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Abstract
Adversarial training (AT) trains models using
adversarial examples (AEs), which are natural
images modified with specific perturbations to
mislead the model. These perturbations are con-
strained by a predefined perturbation budget ϵ and
are equally applied to each pixel within an image.
However, in this paper, we discover that not all
pixels contribute equally to the accuracy on AEs
(i.e., robustness) and accuracy on natural images
(i.e., accuracy). Motivated by this finding, we
propose Pixel-reweighted AdveRsarial Training
(PART), a new framework that partially reduces
ϵ for less influential pixels, guiding the model
to focus more on key regions that affect its out-
puts. Specifically, we first use class activation
mapping (CAM) methods to identify important
pixel regions, then we keep the perturbation bud-
get for these regions while lowering it for the
remaining regions when generating AEs. In the
end, we use these pixel-reweighted AEs to train
a model. PART achieves a notable improvement
in accuracy without compromising robustness on
CIFAR-10, SVHN and TinyImagenet-200, justi-
fying the necessity to allocate distinct weights to
different pixel regions in robust classification.

1. Introduction
Since the discovery of adversarial examples (AEs) by
Szegedy et al. (2014), the security of deep learning models
has become an area of growing concern, especially in criti-
cal applications such as autonomous driving. For instance,
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Kumar et al. (2020) show that by adding imperceptible ad-
versarial noise, a well-trained model misclassifies a ‘Stop’
traffic sign as a ‘Yield’ traffic sign. To make sure the trained
model is robust to AEs, adversarial training (AT) stands out
as a representative defensive framework (Goodfellow et al.,
2015; Madry et al., 2018), which trains a model with gener-
ated AEs. Normally, AEs are crafted by intentionally adding
perturbations to the natural images, aiming to mislead the
model into making erroneous outputs.

In existing AT methods, e.g., AT (Madry et al., 2018),
TRADES (Zhang et al., 2019) and MART (Wang et al.,
2020), the magnitude of perturbations (for generating AEs)
is usually constrained by a predefined perturbation budget,
denoted as ϵ, and keeps the same on each pixel within an
image by assuming a ℓ∞-norm constraint. Based on a ℓ∞-
norm constraint, one AE can be generated by solving the
following constraint optimization problem:

max
∆

ℓ(f(x+∆), y), subject to ∥∆∥∞ ≤ ϵ, (1)

where ℓ is a loss function, f is a model, x ∈ Rd is a natural
image, y is the true label of x, ∆ ∈ [−ϵ, ϵ]d is the adversar-
ial perturbation added to x, ∥ · ∥∞ is the ℓ∞-norm, d is the
data dimension, and ϵ is the maximum allowed perturbation
budget. Let ∆∗ be the solution of the above optimization
problem, then x̃ = x + ∆∗ is the generated AE. Given
that ∥∆∥∞ ≤ ϵ, there is an implicit assumption in this AE
generation process: all pixels have the same perturbation
budget ϵ. We argue that this assumption may overlook the
fact that different pixel regions influence the model’s out-
puts differently (Geirhos et al., 2019; Brendel & Bethge,
2019; Hermann & Lampinen, 2020).

To the best of our knowledge, how the discrepancies of
pixels would affect image classification in AT (i.e., robust
classification) has not been well-investigated. Therefore,
it is natural to raise the following question: Are all pixels
equally important in robust classification?

In this paper, we mainly focus on ℓ∞-norm constraint (we
provide analysis on ℓ2-norm constraint in Appendix A). By
conducting a proof-of-concept experiment, we find that not
all pixels contribute equally to the accuracy on AEs (i.e., ro-
bustness) and accuracy on natural images (i.e., accuracy). In
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Figure 1. The proof-of-concept experiment. We find that fundamental discrepancies exist among different pixel regions. Specifically, we
segment each image into four equal-sized regions (i.e., ul, short for upper left; ur, short for upper right; br, short for bottom right; bl, short
for bottom left) and adversarially train two ResNet-18 (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) using AT (Madry et al.,
2018) with the same experiment settings except for the allocation of ϵ. The robustness is evaluated by ℓ∞-norm PGD-20 (Madry et al.,
2018). With the same overall perturbation budgets (i.e., allocate one of the regions to 6/255 and others to 12/255), we find that both
natural accuracy and adversarial robustness change significantly if the regional allocation on ϵ is different. For example, by changing
ϵbr = 6/255 to ϵul = 6/255, accuracy gains a 1.23% improvement and robustness gains a 0.94% improvement.

our experiment (see Figure 1), we segment images into four
equal regions and train two models with identical settings
except for how ϵ is allocated across these regions. To clearly
show the difference, we set ϵ = {6/255, 12/255}. The
variation in ϵ, while maintaining the same overall perturba-
tion budget, results in a notable increase in natural accuracy
(from 76.77% to 78%) and adversarial robustness (from
46.75% to 47.69%). This means changing the perturbation
budgets for different parts of an image has the potential to
boost accuracy and robustness at the same time.

Motivated by this finding, we propose a new framework
called Pixel-reweighted AdveRsarial Training (PART), to
partially lower ϵ for pixels that rarely influence the model’s
outputs, which guides the model to focus more on regions
where pixels are important for model’s outputs.

To implement PART, we need to understand how pixels
influence the model’s output first. There are several well-
known techniques to achieve this purpose, such as classifier-
agnostic methods (e.g., LIME (Ribeiro et al., 2016)) and
classifier-dependent methods (e.g., CAM, short for class
activation mapping (Selvaraju et al., 2017; Fu et al., 2020;
Jiang et al., 2021)). Given that classic AE generation pro-
cesses are fundamentally classifier-dependent (Goodfellow
et al., 2015; Madry et al., 2018), we use CAM methods
to identify the importance of pixels in terms of the influ-
ence on the model’s outputs in PART. Then, we propose a
Pixel-reweighted AE Generation (Pixel-AG) method. Pixel-
AG can keep the perturbation budget ϵ for important pixel
regions while lowering the perturbation budget from ϵ to

ϵlow for the remaining regions when generating AEs. In the
end, we can train a model with Pixel-AG-generated AEs by
using existing AT methods (e.g., AT (Madry et al., 2018),
TRADES (Zhang et al., 2019), and MART (Wang et al.,
2020)). To further understand PART, we theoretically ana-
lyze how perturbation budgets affect AE generation given
that features have unequal importance (see Section 3.3).

Through extensive evaluations on benchmark image datasets
such as CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer
et al., 2011) and TinyImagenet-200 (Wu, 2017), we demon-
strate the effectiveness of PART in Section 4.1. Specifi-
cally, combined with different AT methods (Madry et al.,
2018; Zhang et al., 2019; Wang et al., 2020), PART can
boost natural accuracy by a notable margin with little to
no degradation on adversarial robustness, and thus improve
accuracy-robustness trade-off. Rade & Moosavi-Dezfooli
(2022) emphasize that besides proposing defense methods
robust to adversarial attacks, the negative impact on accu-
racy from AT also warrants attention. Differing from most
AT methods, our method can effectively mitigate the neg-
ative impact on accuracy. Besides, PART is designed as a
general framework that can be effortlessly incorporated with
a variety of AT strategies (Madry et al., 2018; Zhang et al.,
2019; Wang et al., 2020), CAM methods (Selvaraju et al.,
2017; Fu et al., 2020; Jiang et al., 2021), and AE generation
methods (Madry et al., 2018; Gao et al., 2022).

To deeply understand the performance of PART, we take a
close look at the robust feature representations (see Figure 2).
By emphasizing the important pixel regions during training,
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we find that PART-based classifiers could indeed be guided
more towards leveraging semantic information in images
to make classification decisions. We treat this as an extra
advantage of PART, and this might be one of the key reasons
why our method can improve the accuracy-robustness trade-
off. We provide more qualitative results in Appendix B. We
summarize the main contributions of our work as follows:

• We find that different pixel regions contribute differ-
ently to robustness and accuracy in robust classification.
With the same total perturbation budget, allocating
varying budgets to different pixel regions can improve
robustness and accuracy at the same time.

• We propose a new framework of AT, namely Pixel-
reweighted AdveRsarial Training (PART) to guide the
model focusing more on regions where pixels are im-
portant for model’s output, leading to a better align-
ment with semantic information.

• We empirically show that, compared to the existing
defenses, PART achieves a notable improvement in
accuracy-robustness trade-off on CIFAR-10, SVHN
and TinyImagenet-200 against multiple adversarial at-
tacks, including adaptive attacks.

2. Preliminaries
Adversarial training. The basic idea behind AT (Madry
et al., 2018) is to train a model f with AEs generated from
the original training data. The objective function of AT is
defined as follows:

min
f∈F

1

n

n∑
i=1

ℓ(f(xi +∆∗
i ), yi),

where x̃i = xi + ∆∗
i is the most adversarial variant of

xi within the ϵ-ball centered at xi, ∆∗
i ∈ [−ϵ, ϵ]d is the

optimized adversarial perturbation added to xi, yi is the
true label of xi, ℓ is a loss function, and F is the set of all
possible neural network models.

