
Lowering PyTorch’s Memory Consumption for Selective Differentiation

Samarth Bhatia 1 Felix Dangel 2

Abstract
Memory is a limiting resource for many deep
learning tasks. Beside the neural network weights,
one main memory consumer is the computa-
tion graph built up by automatic differentiation
(AD) for backpropagation. We observe that Py-
Torch’s current AD implementation sometimes
neglects information about parameter differentia-
bility when storing the computation graph. This
information is useful though to reduce mem-
ory whenever gradients are requested for a pa-
rameter subset, as is the case in many modern
fine-tuning tasks. Specifically, inputs to lay-
ers that act linearly in their parameters and in-
puts (fully-connected, convolution, or batch nor-
malization layers in evaluation mode) can be
discarded whenever the parameters are marked
as non-differentiable. We provide a drop-in,
differentiability-agnostic implementation of such
layers1and demonstrate its ability to reduce
memory without affecting run time on popular
convolution- and attention-based architectures.

1. Introduction & Motivation
The success of many deep learning applications is driven by
scaling computational resources (Thompson et al., 2020).
One important resource is GPU memory, specifically on
low- and mid-end GPUs which usually offer between 6
to 16 GiB. Therefore, down-scaling the computational de-
mands of deep learning is an important objective to widen
its accessibility to researchers and practitioners with fewer
hardware resources. Two major memory consumers are the
network weights, and the computation graph stored by the
automatic differentiation (AD) engine. There exist various

1IIT Delhi 2Vector Institute. Correspondence to: Samarth
Bhatia < samarth.bhatia23@alumni.iitd.ac.in >, Felix Dangel <
fdangel@vectorinstitute.ai >.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

1Code and experiments available at
github.com/plutonium-239/memsave torch.

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

Figure 1: PyTorch’s AD is sometimes not agnostic to pa-
rameter differentiability. We consider a deep CNN made
of size-preserving convolutions and measure the forward
pass’s peak memory when processing a mini-batch of size
(256, 8, 256, 256), requiring 512 MiB memory. Memory in-
creases linearly in the number of layers when all parameters
are marked differentiable and remains constant when all pa-
rameters are marked non-differentiable. Surprisingly, when
only one layer’s parameters are marked as differentiable
the memory increases as if all subsequent parameters were
marked differentiable. Our drop-in solution stores layer in-
puts depending on parameter differentiability and reduces
memory compared to the current PyTorch implementation.

approaches to reduce their memory burden; e.g., the parame-
ters can be compressed with low-precision data types (quan-
tization (Hubara et al., 2018; Li et al., 2017; Nagel et al.,
2021)) or sparsified (Hassibi & Stork, 1992; Frantar & Al-
istarh, 2022), and the computation graph can be off-loaded
to CPU (Ren et al., 2021), compressed (Chen et al., 2021),
randomized (Oktay et al., 2021), or partially recorded and
re-computed (gradient checkpointing (Griewank & Walther,
2008; Chen et al., 2016)).

Here, we consider a special AD scenario we call selective
differentiation where gradients are requested only for a sub-
set of the computation graph leafs (the neural network inputs
and parameters). This approach has gained a lot of prac-
tical relevance in the era of large foundation models. For
instance, fine-tuning techniques for pre-trained models rely
on training only a subset of layers (Zhao et al., 2024; Lee
et al., 2023; Zhu et al., 2024; Pan et al., 2024), or extend

1

mailto:samarth.bhatia23@alumni.iitd.ac.in
mailto:fdangel@vectorinstitute.ai
https://github.com/plutonium-239/memsave_torch

Lowering PyTorch’s Memory Consumption for Selective Differentiation

them with parameter-efficient adapters (Hu et al., 2022)
which are then trained, keeping the original weights fixed.
But selective differentiation is also common in other applica-
tions such as generating adversarial examples (Goodfellow
et al., 2015) and neural style transfer (Gatys et al., 2016)
which optimize the input to a network with frozen weights.

We find that PyTorch’s (Paszke et al., 2019) AD allows for
additional, simple, optimizations to further reduce memory
consumption in the context of selective differentiation:

1. We observe that PyTorch’s AD sometimes neglects the
differentiability of layer parameters when storing the
computation graph (Figure 1). This information is use-
ful though as it allows discarding inputs to linear layers
whose parameters are marked as non-differentiable.

2. We provide a drop-in implementation of various layers
that is agnostic to the parameter differentiability and
demonstrate on various convolutional neural networks
(CNNs) and attention-based large language models
(LLMs) that it lowers the default implementation’s
memory footprint without increasing run time.

This easy-to-use insight benefits many tasks with selective
differentiation and enables them to scale further. We hope it
will stimulate future research into AD optimizations.

2. Selective Differentiation in PyTorch
PyTorch users can specify whether they want to compute
gradients w.r.t. a tensor through its requires grad at-
tribute, which is dominantly inherited by child tensors: If
any input (parent) to an operation is marked differentiable,
the output (child) will also be differentiable and require the
computation graph to be stored for backpropagation. As we
will see, PyTorch does not always check the differentiability
of all parents, but rather stores the computation graph as if
all parents were differentiable once it encounters a differen-
tiable input. In the following example, we demonstrate this
behavior, and how it misses out on possible optimizations
for linear operations with non-differentiable parameters.

