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Abstract

We study the proportional clustering problem of Chen et al. (ICML’19) and relate
it to the area of multiwinner voting in computational social choice. We show that
any clustering satisfying a weak proportionality notion of Brill and Peters (EC’23)
simultaneously obtains the best known approximations to the proportional fairness
notion of Chen et al., but also to individual fairness (Jung et al., FORC’20) and the
“core” (Li et al., ICML’21). In fact, we show that any approximation to proportional
fairness is also an approximation to individual fairness and vice versa. Finally, we
also study stronger notions of proportional representation, in which deviations do
not only happen to single, but multiple candidate centers, and show that stronger
proportionality notions of Brill and Peters imply approximations to these stronger
guarantees.

1 Fair clustering

Fair decision-making is a crucial research area in artificial intelligence and machine learning. To
ensure fairness, a plethora of different fairness notions, algorithms and settings have been introduced,
studied, and implemented. One area in which fairness has been applied extensively is (centroid)
clustering: We are given a set of n data points which we want to partition into k clusters by choosing
k “centers” and assigning each point to a center by which it is represented well. Fairness now comes
into play when, e.g., the data points correspond to human individuals.

Fairness notions in clustering usually depend on one decision: whether one takes demographic
information (such as gender, income, etc.) into account or whether one is agnostic to it. A large part
of work on fair clustering has focused on incorporating such demographic information, starting with
the seminal work of Chierichetti et al. [2017] who aimed to proportionally balance the number of
people of a certain type in each cluster center. However, not all work on fair clustering relies on
demographic information. Independently, and in different contexts, Jung, Kannan, and Lutz [2020]
and Chen, Fain, Lyu, and Munagala [2019] instead tried to derive fairness notions from the instance
itself. For Jung et al. this lead to their notion of individual fairness: Given a population of size n,
with k cluster centers to be opened, every agent should be entitled to a cluster center not further away
than their n

k -th neighbor. While this is not always achievable, Jung et al. gave a simple algorithm
achieving a 2-approximation to this notion. Chen et al. were motivated not by being fair towards
individual members of the population (or agents), but towards groups of agents, defining their notion
of proportional fairness: no group of size at least n

k should be able to suggest a cluster center they all
would be better off with. This notion is also not always achievable, and Chen et al. gave a simple(
1 +

√
2
)
-approximation for it.
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So far, the individual and proportional fairness notions (and some other related fairness notions) have
existed in parallel, with similarities between the two being acknowledged but not formalized.1 In
their survey, Dickerson et al. [2023b] highlight this as a general issue in fair clustering: “each notion
that was introduced [...] does not refer to or consider the interaction with the previously introduced
fairness notions in clustering”. Moreover, they call for “other fairness notions in clustering that are
also compatible with one another” and “general notions which possibly encompass existing ones”.

We follow this call and prove proportional and individual fairness, as well as a fairness notion by Li
et al. [2021] which we will call the transferable core, to be tightly related to another. In an effort to
encompass these three notions, we make use of proportionality axioms from multiwinner voting, an
area in computational social choice [Lackner and Skowron, 2022]. Here, given the votes of n agents,
the goal is to elect a size-k committee which fulfills some proportionality guarantee. We lift one of the
simplest proportionality guarantees (JR) to work with metric distances and prove that any clustering
fulfilling our guarantee also fulfills the best approximations for the three notions, all simultaneously.
Moreover, such a clustering can be computed in polynomial time. Taking the multiwinner voting
approach further, we also look at the lifted version of a stronger proportionality guarantee (PJR). This
changes how points (agents) interact with cluster centers as they become represented not by one,
but possibly multiple centers. While this is not standard for “vanilla” clustering, it is very fitting for
more democratic settings, where the chosen “centers” end up possessing voting power to represent
the agents. The resulting proportionality guarantee indeed highly relates to work by Ebadian and
Micha [2024] who, motivated by sortition (the randomized selection of citizens’ panels [Flanigan
et al., 2021]), introduced a generalization of the proportional fairness notion. Indeed, the multiwinner
voting perspective allows us to prove better approximation guarantees for their fairness notion.

Our contributions. As our first main result, we provide a simple bridge between proportional
fairness and individual fairness (see Section 2). Any approximation of the former is also an approxima-
tion of the latter. In particular, for any α, β ≥ 1 we show that (i) any α-approximation to proportional
fairness is also an (1 + α)-approximation to individual fairness and (ii) any β-approximation to
individual fairness is also a 2β-approximation to proportional fairness. These approximations are
tight. We also prove a similar connection between proportional fairness and the transferable core.
Our connections imply for instance that bi-criteria approximations that optimize k-means and, say,
individual fairness [Vakilian and Yalçıner, 2022, Bateni et al., 2024] also maintain approximations
guarantees to the other fairness notions. Further, if one wants to show incompatibility of a different
clustering notion with approximate proportional or individual fairness, it is sufficient to show this for
one of the two notions, instead of creating instances for both (as done by Dickerson et al. [2023a]).