The ϵ-ball is defined as Bϵ[x] = {x′|∥x − x′∥∞ ≤ ϵ},
where ∥ · ∥∞ is the ℓ∞ norm. The most adversarial variant
of xi within the ϵ-ball is commonly obtained by solving
the constrained optimization problem in Eq. (1) using PGD
(Madry et al., 2018):

x̃
(t+1)
i = x̃

(t)
i + clip(x̃(t)

i

+ α · sign(∇
x̃
(t)
i
ℓ(f(x̃

(t)
i ), yi))− xi,−ϵ, ϵ), (2)

where x̃
(t)
i is the AE at iteration t, α is the step size, sign(·)

is the sign function, and clip(·,−ϵ, ϵ) is the clip function
that projects the adversarial perturbation back into the ϵ-ball,
i.e., ∆∗

i ∈ [−ϵ, ϵ]d.

   AT                TRADES            MART

  PART              PART-T          PART-M

Figure 2. AT-based classifiers (the first row) vs. PART-based classi-
fiers (the second row). The heatmaps are visualized by GradCAM
(Selvaraju et al., 2017). In these heatmaps, a shift towards deeper
red signifies a greater contribution to classification. This gradation
in hue visually emphasizes the most influential pixel regions to
the classification results. We find that PART-based methods could
indeed be guided more towards leveraging semantic information
in images (e.g., the horse) to make classification decisions.

Class activation mapping. Vanilla CAM (Zhou et al., 2016)
is designed for producing visual explanations of decisions
made by Convolutional Neural Networks (CNNs) by com-
puting a coarse localization map highlighting important re-
gions in an image for predicting a concept. GradCAM (Sel-
varaju et al., 2017) improves upon CAM by using the gra-
dient information flowing into the last convolutional layer
of the CNN to assign importance values to each neuron.
Specifically, let Ak ∈ Ru×v of width u and height v for any
class c be the feature map obtained from the last convolu-
tional layer of the CNN, and let Yc be the score for class c.
GradCAM computes the gradient of Yc with respect to the
feature map Ak, which can be defined as follows:

αc,k =
1

Z

∑
i

∑
j

∂Yc

∂Ak,ij
,

where Z is a normalization constant. GradCAM then pro-
duces the class activation map Lc for class c by computing
the weighted combination of feature maps:

Lc = ReLU(
∑
k

αc,kAk).

In this paper, we mainly use GradCAM to identify the impor-
tance of the pixel regions since we find that the performance
of PART with different CAM methods barely changes.

3. Pixel-reweighted Adversarial Training
In this paper, we find that not all pixels contribute equally
to the robustness and accuracy by conducting a proof-of-
concept experiment. According the Figure 1, given the same
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Figure 3. An overview of the training procedure for PART. Compared to AT, PART leverages the power of CAM methods to identify
important pixel regions. Based on the class activation map, we element-wisely multiply a mask to the perturbation to keep the perturbation
budget ϵ for important pixel regions while shrinking it to ϵlow for their counterparts during the generation process of AEs.

overall perturbation budgets (i.e., allocate one of the regions
to 6/255 and others to 12/255), we find that both natural ac-
curacy and adversarial robustness change significantly if the
regional allocation on ϵ is different. For example, by chang-
ing ϵbr = 6/255 to ϵul = 6/255, accuracy gains a 1.23%
improvement and robustness gains a 0.94% improvement.
This means changing the perturbation budgets for different
parts of an image has the potential to boost robustness and
accuracy at the same time. Motivated by this finding, we
propose a new framework, Pixel-reweighted AdveRsarial
Training (PART), to partially reduce ϵ for less influential
pixels, guiding the model to focus more on key regions that
affect its outputs. In this section, we begin by introducing
the learning objective of PART and its empirical implemen-
tation. This will be followed by a theoretical analysis and a
comparative discussion with related work.

3.1. Learning Objective of PART

Compared to the existing AT framework, PART will focus
on generating AEs whose perturbation budget of each pixel
may be different. Thus, we will first introduce the generation
process of AEs within PART, and then conclude the learning
objective of PART. For convenience, we provide a detailed
description of notations in Appendix C.

AE generation process. Compared to Eq. (1), the constraint
optimization problem (for generating AEs in PART) will be:

max
∆

ℓ(f(x+∆), y), subject to

∥v(∆, Ihigh)∥∞ ≤ ϵ, ∥v(∆, I low)∥∞ ≤ ϵlow, (3)

where ϵlow < ϵ, ∆ = [δ1, . . . , δd], Ihigh collect indexes
of important pixels, I low = [d]/Ihigh, and v is a func-
tion to transform a set (e.g., a set consisting of impor-
tant pixels in ∆: {δi}i∈Ihigh) to a vector. Then, ∆high

consists of {δi}i∈Ihigh , and ∆low consists of {δi}i∈Ilow .
∆high ∈ [−ϵ, ϵ]dhigh

is the adversarial perturbation added
to important pixel regions with dimension dhigh, ∆low ∈
[−ϵlow, ϵlow]dlow

is the adversarial perturbation added to
the remaining regions with dimension dlow, where dhigh =
|Ihigh| and dlow = |I low|. A higher value of dhigh means
that more pixels are regarded as important ones.

Learning objective. Given a training set {xi, yi}ni=1, a loss
function ℓ, a function space F , and the largest perturbation
budget ϵ, the PART-based algorithms should have the same
learning objective as AT-based algorithms:

min
f∈F

1

n

n∑
i=1

ℓ(f(xi +∆∗
i ), yi), (4)

where ∆∗
i = argmax∆ ℓ(f(xi + ∆), yi), subject to

∥v(∆, Ihigh)∥∞ ≤ ϵ, ∥v(∆, I low)∥∞ ≤ ϵlow.

Despite the same objective function, the constraint of PART
is clearly different from AT-based methods. In the following
subsection, we will introduce how to achieve the above
learning objective via an empirical method.

3.2. Realization of PART

We provide a visual illustration of the training procedure
for PART using CAM methods in Figure 3 and detailed
algorithmic descriptions in Appendix D.
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Pixel-reweighted AE generation (Pixel-AG). The con-
straint optimization problem Eq. (3) implies that the overall
perturbation ∆ consists of two parts: perturbation added to
important pixel regions, i.e., ∆high and perturbation added
to their counterparts, i.e., ∆low.

To generate AEs with appropriate ∆high and ∆low, we
propose a method called Pixel-reweighted AE Generation
(Pixel-AG). Pixel-AG employs CAM methods to differen-
tiate between important pixel regions and their counter-
parts. Take GradCAM as an example: once we compute
the class activation map Lc from Eq. (3), Pixel-AG first
resizes Lc to L′

c to match the dimensions d of a natural
image x = [x1, ..., xd], i.e., L′

c ∈ Rd. Then it scales L′
c

to L̃c to make sure the pixel regions highlighted by Grad-
CAM have a weight value ω > 1. Let L̃c = [ω1, ..., ωd]
and ∆ = [δ1, ..., δd] consists of ∆high and ∆low. Then,
for any i ∈ [d], we define δi ∈ ∆high if ωi > 1 and
δi ∈ ∆low otherwise, subject to ∥v(∆, Ihigh)∥∞ ≤ ϵ and
∥v(∆, I low)∥∞ ≤ ϵlow.

Technically, this is equivalent to element-wisely multiply a
mask m = [m1, ...,md] to a ∆ constraint by ∥∆∥∞ ≤ ϵ,
where each element of m is defined as:

mi =

{
1 if ωi > 1

ϵlow/ϵ otherwise
.

Let ∆∗ be the optimal solution of ∆, then x̃ = x+∆∗ is
the AE generated by Pixel-AG, which can be obtained by
solving Eq. (4) using an adapted version of Eq. (2):

x̃
(t+1)
i = x̃

(t)
i +m⊙ clip(x̃(t)

i

+ α · sign(∇
x̃
(t)
i
ℓ(f(x̃

(t)
i ), yi))− xi,−ϵ, ϵ),

where⊙ is the Hadamard product. By doing so, we element-
wisely multiply a mask m to the perturbation to keep the per-
turbation budget ϵ for important pixel regions while shrink-
ing it to ϵlow for their counterparts.

How to select ϵlow. Given that the value of ϵlow is designed
to be a small number (e.g., 6/255) and the computational
cost of AT is expensive, we do not apply any algorithms
to search for an optimal ϵlow to avoid introducing extra
training time to our framework. Instead, we directly set
ϵlow = ϵ − 1/255 by default. Without losing generality,
we thoroughly investigate the impact of different values
of ϵlow on the robustness and accuracy of our method (see
Section 4.1). Designing an efficient searching algorithm for
ϵ remains an open question, and we leave it as future work.

Burn-in period. To improve the effectiveness of PART, we
integrate a burn-in period into our training process. Specifi-
cally, we use AT as a warm-up at the early stage of training.
Then, we incorporate Pixel-AG into PART for further train-
ing. This is because the classifier is not properly learned

initially, and thus may badly identify pixel regions that are
important to the model’s output. By default, we set the
burn-in-period of PART to be the initial 20 epochs.

Integration with other methods. The innovation on the
AE generation allows PART to be orthogonal to many AT
methods (e.g., AT (Madry et al., 2018), TRADES (Zhang
et al., 2019) and MART (Wang et al., 2020)), and thus PART
can be easily integrated into these methods. Moreover, the
constraint optimization problem in Eq. (4) is general and
can be addressed using various existing algorithms, such
as PGD (Madry et al., 2018) and MMA (Gao et al., 2022).
Besides, many CAM methods can be used as alternatives
to GradCAM, such as XGradCAM (Fu et al., 2020) and
LayerCAM (Jiang et al., 2021). Therefore, the compatibility
of PART allows itself to serve as a general framework.