Experimental procedure: We use PyTorch 2.2.1 and
measure the forward pass’s peak memory of different neu-
ral networks as a proxy for the computation graph size
stored by the AD engine. We choose peak memory as
it is a reasonable proxy for the computation graph size
and the relevant metric for causing out-of-memory er-
rors in practise. On GPU, we measure peak memory us-
ing torch.cuda.max memory allocated() , the max-
imum memory allocated by CUDA. To assess run time
differences of our implementation, we compare a forward
and backward pass with PyTorch. Each measurement is

W

X Z

W

X Z

PyTorch

W

X Z

W

X Z

Ours

/ : Non-/Differentiable, : Stored by AD

Figure 2: PyTorch’s behaviour of storing the computation
graph, illustrated on a convolution Z = W ∗X . PyTorch
stores the layer input whenever it is differentiable, although
this is not necessary if the weight does not require gradients.
Our approach uses this information to discard the layer
input if possible. See Appendix C for computation graphs
visualized with torchviz (Zagoruyko et al., 2019).

performed in a separate Python session to avoid memory
(de)allocation leaks between consecutive runs.

2.1. A Simple Example

We start with a synthetic example to probe the internals
of PyTorch’s AD that are responsible for identifying and
storing the computation graph during a forward pass (sum-
marized in Figure 2). We consider a deep CNN consisting
entirely of convolutions without bias. Each convolution
preserves its input size (kernel size 3, unit padding and
stride) and number of channels and we vary its depth as well
as the parameter differentiability. As input, we choose a
mini-batch of size (256, 8, 256, 256). Storing this tensor,
and each intermediate output generated by a layer, requires
512 MiB in single precision. Memory consumed by the con-
volution kernels of shape (8,8,3,3) is negligible compared
to the hidden features. Figure 1 summarizes our findings.

First, we investigate the computation graph size when mark-
ing all or no parameters as differentiable. When all param-
eters are differentiable, all layer inputs must be stored to
compute gradients. Consequently, we observe a linear rela-
tion with a slope corresponding to the 512 MiB consumed
by each intermediate input (Figure 1, fully differentiable).
When no parameter is differentiable, the memory consump-
tion flattens after more than two layers (Figure 1, fully non-
differentiable). This is because during a forward pass both
input and output tensors of a layer are allocated in memory,
in addition to the network’s input. Hence, at most two ten-
sors are in memory at a time for a single layer, while at most
three are allocated for two or more layers.

Next, we observe the memory consumption in the context
of selective differentiation. We consider two scenarios: In
the first, all parameters after and including the fourth layer
are differentiable, hence all layer inputs after the third layer
must be stored in memory. In the second, only the fourth
layer is differentiable and therefore only that layer’s input is

2

Lowering PyTorch’s Memory Consumption for Selective Differentiation

Memory [GiB]
Case All Input Norm Surgical

Default ResNet-101 7.83 (1.00) 7.83 (1.00) 7.83 (1.00) 7.83 (1.00)
+ swap Convolution 7.83 (1.00) 7.78 (0.99) 7.78 (0.99) 7.83 (1.00)
+ swap ReLU 8.56 (1.09) 5.24 (0.67) 5.24 (0.67) 6.86 (0.88)

Time [s]
Case All Input Norm Surgical

Default ResNet-101 0.45 (1.00) 0.37 (0.82) 0.37 (0.82) 0.41 (0.89)
+ swap Convolution 0.45 (0.98) 0.37 (0.80) 0.36 (0.80) 0.40 (0.87)
+ swap ReLU 0.44 (0.97) 0.36 (0.79) 0.36 (0.78) 0.41 (0.90)

Table 1: GPU peak memory and run time comparison between PyTorch and our
memory-saving layers for ResNet-101. Normalized values are relative to ‘All’ with
PyTorch’s default layers. We first swap only the convolution layers for our memory
saving alternatives, which does not save memory (see main text for explanation).
Then, we swap out other layers like ReLU, which significantly improves memory.

Bottleneck (64, 56, 56)
— Conv2d (64, 56, 56)
— BatchNorm2d (64, 56, 56)
— ReLU (64, 56, 56)
— Conv2d (64, 56, 56)
— BatchNorm2d (64, 56, 56)
— ReLU (64, 56, 56)
— Conv2d (64, 56, 56)
— BatchNorm2d (256, 56, 56)
— Conv2d (64, 56, 56)
— BatchNorm2d (256, 56, 56)
— ReLU (256, 56, 56)

Table 2: ResNet101’s residual block
with layer input shapes, excluding
batch size. The output of a ReLU is
stored by both the activation layer and
the convolution layer it feeds into.

necessary to compute gradients. However, we observe that
both scenarios exhibit the same memory footprint (Figure 1,
layers 4+ differentiable and layer 4 differentiable)!

We conclude that PyTorch stores a convolution layer’s input
with requires grad = True although the layer’s pa-
rameters might be non-differentiable. This information can
be useful to reduce the information stored for backpropaga-
tion, as we show with our implementation (Figure 1, layer
4 differentiable (ours)).

In Appendix B, we repeat similar experiments with fully-
connected, transpose convolution, and batch normalization
layers. We find that PyTorch’s (transpose) convolutions and
batch normalization layers in evaluation mode are not ag-
nostic to the differentiability of their weights. Interestingly,
fully-connected layers are already optimized.

2.2. Implementation Details

Our implementation of memory-saving layers is straightfor-
ward and does not require low-level code. For each layer
we create a new torch.autograd.Function AD prim-
itive, and its associated torch.nn.Module layer. The
primitive uses the same forward and backward routines
as the original operation (from torch.nn.functional

and torch.ops.aten), but has additional logic for the
information that is saved to the AD tape, which we describe
below. Hence, our implementation shares the performance
of PyTorch’s. We also provide a converter that replaces sup-
ported layers of a net with our memory-saving equivalents.

