviate the vanish-
ing gradient problem by introducing direct pathways be-
tween temporal steps. We propose SRC-SNN by replacing
the vanilla recurrent structure in RSNN with SRC. In SRC-
SNN, The membrane potential update equation for the l-th
layer neuron is given as follows:

U l[t] =α(U l[t− 1]− VthS
l[t− 1])︸ ︷︷ ︸

self-connections of LIF neurons

+ W l
1S

l−1[t]︸ ︷︷ ︸
feedforward connections

+ W l
2S

l[t− λ]︸ ︷︷ ︸
skip recurrent connections

(9)

Here, λ represents the skip coefficient, which is typically
greater than 1 (Figure.1b). When λ = 1, SRC-SNN de-
generates into vanilla RSNN (Figure.1a). Furthermore, we
found that (Zhang et al., 2016) systematically analyzed and
validated the effectiveness of SRC in modeling long-term
dependencies. It is worth noting that, unlike (Zhang et al.,
2016), where adjacent time steps are connected through the
vanilla recurrent structure, in SRC-SNN, the connections
between adjacent time steps are inherently supported by the
intrinsic self-connections of LIF neurons.

The limitations of SRC Individually tuning the hyperpa-
rameters of the skip coefficients for each layer in SRC-SNN
results in an exponential growth in the number of hyper-
parameter optimization experiments, making this approach
impractical. Consequently, the skip coefficients across the
layers in SRC-SNN are set to be identical, which, how-
ever, limits the temporal modeling capability of the SRC.
Moreover, the optimal setting of the skip coefficients in the
SRC-SNN models often differs on different datasets, and
in some cases the model performance is highly sensitive to
changes in the skip coefficient (see 4.3.1). Therefore, the
hyperparameter tuning process in ASRC-SNN is complex.

3.4. Adaptive Skip Recurrent Connection

3.4.1. THE DESIGN OF ASRC

To address the limitations of SRC, we propose an im-
proved approach termed adaptive skip recurrent connec-
tion (ASRC), which can learn the span of skip connection.
This approach is inspired by the asymptotic behavior of
the Softmax function in the low-temperature regime (Guo
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et al., 2017). Specifically, when the Softmax function is
parameterized with a temperature τ > 0 , its form is given
by:

Softmaxτ (xi) =
exp(xi/τ)∑
j exp(xj/τ)

(10)

where x = [x1, x2, . . . , xn] denotes the input vector and xi

represents the i-th element. As τ → 0 (the low-temperature
limit), the Softmax function exhibits the following asymp-
totic behavior:

lim
τ→0

Softmaxτ (xi) =

{
1, if i = argmaxj xj

0, otherwise
(11)

In this limit, the Softmax function converges to a Hardmax
operation, where the output corresponds to a one-hot en-
coding of the position of the maximum value in the input
vector.

In the ASRC-SNN, the membrane potential update equation
for the l-th layer neurons is as follows:

U l[t] = α(U l[t− 1]− VthS
l[t− 1])

+W l
1S

l−1[t] +W l
2

Tλ∑
t′=1

pl[t′]Sl[t− t′]
(12)

Here, pl represents the weights of multiple skip connections
with varying temporal spans, which are computed using a
Softmax kernel function with a temperature parameter τ .
Tλ represents the length of the Softmax kernel, defining the
maximum time span considered in the ASRC model, i.e.,
the longest time span that the skip recurrent connections
can extend across. Specifically, pl regulates the influence of
states from the past Tλ time steps, distributing weights for
skip connections and determining their contribution to the
current neuron state update. The mathematical expression
is as follows:

∀t ∈ {1, . . . , Tλ}, pl[t] =
exp(wl[t]/τ)∑Tλ

t′=1 exp(w
l[t′]/τ)

(13)

Here, wl is a vector at the l-th layer containing Tλ trainable
parameters, initialized to zero. The temperature parameter τ
is a non-trainable constant initialized to 1 and decreases after
each epoch according to an exponential decay strategy. In
our experiments, the exponential decay factor is set to 0.96.
Indeed, during the model testing phase, we use Eq. (11) to
compute pl.