3.3. How ϵ Affect the Generation of AEs

In this subsection, we study a toy setting to shed some light
on how pixels with different levels of importance would
affect the generated AEs. The proof of Lemma 3.1 and
Theorem 3.2 can be found in Appendix F.

Consider a 2D data point x = [x1, x2]
T with label y and

an adversarial perturbation ∆ = [δ1, δ2]
T that is added to

x with δ1 ∈ [−ϵ1, ϵ1] and δ2 ∈ [−ϵ2, ϵ2], where ϵ1 and ϵ2
are maximum allowed perturbation budgets for δ1 and δ2,
respectively. Let ℓ be a differentiable loss function and f
be the model, The constraint optimization problem (used to
generate AEs) can be formulated as follows:

max
∆=[δ1,δ2]T

ℓ(f(x+∆), y),

subject to − ϵ1 ≤ δ1 ≤ ϵ1, (5)
− ϵ2 ≤ δ2 ≤ ϵ2.

Then, based on the Karush–Kuhn–Tucker (KKT) conditions
(Avriel, 2003) for constraint optimization problems, we can
analyze the solutions to the above problem as follows.

Lemma 3.1. Let δ∗1 and δ∗2 be the optimal solutions of
Eq. (5). The generated AEs can be categorized into three
cases: (i) The expressions of δ∗1 and δ∗2 do not contain ϵ1
and ϵ2. (ii) δ∗1 = ±ϵ1 and δ∗2 = ±ϵ2. (iii) δ∗1 = ±ϵ1 and δ∗2
is influenced by ϵ1, or vise versa.

From Lemma 3.1, we know that the generated AEs must be
within these cases, as KKT provides necessary conditions
that δ∗1 and δ∗2 must satisfy. Nevertheless, for different mod-
els, the solutions are different. Here we focus on the impact
on linear models. Specifically, we consider a linear model
f(x) = ω1x1+ω2x2+b for this problem, where ω1 and ω2

are the weights for pixels x1 and x2 respectively. It is clear
that x1 will significantly influence f(x) more compared to
x2 if w1 is larger than w2. For simplicity, we use a square
loss, which can be expressed as ℓ(f(x), y) = (y − f(x))2.
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Then, we solve Eq. (5) by the Lagrange multiplier method
and show the results in Theorem 3.2.

Theorem 3.2. Consider a linear model f(x) = ω1x1 +
ω2x2 + b and a square loss ℓ(f(x), y) = (y − f(x))2. Let
δ∗1 and δ∗2 be the optimal solutions of Eq. (5). For case (iii)
in Lemma 3.1, we have:

δ∗2 =
y − f(x)− ω1ϵ1

ω2
, subject to δ∗1 = ϵ1,

δ∗2 =
y − f(x) + ω1ϵ1

ω2
, subject to δ∗1 = −ϵ1,

δ∗1 =
y − f(x)− ω2ϵ2

ω1
, subject to δ∗2 = ϵ2,

δ∗1 =
y − f(x) + ω2ϵ2

ω1
, subject to δ∗2 = −ϵ2.

From Theorem 3.2, the main takeaway is straightforward: If
two pixels have different influences on the model’s predic-
tions, it will affect the generation process of AEs, leading
to different solutions of the optimal δ∗. Thus, it probably
influences the performance of AT.

Remark. Note that, we do not cover how different levels
of pixel importance would affect the performance of AT.
This is because, during AT, the generated AEs are highly
correlated, making the training process quite complicated
to analyze in theory. According to recent developments
regarding learning with dependent data (Dagan et al., 2019),
we can only expect generalization when weak dependence
exists in training data. However, after the first training
epoch in AT, the model already depends on all training data,
meaning that the generated AEs in the following epochs are
probably highly dependent on each other. Thus, we leave
this as our future work.

3.4. Comparisons with Related Work

We briefly review related work of our method here, and a
more detailed version can be found in Appendix E.

Reweighted adversarial training. The idea of using
reweighted AT has been studied in the literature. For ex-
ample, Cai et al. (2018) reweights adversarial data with dif-
ferent PGD iterations K. Wang et al. (2019) reweights the
adversarial data with different convergence qualities. More
recently, Ding et al. (2020) proposes to reweight adversar-
ial data with instance-dependent perturbation bounds ϵ and
Zhang et al. (2021) proposes a geometry-aware instance-
reweighted AT framework (GAIRAT) that assigns different
weights to adversarial loss based on the distance of data
points from the class boundary. Wang et al. (2021) further
improves upon GAIRAT, which proposes to use probabilis-
tic margins to reweight AEs since they are continuous and

path-independent. Our proposed method is fundamentally
different from the existing methods. Existing reweighted
AT methods primarily focus on instance-based reweighting,
wherein each data instance is treated distinctly. PART pio-
neers a pixel-based reweighting strategy, which allows for
distinct treatment of pixel regions within each instance.

Adversarial defenses with attention heatmap. The idea of
leveraging attention heatmap to defend against adversarial
attacks has also been studied in the literature. For exam-
ple, Ross & Doshi-Velez (2018) shows that regularizing the
gradient-based attribution maps can improve model robust-
ness. Zhou et al. (2021) proposes to use class activation
features to remove adversarial noise. Specifically, it crafts
AEs by maximally disrupting the class activation features
of natural examples and then trains a denoising model to
minimize the discrepancies between the class activation fea-
tures of natural and AEs. This method can be regarded as an
adversarial purification method, which purifies adversarial
examples towards natural examples. Our method is techni-
cally different since PART is based on the AT framework.
Our method aims to train a robust model by allocating vary-
ing perturbation budgets to different pixel regions according
to their importance to the classification decisions. The idea
of PART is general and CAM methods only serve as a tool
to identify influential pixel regions.

4. Experiments
We demonstrate the main experiment results in this sec-
tion. More experiment details can be found in Appendix
G and more experiment results can be found in Appendix
H. The code can be found in https://github.com/
tmlr-group/PART.

4.1. Experiment Settings

Dataset. We evaluate the effectiveness of PART mainly
on three benchmark datasets, i.e., CIFAR-10 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011) and TinyImagenet-
200 (Wu, 2017). CIFAR-10 comprises 50,000 training and
10,000 test images, distributed across 10 classes. SVHN
has 10 classes but consists of 73,257 training and 26,032
test images. To test the performance of our method on
large-scale datasets, we follow Zhou et al. (2022) and adopt
TinyImagenet-200, which extends the complexity by offer-
ing 200 classes, containing 100,000 training, 10,000 val-
idation, and 10,000 test images. For the target models,
following the idea in Zhou et al. (2023), we use ResNet (He
et al., 2016) for CIFAR-10 and SVHN, and WideResNet
(Zagoruyko & Komodakis, 2016) for TinyImagenet-200.
Besides, we also evaluate the generalization ability of PART
on CIFAR-10-C (Hendrycks & Dietterich, 2019), which is
a modification of the original CIFAR-10 by applying 19
different types of common corruptions.
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Table 1. Robustness (%) and accuracy (%) of defense methods on CIFAR-10, SVHN and TinyImagenet-200. We use s to denote the save
frequency of the mask m. We report the averaged results and standard deviations of three runs. We show the most successful defense in
bold. The performance improvements and degradation are reported in green and red numbers.

Dataset Method Natural PGD-20 MMA AA

ResNet-18

CIFAR-10

AT 82.58 ± 0.14 43.69 ± 0.28 41.80 ± 0.10 41.63 ± 0.22
PART (s = 1) 83.42 ± 0.26 (+ 0.84) 43.65 ± 0.16 (- 0.04) 41.98 ± 0.03 (+ 0.18) 41.74 ± 0.04 (+ 0.11)
PART (s = 10) 83.77 ± 0.15 (+ 1.19) 43.36 ± 0.21 (- 0.33) 41.83 ± 0.07 (+ 0.03) 41.41 ± 0.14 (- 0.22)

TRADES 78.16 ± 0.15 48.28 ± 0.05 45.00 ± 0.08 45.05 ± 0.12
PART-T (s = 1) 79.36 ± 0.31 (+ 1.20) 48.90 ± 0.14 (+ 0.62) 45.90 ± 0.07 (+ 0.90) 45.97 ± 0.06 (+ 0.92)
PART-T (s = 10) 80.13 ± 0.16 (+ 1.97) 48.72 ± 0.11 (+ 0.44) 45.59 ± 0.09 (+ 0.59) 45.60 ± 0.04 (+ 0.55)

MART 76.82 ± 0.28 49.86 ± 0.32 45.42 ± 0.04 45.10 ± 0.06
PART-M (s = 1) 78.67 ± 0.10 (+ 1.85) 50.26 ± 0.17 (+ 0.40) 45.53 ± 0.05 (+ 0.11) 45.19 ± 0.04 (+ 0.09)
PART-M (s = 10) 80.00 ± 0.15 (+ 3.18) 49.71 ± 0.12 (- 0.15) 45.14 ± 0.10 (- 0.28) 44.61 ± 0.24 (- 0.49)

ResNet-18

SVHN

AT 91.06 ± 0.24 49.83 ± 0.13 47.68 ± 0.06 45.48 ± 0.05
PART (s = 1) 93.14 ± 0.05 (+ 2.08) 50.34 ± 0.14 (+ 0.51) 48.08 ± 0.09 (+ 0.40) 45.67 ± 0.13 (+ 0.19)
PART (s = 10) 93.75 ± 0.07 (+ 2.69) 50.21 ± 0.10 (+ 0.38) 48.00 ± 0.14 (+ 0.32) 45.61 ± 0.08 (+ 0.13)