2.2.1. CONVOLUTION LAYERS

Consider a convolution layer Z = W ∗X + b with input
X , output Z, kernel W , and bias b. Its input Jacobian
depends on W , the weight Jacobian on X , and the bias

Jacobian has no dependency (e.g. Dangel, 2023, Chapter
2.3). During the forward pass, we check the differentiability
of W ,X , and only store tensors required by the Jacobians
that will be applied during backpropagation. The same
dependency pattern holds for other layers that process their
inputs linearly w.r.t. their weight and input, and add a bias
term, such as (transpose) convolution (Chellapilla et al.,
2006) and batch normalization (Ioffe & Szegedy, 2015)
layers in evaluation mode. We implement them in exactly
the same fashion.

2.2.2. INTERACTION WITH OTHER LAYERS

Real neural nets contain additional layers that are inter-
leaved with linear layers: activations, dropout, pooling, etc.
The information stored by such layers may overlap with the
input to a linear layer, e.g. if an activation layer feeds into
a convolution. Depending on the implementation details,
our described optimizations might not apply in such cases
because the linear layer’s input tensor could still be stored
by the preceding activation. We encountered this effect
for ReLU layers in real-world CNNs (Section 3), but were
able to overcome it using a customized ReLU implementa-
tion that saves a boolean mask of the output. As PyTorch
currently only supports 1-byte booleans, this leads to a 4x
reduction of the stored tensor’s size, which could be fur-
ther reduced to 32x (1-bit booleans are in the works). For
dropout layers, we accept adding a slight computational
overhead to avoid storing the output by saving the random
state and re-generating the mask during backpropagation.

This underlines an important challenge for saving memory
in selective differentiation whenever multiple layers use the
same tensor for backpropagation. Inputs to linear layers,
even if their parameters are non-differentiable, might still
be stored by neighboring layers. We believe it should often

3

Lowering PyTorch’s Memory Consumption for Selective Differentiation

Memory [GiB] Time [s]
Case All Input Norm Surgical All Input Norm Surgical

DeepLabv3 (RN101) (Chen et al., 2017) 22.82 (1.00) 22.82 (1.00) 22.82 (1.00) 22.82 (1.00) 0.93 (1.00) 0.73 (0.79) 0.73 (0.79) 0.76 (0.82)
+ MemSave 24.90 (1.09) 15.17 (0.66) 15.17 (0.66) 16.83 (0.74) 0.94 (1.01) 0.76 (0.82) 0.76 (0.81) 0.79 (0.85)

EfficientNetv2-L (Tan & Le, 2019; 2021) 26.81 (1.00) 26.81 (1.00) 26.81 (1.00) 26.81 (1.00) 0.77 (1.00) 0.62 (0.81) 0.62 (0.81) 0.68 (0.88)
+ MemSave 26.81 (1.00) 18.64 (0.70) 18.64 (0.70) 22.05 (0.82) 0.78 (1.02) 0.63 (0.82) 0.63 (0.82) 0.69 (0.90)

FCN (RN101) (Long et al., 2015) 22.23 (1.00) 22.23 (1.00) 22.23 (1.00) 22.23 (1.00) 0.83 (1.00) 0.67 (0.80) 0.67 (0.80) 0.70 (0.84)
+ MemSave 24.39 (1.10) 15.15 (0.68) 15.15 (0.68) 16.80 (0.76) 0.87 (1.04) 0.70 (0.84) 0.69 (0.83) 0.74 (0.88)

Faster-RCNN (RN101) (Ren et al., 2015) 6.84 (1.00) 6.84 (1.00) 6.84 (1.00) 6.84 (1.00) 0.77 (1.00) 0.66 (0.86) 0.66 (0.85) 0.69 (0.89)
+ MemSave 7.31 (1.07) 4.79 (0.70) 4.79 (0.70) 5.73 (0.84) 0.77 (0.99) 0.65 (0.84) 0.67 (0.86) 0.68 (0.88)

MobileNetv3-L (Howard et al., 2019) 2.82 (1.00) 2.82 (1.00) 2.82 (1.00) 2.82 (1.00) 0.39 (1.00) 0.32 (0.82) 0.32 (0.82) 0.35 (0.89)
+ MemSave 2.96 (1.05) 1.91 (0.68) 1.91 (0.68) 2.52 (0.89) 0.40 (1.01) 0.32 (0.82) 0.32 (0.82) 0.35 (0.89)

ResNeXt101-64x4d (Xie et al., 2017) 15.15 (1.00) 15.15 (1.00) 15.15 (1.00) 15.15 (1.00) 0.65 (1.00) 0.53 (0.82) 0.53 (0.82) 0.58 (0.90)
+ MemSave 16.75 (1.11) 9.87 (0.65) 9.87 (0.65) 13.32 (0.88) 0.64 (0.98) 0.52 (0.80) 0.52 (0.80) 0.56 (0.87)

SSDLite (MobileNetv3-L) (Sandler et al., 2018) 0.54 (1.00) 0.53 (0.97) 0.53 (0.97) 0.53 (0.97) 0.63 (1.00) 0.59 (0.92) 0.55 (0.87) 0.58 (0.91)
+ MemSave 0.57 (1.04) 0.41 (0.75) 0.41 (0.75) 0.50 (0.92) 0.66 (1.05) 0.57 (0.90) 0.55 (0.86) 0.58 (0.92)

VGG-16 (Simonyan & Zisserman, 2015) 4.93 (1.00) 4.93 (1.00) N/A 5.05 (1.02) 0.37 (1.00) 0.28 (0.77) N/A 0.31 (0.84)
+ MemSave 4.30 (0.87) 3.08 (0.62) N/A 3.15 (0.63) 0.38 (1.05) 0.30 (0.82) N/A 0.33 (0.89)

Table 3: GPU peak memory and run time comparison between PyTorch and our memory-saving layers for CNNs.

be possible to resolve this scenario—albeit through careful
implementation—e.g. whenever the Jacobian can be imple-
mented by either storing the layer input or output, as is the
case for various activation functions, and pooling layers.