Secondly, in Section 3, we draw a connection to the area of multiwinner voting and reinterpret
proportionality notions introduced by Brill and Peters [2023] to work with distance metrics; we
call the resulting guarantees mJR and mPJR. Both of these are efficiently computable when the
space of possible centers is finite. Remarkably, with simple proofs, we are able to show that any
clustering satisfying mJR achieves the best known approximations to individual and proportional
fairness notions and the transferable core. For the transferable core, we even improve upon the bound
derived by Li et al. [2021]. Finally, motivated by settings such as sortition and multiwinner voting
in which agents do not only care about their closest cluster center but are represented by multiple
centers, we show that a strong core stability guarantee (introduced by Ebadian and Micha [2024])
can be achieved by any clustering satisfying mPJR. We also deal with the case in which the center
candidate space is unbounded (e.g., in Euclidean clustering settings), in which the above-mentioned
algorithms can become intractable. Here, we show that satisfying the proportionality guarantees only
for the set of agents is sufficient to obtain constant-factor approximations to proportional fairness and
the core stability guarantee by Ebadian and Micha [2024].

Lastly, in Section 4, we focus on sortition: Here, the set of agents and cluster candidates is equal and
each agent must be chosen with equal probability. Employing techniques from the above results, we
are able to give a simpler proof achieving a better approximation guarantee for the core notion by
Ebadian and Micha [2024].

Figure 1 (left) gives an overview over our results and our achieved approximation guarantees. Proofs
of some results are deferred to a full version of this manuscript [Kellerhals and Peters, 2023].

1For instance, in a recent tutorial on fair clustering [Awasthi et al., 2022], the two notions were treated as
separate unconnected paradigms.
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Figure 1: Left: An overview over connections between and bounds on fairness notions, i.e., α-
proportional fairness (α-PF), β-individual fairness (β-IF), the (γ, α)-transferable core ((γ, α)-TC),
and the α-q-core. See Sections 2 and 3 for the corresponding definitions and results. If A → Π,
then algorithm A produces outcomes satisfying Π. If Π → Γ, then any outcome satisfying Π also
satisfies Γ. If Γ takes a parameter α, then the label specifies the parameter that can be satisfied (for
the transferable core, the result holds for all γ > 1). Right: The metric space for the examples used
throughout the paper. Edges without labels have length 1, the distance between any two points is
given by the length of the shortest path between them.

Related work. Individual fairness was introduced by Jung et al. [2020]. Since then, follow-up work
mainly focused on bi-criteria approximation guarantees [Mahabadi and Vakilian, 2020, Negahbani
and Chakrabarty, 2021, Vakilian and Yalçıner, 2022, Chhaya et al., 2022, Bateni et al., 2024].
Additionally, Han et al. [2023] studied individual fairness for clustering with outliers and Sternbach
and Cohen [2023] incorporated demographic information into individual fairness. The individual
fairness notion was also carried over to the setting of approval-based multiwinner voting [Brill et al.,
2024]. We mention that the name “individual fairness” is also used for other (unrelated) fairness
notions [e.g. Kar et al., 2023, Chakrabarti et al., 2022].

Proportional fairness was first studied by Chen et al. [2019]. Micha and Shah [2020] showed
that the GREEDY CAPTURE algorithm by Chen et al. achieves better approximation guarantees in
certain metric spaces (including the Euclidean space with the 2-norm) and studied its complexity. Li
et al. [2021] introduced notions inspired by Chen et al., which are related to the transferable core
concept from algorithmic game theory. Aziz et al. [2024] introduced proportionality axioms and
rules directly inspired from social choice theory to proportional clustering. Among other things, they
showed that every outcome satisfying DPRF (see Section 3.1) achieves an

(
1 +

√
2
)
-approximation

to proportional fairness. Further connections to social choice or relations between the above fairness
notions of Jung et al. [2020] or Li et al. [2021] remain unexplored, though.

Ebadian and Micha [2024] study proportionality in the setting of sortition (see e.g., Flanigan et al.
[2021]), proposing a generalization of proportional fairness and a refined variant of GREEDY CAP-
TURE. This variant and its proportionality were used by Caragiannis et al. [2024a] to construct
panels whose decisions align with that of the underlying population. The most recent work directly
related to ours was created independently and in parallel to ours by Kalaycı et al. [2024]. They study
proportional fairness and the transferable core in an incomplete information setting and show that
just knowing the order of the distances to between agents and center candidates suffices to achieve a
5.71-approximation to proportional fairness.

Caragiannis et al. [2024b] study proportional fairness in a non-centroid based fair clustering setting,
in which points are not assigned to cluster centers. Instead they are grouped into clusters and derive
utility based on the other agents in their cluster. For this setting, Caragiannis et al. [2024b] also
build on the proportional fairness framework studied in this work and also take inspiration from
concepts from multiwinner voting: in their case, they adopt the FJR axiom of Peters et al. [2021].
The setting of non-centroid clustering is closely related to the study of hedonic games, with the
difference being that in hedonic games, the number of clusters is not pre-determined. See for instance,
Fanelli et al. [2021], Demeulemeester and Peters [2023], and Fioravanti et al. [2023] for recent works
on approximate core stability in hedonic games. Ahmadi et al. [2022], Aamand et al. [2023], and
Mosenzon and Vakilian [2024] further studied a notion of individual stability for clustering, in which
individual agents should not be able to deviate from their clusters. This, however, is unrelated to
group stability as studied in this work.
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Multiwinner voting is the branch of computational social choice theory dealing with selecting multiple
instead of just one candidate as a winner. A main branch herein focuses on proportionality. While
much of the literature on proportionality, starting with Aziz et al. [2017], focuses on approval
preferences (see Lackner and Skowron [2022] for a recent book on this topic), proportionality
notions also exist for ordinal preferences [Dummett, 1984]. These notions were recently strengthened
by Aziz and Lee [2020, 2021] and Brill and Peters [2023], with the latter forming the basis for
the proportionality axioms we discuss in this paper. We are further closely related to the works
of Caragiannis et al. [2022] and Ebadian et al. [2022] who studied the representation of a given
committee by investigating the distances of agents to their q-closest committee member.