TRADES 88.91 ± 0.28 58.74 ± 0.53 53.29 ± 0.56 52.21 ± 0.47
PART-T (s = 1) 91.35 ± 0.11 (+ 2.44) 59.33 ± 0.22 (+ 0.59) 54.04 ± 0.16 (+ 0.75) 53.07 ± 0.67 (+ 0.86)
PART-T (s = 10) 91.94 ± 0.18 (+ 3.03) 59.01 ± 0.13 (+ 0.27) 53.80 ± 0.20 (+ 0.51) 52.61 ± 0.24 (+ 0.40)

MART 89.76 ± 0.08 58.52 ± 0.53 52.42 ± 0.34 49.10 ± 0.23
PART-M (s = 1) 91.42 ± 0.36 (+ 1.66) 58.85 ± 0.29 (+ 0.33) 52.45 ± 0.03 (+ 0.03) 49.92 ± 0.10 (+ 0.82)
PART-M (s = 10) 93.20 ± 0.22 (+ 3.44) 58.41 ± 0.20 (- 0.11) 52.18 ± 0.14 (- 0.24) 49.25 ± 0.13 (+ 0.15)

WideResNet-34-10

TinyImagenet-200

AT 43.51 ± 0.13 11.70 ± 0.08 10.66 ± 0.11 10.53 ± 0.14
PART (s = 1) 44.87 ± 0.21 (+ 1.36) 11.93 ± 0.16 (+ 0.23) 10.96 ± 0.12 (+ 0.30) 10.76 ± 0.06 (+ 0.23)
PART (s = 10) 45.59 ± 0.14 (+ 2.08) 11.81 ± 0.10 (+ 0.11) 10.91 ± 0.08 (+ 0.25) 10.68 ± 0.10 (+ 0.15)

TRADES 43.05 ± 0.15 13.86 ± 0.10 12.62 ± 0.16 12.55 ± 0.09
PART-T (s = 1) 44.31 ± 0.12 (+ 1.26) 14.08 ± 0.22 (+ 0.22) 13.01 ± 0.09 (+ 0.39) 12.84 ± 0.14 (+ 0.29)
PART-T (s = 10) 45.16 ± 0.10 (+ 2.11) 13.98 ± 0.15 (+ 0.12) 12.88 ± 0.12 (+ 0.26) 12.72 ± 0.08 (+ 0.17)

MART 42.68 ± 0.22 14.77 ± 0.18 13.58 ± 0.13 13.42 ± 0.16
PART-M (s = 1) 43.75 ± 0.24 (+ 1.07) 14.93 ± 0.15 (+ 0.16) 13.76 ± 0.06 (+ 0.18) 13.68 ± 0.13 (+ 0.24)
PART-M (s = 10) 45.02 ± 0.16 (+ 2.34) 14.65 ± 0.14 (- 0.12) 13.41 ± 0.11 (- 0.17) 13.37 ± 0.15 (- 0.05)

Attack settings. We mainly use three adversarial attacks
to evaluate the performances of defenses. They are ℓ∞-
norm PGD (Madry et al., 2018), ℓ∞-norm MMA (Gao et al.,
2022) and ℓ∞-norm AA (Croce & Hein, 2020a). Among
them, AA is a combination of three non-target white-box
attacks (Croce & Hein, 2020b) and one targeted black-box
attack (Andriushchenko et al., 2020). Recently proposed
MMA (Gao et al., 2022) can achieve comparable perfor-
mance to AA but is much more time efficient. The iteration
number for PGD is set to 20 (Zhou et al., 2023), and the
target selection number for MMA is set to 3 (Gao et al.,
2022), respectively. For AA, we use the same setting as
RobustBench (Croce et al., 2020). For all attacks, we set the
maximuim allowed perturbation budget ϵ to 8/255.

Defense settings. Following Zhou et al. (2022), we use three
representative AT methods as the baselines: AT (Madry
et al., 2018) and two optimized AT methods TRADES
(Zhang et al., 2019) and MART (Wang et al., 2020). We set
λ = 6 for both TRADES and MART. For all baseline meth-
ods, we use the ℓ∞-norm non-targeted PGD-10 with random
start to craft AEs in the training stage. We set ϵ = 8/255

for all datasets, and ϵlow = 7/255 for our method. All
the defense models are trained using SGD with a momen-
tum of 0.9. We set the initial learning rate to 0.01 with
batch size 128 for CIFAR-10 and SVHN. To save time, we
set the initial learning rate to 0.02 with batch size 512 for
TinyImagenet-200 (Gao et al., 2022; Zhou et al., 2023). We
run all the methods for 80 epochs and divide the learning
rate by 10 at epoch 60 to avoid robust overfitting (Rice et al.,
2020). We set the initial 20 epochs to be the burn-in period.

4.2. Performance Evaluation and Analysis

Defending against general attacks. From Table 1, the re-
sults show that our method can notably improve the natural
accuracy with little to no degradation in adversarial robust-
ness compared to AT. Despite a marginal reduction in robust-
ness by 0.04% on PGD-20, PART gains more on natural ac-
curacy (e.g., 2.08% on SVHN and 1.36% on TinyImagenet-
200). In most cases, PART can improve natural accuracy
and robustness simultaneously. To avoid the bias caused
by different AT methods, we apply the optimized AT meth-
ods TRADES and MART to our method (i.e., PART-T and
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Table 2. Robustness (%) of defense methods against adaptive PGD on CIFAR-10. We set the save frequency of the mask m to be 1. We
report the averaged results and standard deviations of three runs. We show the most successful defense in bold.

ResNet-18

Dataset Method Adaptive PGD-20 Adaptive PGD-40 Adaptive PGD-60 Adaptive PGD-80 Adaptive PGD-100

CIFAR-10

AT 37.67 ± 0.05 36.98 ± 0.03 36.86 ± 0.07 36.81 ± 0.04 36.72 ± 0.04
PART 37.73 ± 0.11 37.07 ± 0.08 36.89 ± 0.12 36.84 ± 0.10 36.84 ± 0.07

TRADES 43.42 ± 0.13 43.22 ± 0.11 43.19 ± 0.12 43.10 ± 0.08 43.08 ± 0.06
PART-T 43.98 ± 0.15 43.75 ± 0.09 43.73 ± 0.06 43.68 ± 0.10 43.61 ± 0.03

MART 44.60 ± 0.09 44.19 ± 0.14 44.05 ± 0.13 43.98 ± 0.05 43.96 ± 0.08
PART-M 44.96 ± 0.21 44.51 ± 0.17 44.41 ± 0.12 44.37 ± 0.06 44.35 ± 0.09

PART-M). Compared to TRADES and MART, our method
can still boost natural accuracy (e.g., 1.20% on CIFAR-
10, 2.44% on SVHN and 1.26% on TinyImagenet-200 for
PART-T, and 1.85% on CIFAR-10, 1.66% on SVHN and
1.07% on TinyImagenet-200) with at most a 0.10% drop
in robustness, and thus our method can achieve a better
accuracy-robustness trade-off. Notably, even when s = 10,
PART-based methods consistently improve the accuracy-
robustness trade-off. For example, on CIFAR-10, despite a
0.49% drop in AA accuracy for PART-M, there is a 3.18% in-
crease in natural accuracy, resulting in a net gain of +2.69%.

Defending against adaptive attacks. Adaptive attacks as-
sume attackers have all the knowledge about the proposed
method, e.g., model architectures, model parameters, and
how AEs are generated in PART. As a result, attackers can
design a specific attack to break PART (Athalye et al., 2018).
Given the details of Pixel-AG, we design an adaptive attack
that aims to misguide the model to focus on pixel regions
that have little contribution to the correct classification re-
sults, and thus break the defense. Technically, this is equiv-
alent to breaking what a robust model currently focuses
on. Specifically, we use Pixel-AG with PGD to craft AEs,
with an increased ϵlow of 8/255 and ϵ of 12/255. As shown
in Table 2, despite an overall decrease in robustness, our
defense presents a better resilience against adaptive attacks
compared to other baseline methods. We provide more re-
sults against adaptive MMA in Appendix H.1 and find that
our method can consistently outperform baseline methods.

Defending against common corruptions. We examine the
generalizability of PART by comparing our method with
other baseline methods on the CIFAR-10-C, which intro-
duces a variety of real-world corruptions such as noise,
blur, weather, and digital distortions. Our findings indicate
that PART-based methods consistently outperform AT-based
methods, demonstrating a significant improvement in do-
main generalization accuracy. This improvement highlights
the robustness of PART in handling various types of corrup-
tion that the model may encounter in real-world scenarios.
Detailed experimental results are provided in Appendix H.2.

Possibility of obfuscated gradients. We consider the five
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Figure 4. Impact of ϵlow on robustness and accuracy of PART.
Left: ϵ = 12/255 and ϵlow ∈ {11/255, 10/255, 9/255, 8/255}.
Right: ϵ = 8/255, and ϵlow ∈ {7/255, 6/255, 5/255, 4/255}.
Solid lines represent the performance of PART (s = 1), and dashed
lines represent the performance of AT. We report the averaged
results and standard deviations (i.e., shaded areas) of three runs.

behaviours listed in Athalye et al. (2018) to identify the
obfuscated gradients and results show that our method does
not cause obfuscated gradients (see Appendix H.3).