3. Real-World Examples
Here we measure the effect of our memory-saving layers on
real-world CNNs. We consider four different scenarios:

All: All network parameters are differentiable. This serves
as reference to establish similar performance of our layers
in the absence of selective differentiation.

Input: Only the input to the neural net is differentiable.
This situation resembles constructing adversarial exam-
ples (Goodfellow et al., 2015) or style-transfers (Gatys
et al., 2016) by optimizing noisy inputs.

Surgical: Only the first quarter of layers are differentiable.
This situation is similar to surgical fine-tuning (Lee et al.,
2023), which splits a network into different blocks, each
containing a subset of layers, to be trained one at a time.

Norm: Only normalization layers are differentiable, resem-
bling layer norm fine-tuning in LLMs (Zhao et al., 2024).

We report GPU results on an NVIDIA RTX A6000 with
48 GiB of VRAM. All CNNs are fed inputs of size (64,
3, 224, 224) and we measure according to the procedure
described in Section 2. For object detection models, the
batch size is 4 and 2 boxes are predicted per input image.

3.1. ResNet-101

For ResNet-101, we take a detailed look at our memory-
saving layer’s effects. It is a decently powerful, modern

model and frequently used as a backbone for other archi-
tectures such as CLIP (Radford et al., 2021) and LAVA
(Gurram et al., 2022). It contains dense, convolution, batch
normalization, ReLU, and max/average pooling layers. Ta-
ble 1 summarizes our findings (model in training mode).

PyTorch is often unaware of selective differentiation:
In the upper part of Table 1, we see that the default PyTorch
implementation uses the same amount of memory for any
scenario. In fact, marking only the input to a neural net as
differentiable consumes as much memory as marking all
parameters, although the former does not require storing
the inputs to fully-connected and convolution layers. This
confirms the findings on the toy model from Section 2.

Layer interactions diminish memory savings: To grad-
ually investigate the effect of our layers, we only swap out
the convolutions; without observing any effects. At first,
this seems counter-intuitive. However, a closer look at the
architecture (Table 2) reveals that the convolutions are pre-
ceded by ReLU activations which unconditionally store their
outputs and render our convolution layer’s optimizations in-
effective as described in Section 2.2.2.

After swapping out ReLU with our mask-based custom
implementation, we observe substantial memory savings.
E.g., memory consumption for ‘Input’ dropped to roughly
two thirds. Only when all parameters are differentiable, we
see a slight increase in memory after swapping out ReLUs.
This is to be expected as the mask stored by our custom
implementation requires additional storage.

Run time remains unaffected: The bottom half of Table 1
shows that run time for a fixed case remains equal up to
measurement noise. This confirms that our memory-saving
layers share the default implementation’s performance.

4

Lowering PyTorch’s Memory Consumption for Selective Differentiation

Memory [GiB] Time [s]
Case All Input Norm Surgical All Input Norm Surgical
SiLU Transformers

LLaMa3-8B (Touvron et al., 2023) (H = 4096) 31.01 (1.00) 27.27 (0.88) 28.26 (0.91) 28.18 (0.91) 1.39 (1.00) 1.13 (0.81) 1.13 (0.82) 1.17 (0.84)
+ MemSave 29.01 (0.94) 26.26 (0.85) 26.26 (0.85) 26.94 (0.87) 1.61 (1.16) 1.04 (0.75) 1.05 (0.75) 1.12 (0.81)

Mistral-7B (Jiang et al., 2023) (H = 4096) 41.67 (1.00) 34.20 (0.82) 36.17 (0.87) 36.01 (0.86) 2.09 (1.00) 1.55 (0.74) 1.56 (0.75) 1.67 (0.80)
+ MemSave 37.67 (0.90) 32.17 (0.77) 32.17 (0.77) 33.54 (0.80) 2.55 (1.22) 1.44 (0.69) 1.46 (0.70) 1.71 (0.82)

Phi3-4B (Gunasekar et al., 2023) (H = 3072) 31.74 (1.00) 26.01 (0.82) 27.49 (0.87) 27.40 (0.86) 1.59 (1.00) 1.23 (0.78) 1.24 (0.78) 1.31 (0.83)
+ MemSave 28.74 (0.91) 24.49 (0.77) 24.49 (0.77) 25.55 (0.81) 1.69 (1.06) 1.09 (0.69) 1.12 (0.71) 1.23 (0.78)

ReLU Transformers

Transformer (Vaswani et al., 2017) (H = 2048) 26.91 (1.00) 21.54 (0.80) 21.54 (0.80) 23.04 (0.86) 2.47 (1.00) 2.21 (0.90) 2.19 (0.89) 2.24 (0.91)
+ MemSave 25.60 (0.95) 20.23 (0.75) 20.23 (0.75) 21.73 (0.81) 2.57 (1.04) 2.26 (0.92) 2.25 (0.91) 2.30 (0.93)

T5 (Raffel et al., 2020) (H = 768) 33.40 (1.00) 25.94 (0.78) 28.85 (0.86) 27.77 (0.83) 1.70 (1.00) 1.37 (0.81) 1.39 (0.82) 1.47 (0.86)
+ MemSave 31.84 (0.95) 22.80 (0.68) 22.80 (0.68) 25.28 (0.76) 1.95 (1.14) 1.52 (0.89) 1.54 (0.90) 1.59 (0.94)

Table 4: GPU peak memory and run time comparison between PyTorch and our memory-saving layers for LLMs.