Model and notation. Let (X , d) be a (pseudo)-metric space with a distance function d : X×X → R
satisfying d(i, i) = 0, d(i, j) = d(j, i) and d(i, j) + d(j, k) ≥ d(i, k). Let i ∈ X be a point. For
r ∈ R, define B(i, r) = {j ∈ X : d(i, j) ≤ r} to be the ball of radius r around i. For W ⊆ X , let
d(i,W ) = minc∈W d(i, c). For q ≤ |W |, dq(i,W ) is distance to the q-th closest point in W to i.
Note that d1(i,W ) = d(i,W ) and that dq(i,W ) ≤ d(i, j) + dq(j,W ) for i, j ∈ N .

Throughout the paper, we are given a set of agents N = [n] and a (possibly infinite) set of candidates
(facilities) C, both of which lie in a metric space (X , d), and a number k ∈ N+. A clustering or
outcome is a subset W ⊆ C of at most k candidates. The elements c ∈ W are called centers. Our
examples use the (weighted) graph metric in which the points are the vertices of a graph with edge
lengths, and the distance between two points is the length of a shortest path between them.

2 Relations between proportional fairness notions

In this section, we prove the relations between proportional fairness [Chen et al., 2019], individual
fairness [Jung et al., 2020], and the transferable core [Li et al., 2021]. We first define the notions.

The idea of proportional fairness is the following: If there is a candidate c such that at least n
k agents

are closer to c by a factor α than to their closest cluster center in the outcome W , then we say that the
agents will deviate to c. If there is no such candidate, the outcome satisfies α-proportional fairness.

Definition 1. For α ≥ 1 an outcome W satisfies α-proportional fairness, if there is no group N ′ ⊆ N
of agents with |N ′| ≥ n

k and c /∈ W such that α · d(i, c) < d(i,W ) for all i ∈ N ′.

While (2− ε)-proportional fair outcomes need not exist (for any ε > 0),
(
1 +

√
2
)
-proportional fair

outcomes can be computed for any metric space [Chen et al., 2019, Micha and Shah, 2020].

To define individual fairness, denote by rN,k(i) be the radius of the smallest ball around an agent
i ∈ N that encloses at least n

k agents, i.e., rN,k(i) = min{r ∈ R : |B(i, r) ∩N | ≥ n
k }. We drop the

subscripts N and k if clear from context. For this definition to properly work, we additionally need
the assumption that N ⊆ C, i.e., any agent can be chosen as center. Otherwise, a secluded group of
agents without any possible cluster centers around them would never be able to get a center close
to them in the outcome. Indeed, this is a plausible restriction in metric clustering, as oftentimes the
centers may be picked from the (infinite) set of points in the metric space.

Definition 2. For an instance with N ⊆ C, for β ≥ 1 an outcome W satisfies β-individual fairness
if d(i,W ) ≤ βrN,k(i) for all i ∈ N .

It is known that an outcome satisfying 2-individual fairness always exists, while there are instances
with no (2− ε)-individually fair outcome [Jung et al., 2020].

The transferable core2 notion is based on the concept of transferable utilities from game theory.
Comparing to proportional fairness, the notion considers the average utility for each group.

Definition 3. For γ, α ≥ 1, an outcome W is in the (γ, α)-transferable core if there is no group of
agents N ′ ⊆ N and candidate c /∈ W with |N ′| ≥ γ n

k and α
∑

i∈N ′ d(i, c) <
∑

i∈N ′ d(i,W ).

It is known that the for any γ > 1 there are outcomes in the (γ,max(4, 3γ−1
γ−1 ))-transferable core

while there need not be outcomes in the (γ,min(1, 1
γ−1 ))-transferable core [Li et al., 2021].

2We remark that Li et al. [2021] call this notion just “core”, we rename it to avoid confusion with the core
notion of Ebadian and Micha [2024].
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Example 1. Consider the instance depicted in Figure 1 (right) with k = 5 and the associated graph
distance metric. Assume that cluster centers can only be placed on the depicted agents. We have
n
k = 2; thus any two agents are able to deviate to another center. The outcome W = {1, 2, 3, 6, 9}
satisfies 1-proportional fairness: The agents 1, . . . , 4 have distance 0 to a center, while every remaining
agent has distance at most 1 to a center.