4.3. Ablation Studies

Hyperparameter analysis. We examined how the hyper-
parameter ϵlow influences our method’s performance. Two
experiment sets were conducted: first with ϵ = 12/255
and ϵlow ranging from 11/255 to 8/255, and second with
ϵ = 8/255 and ϵlow ranging from 7/255 to 4/255. Results
in Figure 4 show that lower ϵlow will lead to a slight drop
in robustness with more gains in natural accuracy, and thus
improve the robustness-accuracy trade-off. Notably, we find
that with a relatively large ϵ, moderately decrease ϵlow leads
to significant accuracy gains without affecting robustness
(e.g., ϵlow = 11/255 or 10/255 when ϵ = 12/255).

Integration with other AE generation methods. We eval-
uate the effectiveness of our method by incorporating Pixel-
AG into a more destructive attack, i.e., MMA (Gao et al.,
2022) to generate AEs. With MMA, the performance of
PART can be further boosted. (see Appendix H.4).

Integration with other CAM methods. To avoid potential
bias caused by different CAM methods, we conduct experi-
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ments to compare the performance of PART with different
CAM methods such as GradCAM (Selvaraju et al., 2017),
XGradCAM (Fu et al., 2020) and LayerCAM (Jiang et al.,
2021). We find that these state-of-the-art CAM methods
have approximately identical performance (see Appendix
H.5). Thus, we argue that the performance of PART is barely
affected by the choice of benchmark CAM methods.

Impact of attack iterations on PART. We investigate the
impact of attack iterations on PART-based methods and
find that attack iterations barely affect the performance of
PART-based methods (see Appendix H.6).

4.4. Scalability and Applicability

Scalability of PART. As for whether our method can be
scaled up or not, we find that it might be helpful to analyze
if the algorithm running complexity will linearly increase
when linearly increasing the number of samples or data
dimensions. We find that our method can be scaled up and
provide a detailed analysis in Appendix H.7.

Applicability of PART. We provide a detailed discussion on
PART’s applicability, including for untargeted attacks and
beyond CNNs to Vision Transformers (ViTs) in Appendix
H.8. Specifically, although CAM requires a target class,
it will not affect the applicability of PART-based methods.
Furthermore, we find that our idea has the potential to apply
to ViTs. However, adversarially train a ViT is resource-
consuming and we leave this as future work. In general,
PART serves as a general idea rather than a specific method,
and CAM is used as one of the tools to realize our idea.

4.5. Training Speed and Memory Consumption

The use of CAM methods will inevitably bring some extra
cost. Luckily, we find that updating the mask m for every
10 epochs can effectively mitigate this problem. We use s
to denote the save frequency of the mask m. For example,
PART (s = 10) means we update m for every 10 epochs. We
compare the training speed and the memory consumption of
our method to different baseline methods in Appendix H.9.

5. Conclusion
We find that different pixel regions contribute unequally to
robustness and accuracy. Motivated by this finding, we pro-
pose a new framework called Pixel-reweighted AdveRsarial
Training (PART). PART partially reduces the perturbation
budget for pixel regions that rarely influence the classifica-
tion results, which guides the classifier to focus more on the
essential part of images, leading to a notable improvement in
accuracy-robustness trade-off. In general, we hope this sim-
ple yet effective framework could open up a new perspective
in AT and lay the groundwork for advanced defenses that
account for the discrepancies across pixel regions.
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A. Learning deep features for discriminative localization.
In CVPR, 2016.

Zhou, D., Wang, N., Peng, C., Gao, X., Wang, X., Yu, J.,
and Liu, T. Removing adversarial noise in class activation
feature space. In ICCV, 2021.

Zhou, D., Wang, N., Han, B., and Liu, T. Modeling adver-
sarial noise for adversarial training. In ICML, 2022.

Zhou, D., Wang, N., Yang, H., Gao, X., and Liu, T. Phase-
aware adversarial defense for improving adversarial ro-
bustness. In ICML, 2023.

11

https://api.semanticscholar.org/CorpusID:212697711
https://api.semanticscholar.org/CorpusID:212697711
https://api.semanticscholar.org/CorpusID:212697711


Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training

A. Perturbations with ℓ2-norm Constraint
When discussing perturbations with ℓ2-norm constraint, it’s not accurate to assume each pixel has the same perturbation
budget ϵ. This is because compared to a ℓ∞-norm constraint, the entire perturbation ∆ is subject to a global bound, rather
than each dimension having an identical perturbation budget. Let the dimension of a natural image x be d. For a perturbation
∆ = [δ1, ..., δd], we have:

∥∆∥2 =
√
δ21 + δ22 + ...+ δ2d ≤ ϵ, (6)

where ϵ is the maximum allowed perturbation budget. By Eq. (6), δi is not necessarily less than or equal to ϵ, e.g., certain
elements might undergo minimal perturbations approaching 0, while others might be more significantly perturbed, as long
as the entire vector’s ℓ2-norm remains under ϵ.

Thus, in this paper, the assumption that all pixels have the same perturbation budget ϵ is discussed by assuming the
perturbations are bounded by ℓ∞-norm constraint during the generation of AEs in training, i.e., ∥∆∥∞ ≤ ϵ.

B. Qualitative Results
To deeply understand the performance of PART, we take a close look at the robust feature representations. By emphasizing
the important pixel regions during training, we find that compared to AT-based classifiers, PART-based classifiers could
indeed be guided more towards leveraging semantic information (i.e., the object) in images to make classification decisions.
According to Geirhos et al. (2020), deep neural networks often rely on the image background to make classification decisions,
neglecting the foreground. Therefore, we treat this as an extra advantage of PART, and this might be one of the key reasons
why our method can improve the accuracy-robustness trade-off. We provide more qualitative results in the following figures.
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Figure 5. Qualitative results of how attention heatmaps change with epoch number ∈ {30, 40, 50, 60} on CIFAR-10.
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Figure 6. Qualitative results of how attention heatmaps change with epoch number ∈ {30, 40, 50, 60} on CIFAR-10.
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Figure 7. Qualitative results of how attention heatmaps change with epoch number ∈ {30, 40, 50, 60} on CIFAR-10.

13



Improving Accuracy-robustness Trade-off via Pixel Reweighted Adversarial Training

C. Notations in Section 3.1

ℓ A loss function

f A model

x A natural image

y The true label of x

d The data dimension

∆ The adversarial perturbation added to x

∆∗ The optimal solution of ∆

|| · ||∞ The ℓ∞-norm

ϵ The maximum allowed perturbation budget for important pixels

ϵlow The maximum allowed perturbation budget for unimportant pixels

Ihigh Indexes of important pixels

I low Indexes of unimportant pixels

v A function to transform a set to a vector

{δi}i∈Ihigh A set consisting of important pixels in ∆, i.e., ∆high

{δi}i∈Ilow A set consisting of unimportant pixels in ∆, i.e., ∆low

|Ihigh| The dimension of important pixel regions, i.e., dhigh

|I low| The dimension of unimportant pixel regions, i.e., dlow

D. Algorithms

Algorithm 1 Mask Generation

1: Input: data dimension d, normalized class activation map L̃ = [ω1, ..., ωd], maximum allowed perturbation budgets ϵ,
ϵlow

2: Output: mask m
3: Initialize mask m = {m1, ...,md} = 1d

4: for i = 1, ..., d do
5: if ωi > 1 then
6: mi = ϵlow/ϵ
7: end if
8: end for

Algorithm 2 Pixel-reweighted AE Generation (Pixel-AG)
1: Input: data x ∈ X , label y ∈ Y , model f , loss function ℓ, step size α, number of iterations K for inner optimization,

maximum allowed perturbation budget ϵ
2: Output: adversarial example x̃
3: Obtain mask m by Algorithm 1
4: x̃← x
5: for k = 1, ...,K do
6: x̃← x̃+m⊙ clip(x̃+ αsign(∇x̃ℓ(f(x̃), y))− x,−ϵ, ϵ)
7: end for
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Algorithm 3 Pixel-reweighted Adversarial Training (PART)
1: Input: network f with parameters θ, training dataset S = {(xi, yi)}ni=1, learning rate η, number of epochs T , batch

size n, numebr of batches N
2: Output: Robust network f
3: for epoch = 1, ..., T do
4: for mini-batch = 1, ..., N do
5: Read mini-batch B = {x1, ...,xn} from S
6: for i = 1, ..., n (in parallel) do
7: Obtain adversarial data x̃i of xi by Algorithm 2
8: end for
9: θ ← θ − η

∑m
i=1∇θℓ(f(x̃i), yi)

10: end for
11: end for

E. Related Work
Adversarial attacks with class activation mapping. Dong et al. (2020) proposes an attack method that leverages superpixel
segmentation and class activation mapping to focus on regions of an image that are most influential in classification decisions.
It highlights the importance of considering perceptual features and classification-relevant regions in crafting effective AEs.

Our method, on the other hand, leverages class activation mapping to identify important pixel regions and use pixel-
reweighted AEs to train a model that is not only robust to adversarial attacks, but also improves natural accuracy.