3.2. Results on CNNs

To further solidify our findings, we now evaluate our lay-
ers on other popular and commonly used CNNs, includ-
ing ResNet-18 (He et al., 2016), VGG-16 (Simonyan &
Zisserman, 2015), ResNeXt101-64x4d (Xie et al., 2017),
EfficientNetv2-L (Tan & Le, 2019; 2021), MobileNetv3-
L (Sandler et al., 2018; Howard et al., 2019), FCN with
a ResNet-101 backbone (Long et al., 2015), DeepLabv3
with a ResNet-101 backbone (Chen et al., 2017), Faster-
RCNN with a ResNet-50 backbone (Ren et al., 2015), and
SSDLite with a MobileNetv3-L backbone (Sandler et al.,
2018). Table 3 summarizes the comparison.

On this large repertoire of networks, we observe the same
effects as on ResNet-101 from the previous section: Due to
our customized ReLU implementation, memory is slightly
higher in the absence of selective differentiation. Run time
is unaffected by swapping in our layers, while the selective
differentiation scenarios consistently show lower memory
consumption (as low as two thirds), underlining the useful-
ness of our approach in this context.

So far, we used all batch normalization layers in training
mode. In Appendix A, we experiment with BatchNorm2d

in evaluation mode. This allows discarding normaliza-
tion layer inputs whenever the parameters are marked non-
differentiable and enables further memory savings, with
reductions up to 6x and no runtime overhead (Table 5).

3.3. Results on Transformers

Selective differentiation is of high practical relevance for
large language models (LLMs), especially with the increas-
ing popularity of vision language models (VLMs) and the
release of models such as LLaVa, PaLI, PaLI-Gemma and
GPT-4o (Liu et al., 2023; Chen et al., 2023b;a). Another
area where this is quite important is using a (light) modality-
specific encoder to encode (and project) the input of differ-
ent modalities into the embedding space of the LLM, such

as in scientific ML (Shen et al., 2024).

Here, we investigate the impact of our memory-saving layers
on attention-based models. Popular libraries like Hugging-
Face that provide access to such models often implement
attention through linear layers, which we did not find to
suffer from the behavior of convolutions. However, an ad-
ditional challenge in these architectures is dropout, which
may interact with inputs to linear layers similarly to other
activations (Section 2.2.2). Thus, we find our tricks for
ReLU and dropout helpful to avoid storing inputs to linear
layers if their weights are marked non-differentiable.

We consider the same cases as in Section 3 and all nets
consume embeddings of size (64, 256, H), with hidden size
H of a network (given in Table 4). We test on the vanilla
Transformer (Vaswani et al., 2017), T5 (Raffel et al., 2020),
LLaMa3 (Touvron et al., 2023), Mistral (Jiang et al., 2023)
and Phi3 (Abdin et al., 2024; Gunasekar et al., 2023). The
results are shown in Table 4. With LLaMa (8B parameters),
Mistral (7B parameters) and Phi3 (4B parameters) being
large models, they are loaded in bfloat16 data type and
the batch size is reduced to 8 for LLaMa and 16 for the
others. We observe that our approach also enables memory
savings on attention-based models and consistently achieves
a smaller memory footprint.

4. Conclusion
We have shown how to improve the memory consumption
of PyTorch’s automatic differentiation in the context of se-
lective differentiation where gradients are only requested
for a subset of variables—a common situation in modern
fine-tuning tasks. Our approach is based on the insight that
PyTorch sometimes ignores the differentiability of tensors;
specifically in (transpose) convolutions and batch normal-
ization layers in evaluation mode. To overcome this, we
provide a drop-in implementation which takes into account
the differentiability of all tensors when storing the computa-
tion graph. Empirically, we demonstrated the effectiveness

5

Lowering PyTorch’s Memory Consumption for Selective Differentiation

of our approach to reduce memory in multiple selective
differentiation cases without affecting run time, on both
convolution- and attention-based architectures. Our method
is easy to use, requiring only a single call to a converter func-
tion that replaces all supported layers with our equivalents.
Next, we plan to study its impact on real-world applications,
such as parameter-efficient LLM fine-tuning with low-rank
adapters (Hu et al., 2022).

Acknowledgements
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring Vector Institute.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Bao, J., Behl, H., Benhaim, A., Bilenko, M., Bjorck, J.,
Bubeck, S., Cai, Q., Cai, M., Mendes, C. C. T., Chen, W.,
Chaudhary, V., Chen, D., Chen, D., Chen, Y.-C., Chen,
Y.-L., Chopra, P., Dai, X., Giorno, A. D., de Rosa, G.,
Dixon, M., Eldan, R., Fragoso, V., Iter, D., Gao, M.,
Gao, M., Gao, J., Garg, A., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Huynh, J., Javaheripi,
M., Jin, X., Kauffmann, P., Karampatziakis, N., Kim, D.,
Khademi, M., Kurilenko, L., Lee, J. R., Lee, Y. T., Li,
Y., Li, Y., Liang, C., Liden, L., Liu, C., Liu, M., Liu, W.,
Lin, E., Lin, Z., Luo, C., Madan, P., Mazzola, M., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,
Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma,
H., Shukla, S., Song, X., Tanaka, M., Tupini, A., Wang,
X., Wang, L., Wang, C., Wang, Y., Ward, R., Wang, G.,
Witte, P., Wu, H., Wyatt, M., Xiao, B., Xu, C., Xu, J.,
Xu, W., Yadav, S., Yang, F., Yang, J., Yang, Z., Yang,
Y., Yu, D., Yuan, L., Zhang, C., Zhang, C., Zhang, J.,
Zhang, L. L., Zhang, Y., Zhang, Y., Zhang, Y., and Zhou,
X. Phi-3 technical report: A highly capable language
model locally on your phone, 2024.