To see the difference between proportional fairness, individual fairness, and the transferable core,
consider the same instance with k = 4, so n

k = 2.5. Here, the outcome W = {1, 2, 6, 7} satisfies
1-proportional fairness, however it does not satisfy 1-individual fairness. Agent 8 could look at their
2 closest neighbors, 5 and 9, both at a distance of 1. However, the distance of 8 to the outcome is 2.
Observe that W also is not in the (1, 1)-transferable core. Here, for the group N ′ = {8, 9, 10} and
candidate c = 9, we have

∑
i∈N ′ d(i, c) = 2 <

∑
i∈N ′ d(i,W ) = 4. ⋄

2.1 Proportional and individual fairness

We first show that proportional and individual fairness are the same up to a factor of at most 2.
Theorem 1. Let α, β ≥ 1. If N ⊆ C, then an outcome that satisfies α-proportional fairness also
satisfies (1 + α)-individual fairness, and an outcome that satisfies β-individual fairness also satisfies
2β-proportional fairness. If N = C, then an outcome that satisfies β-individual fairness also satisfies
(1 + β)-proportional fairness.

Proof. Let W ⊆ C be an outcome satisfying α-proportional fairness, j ∈ N be any agent, and
Nj = {i ∈ N : d(i, j) ≤ r(j)}. As N ⊆ C, there is an i ∈ Nj with d(i,W ) ≤ αd(i, j);
otherwise the coalition Nj deviates to candidate j. Thus, by the triangle inequality, d(j,W ) ≤
d(i, j)+ d(i,W ) ≤ (1+α)d(i, j) ≤ (1+α)r(j), and hence W satisfies (1+α)-individual fairness.

Now suppose the outcome W satisfies β-individual fairness. Let N ′ ⊆ N with |N ′| ≥ n
k and

c /∈ W be an unchosen candidate. Take i∗ ∈ N ′ to be the agent in N ′ furthest away from c. If
N ⊆ C, then the radius r(i∗) containing ⌈n

k ⌉ agents is at most as large as the most distant agent in
N ′, i.e., there is an i′ ∈ N ′ with r(i∗) ≤ d(i∗, i′) ≤ d(i∗, c) + d(c, i′). Then d(i∗,W ) ≤ βr(i∗) ≤
β(d(i∗, c) + d(c, i′)) ≤ 2βd(i∗, c). If N = C, then, since |N ′| ≥ n

k , we have r(c) ≤ d(c, i∗); thus
d(c,W ) ≤ βd(c, i∗). Therefore, d(i∗,W ) ≤ d(i∗, c) + d(c,W ) ≤ (1 + β)d(i∗, c), and thus W also
satisfies (1 + β)-proportional fairness.

Indeed, we also show that all three provided bounds are tight.
Theorem 2. For every α, β ≥ 1 and ε > 0, there are instances with N = C for which there exists
(1) an outcome which satisfies α-proportional fairness, but not (1 + α − ε)-individual fairness,
and (2) an outcome which satisfies β-individual fairness, but not (1 + β − ε)-proportional fairness.
Moreover, there are instances with N ⊆ C for which there exists (3) an outcome which satisfies
β-individual fairness, but not (2β − ε)-proportional fairness.

2.2 Proportional fairness and the transferable core

It is easy to see that the (1, α)-transferable core implies α-proportional fairness. For γ > 1 however,
the (γ, α)-transferable core does not imply any meaningful proportional fairness approximation
(consider n

k agents on one point and (γ − 1)nk agents “far” away). Hence, we focus on the other
direction and show that a proportional fairness approximation implies one to the transferable core.

Theorem 3. An outcome satisfying α-proportional fairness is in the
(
γ, γ(α+1)

γ−1

)
-transferable core

for any α ≥ 1 and γ > 1.

Proof. Let W ⊆ C satisfy α-proportional fairness. Let N ′ ⊆ N be a group of agents of size n′ ≥ γ n
k ,

c /∈ W , and shorten η = ⌈n
k ⌉. Further, assume the agents N ′ = {i1, . . . , in′} are ordered by their

increasing distance to c, i.e., d(ij , c) ≤ d(ij+1, c) for every j ∈ [n′ − 1]. Let J0 = {i1, . . . , iη} and
j0 ∈ J0 such that d(j0,W ) ≤ αd(j0, c); such an agent must exist due to α-proportional fairness.
Next, for λ = 1, . . . , n′−η, we inductively define Jλ = {i1, . . . , iη+λ}\{j0, . . . , jλ−1}, and choose
jλ ∈ Jλ such that d(jλ,W ) ≤ αd(jλ, c) ≤ αd(iη+λ, c) (note that |Jλ| = η). Thus,∑n′−η

λ=0 d(jλ,W ) ≤ α
∑n′

z=η d(iz, c) ≤ α
∑

i∈N ′ d(i, c). (1)
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Next, for each i ∈ N ′′ = N ′ \ {j0, . . . , jn′−η}, we can bound the distance to W as follows:

d(i,W ) ≤ d(i, c) + d(c, j0) + d(j0,W ) ≤ d(i, c) + (1 + α)d(iη, c). (2)

Note that d(iη, c) ≤ 1
n′−|N ′′|

∑n′

z=η d(iz, c) as each of the summands is at least d(iη, c). Thus,

∑
i∈N ′′

d(i,W ) ≤
∑

i∈N ′′

(
d(i, c) + (1 + α)d(iη, c)

)
≤ (1 + α) |N ′′|

n′−|N ′′|

n′∑
z=η

d(iz, c) +
∑

i∈N ′′
d(i, c). (3)

As n′ ≥ γ n
k and |N ′′| = η − 1 ≤ n

k , we have |N ′′|
n′−|N ′′| ≤

1
γ−1 . In all,

∑
i∈N ′ d(i,W ) is the sum of

(1) and (3), which is at most(
α+1
γ−1 + α+ 1

) ∑
i∈N ′

d(i, c) = γ(α+1)
γ−1

∑
i∈N ′

d(i, c). (4)

Hence, W is in the
(
γ, γ(α+1)

γ−1

)
-transferable core.