Adversarial training. To combat the threat of adversarial attacks, a myriad of defense mechanisms have emerged, such as
perturbation detection (Ma et al., 2018; Xu et al., 2018; Gao et al., 2021; Zhang et al., 2023), adversarial purification (Shi
et al., 2021; Yoon et al., 2021; Nie et al., 2022) and adversarial training (AT) (Madry et al., 2018; Zhang et al., 2019; Wang
et al., 2020). Among these, AT stands out as a representative strategy (Goodfellow et al., 2015; Madry et al., 2018), which
directly generates and incorporates AEs during the training process, forcing the model to learn the underlying distributions
of AEs. Besides vanilla AT (Madry et al., 2018), many alternatives have been proposed. For example, from the perspective
of improving objective functions, Zhang et al. (2019) proposes to optimize a surrogate loss function, which is derived
based on a theoretical upper bound and a lower bound. Wang et al. (2020) investigates the unique impact of misclassified
examples on the eventual robustness. They discover that misclassified examples significantly influence the final robustness
and restructure the adversarial risk to include a distinct differentiation of misclassified examples through regularization.
From the perspective of reweighting, Cai et al. (2018) reweights adversarial data with different PGD iterations K. Wang et al.
(2019) reweights the adversarial data with different convergence qualities. More recently, Ding et al. (2020) proposes to
reweight adversarial data with instance-dependent perturbation bounds ϵ and Zhang et al. (2021) proposes a geometry-aware
instance-reweighted AT framework (GAIRAT) that assigns different weights to adversarial loss based on the distance of data
points from the class boundary. Wang et al. (2021) further improves upon GAIRAT, which proposes to use probabilistic
margins to reweight AEs since they are continuous and path-independent.

Our proposed method is fundamentally different from the existing methods. Existing reweighted AT methods primarily
focus on instance-based reweighting, wherein each data instance is treated distinctly. Our proposed method, on the other
hand, pioneers a pixel-based reweighting strategy, which allows for distinct treatment of pixel regions within each instance.
Moreover, the design of PART is orthogonal to the state-of-the-art optimized AT methods such as TRADES (Zhang et al.,
2019) and MART (Wang et al., 2020). This compatibility ensures that PART can be seamlessly integrated into these
established frameworks, thereby extending its utility.

Adversarial defenses with attention heatmap. The idea of leveraging attention heatmap to defend against adversarial
attacks has also been studied in the literature. For example, Ross & Doshi-Velez (2018) shows that regularizing the
gradient-based attribution maps can improve model robustness. Zhou et al. (2021) proposes to use class activation features
to remove adversarial noise. Specifically, it crafts AEs by maximally disrupting the class activation features of natural
examples and then trains a denoising model to minimize the discrepancies between the class activation features of natural
and AEs. This method can be regarded as an adversarial purification method, which purifies adversarial examples towards
natural examples. Wu et al. (2023) proposes an Attention-based Adversarial Defense (AAD) framework that uses GradCAM
to rectify and preserve the visual attention area, which aims to improve the robustness against adversarial attacks by aligning
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the visual attention area between adversarial and original images.

Our method is technically different since PART is based on the AT framework. Our method aims to train a robust model by
allocating varying perturbation budgets to different pixel regions according to their importance to the classification decisions.
CAM methods, in our method, only serve as a tool to identify influential pixel regions.

Class activation mapping. Vanilla CAM (Zhou et al., 2016) is designed for producing visual explanations of decisions made
by CNN-based models by computing a coarse localization map highlighting important regions in an image for predicting a
concept. Besides vanilla CAM, many improved CAM methods have been proposed. For example, GradCAM (Selvaraju
et al., 2017) improves upon CAM by using the gradient information flowing into the last convolutional layer of the CNN to
assign importance values to each neuron, enabling the production of class-discriminative visualizations without the need for
architectural changes or re-training. XGradCAM (Fu et al., 2020) introduces two axioms to improve the sensitivity and
conservation of GradCAM. Specifically, it uses a modified gradient to better capture the importance of each feature map and
a normalization term to preserve the spatial information of the feature maps. LayerCAM (Jiang et al., 2021) generates class
activation maps not only from the final convolutional layer but also from shallow layers. This allows for both coarse spatial
locations and fine-grained object details to be captured.

F. Proof of Lemma 3.1 and Theorem 3.2
Proof. To begin with the proof, we restate the problem setting as follows. Consider a 2D data point x = [x1, x2]

T with label
y and an adversarial perturbation ∆ = [δ1, δ2]

T that is added to x, with δ1 ∈ [−ϵ1, ϵ1] and δ2 ∈ [−ϵ2, ϵ2]. We consider a
linear model f(x) = ω1x1 + ω2x2 + b for this problem, where ω1 and ω2 are the weights for pixels x1 and x2 respectively.
We use the square loss here as it is differentiable, which can be expressed as ℓ(f(x), y) = (y− f(x))2. The objective of our
problem is to find ∆ that can maximize ℓ(f(x+∆), y), which is equivalent to minimizing its negative counterpart. Thus,
the constraint optimization problem can be formulated as follows:

minimize − (y − f(x+∆))2,

subject to δ1 ≤ ϵ1,−δ1 ≤ ϵ1, δ2 ≤ ϵ2,−δ2 ≤ ϵ2.

By using Lagrange multiplier method, we can construct the following Lagrange function L:

L = −(y − f(x+∆))2 + λ1(δ1 − ϵ1) + λ2(−δ1 − ϵ1) + λ3(δ2 − ϵ2) + λ4(−δ2 − ϵ2). (7)

Expanding L, we have:

L =− y2 + 2yω1x1 + 2yω1δ1 + 2yω2x2 + 2yω2δ2 + 2yb− ω2
1x

2
1 − 2ω2

1x1δ1

− 2ω1ω2x1x2 − 2ω1ω2x1δ2 − 2ω1x1b− ω2
1δ

2
1 − 2ω1ω2x2δ1 − 2ω1ω2δ1δ2

− 2ω1δ1b− ω2
2x

2
2 − 2ω2

2x2δ2 − 2ω2x2b− ω2
2δ

2
2 − 2ω2δ2b− b2

+ λ1δ1 − λ1ϵ1 − λ2δ1 − λ2ϵ1 + λ3δ2 − λ3ϵ2 − λ4δ2 − λ4ϵ2.

(8)

Taking the derivatives with respect to δ1 and δ2 and setting them to zero, we have:

∂L
∂δ1

= 2yω1 − 2ω2
1x1 − 2ω2

1δ1 − 2ω1ω2x2 − 2ω1ω2δ2 − 2ω1b+ λ1 − λ2 = 0. (9)

∂L
∂δ2

= 2yω2 − 2ω2
2x2 − 2ω2

2δ2 − 2ω1ω2x1 − 2ω1ω2δ1 − 2ω2b+ λ3 − λ4 = 0. (10)

Solving Eq. (9) and Eq. (10), we can get the expressions for λ∗
1, λ∗

2, λ∗
3 and λ∗

4:

λ∗
1 = 2ω2

1x1 + 2ω2
1δ

∗
1 + 2ω1ω2x2 + 2ω1ω2δ

∗
2 + 2ω1b− 2yω1 + λ∗

2,

λ∗
2 = 2yω1 − 2ω2

1x1 − 2ω2
1δ

∗
1 − 2ω1ω2x2 − 2ω1ω2δ

∗
2 − 2ω1b+ λ∗

1,

λ∗
3 = 2ω2

2x2 + 2ω2
2δ

∗
2 + 2ω1ω2x1 + 2ω1ω2δ

∗
1 + 2ω2b− 2yω2 + λ∗

4,

λ∗
4 = 2yω2 − 2ω2

2x2 − 2ω2
2δ

∗
2 − 2ω1ω2x1 − 2ω1ω2δ

∗
1 − 2ω2b+ λ∗

3.
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This is based on the Karush–Kuhn–Tucker (KKT) conditions (Avriel, 2003):

δ∗1 ≤ ϵ1,−δ∗1 ≤ ϵ1, δ
∗
2 ≤ ϵ2,−δ∗2 ≤ ϵ2.

λ∗
1 ≥ 0, λ∗

2 ≥ 0, λ∗
3 ≥ 0, λ∗

4 ≥ 0.

λ∗
1(δ

∗
1 − ϵ1) = 0, λ∗

2(−δ∗1 − ϵ1) = 0, λ∗
3(δ

∗
2 − ϵ2) = 0, λ∗

4(−δ∗2 − ϵ2) = 0. (11)

Consider Eq. (11), we can further see two conditions:

1. λ∗
1 and λ∗

2 cannot be greater than 0 simultaneously. Otherwise δ∗1 equals to ϵ1 and −ϵ1 simultaneously. This only holds
when ϵ1 = −ϵ1 = 0 which means there is no perturbation added to x1, and thus breaks away from adversarial settings.

2. Similarly, λ∗
3 and λ∗

4 cannot be greater than 0 simultaneously.

Considering all the conditions, we can summarize the generated AEs into three cases:

1. When λ∗
1 = λ∗

2 = λ∗
3 = λ∗

4 = 0. If we substitute the values of λ∗s into Eq. (8), we can see all the terms related to ϵ1
and ϵ2 are eliminated. This means if we take the derivatives of Eq. (8) with respect to δ1 and δ2, the optimal δ∗1 and δ∗2
will be some expressions without ϵ1 and ϵ2. This means the optimized solutions are inside (−ϵ1, ϵ1). If δ∗1 and δ∗2 are
far from the boundary, moderately change ϵ would hardly affect the results.