Chellapilla, K., Puri, S., and Simard, P. High performance
convolutional neural networks for document processing.
In International Workshop on Frontiers in Handwriting
Recognition, 2006.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M. W., and Gonzalez, J. E. Actnn: Reducing training
memory footprint via 2-bit activation compressed train-
ing. In International Conference on Machine Learning
(ICLR), 2021.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.

Rethinking atrous convolution for semantic image seg-
mentation, 2017.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016.

Chen, X., Wang, X., Beyer, L., Kolesnikov, A., Wu, J., Voigt-
laender, P., Mustafa, B., Goodman, S., Alabdulmohsin, I.,
Padlewski, P., Salz, D., Xiong, X., Vlasic, D., Pavetic, F.,
Rong, K., Yu, T., Keysers, D., Zhai, X., and Soricut, R.
Pali-3 vision language models: Smaller, faster, stronger,
2023a.

Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A.,
Padlewski, P., Salz, D., Goodman, S., Grycner, A.,
Mustafa, B., Beyer, L., Kolesnikov, A., Puigcerver, J.,
Ding, N., Rong, K., Akbari, H., Mishra, G., Xue, L.,
Thapliyal, A. V., Bradbury, J., Kuo, W., Seyedhosseini,
M., Jia, C., Ayan, B. K., Ruiz, C. R., Steiner, A. P., An-
gelova, A., Zhai, X., Houlsby, N., and Soricut, R. PaLI:
A jointly-scaled multilingual language-image model. In
The Eleventh International Conference on Learning Rep-
resentations, 2023b.

Dangel, F. J. Backpropagation beyond the gradient. 2023.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Gatys, L. A., Ecker, A. S., and Bethge, M. Image style
transfer using convolutional neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations (ICLR), 2015.

Griewank, A. and Walther, A. Evaluating derivatives:
principles and techniques of algorithmic differentiation.
SIAM, 2008.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023.

Gurram, S., Chan, D., Fang, A., and Canny, J. LAVA:
Language audio vision alignment for data-efficient video
pre-training. In First Workshop on Pre-training: Perspec-
tives, Pitfalls, and Paths Forward at ICML 2022, 2022.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems (NIPS), 1992.

6

Lowering PyTorch’s Memory Consumption for Selective Differentiation

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L., Tan,
M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam,
H., and Le, Q. Searching for mobilenetv3. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 1314–1324, Los Alamitos, CA, USA, nov
2019. IEEE Computer Society.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In International
Conference on Learning Representations (ICLR), 2022.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Quantized neural networks: Training neu-
ral networks with low precision weights and activations.
Journal of Machine Learning Research (JMLR), 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In International Conference on Machine Learning
(ICML), 2015.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023.

Lee, Y., Chen, A. S., Tajwar, F., Kumar, A., Yao, H., Liang,
P., and Finn, C. Surgical fine-tuning improves adapta-
tion to distribution shifts. In The Eleventh International
Conference on Learning Representations, 2023.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Gold-
stein, T. Training quantized nets: A deeper understand-
ing. Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. In NeurIPS, 2023.

Long, J., Shelhamer, E., and Darrell, T. Fully convolu-
tional networks for semantic segmentation. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3431–3440, Los Alamitos, CA, USA, jun
2015. IEEE Computer Society.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y.,
van Baalen, M., and Blankevoort, T. A white paper on
neural network quantization, 2021.

Oktay, D., McGreivy, N., Aduol, J., Beatson, A., and Adams,
R. P. Randomized automatic differentiation. In Interna-
tional Conference on Learning Representations (ICLR),
2021.

Pan, R., Liu, X., Diao, S., Pi, R., Zhang, J., Han, C., and
Zhang, T. Lisa: Layerwise importance sampling for
memory-efficient large language model fine-tuning, 2024.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F.,
Fox, E., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 8748–
8763. PMLR, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21
(140):1–67, 2020.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase, O.,
Yang, S., Zhang, M., Li, D., and He, Y. Zero-offload:
Democratizing billion-scale model training, 2021.

Ren, S., He, K., Girshick, R. B., and Sun, J. Faster R-CNN:
towards real-time object detection with region proposal
networks. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, Decem-
ber 7-12, 2015, Montreal, Quebec, Canada, pp. 91–99,
2015.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2018.

Shen, J., Marwah, T., and Talwalkar, A. Ups: Efficiently
building foundation models for pde solving via cross-
modal adaptation, 2024.

7

Lowering PyTorch’s Memory Consumption for Selective Differentiation

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 6105–6114. PMLR, 2019.

Tan, M. and Le, Q. V. Efficientnetv2: Smaller models
and faster training. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning
Research, pp. 10096–10106. PMLR, 2021.

Thompson, N. C., Greenewald, K., Lee, K., and Manso,
G. F. The computational limits of deep learning, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, pp. 5987–5995. IEEE Computer Society,
2017.

Zagoruyko, S., Price, W., Wan, J., and albanD.
torchviz, March 2019. URL https://github.com/
szagoruyko/pytorchviz.

Zhao, B., Tu, H., Wei, C., Mei, J., and Xie, C. Tuning
layernorm in attention: Towards efficient multi-modal
LLM finetuning. In International Conference on Learn-
ing Representations (ICLR), 2024.

Zhu, L., Hu, L., Lin, J., and Han, S. LIFT: Efficient layer-
wise fine-tuning for large model models, 2024.