We remark that the denominator 1
γ−1 in α is inevitable. This is because for γ ≤ 2, the

(
γ, 1

γ−1

)
-

transferable core may be non-empty [Li et al., 2021, Theorem 18]. We complement the above upper
bound with an asymptotically tight lower bound.
Theorem 4. For any α ≥ 1, γ > 1, and ε > 0 there exists an instance in which an α-proportional
fair outcome is not in the

(
γ, γα+1

γ−1 − ε
)

- transferable core.

3 Fairness notions for multiwinner voting axioms

In this section we show a connection between the research on computational social choice, specifically
approval-based multiwinner voting (also known as approval-based committe (ABC) voting) and the
fairness notions for clustering. We will first give a primer on ABC voting and introduce our metric
JR axioms. We then focus on two of those axioms and show that (1) they are satisfied by existing,
simple algorithms, and (2) they imply the best known approximation guarantees to proportional
and individual fairness, the transferable core, and the q-core (see Definition 5 below). For the latter
two notions, we are even able to improve upon the best currently known approximation guarantees.
Finally, we will focus on the case when the candidate set is infinitely large (i.e., when we are in the
Euclidean space and every point is a candidate): In this setting, the above algorithms become hard to
compute. We combine two approaches to maneuver around this hardness and again match upon the
best known approximation guarantees for proportional fairness and the q-core.

3.1 Metric JR axioms

In ABC voting [Lackner and Skowron, 2022], we are given a set N of voters (or agents), a set C
of candidates, and a committee size k. For each voter i ∈ N we are given a subset Ai ⊆ C of
candidates they approve. For such preferences, we call a set N ′ ⊆ N of voters ℓ-large if |N ′| ≥ ℓnk ,
and ℓ-cohesive if |

⋂
i∈N ′ Ai| ≥ ℓ. We say that a committee satisfies

JR if for every 1-cohesive and 1-large group N ′ there exists an i ∈ N ′ with |Ai ∩W | ≥ 1;
PJR if for every ℓ ∈ [k] and ℓ-cohesive and ℓ-large group N ′ it holds that |

⋃
i∈N ′ Ai ∩W | ≥ ℓ,

and remark that there are many further proportionality axioms [Lackner and Skowron, 2022]. Here,
JR is short for justified representation. To define our metric JR axioms for voters and candidates
in a distance metric, we follow Brill and Peters [2023] (who lifted these axioms for weak ordinal
preferences and called them rank-Π) and generalize their notions to look at each distance separately.
Definition 4 (Metric JR axioms). Let (X , d) be a distance metric, let N,C ⊆ X . Let Π be a
proportionality axiom. An outcome W satisfies mΠ (short for metric) if for all y ∈ R≥0, for the ABC
voting instance in which each i ∈ N has the approval set B(i, y) ∩ C, the outcome W satisfies Π.

For example, an outcome W satisfies mJR if for every y ∈ R and for every group N ′ ⊆ N of at least
n
k agents whose ball of radius y all contain a common candidate (|

⋂
i∈N ′ B(i, y) ∩ C| ≥ 1), there

exists an agent i ∈ N ′ whose ball of radius y contains a center c ∈ W .
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Figure 2: Metric space for some of the examples. Edges without labels have length 1.

We want to point out that mJR is significantly weaker than mPJR. Indeed, to satisfy mPJR, an outcome
W may need to contain several candidates c such that d(i, c) > d(i,W ) for all agents i ∈ N , i.e.,
c is no-ones “first choice” among W ; mJR does not have this property. This makes mJR the more
sensible of the two axioms for “vanilla” clustering, in which one only cares about the closest center
to each agent. mPJR however, is a natural axiomatic choice for settings such as sortition or even
social choice in general: Here, agents may benefit from having more than a single representative. We
provide some intuition for mJR and mPJR and this property in the example below.
Example 2. To see the differences between the proportionality axioms, consider the instance depicted
in Figure 1 (right). First consider instance (a) on the left with N = C = {1, . . . , 10}, k = 4, and
the outcome W = {1, 2, 3, 6}. Here, n

k = 2.5. First, we note that this outcome does not satisfy
1-proportional fairness: The agents 8, 9, 10 are closer to 9 than they are to the closest winner in
W . It does however satisfy mJR: Among every group of at least three agents that have a common
candidate within distance y, there is one agent that has a cluster center w ∈ W within distance y. For
example, 8, 9, 10 have candidate 9 at distance 1, and the distance of 9 to the closest center is also 1.
This outcome does not satisfy mPJR though, since the group 5, . . . , 10 would deserve at least two
candidates within distance 1 in W . An outcome satisfying mPJR is W = {1, 2, 3, 9}. For y = 0,
only the group {1, . . . , 4} shares a candidate, but also have a center at distance 0.