3.4.2. DYNAMIC ANALYSIS

In the early stages of training, the distribution of the output
of the Softmax kernel function exhibits high smoothness,
enabling the simultaneous activation of multiple skip recur-
rent connections with varying temporal spans. During this

phase, the model leverages this smooth selection mecha-
nism to thoroughly explore the dependencies between the
current state and multiple historical time steps, facilitating
comprehensive temporal modeling. As training progresses,
the temperature parameter gradually decreases, leading to a
sharper distribution of weights in the Softmax kernel. Even-
tually, as the temperature approaches zero, the Softmax
kernel function gradually converges to the Hardmax oper-
ation. At this stage, the model independently selects the
most relevant time step for the skip connection at each layer,
based on the current state of that layer. This hardening pro-
cess (Figure.1c) allows the model to focus more precisely
on critical temporal dependencies.

Enhanced Temporal Modeling Capacity By dynamically
adjusting the weights of the skip connections with vary-
ing temporal spans, ASRC can more accurately select the
relevant time step for the skip connection. This flexible
adjustment allows ASRC-SNN to better accommodate the
varying temporal dependencies required by different layers,
compared to the fixed setting of identical coefficients across
layers in SRC-SNN. As a result, ASRC exhibits enhanced
temporal modeling capabilities.

Enhanced Robustness ASRC-SNN is capable of adaptively
adjusting the skip recurrent connections based on the char-
acteristics of different datasets, optimizing the structure to
align with the data. When the length of the Softmax ker-
nel Tλ exceeds a certain value, ASRC-SNN shows reduced
sensitivity to variations in Tλ, while its performance ap-
proaches the optimal level (see 4.3.2). These characteristics
enhance the robustness of ASRC-SNN, enabling it to pre-
serve stability across diverse datasets and under fluctuations
in hyperparameters.

4. Experiments
4.1. Experimental Setup

We chose to evaluate our method on various temporal
classification benchmarks, including sequential MNIST
(S-MNIST), permuted sequential MNIST (PS-MNIST),
Google Speech Commands v0.01 (GSC) and Spiking
Google Speech Commands (SSC). We use a simple model
architecture consisting of three hidden layers. More experi-
mental details can be found in the Appendix.A.

The MNIST dataset consists of 70,000 handwritten
grayscale digit images with a resolution of 28×28 pixels,
intended for classification tasks. Of these, 60,000 images
are used for training, while 10,000 images are used for
testing. In the S-MNIST dataset, the MNIST images are
transformed into 784×1 vectors, where 784 represents the
length of the temporal dimension. Building upon S-MNIST,
the PS-MNIST dataset introduces random shuffling of the
image sequences before inputting them into the network

5
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Table 1: Classification accuracy on S-MNIST, PS-MNIST, SSC and GSC datasets. The symbol * indicates that the results
are derived from (Zhang et al., 2024).

Dataset Method Recurrent Parameters Accuracy(%)

S-MNIST PLIF (Fang et al., 2021) Y 0.15M* 91.79
GLIF (Yao et al., 2022) Y 0.15M* 96.64
ALIF (Yin et al., 2021) Y 0.15M 98.70
BRFN (Higuchi et al., 2024) N 0.068M 99.1
TC-LIF (Zhang et al., 2024) Y 0.063M/0.15M 98.79/99.20
PMSN (Chen et al., 2024) N 0.066M/0.15M 99.40/99.53
SRC-SNN (ours) Y 0.063M/0.15M 99.32/99.38
ASRC-SNN (ours) Y 0.063M 99.57

PS-MNIST GLIF (Yao et al., 2022) Y 0.15M* 90.47
ALIF (Yin et al., 2021) Y 0.15M 94.30
BRFN (Higuchi et al., 2024) N 0.068M 95.2
TC-LIF (Zhang et al., 2024) Y 0.063M/0.15M 92.69/95.36
PMSN (Chen et al., 2024) N 0.066M/0.15M 97.16/97.78
SRC-SNN (ours) Y 0.063M/0.15M 94.78/96.36
ASRC-SNN (ours) Y 0.063M/0.15M 95.40/96.62