2. When one of λ∗
1, λ∗

2 is greater than 0, and one of λ∗
3, λ∗

4 is greater than 0. Take (λ∗
1 > 0, λ∗

2 = 0, λ∗
3 > 0, λ∗

4 = 0) as an
example, both δ∗1 and δ∗2 reach the boundary condition Eq. (11), i.e., δ∗1 = ϵ1 and δ∗2 = ϵ2. If we substitute δ∗1 = ϵ1 and
δ∗2 = ϵ2 and λ∗s into Eq. (7), we have:

L = −(y − f(x)− ω1ϵ1 − ω2ϵ2)
2.

We can see the significance of ϵ1 and ϵ2 is different if ω1 ̸= ω2.

3. When only one of λ∗s is greater than 0, while others are 0. Take (λ∗
1 > 0, λ∗

2 = λ∗
3 = λ∗

4 = 0) as an example, then
δ∗1 = ϵ1 according to Eq. (11). If we substitute δ∗1 = ϵ1 into Eq. (10), we have:

δ∗2 =
y − f(x)− ω1ϵ1

ω2
, subject to δ∗1 = ϵ1.

We list the remaining cases as follows:

1. (λ∗
1 = 0, λ∗

2 > 0, λ∗
3 = 0, λ∗

4 > 0). In this case, δ∗1 = −ϵ1 and δ∗2 = −ϵ2.

2. (λ∗
1 = 0, λ∗

2 > 0, λ∗
3 > 0, λ∗

4 = 0). In this case, δ∗1 = −ϵ1 and δ∗2 = ϵ2.

3. (λ∗
1 > 0, λ∗

2 = 0, λ∗
3 = 0, λ∗

4 > 0). In this case, δ∗1 = ϵ1 and δ∗2 = −ϵ2.

4. (λ∗
2 > 0, λ∗

1 = λ∗
3 = λ∗

4 = 0), then δ∗1 = −ϵ1 according to Eq. (11). If we substitute δ∗1 = −ϵ1 into Eq. (10), we have:

δ∗2 =
y − f(x) + ω1ϵ1

ω2
, subject to δ∗1 = −ϵ1.

5. (λ∗
3 > 0, λ∗

1 = λ∗
2 = λ∗

4 = 0), then δ∗2 = ϵ2 according to Eq. (11). If we substitute δ∗2 = ϵ2 into Eq. (9), we have:

δ∗1 =
y − f(x)− ω2ϵ2

ω1
, subject to δ∗1 = ϵ2.

6. (λ∗
4 > 0, λ∗

1 = λ∗
2 = λ∗

3 = 0), then δ∗2 = −ϵ2 according to Eq. (11). If we substitute δ∗2 = −ϵ into Eq. (9), we have:

δ∗1 =
y − f(x) + ω2ϵ2

ω1
, subject to δ∗1 = −ϵ2.
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G. Experiment Settings
Dataset. We evaluate the effectiveness of PART on three benchmark datasets, i.e., CIFAR-10 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011) and TinyImagenet-200 (Wu, 2017). CIFAR-10 comprises 50,000 training and 10,000 test
images, distributed across 10 classes, with a resolution of 32× 32. SVHN has 10 classes but consists of 73,257 training and
26,032 test images, maintaining the same 32× 32 resolution. To test the performance of our method on large-scale datasets,
we follow Zhou et al. (2022) and adopt TinyImagenet-200, which extends the complexity by offering 200 classes with a
higher resolution of 64× 64, containing 100,000 training, 10,000 validation, and 10,000 test images. For the target models,
following the idea in Zhou et al. (2023), we use ResNet (He et al., 2016) for CIFAR-10 and SVHN, and WideResNet
(Zagoruyko & Komodakis, 2016) for TinyImagenet-200. Besides, we also evaluate the generalization ability of PART on
CIFAR-10-C (Hendrycks & Dietterich, 2019) to see whether our method can improve corruption robustness. CIFAR-10-C
was created by applying 19 different types of algorithmically generated corruptions to the original CIFAR-10. These
corruptions simulate various real-world image degradations.

Attack settings. We mainly use three types of adversarial attacks to evaluate the performances of defenses. They are
ℓ∞-norm PGD (Madry et al., 2018), ℓ∞-norm MMA (Gao et al., 2022) and ℓ∞-norm AA (Croce & Hein, 2020a). Among
them, AA is a combination of three non-target white-box attacks (Croce & Hein, 2020b) and one targeted black-box attack
(Andriushchenko et al., 2020). Recently proposed MMA (Gao et al., 2022) can achieve comparable performance compared
to AA but is much more time efficient. The iteration number for PGD is set to 20 (Zhou et al., 2023), and the target selection
number for MMA is set to 3 (Gao et al., 2022), respectively. For AA, we use the same setting as RobustBench (Croce et al.,
2020). For all attacks, we set the maximuim allowed perturbation budget ϵ to 8/255.

Defense settings. Following Zhou et al. (2022), we use three representative AT methods as the baselines: AT (Madry et al.,
2018) and two optimized AT methods TRADES (Zhang et al., 2019) and MART (Wang et al., 2020). We set λ = 6 for both
TRADES and MART. For all baseline methods, we use the ℓ∞-norm non-targeted PGD-10 with random start to craft AEs in
the training stage. We set ϵ = 8/255 for all datasets, and ϵlow = 7/255 for our method. All the defense models are trained
using SGD with a momentum of 0.9. We set the initial learning rate to 0.01 with batch size 128 for CIFAR-10 and SVHN.
To save time, we set the initial learning rate to 0.02 with batch size 512 for TinyImagenet-200 (Gao et al., 2022; Zhou et al.,
2023). The step size α is set to 2/255 for CIFAR-10 and TinyImagenet-200, and is set to 1/255 for SVHN. The weight
decay is 0.0002 for CIFAR-10, 0.0035 for SVHN and 0.0005 for TinyImagenet-200. We run all the methods for 80 epochs
and divide the learning rate by 10 at epoch 60 to avoid robust overfitting (Rice et al., 2020). For PART, we set the initial 20
epochs to be the burn-in period.

H. Additional Experiments
H.1. Adaptive MMA Attack

Table 3. Robustness (%) of defense methods against adaptive MMA on CIFAR-10. We set the save frequency of the mask m to be 1. We
report the averaged results and standard deviations of three runs. We show the most successful defense in bold.

ResNet-18

Dataset Method MMA-20 MMA-40 MMA-60 MMA-80 MMA-100

CIFAR-10

AT 35.36 ± 0.10 35.02 ± 0.05 34.93 ± 0.09 34.86 ± 0.06 34.85 ± 0.07
PART 35.67 ± 0.07 35.35 ± 0.11 35.29 ± 0.13 35.29 ± 0.09 35.17 ± 0.05

TRADES 40.14 ± 0.08 39.89 ± 0.12 39.93 ± 0.05 39.87 ± 0.08 39.82 ± 0.03
PART-T 40.78 ± 0.13 40.57 ± 0.11 40.51 ± 0.08 40.49 ± 0.05 40.48 ± 0.02

MART 39.14 ± 0.06 38.79 ± 0.13 38.80 ± 0.10 38.79 ± 0.05 38.74 ± 0.08
PART-M 40.56 ± 0.11 40.26 ± 0.07 40.23 ± 0.12 40.21 ± 0.08 40.20 ± 0.07

For adaptive attacks, we conduct an additional experiment to test the robustness of defense methods against adaptive MMA
(see Table 3). The choice of MMA over AA for adaptive attacks is due to AA’s time-consuming nature as an ensemble of
multiple attacks. MMA, in contrast, offers greater time efficiency and comparable performance to AA.
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H.2. Generalizability of PART on Common Corruptions

Table 4. Accuracy (%) of defense methods on CIFAR-10-C. We use s to denote the save frequency of the mask m. Here we use s = 10.
Images are corrupted at severity 1. Target model is ResNet-18. We show the most successful defense in bold.

ResNet-18

Corruption AT PART (s = 10) TRADES PART-T (s = 10) MART PART-M (s = 10)

Gaussian Noise 81.05 82.46 76.05 79.42 77.57 79.51
Shot Noise 81.11 82.83 75.91 79.70 77.66 79.74
Impulse Noise 79.42 80.76 74.59 78.03 76.12 78.16
Speckle Noise 81.42 82.68 75.97 79.68 77.63 79.79

Defocus Blur 81.07 82.48 76.06 79.42 77.59 79.50
Glass Blur 77.82 78.20 72.60 76.26 74.17 76.57
Motion Blur 79.30 80.13 74.28 77.43 75.35 77.45
Zoom Blur 78.87 79.30 73.27 76.74 74.10 76.74
Gaussian Blur 81.05 82.46 76.05 79.42 77.57 79.51

Snow 81.09 82.01 76.13 79.43 77.63 79.34
Frost 78.96 80.04 73.90 76.60 75.01 75.80
Fog 79.34 80.18 72.95 77.15 75.29 78.26
Brightness 81.89 83.22 76.87 80.16 78.60 80.26
Spatter 81.03 82.03 75.81 79.31 77.62 79.39

Contrast 77.09 77.67 70.08 75.00 71.90 75.81
Elastic Transform 77.32 78.16 71.99 75.39 73.13 75.68
Pixelate 81.09 82.63 76.05 79.48 77.45 79.43
JPEG Compression 80.50 81.91 75.71 79.09 77.15 79.29
Saturate 78.01 79.34 73.59 76.34 74.70 75.52

H.3. Possibility of Obfuscated Gradients

We consider the five behaviours listed in (Athalye et al., 2018) to identify the obfuscated gradients:

(i). We find that one-step attacks do not perform better than iterative attacks. The accuracy of our method against PGD-1 is
76.31% (vs 43.65% against PGD-20). (ii). We find that black-box attacks have lower attack success rates than white-box
attacks. We use ResNet-18 with AT as the surrogate model to generate AEs. The accuracy of our method against PGD-20 is
59.17% (vs 43.65% in the white-box setting). (iii). We find that unbounded attacks reach 100% success. The accuracy of
our method against PGD-20 with ϵ = 255/255 is 0%. (iv). We find that random sampling does not find AEs. For samples
that are not successfully attacked by PGD, we randomly sample 100 points within the ϵ-ball and do not find adversarial
data. (v). We find that increasing distortion bound increases success. The accuracy of our method against PGD-20 with
increasing ϵ (8/255, 16/255, 32/255 and 64/255) is 43.65%, 10.70%, 0.49% and 0%.