If k = 5, then, to satisfy mPJR, an outcome must contain at least two of the four candidates. But
there are outcomes satisfying mJR that contain only one of 1, . . . , 4. This property of mPJR makes
it suited for settings in which agents may want to be represented by multiple candidates, e.g., in
political settings, in which the candidates end up possessing voting power to represent the agents. ⋄

Independently of Brill and Peters [2023], Aziz et al. [2024] introduced two notions they call Pro-
portionally Representative Fairness. The first notion is called “discrete” (DPRF), and the second
is called “unconstrained” (UPRF). Indeed, DPRF is equivalent to mPJR. UPRF was introduced to
tackle the case when the candidate space is unbounded. We discuss how it relates to mPJR and the
other fairness notions in the full version [Kellerhals and Peters, 2023].

Aziz et al. [2024] show that an outcome satisfying DPRF (mPJR) also fulfills
(
1 +

√
2
)
-proportional

fairness. We show hereafter that this already holds for the (much weaker) mJR axiom.

3.2 Fairness bounds for mJR outcomes

We now prove the approximation guarantees implied by mJR. We remark that the bound for the
transferable core below improves upon the analysis of Li et al. [2021]. The proof is deferred to the
full version [Kellerhals and Peters, 2023].

Theorem 5. Let W be an outcome satisfying mJR. Then it also satisfies
(
1 +

√
2
)
-proportional

fairness, 2-individual fairness, and is in the
(
γ, 2γ

γ−1

)
-transferable core for any γ > 1.

If the candidate space is finite, then an outcome satisfying mJR can be computed in polynomial time
by the GREEDY CAPTURE algorithm [Chen et al., 2019, Micha and Shah, 2020, Li et al., 2021]. We
briefly recall its procedure:

GREEDY CAPTURE starts off with an empty clustering W . It maintains a radius δ (initially δ = 0)
and smoothly increases δ. If there is a candidate c such that at least n

k agents have distance at most δ
to c, it adds c to W and deletes the n

k agents. If an agent has distance at most δ to a candidate in W ,
then it is deleted as well. This is continued until all agents are deleted.
Example 3. Consider the instance in Figure 2. Here, with k = 4, GREEDY CAPTURE, would first
open one of 1, . . . , 4 with δ = 0 and remove all agents from 1, . . . , 4. Then for δ = 1 it could either
open 6 or 9, removing all adjacent agents to it. Then there are two agents remaining, which would
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be assigned to either 6 or 9 for δ = 2. Thus, in this instance, GREEDY CAPTURE only opens two
clusters. ⋄
Proposition 6. Any outcome returned by GREEDY CAPTURE satisfies mJR.

3.3 Fairness bounds for mPJR outcomes

Recall that mPJR is equivalent to the DPRF notion by Aziz et al. [2024]. To satisfy their notion,
they designed a generalization of the expanding approvals rule from multiwinner voting [Aziz and
Lee, 2020, 2021] (in which the agents’ preferences over the candidates are ordinal) to the setting of
proportional clustering. They refer to this generalization as SPATIAL EXPANDING APPROVALS. As
Aziz et al. show, SPATIAL EXPANDING APPROVALS can be computed in polynomial time for finite
candidate spaces.

In general, SPATIAL EXPANDING APPROVALS behaves similarly to GREEDY CAPTURE. It also starts
off with an empty clustering W and a radius δ = 0 as well and additionally gives each agent a budget
bi =

k
n . It then smoothly increases the radius δ. When there is a candidate c /∈ W for which the

agents at a distance of at most δ have a budget of at least 1, it decreases the budget of these agents
collectively by exactly 1 and adds c to W .
Example 4. Consider the instance in Figure 2. Here, with k = 4, SPATIAL EXPANDING APPROVALS
would give each agent a budget of 4

10 = 2
5 . For δ = 0, it will open a cluster from 1, . . . , 4 and

decrease their budgets by exactly 1, for instance it could set the budget of 1 and 2 to 0 and of 3 to 1
5 .

Then for δ = 1 it could again open 6 and 9, for instance by removing the budget of 6 and 9 to 1
5 and

of 5, 7, 8, 10 to zero. The remaining budget is exactly 1, which would be spent for δ = 10 on 5. Thus,
one possible final outcome is {1, 5, 6, 9}. ⋄

Remarkably, as shown by Aziz et al. [2024], it does not matter in which way the budget is subtracted
and which candidate meeting the budget is selected; the outcomes of the algorithm will satisfy mPJR
in any case.

Proposition 7. Any outcome returned by SPATIAL EXPANDING APPROVALS satisfies mPJR.

We now turn to fairness measures implied by mPJR. As any outcome satisfying mPJR also fulfills
mJR, the results in Theorem 5 also hold for mPJR. Indeed, mPJR is stricter in the sense that larger
groups must also be represented justly by a proportional number of candidates: an α percentage of
the population should roughly be close to an α percentage of the centers.

This property makes mPJR fit well into metric social choice settings such as sortition. For this,
Ebadian and Micha [2024] introduced a fairness notion that measures proportionality in this setting
by considering for each agent not only the closest center, but the first q closest centers. In that, their
notion called α-q-core naturally generalizes α-proportional fairness; the two are equal when q = 1.

Definition 5. For α ≥ 1 an outcome W is in the α-q-core, if there is no ℓ ∈ N and no N ′ ⊆ N with
|N ′| ≥ ℓnk and set C ′ ⊆ C with q ≤ |C ′| ≤ ℓ such that α · dq(i, C ′) < dq(i,W ) for all i ∈ N ′.