SSC TC-LIF (Zhang et al., 2024) Y 0.11M 61.90
SNN-CNN (Sadovsky et al., 2023) N N/A 72.03
ALIF (Yin et al., 2021) Y N/A 74.20
SpikGRU (Dampfhoffer et al., 2022) Y 0.28M 77.00
RadLIF (Bittar & Garner, 2022) Y 3.9M 77.40
DCLS-Delays (2L-1KC) (Hammouamri et al., 2024) N 0.70M 79.77
DCLS-Delays (3L-2KC) (Hammouamri et al., 2024) N 2.5M 80.69
SRC-SNN (ours) Y 0.37M 81.83
ASRC-SNN (ours) Y 0.37M 81.91

GSC SNN with SFA (Salaj et al., 2021) Y 4.3M 91.21
ALIF (Yin et al., 2021) Y 0.22M 92.10
TC-LIF (Zhang et al., 2024) Y 0.19M 94.84
SRC-SNN (ours) Y 0.088M 96.18
ASRC-SNN (ours) Y 0.089M 96.29

model, thereby creating more complex temporal dependen-
cies compared to S-MNIST.

The SSC is a spike-based speech classification benchmark
derived from Google Speech Commands v0.02, which con-
tains 35 classes, proposed in (Cramer et al., 2020). The orig-
inal waveform data have been converted into spike trains
across 700 input channels. The dataset is divided into train-
ing, validation, and test splits, consisting of 75,466, 9,981
and 20,382 examples, respectively. The data were further
processed with a discrete time scale of 5.6 ms to obtain a se-
quence length of 250 with zero right-padding. Additionally,
the number of input neurons was reduced from 700 to 140
by binning every 5 neurons.

The GSC dataset consists of 64,727 audio files, which are
divided into training, validation and test sets, containing
51,093, 6,799 and 3,081 samples, respectively, proposed in
(Warden, 2018). Our data preprocessing approach follows

the TC-LIF procedure (Zhang et al., 2024) , wherein the
audio signals are first transformed into Mel-spectrograms
and then converted to decibel units (dB).

4.2. Resluts

Table.1 compares our two proposed methods, SRC-SNN and
ASRC-SNN, with previous works in the field of SNNs on
four benchmark datasets (S-MNIST, PS-MNIST, SSC and
GSC) in terms of accuracy, model size and whether recurrent
connections were used. SRC-SNN outperforms the previous
state-of-the-art accuracy on the GSC and SSC benchmark
datasets, while significantly reducing the number of pa-
rameters. ASRC-SNN further improves upon SRC-SNN,
achieving state-of-the-art performance on S-MNIST, SSC
and GSC. On PS-MNIST dataset, ASRC-SNN surpasses
other approaches that use recurrent structures.
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(a) Varying λ on PS-MNIST. (b) Varying λ on SSC.

Figure 2: The impact of varying skip coefficient λ on the
performance of SRC-SNN across the PS-MNIST and SSC
datasets. (a) and (b) correspond to the results on the PS-
MNIST and SSC datasets, respectively.

(a) Varying Tλ on PS-MNIST. (b) Varying Tλ on SSC.

Figure 3: The impact of varying max skip coefficient Tλ on
the performance of ASRC-SNN across the PS-MNIST and
SSC datasets. (a) and (b) correspond to the results on the
PS-MNIST and SSC datasets, respectively.

4.3. Ablation and Analysis

In this section, we conduct controlled experiments to in-
vestigate the effectiveness of the SRC and ASRC methods,
analyzing the impact of the skip coefficient on SRC-SNN
and the maximum skip coefficient on ASRC-SNN using
relatively complex SSC and PS-MNIST datasets.