These results show that our method does not cause obfuscated gradients.

H.4. Different AE Generation Methods

Table 5. Comparison of PART’s performance with different AE Generation methods on CIFAR-10. We set the save frequency of the mask
m to be 1. We report the averaged results and standard deviations of three runs.

ResNet-18

Dataset AE Generation Method Natural PGD-20 MMA AA

CIFAR-10
PGD-10 AT 82.58 ± 0.05 43.69 ± 0.28 41.80 ± 0.10 41.63 ± 0.22

PART 83.42 ± 0.26 43.65 ± 0.06 41.98 ± 0.03 41.74 ± 0.04

MMA AT 81.76 ± 0.11 44.76 ± 0.14 42.31 ± 0.13 42.04 ± 0.15
PART 83.55 ± 0.28 44.99 ± 0.14 42.50 ± 0.22 42.09 ± 0.24
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H.5. Different CAM Methods

Table 6. Comparison of PART’s performance with different CAM methods on CIFAR-10. We set the save frequency of the mask m to be
1. We report the averaged results and standard deviations of three runs.

ResNet-18

Dataset Method CAM Natural PGD-20 MMA AA

CIFAR-10 PART
GradCAM 83.42 ± 0.26 43.65 ± 0.06 41.98 ± 0.03 41.74 ± 0.04
XGradCAM 83.34 ± 0.18 43.53 ± 0.08 41.97 ± 0.05 41.74 ± 0.02
LayerCAM 83.38 ± 0.21 43.67 ± 0.11 42.07 ± 0.09 42.03 ± 0.16

H.6. Impact of Attack Iterations

Table 7. Robustness (%) of defense methods against PGD with different iterations on CIFAR-10. We set the save frequency of the mask
m to be 1. We report the averaged results and standard deviations of three runs. We show the most successful defense in bold.

ResNet-18

Dataset Method PGD-10 PGD-40 PGD-60 PGD-80 PGD-100

CIFAR-10

AT 44.83 ± 0.13 43.00 ± 0.10 42.83 ± 0.07 42.81 ± 0.03 42.81 ± 0.03
PART 45.20 ± 0.17 43.20 ± 0.14 43.09 ± 0.09 43.08 ± 0.10 42.93 ± 0.07

TRADES 48.81 ± 0.21 48.19 ± 0.13 48.16 ± 0.15 48.14 ± 0.08 48.08 ± 0.04
PART-T 49.41 ± 0.11 48.65 ± 0.10 48.64 ± 0.13 48.64 ± 0.04 48.62 ± 0.03

MART 49.98 ± 0.08 49.66 ± 0.16 49.66 ± 0.06 49.54 ± 0.03 49.47 ± 0.05
PART-M 50.50 ± 0.19 50.19 ± 0.15 50.09 ± 0.04 50.06 ± 0.05 50.05 ± 0.02

Table 8. Robustness (%) and Accuracy (%) of PART against PGD with different iterations during training on CIFAR-10. We set the save
frequency of the mask m to be 1. The target model is ResNet-18. We report the averaged results and standard deviations of three runs.

ResNet-18

Dataset Method Natural PGD-20 MMA AA

CIFAR-10

PART (PGD-10) 83.42 ± 0.26 43.65 ± 0.16 41.98 ± 0.03 41.74 ± 0.04
PART (PGD-20) 83.44 ± 0.19 43.64 ± 0.13 42.02 ± 0.13 41.82 ± 0.08
PART (PGD-40) 83.36 ± 0.21 43.82 ± 0.08 42.09 ± 0.07 41.86 ± 0.11
PART (PGD-60) 83.30 ± 0.15 44.02 ± 0.12 42.18 ± 0.05 41.91 ± 0.09

We conduct extra experiments to analyze the impact of attack iterations on the performance of CAM methods. Specifically,
we test the robustness of defense methods against PGD with different iterations on CIFAR-10 (see Table 7). With the
increase of attack iterations, the robustness of defense methods will decrease. This is because the possibility of finding
worst-case examples will increase with more attack iterations. The effectiveness of CAM technology itself, however, is
rarely influenced by attack iterations, as our method can consistently outperform baseline methods. Furthermore, we take a
close look at how the number of attack iterations during training would affect the final performance of CAM methods (see
Table 8). Similarly, if we increase the attack iterations during training, the model will become more robust as the model
learns more worst-case examples during training. At the same time, the natural accuracy has a marginal decrease. Overall,
we conclude that the performance of our method is stable and CAM methods are rarely affected by the attack iterations.

H.7. Scalability of PART

As for whether our method can be scaled up or not, we find that it might be helpful to analyze if the algorithm running
complexity will linearly increase when linearly increasing the number of samples or data dimensions. The generation of
class activation mapping mainly involves global average pooling, which has a complexity of O(Hlast ×Wlast × Clast),
where Hlast,Wlast, and Clast are the height, width, and number of channels in the last convolutional layer. The subsequent
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generation of the heatmap involves a weighted combination of these pooled values with the feature maps, which also have
a complexity proportional to the size of the feature map. When data linearly increases, the complexity of GradCAM is
mainly influenced by two factors: the size of the input data and the structure of the CNN. When considering a single input
sample with increased dimensions, such as a doubled width and height, the total pixel count quadruples due to the area
being a product of these dimensions. This increases the computational complexity of convolutional layers linearly, as they
process more pixels. However, as convolution is a local operation, this increase is generally manageable. Thus, for a single
sample, GradCAM’s computational complexity grows approximately linearly with the input data size. For multiple samples,
the complexity scales linearly with the dataset size, as more samples require processing. Therefore, overall, we argue that
PART-based methods can be scaled up. However, in practice, training a robust model on large datasets for AT-based methods
is often resource-consuming. Thus, how to design a more efficient AT framework is always an open challenge.

H.8. Applicability of PART

Applicability of PART to untargeted attacks. CAM requires a target class to generate the attention heatmap. Therefore,
some concerns may arise such as CAM might limit the effectiveness of our method in the context of untargeted attacks.
However, we would like to clarify that in the PART framework, the role of CAM is primarily to identify important pixel
regions that significantly influence the model’s output. The key here is that the utilization of CAM is not to optimize
these regions for a specific target class, but rather to create a mask that discerns areas of varying influence on the model’s
decision-making process. Once these important regions are identified via CAM, we convert this information into a mask.
This mask is then used to differentially reweight the adversarial perturbations in the generation of AEs. This process is
independent of whether the attack is targeted or untargeted. Therefore, although CAM requires a target class, it will not
affect the applicability of PART-based methods to untargeted attacks.

Applicability of PART to Vision Transformers. CAM is specific to CNNs and not directly applicable to other architectures
such as Vision Transformers (ViTs). However, the mechanism of ViTs allows them to produce a similar attention heatmap as
CAM methods, as shown by Chefer et al. (2022), who improve Out-Of-Distribution (OOD) data generalization by focusing
ViTs’ attention on classification objects. This suggests the idea of PART can be extended to ViTs by using their regularized
attention maps to reweigh adversarial examples (AEs). Nevertheless, adversarially train a ViT is resource-consuming and
thus we leave this as future work. In general, we want to emphasize that PART is a general idea rather than a specific method
and CAM is one of the tools to realize our idea. The main goal of our work is to provide insights on how to design an
effective AT method by counting the fundamental discrepancies of pixel regions across images.

H.9. Extra Cost Introduced by CAM Methods

Table 9. Computational time (hours : minutes : seconds) and memory consumption (MB) of defense methods on CIFAR-10.

ResNet-18

Dataset GPU Method Training Speed Difference Memory Consumption Difference

CIFAR-10 2*NVIDIA A100

AT 01:14:37 00:56:28 4608MB 345MBPART 02:11:05 4953MB

TRADES 01:44:19 01:02:09 4697MB 322MBPART-T 02:46:28 5019MB

MART 01:09:23 00:57:46 4627MB 338MBPART-M 02:07:09 4965MB

The use of CAM methods will inevitably bring some extra cost. Luckily, we find that updating the mask m for every 10
epochs can effectively mitigate this problem. Regarding memory consumption, the majority of the memory is allocated for
storing checkpoints, with only a small portion attributed to CAM technology. We compare the computational time (hours :
minutes : seconds) and the memory consumption (MB) of our method to different AT methods. See Table 9 for more details.
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