Example 5. Consider the instance in Figure 2 with k = 5 and the outcome W = {1, 2, 3, 6, 9}.
As mentioned above, W satisfies 1-proportional fairness. For the 3-core however, consider the set
N ′ = {5, . . . , 10} deviating to C ′ = {6, 9, 10}. The distance of any member of N ′ to 6, 9, or 10 is
at most 3, while the distance to the third most distant center in the outcome is at least 10. Thus, when
considering the distances to the third most distant candidate in C ′, every agent in N ′ would improve
by at least a factor of 10

3 . Thus, W is only in the 10
3 -3-core. ⋄

We mention in passing that we introduce similar gerneralizations for individual fairness and the
transferable core, in which each agent is represented by q candidates instead of one. The definitions
and obtained results can be found in the full version of this paper [Kellerhals and Peters, 2023].

Ebadian and Micha [2024] show that, if N = C (every agent is a candidate and vice versa), for a
given q, one can compute a 5+

√
41

2 -q-core outcome.3 We show that mPJR (or DPRF) provides a
better guarantee for the q-core, for all values of q simultaneously.

Theorem 8. If an outcome satisfies mPJR, then, for every q ≤ k, it is in the 5-q-core.
3In addition, their randomized algorithm selects each agent with the same probability, a desirable property in

the context of sortition, i.e., the randomized selection of citizen assemblies [Flanigan et al., 2021].
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To prove the theorem, we use two lemmas. The first was first observed by Ebadian and Micha [2024,
Lemma 1] and is proven here in a shorter fashion.

Lemma 9. Let ℓ ≥ q ≥ 0, let N ′ ⊆ N be a set of agents with N ′ ≥ ℓnk , and let C ′ ⊆ C be a set of
q ≤ |C ′| ≤ ℓ candidates such that dq(i, C ′) ≤ dq(i,W ) for any i ∈ N ′. Then there is a set N ′′ ⊆ N
of at least q n

k agents and a candidate c ∈ C ′ such that d(i, c) ≤ dq(i, C ′) for all i ∈ N ′′.

Proof. Assume that each agent marks each of their top q choices among C ′. Then there are at least
q|C ′|nk marks on the candidates. Thus, there is one c ∈ C ′ with at least q n

k marks.

The next lemma bounds the α-q-core once we find two agents with specific bounds on their distances.

Lemma 10. Let ρ1, ρ2, σ1, σ2 ≥ 0 and let W ⊆ C be an outcome. If for any set N ′ ⊆ N of at
least ℓnk agents and any candidate set C ′ ⊆ C with q ≤ |C ′| ≤ ℓ there are i1, i2 ∈ N ′ such that
dq(i1,W ) ≤ ρ1d

q(i1, C
′) + ρ2d

q(i2, C
′) and dq(i2,W ) ≤ σ1d

q(i1, C
′) + σ2d

q(i2, C
′), then W is

in the α-q-core, where α ≤ ρ1 +
1
2

(
σ2 − ρ1 +

√
(ρ1 − σ2)2 + 4σ1ρ2

)
.

Proof of Theorem 8. Let N ′ ⊆ N be a group of agents with |N ′| ≥ ℓnk and let C ′ ⊆ C with
q ≤ |C ′| ≤ ℓ such that dq(i, C ′) ≤ dq(i,W ) for any i ∈ N ′. By Lemma 9 there is a candidate c
being ranked in their top q among C ′ by q n

k many agents N ′′ ⊆ N ′. Out of N ′′, let i1 be the agent
maximizing d(i1, c) and i2 be any other agent in N ′′. Also, let C ′′ ⊆ C ′ be the set of the q candidates
closest to i2. Then, for every c′ ∈ C ′′ and every i ∈ N ′′, we have

d(i, c′) ≤ d(i, c) + d(c, i2) + d(i2, c
′) ≤ d(i1, c) + 2dq(i2, C

′) =: y.

In other words, |
⋂

i∈N ′′ B(i, y)∩C| ≥ q. Now mPJR implies that |
⋃

i∈N ′′ B(i, y)∩W | ≥ q. Thus,
for every i ∈ N ′′ there is an agent i′ ∈ N ′′ such that dq(i,W ) ≤ d(i, i′) + y. Since the distance of
i1 to any other agent i′ ∈ N ′′ is d(i1, i′) ≤ d(i1, c) + d(c, i1), we have

dq(i1,W ) ≤ 2d(i1, c) + y ≤ 3dq(i1, C
′) + 2dq(i2, C

′).

As the distance of i2 to any other agent i′ ∈ N ′′ is at most d(i′, c) + d(c, i2) ≤ d(i1, c) + dq(i2, C
′),

dq(i2,W ) ≤ d(i1, c) + dq(i2, C
′) + y ≤ 2d(i1, c) + 3dq(i2, C

′) ≤ 2dq(i1, C
′) + 3dq(i2, C

′).

Applying Lemma 10 with ρ1 = σ2 = 3 and ρ2 = σ1 = 2 yields the stated 5-q-core.