4.3.1. SKIP COEFFICIENT ON SRC-SNN

The results presented in Figure.2 indicate that when the skip
recurrent coefficient λ of SRC-SNN exceeds 1, the model
performance improves dramatically. This suggests that SRC-
SNN demonstrates a significant improvement in long-term
temporal modeling ability compared to the vanilla RSNN.
However, it can be observed that the preferred values of
λ differ significantly between different datasets, with the
preferred values for the SSC dataset being 3, 4 and 5, while
those for PS-MNIST being 12, 16, 20 and 24. On the one
hand, the optimal values λ vary greatly between datasets;
on the other hand, the sensitivity of the results to the setting
of λ also differs between datasets, with the SSC dataset
being particularly sensitive to λ. These factors complicate
the hyparameter search process in SRC-SNN.

4.3.2. MAX SKIP COEFFICIENT ON ASRC-SNN

To validate the robustness of ASRC-SNN, the range and
variation of Tλ in the experiments of this part are wider

(a) Varying α on PS-MNIST. (b) Varying α on SSC.

Figure 4: The impact of the membrane potential decay factor
α in LIF neurons on the performance of ASRC-SNN across
the PS-MNIST and SSC datasets. (a) and (b) correspond to
the results on the PS-MNIST and SSC datasets, respectively.

and more extensive compared to the values of λ in 4.3.2.
As observed in Figure.3, once Tλ exceeds a certain value,
further increases in Tλ result in slight performance fluc-
tuations, with performance approaching the optimal level.
This demonstrates the robustness of ASRC-SNN. Further-
more, the optimal performance of ASRC-SNN exceeds the
best performance of the SRC-SNN model on both datasets.
Notably, on the PS-MNIST dataset with longer sequences,
the performance of ASRC-SNN consistently outperforms
the best performance of SRC-SNN when Tλ is set to 11
or higher. In summary, ASRC-SNN demonstrates superior
temporal modeling capabilities and robustness compared to
SRC-SNN.

4.4. The Impact of LIF neurons on ASRC-SNN

In this section, we explore the impact of LIF neurons on the
performance of ASRC-SNN. As shown in Figure.4, when
the membrane potential decay factor α = 0, the LIF neuron
degenerates into Heaviside function, leading to degraded
performance compared to when α is within a reasonable
range. This indicates that LIF neurons, in combination
with skip recurrent connections, play a collaborative role
in temporal modeling. When α is close to 0 or 1, the per-
formance of the model is poor and there is no clear pattern
to determine the optimal value of α. α = 0.5 is a suitable
choice, as it shows good performance on both datasets. Ad-
ditionally, we conducted experiments where LIF neurons in
ASRC-SNN were replaced with PLIF (Fang et al., 2021) or
GLIF (Yao et al., 2022) neurons, and the results show no
performance improvement with these substitutions.

5. Discussion
In this paper, we conduct a gradient analysis along the tem-
poral dimension by treating recurrent structures and neurons
within a unified framework. We identify the issues of van-
ishing and exploding gradients. To address the challenging
problem of vanishing gradients, we introduce skip recur-
rent connections that directly establish long-range tempo-
ral dependencies, replacing vanilla recurrent connections.
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Compared to vanilla RSNN, SRC-SNN shows significant
performance improvements in temporal benchmark datasets.
However, SRC still has some limitations: first, the uniform
span of skip connections across layers in the SRC-SNN
constrains the network’s temporal modeling ability; second,
the hyperparameter tuning process is complex. To address
these limitations, we introduce ASRC-SNN, a novel mecha-
nism designed to adaptively learn skip spans at each layer of
the network. ASRC utilizes a temperature-scaled Softmax
kernel to assign weights to skip connections with different
temporal spans, promoting competition among them. The
intensity of the competition is regulated by the tempera-
ture parameter, which is gradually decreased during training
to encourage the weights to converge to a single discrete
position. Experiments show that ASRC-SNN outperforms
SRC-SNN in terms of both temporal modeling ability and
robustness. Finally, our experiments demonstrate that LIF
neurons and skip recurrent connections in ASRC-SNN work
synergistically in the task of temporal modeling.