8

https://github.com/szagoruyko/pytorchviz
https://github.com/szagoruyko/pytorchviz

Lowering PyTorch’s Memory Consumption for Selective Differentiation

A. Results on CNNs when BatchNorm layers are set to eval mode

Memory [GiB] Time [s]
case All Input Norm SurgicalFirst All Input Norm SurgicalFirst

DeepLabv3 (RN101) (Chen et al., 2017) 22.82 (1.00) 22.82 (1.00) 22.82 (1.00) 22.82 (1.00) 0.88 (1.00) 0.66 (0.75) 0.70 (0.79) 0.70 (0.79)
+ MemSave 24.90 (1.09) 4.28 (0.19) 15.17 (0.66) 8.40 (0.37) 0.90 (1.02) 0.69 (0.79) 0.72 (0.82) 0.73 (0.83)

EfficientNetv2-L (Tan & Le, 2019; 2021) 26.81 (1.00) 26.81 (1.00) 26.81 (1.00) 26.81 (1.00) 0.74 (1.00) 0.59 (0.79) 0.59 (0.80) 0.64 (0.86)
+ MemSave 26.81 (1.00) 10.45 (0.39) 18.64 (0.70) 17.31 (0.65) 0.75 (1.01) 0.58 (0.78) 0.59 (0.80) 0.66 (0.89)

FCN (RN101) (Long et al., 2015) 22.23 (1.00) 22.23 (1.00) 22.23 (1.00) 22.23 (1.00) 0.79 (1.00) 0.59 (0.75) 0.62 (0.79) 0.63 (0.80)
+ MemSave 24.39 (1.10) 4.26 (0.19) 15.15 (0.68) 7.99 (0.36) 0.81 (1.03) 0.63 (0.79) 0.65 (0.82) 0.67 (0.85)

Faster-RCNN (RN101) (Ren et al., 2015) 6.84 (1.00) 6.84 (1.00) 6.84 (1.00) 6.84 (1.00) 0.75 (1.00) 0.64 (0.84) 0.64 (0.85) 0.67 (0.88)
+ MemSave 7.31 (1.07) 1.98 (0.29) 4.79 (0.70) 4.19 (0.61) 0.74 (0.99) 0.63 (0.83) 0.63 (0.83) 0.66 (0.87)

MobileNetv3-L (Howard et al., 2019) 2.82 (1.00) 2.82 (1.00) 2.82 (1.00) 2.82 (1.00) 0.40 (1.00) 0.31 (0.78) 0.31 (0.78) 0.34 (0.86)
+ MemSave 2.96 (1.05) 0.87 (0.31) 1.91 (0.68) 2.10 (0.75) 0.39 (0.98) 0.31 (0.79) 0.31 (0.79) 0.35 (0.87)

ResNeXt101-64x4d (Xie et al., 2017) 15.15 (1.00) 15.15 (1.00) 15.15 (1.00) 15.15 (1.00) 0.62 (1.00) 0.48 (0.77) 0.50 (0.80) 0.53 (0.85)
+ MemSave 16.75 (1.11) 2.46 (0.16) 9.87 (0.65) 9.77 (0.64) 0.61 (0.99) 0.47 (0.77) 0.49 (0.79) 0.52 (0.84)

SSDLite (MobileNetv3-L) (Sandler et al., 2018) 0.54 (1.00) 0.53 (0.97) 0.53 (0.97) 0.53 (0.97) 0.62 (1.00) 0.56 (0.90) 0.52 (0.84) 0.57 (0.91)
+ MemSave 0.57 (1.04) 0.26 (0.48) 0.41 (0.75) 0.44 (0.82) 0.63 (1.02) 0.58 (0.93) 0.53 (0.86) 0.57 (0.92)

Table 5: GPU peak memory and run time comparison between PyTorch and our memory-saving layers for CNNs with
BatchNorm layers in eval mode. VGG-16 has been excluded here as it does not contain any BatchNorm layers.

B. Probing PyTorch Layers in the Presence of Selective Differentiation
Our experiments with a deep CNN of size-preserving convolutions from Figure 1 and Section 2.1 revealed that Py-
Torch’s 2d convolution layer stores its input tensor whenever it is differentiable, irrespective of the weight’s differentia-
bility. Here, we perform analogous experiments, but with other layers we suspect to exhibit similar behaviour. Specif-
ically, we consider layers whose forward pass is linear w.r.t. both the layer input and the layer weights. This includes
fully-connected layers (torch.nn.Linear), convolution layers (torch.nn.ConvNd), transpose convolution layers
(torch.nn.ConvTransposeNd), and batch normalization layers in evaluation mode (e.g. torch.nn.BatchNorm2d).

Layers are set up to preserve their input size and we feed mini-batches that require 512MiB storage in single precision:

• (512, 1024, 256) for torch.nn.Linear

• (4096, 8, 4096) for torch.nn.Conv1d and torch.nn.ConvTranspose1d

• (512, 8, 256, 256) for torch.nn.BatchNorm2d , torch.nn.Conv2d , and torch.nn.ConvTranspose2d

• (64, 8, 64, 64, 64) for torch.nn.Conv3d and torch.nn.ConvTranspose3d

Compared to the input and intermediate activations, the memory footprint of a layer’s weight is negligible:

• (256, 256) for torch.nn.Linear

• (8, 8, 3) for torch.nn.Conv1d and torch.nn.ConvTranspose1d

• (8) for torch.nn.BatchNorm2d

• (8, 8, 3, 3) for torch.nn.Conv2d and torch.nn.ConvTranspose2d

• (8, 8, 3, 3, 3) for torch.nn.Conv3d and torch.nn.ConvTranspose3d

Our results are summarized in Figure 3. We can see that PyTorch’s convolutions, transpose convolutions, and batch
normalization (in evaluation mode) are not agnostic to the differentiability of their weights. PyTorch’s fully-connected layer,
however, is already agnostic to the differentiability of its weights.