3.4 Dealing with unbounded candidate sets

Whenever the candidate space C is finite, it is straightforward to implement GREEDY CAPTURE
and SPATIAL EXPANDING APPROVALS in polynomial time. However, as shown by Micha and Shah
[2020], once C is unbounded and the metric space is only implicitly given (e.g., some distance norm
over C = Rt), computing GREEDY CAPTURE can become NP-hard. For Euclidean distances over
C = Rt, Micha and Shah [2020, Theorem 12] were nevertheless able to give an approximate version
of GREEDY CAPTURE, which approximates proportional fairness up to a factor of 2+ ε for any ε > 0
in this special metric space. For general metric spaces, Micha and Shah [2020, Theorem 11] show
that in an instance with N ⊆ C, any outcome which is α-proportionally fair when restricted to the
instance with candidate set N is 2α-proportionally fair in the whole instance. Aziz et al. [2024]
used a very similar approach to this and showed that running SPATIAL EXPANDING APPROVALS
on the agents results in a 3-proportionally fair outcome. Combining both approaches, we show that
any outcome W satisfying mJR when restricted to the instance with candidate set N ∪W satisfies
3-proportional fairness in the entire instance. Thus, GREEDY CAPTURE restricted to the agents yields
a 3-proportionally fair outcome. The same also applies to mPJR and the q-core.

Theorem 11. Consider an instance I with N ⊆ C and an outcome W and let I ′ be the instance
with agent set N and candidate set N ∪W . If W satisfies mJR in I ′, then W satisfies 3-proportional
fairness. If W satisfies mPJR in I ′, then W is in the 4-q-core for all q ≤ k.
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4 Stronger fairness bounds for sortition

Ebadian and Micha [2024] introduced FAIR GREEDY CAPTURE, a randomized generalization of
GREEDY CAPTURE for the setting of sortition. It works in the setting in which N = C and is
parameterized by some parameter q ≤ k. Like GREEDY CAPTURE it smoothly increases a radius
around each agent/candidate. Once this radius contains at least q n

k agents, it selects q of them
uniformly at random and deletes in total ⌈q n

k ⌉ of these agents. Together with an adequate final
sampling step, one can show that this selects each agent with a probability of exactly k

n .

Ebadian and Micha show that any clustering returned by the algorithm is in the 3+
√
17

2 -1-core when
parameterized by q = 1 and in the 5+

√
41

2 ≈ 5.7-q-core when parameterized by q > 1.4 We improve
upon their analysis (with a simpler proof) and show that FAIR GREEDY CAPTURE satisfies a better
bound for every parameter q ≤ k.
Theorem 12. Let N = C and q ≤ k. Then any outcome W returned by FAIR GREEDY CAPTURE

parameterized by q is in the 3+
√
17

2 -q-core.

5 Conclusion and future work

In this paper, we studied proportional clustering from a social choice perspective and showed that
our new metric JR axioms enable near-optimal approximations of fairness notions for clustering.
An interesting open question, both relevant to social choice and clustering is related to a different
relaxation of proportional fairness (or core fairness) introduced by Jiang et al. [2020]. Instead of
bounding the factor by which the agents can improve, they bound the size of the deviating coalition
(similar to the transferable core). In that sense, no group of size γ n

k should exist, who could all
deviate to a candidate they like more. In their work, they show that there are instances for which
no solution with γ < 2 can exist while for any ε > 0 a solution with γ = 16 + ε exists. Since
these results only care about the relative ordering of the candidates, they also translate to clustering.
Closing this bound, or improving it for certain metric spaces, seems like an interesting problem. It
would be also intriguing to study the probabilistic analog of the core [Cheng et al., 2020, Jiang et al.,
2020], especially if the results generalize to the q-core and if certain metric spaces admit simple
algorithms to compute it.

Further, SPATIAL EXPANDING APPROVALS (Section 3.3) is more of a family of algorithms, parameter-
ized by how candidates are selected and how budgets are deducted. Is there any way to axiomatically
(or quantitatively) distinguish its different parameterizations? In the context of approval-based multi-
winner voting, the Method of Equal Shares [Peters and Skowron, 2020] can be seen as an instantiation
of SPATIAL EXPANDING APPROVALS which provides stronger proportionality guarantees than other
algorithms in the family. Is something similar possible for our setting, e.g., can one go from propor-
tionality axioms inspired by PJR to axioms inspired by the stronger EJR axiom [Aziz et al., 2017]?
As shown by Brill and Peters [2023, Example 7] the straightforward extension of studying mEJR
(or rank-EJR in their notation) is not possible, as outcomes satisfying mEJR may easily fail to exist.
However, the metric variant of the PJR+ axiom of Brill and Peters [2023] may be of greater interest
in the clustering setting. It is easy to see that SPATIAL EXPANDING APPROVALS satisfies mPJR+. Is
it also possible to derive better proportionality or core approximations from mPJR+?

Naturally, our work still leaves several open questions when it comes to the approximation factors of
our notions. What are the best attainable factors for proportional fairness and the q-core? Further,
the questions of Jung et al. [2020] whether the bound of 2 on individual fairness can be improved
for Euclidean spaces and of Micha and Shah [2020] whether for (unweighted) graph metrics with
N = C a 1-proportional fair clustering always exist, are still open.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our work does not contain any experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We provide no experimental results and use no data or code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We provide no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We provide no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: We provide no experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not work with human subjects, nor create datasets. We do not see any
overlap with the described potential ethics violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a purely theoretical owrk. We do not think that any of the examples
listed below fit to be discussed here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see any potential high risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not use any assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments are performed in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiments are performed in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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