Finally, we have some thoughts for future research direc-
tions:

• The essence of ASRC lies in learning a discrete posi-
tion along the temporal dimension, with the potential
to extend this method to learning a discrete position in
both time and space. To learn multiple positions, the
ASRC method can be applied repeatedly. A promising
application of this approach is the learning of non-zero
positions in dilated convolution kernels (Yu, 2015),
similar to (Khalfaoui-Hassani et al., 2021).

• We have observed that as the output of the Softmax
function approaches Hardmax, the variance of the out-
put becomes larger. Based on this observation, we plan
to investigate a new approach for implementing ASRC:
building upon the ASRC in this paper, by discarding
the temperature parameter in the Softmax kernel func-
tion and incorporating the variance of the Softmax
kernel output as part of the loss function.

• Inspired by the sharp weight distribution of the Soft-
max kernel during the intermediate phase of ASRC-
SNN training, we will explore the possibility of adap-
tive multi-skip recurrent connections, considering both
parameter-shared and parameter-independent versions.
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A. Training configuration
In our experiments, we use simple three-layer fully connected networks combined with the recurrent structure. For the
PS-MNIST and S-MNIST datasets, we employed the AdamW optimizer, while for the SSC and GSC datasets, we use the
Adam optimizer. Across all datasets, we apply the OneCycle learning rate scheduler, with the learning rate for the softmax
kernel set to 100 times the global learning rate. More detailed hyparameter configurations can be found in Table.2. In
addition, the hyperparameter configurations corresponding to the best performance of our models on different datasets are
provided in Table.3.

Table 2: Hyperparameters used in different tasks.

Dataset Learning Rate Softmax kernel learning rate Weight Decay Dropout Batchsize Epochs

S-MNIST 0.001 0.1 0.01 0 256 200
PS-MNIST 0.001 0.1 0.01 0 256 200

SSC 0.001 0.1 0 0.1 128 100
GSC 0.0025 0.25 0 0.1 128 100

Table 3: Hyperparameters used in best models.

Dataset Model Parameter Hidden Size λ Tλ

S-MNIST
SRC-SNN 0.063M [64, 128, 128] 16 -
SRC-SNN 0.15M [64, 212, 212] 12 -

ASRC-SNN 0.063M [64, 128, 128] - 41

PS-MNIST

SRC-SNN 0.063M [64, 128, 128] 12 -
SRC-SNN 0.15M [64, 212, 212] 16 -

ASRC-SNN 0.063M [64, 128, 128] - 51
ASRC-SNN 0.15M [64, 212, 212] - 31

SSC SRC-SNN 0.37M [256, 256, 256] 3 -
ASRC-SNN 0.37M [256, 256, 256] - 6

GSC SRC-SNN 0.088M [128, 128, 128] 4 -
ASRC-SNN 0.089M [128, 128, 128] - 21

B. Some information related to the experiments
Table.4 presents the final convergence values of the skip connection coefficients across different layers of ASRC-SNN as Tλ

increases.

Table 4: The skip coefficients for each layer of ASRC-SNN after training

PS-MNIST SSC

Tλ Final Skip coefficients Tλ Final Skip coefficients

6 [5, 6, 3] 6 [2, 6, 6]
11 [9, 10, 4] 11 [2, 7, 8]
21 [8, 12, 4] 21 [3, 8, 13]
31 [8, 14, 4] 31 [3, 9, 19]
41 [8, 13, 17] 41 [3, 10, 23]
51 [9, 25, 11] 51 [3, 10, 27]

Figure.5 presents heatmaps of the weight variations of the Softmax kernels across different layers during ASRC-SNN
training on PS-MNIST. Figure.6 shows the corresponding accuracy change plot.
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(a) First layer

(b) Second layer

(c) Third layer

Figure 5: These plots present heatmaps of the weight distributions of the Softmax kernels across different layers during the
training of ASRC-SNN. The x-axis represents the epochs, the y-axis represents time, and each kernel has a size of Tλ = 51.
(a), (b), and (c) represent the first, second, and third layers, respectively.

Figure 6: The accuracy change plot during the training of ASRC-SNN.
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