9

Lowering PyTorch’s Memory Consumption for Selective Differentiation

Training mode Evaluation mode

2 4 6 8 10

Number of layers

1000

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

1000

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

(a) torch.nn.Linear

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

(b) torch.nn.Conv1d

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

(c) torch.nn.Conv2d

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

(d) torch.nn.Conv3d

10

Lowering PyTorch’s Memory Consumption for Selective Differentiation

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

(e) torch.nn.ConvTranspose1d

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

(f) torch.nn.ConvTranspose2d

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully non-differentiable
Layer 4 differentiable
Layers 4+ differentiable
Fully differentiable
Layer 4 differentiable (ours)

(g) torch.nn.ConvTranspose3d

2 4 6 8 10

Number of layers

1000

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

2 4 6 8 10

Number of layers

1000

2000

3000

4000

5000

6000

Pe
ak

m
em

or
y

[M
iB

]

Fully differentiable
Fully non-differentiable
Layers 4+ differentiable
Layer 4 differentiable
Layer 4 differentiable (ours)

(h) torch.nn.BatchNorm2d

Figure 3: Probing different PyTorch layer’s for their awareness of parameter differentiability. (a) PyTorch’s nn.Linear

is agnostic to parameter differentiability. (b, c, d) PyTorch’s nn.ConvNd , (e, f, g) nn.ConvTransposeNd , and (h)
nn.BatchNorm2d in evaluation mode are not agnostic to parameter differentiability.

11

Lowering PyTorch’s Memory Consumption for Selective Differentiation

C. Diagrams showing the computation graph for elementary layers
In all the following figures, we show PyTorch’s behavior of saving tensors when they are not required. For all layers, the
Input case is shown.

The colors mean the following (taken from the torchviz package (Zagoruyko et al., 2019)):

blue A node representing the main operation being discussed

green A node representing any tensor

gray A node representing any other operations (i.e. View / AccumulateGrad etc.)

Tensors which are saved by the AD engine are marked as [saved tensor] , and they also have an undirected edge to the
main operation node.

C.1. Conv2d

 ()

SumBackward0

self_sym_sizes: (7, 5, 10, 10)

ConvolutionBackward0

bias_sym_sizes_opt: (5,)
dilation : (1, 1)
groups : 1
input : [saved tensor]
output_padding : (0, 0)
padding : (0, 0)
stride : (1, 1)
transposed : False
weight : [saved tensor]

input
 (7, 3, 12, 12)

weight
 (5, 3, 3, 3)

AccumulateGrad

PyTorch Conv2d - Input Case
Differentiable: Weights ×, Input ✓

Figure 4: Computation graphs of a convolution layer for the Input case. Even though the input is differentiable, PyTorch
saves it (as can be seen inside the ConvolutionBackward0 node - the input is of shape [7, 3, 12, 12]). MemSave
on the other hand, does not save the input.

12

Lowering PyTorch’s Memory Consumption for Selective Differentiation

C.2. Linear

 ()

SumBackward0

self_sym_sizes: (7, 12, 5)

ViewBackward0

self_sym_sizes: (84, 5)

AddmmBackward0

alpha : 1
beta : 1
mat1 : None
mat1_sym_sizes : (84, 3)
mat1_sym_strides: (3, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (3, 5)
mat2_sym_strides: ()

mat2
 (3, 5)

ViewBackward0

self_sym_sizes: (7, 12, 3)

AccumulateGrad

 (7, 12, 3)

PyTorch Linear - Input Case
Differentiable: Weights ×, Input ✓

Figure 5: Computation graphs of y = Wx+ b for the Input case. This visualization is interesting because these graphs
indicate that a linear layer does not save its input if the weight is marked non-differentiable, which is already the optimal
behaviour.

13

Lowering PyTorch’s Memory Consumption for Selective Differentiation

C.3. BatchNorm2d

Training Mode

 ()

SumBackward0

self_sym_sizes: (7, 3, 12, 12)

NativeBatchNormBackward0

eps : 1e-05
input : [saved tensor]
result1 : [saved tensor]
result2 : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training : True
weight : [saved tensor]

input
 (7, 3, 12, 12)

result1
 (3)

result2
 (3)

running_mean
 (3)

running_var
 (3)

weight
 (3)

AccumulateGrad

PyTorch BatchNorm - Input Case
Differentiable: Weights ×Input ✓

Figure 6: Computation graphs of y = W x−µ(x)√
σ2(x)+ϵ

+ b (i.e., BatchNorm in training mode) for the Input case.

Evaluation Mode

 ()

SumBackward0

self_sym_sizes: (7, 3, 12, 12)

NativeBatchNormBackward0

eps : 1e-05
input : [saved tensor]
result1 : [saved tensor]
result2 : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training : False
weight : [saved tensor]

input
 (7, 3, 12, 12)

result1
 (0)

result2
 (0)

running_mean
 (3)

running_var
 (3)

weight
 (3)

AccumulateGrad

PyTorch BatchNorm (eval mode) - Input Case
Differentiable: Weights ×Input ✓

Figure 7: Computation graphs of y = W x−µ̂√
σ̂2+ϵ

+ b (i.e., BatchNorm in eval mode) for the Input case. PyTorch also saves
the input, even though it is not required for calculating the input gradient. MemSave recognizes this and does not save the
input.

14

