
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSOLVE: DIFFUSION-BASED SOLVER FOR NON-
CONVEX TRAJECTORY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimal trajectory design is computationally expensive for nonlinear and high-
dimensional dynamical systems. The challenge arises from the non-convex na-
ture of the optimization problem with multiple local optima, which usually re-
quires a global search. Traditional numerical solvers struggle to find diverse
solutions efficiently without appropriate initial guesses. In this paper, we introduce
DiffuSolve, a general diffusion model-based solver for non-convex trajectory
optimization. An expressive diffusion model is trained on pre-collected locally
optimal solutions and efficiently samples initial guesses, which then warm-starts
numerical solvers to fine-tune the feasibility and optimality. We also present
DiffuSolve+, a novel constrained diffusion model with an additional loss in
training that further reduces the problem constraint violations of diffusion samples.
Experimental evaluations on three tasks verify the improved robustness, diversity,
and a 2ˆ to 11ˆ increase in computational efficiency with our proposed method,
which generalizes well to trajectory optimization problems of varying challenges.

1 INTRODUCTION

Optimal trajectory design is fundamental in decision-making for autonomous agents. In the open-
loop case, with a predetermined initial configuration, the goal is to plan an optimal path and control
sequence for an agent to reach a target while satisfying the dynamics and safety constraints. In
the case of complex nonlinear system dynamics and environmental constraints, these problems
often have non-convex structures. For example, within a chaotic dynamical system like the Circular
Restricted Three-Body Problem (CR3BP) (Koon et al., 2000), the trajectory optimization problem
for the spacecraft has multiple local optima of different qualitative behaviors with various tradeoffs
(Hartmann et al., 1998; Russell, 2007). Identifying these diverse, locally optimal, and feasible
solutions efficiently remains a significant challenge in the field.

Control transcription of the open-loop trajectory optimization problem involving nonlinear functions
results in a nonlinear program (NLP), where an initial guess is required to get the solution (Betts,
1998). When one is interested in solving for several solutions, a two-step global search is needed:
(i) sampling a distribution on the control space, and (ii) using this sample as an initial guess to the
NLP solver that hopefully generates a solution. For each solution from the NLP, optimality (and also
feasibility) is often verified by the solver by checking whether the first-order necessary conditions,
the Karush-Kuhn-Tucker (KKT) conditions, are satisfied (Kuhn & Tucker, 2013; Karush, 1939).
However, the high dimensionality and non-convex nature of the problem often make the two-step
global search process time-consuming such that the efficiency demands of autonomous systems are
not met.

Machine learning has also gained popularity in trajectory optimization, but primarily focuses
on solving the convexified problem rather than learning the solution distribution to the original
non-convex problem. For example, investigations have been made on warm-starting Quadratic
Programs (QP) using neural networks (Chen et al., 2022; Cauligi et al., 2021; Sambharya et al.,
2023). Recently, generative models, particularly diffusion models, have shown good performance in
generating trajectories or controls from a distribution (Janner et al., 2022; Ajay et al., 2022; Chi et al.,
2023; Carvalho et al., 2023; Sridhar et al., 2023). When conditioned on the environmental parameters,
diffusion models can efficiently generate appropriate and diverse trajectories even in an a priori
unknown environment. However, the diffusion model alone without the NLP solver may output trajec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Three trajectory optimization tasks in our experiments (from left to right): two-car
reach-avoid problem; quadrotor navigation problem; cislunar transfer problem. The dimensions of
the decision variables are 41, 241, and 64, respectively.

tories that violate the dynamic and safety constraints, causing catastrophic damage to safety-critical
systems. It also lacks the ability to verify the optimality of the sampled trajectories. While efforts have
been made to integrate safety constraints into generative models (Li et al., 2023; Chang et al., 2023;
Yang et al., 2023; Xiao et al., 2023; Power et al., 2023; Botteghi et al., 2023), it is still challenging
to achieve solution quality, diversity, feasibility, and computational efficiency at the same time.

In this paper, we propose DiffuSolve: a diffusion model-based solver for non-convex trajectory
optimization with improved efficiency, diversity, and robustness. Our contribution is two-fold: First,
we train a conditional diffusion model to learn the complex solution distribution of non-convex
optimization problems, and efficiently sample a set of diverse and high-quality trajectory predictions.
These samples are then used as warm starts for an NLP solver to derive locally optimal and feasible
solutions, ensuring the robustness of DiffuSolve. Second, to mitigate the effect of diffusion
samples that violate the problem constraints, we developed DiffuSolve+ with a novel constrained
diffusion model that incorporates an additional constraint violation loss in the training process.

DiffuSolve has the following appealing properties: (a). Computational Efficiency. The diffusion
model samples high-quality solutions that are close to local optima as warm starts, from which the
NLP solver can quickly converge. (b). Robustness and Diversity. A constrained diffusion model
produces diverse samples with minimal constraint violations, further refined by an NLP solver
for enhanced feasibility and optimality. (c). Automatic Data Generation. With an NLP solver,
we can generate diverse problems and collect corresponding solutions ourselves, allowing for on-
demand data augmentation whenever required. (d). Generalization. Our framework is suitable for
trajectory optimization across various system dynamics and environment settings, with the potential
for optimization problems in other areas like finance (Sambharya et al., 2023), etc.

We demonstrate the efficacy of our method on three non-convex trajectory optimization problems:
two-car reach-avoid, quadrotor navigation, and cislunar low-thrust transfer for a spacecraft.

2 RELATED WORK

Machine Learning for Optimization. Machine learning methods have been widely used to solve a
variety of optimization problems with different techniques, including convex Quadratic Programming
(QP) (Zeilinger et al., 2011; Zhang et al., 2019; Chen et al., 2022; Sambharya et al., 2023), mixed-
integer programming (Cauligi et al., 2021), combinatorial optimization (Sun & Yang, 2023; Huang
et al., 2023) and black-box optimization (Kumar & Levine, 2020; Trabucco et al., 2022; Krishnamoor-
thy et al., 2023), etc. For the Combinatorial Optimization problem, graph-based diffusion models
are used to directly generate solutions (Sun & Yang, 2023; Huang et al., 2023). To improve the
constraint satisfaction in optimization problems, neural networks have been incorporated with fully
differentiable constraint function (Donti et al., 2021). Conditional variational autoencoder (CVAE)
and long short-term memory (LSTM) are proposed to warm-start the general nonlinear trajectory
optimization problems (Li et al., 2023). Another branch of work leverages machine learning methods
and pre-collected solution data points for solving partial differential equations (PDEs) (Cai et al.,
2021). One of the most pupular work is physics-informed neural networks (PINN) (Raissi et al.,
2019), which introduces the solution prediction model with a hybrid training loss for labeled solution
prediction and violation of the original PDEs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Diffusion Models. The diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020b) is able to
sample the multi-modal distribution with a stochastic differential equation (SDE). The models are
further developed into denoising diffusion probabilistic models (DDPM) (Ho et al., 2020), denoising
diffusion implicit models (DDIM) (Song et al., 2020a), etc., for application of image generation. Both
classifier-guided diffusion (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans,
2022) are proposed to achieve conditional generation with diffusion models.

Diffusion-based Trajectory Generation with Constraints. Diffusion models are becoming pop-
ular in robotics for generating controls or trajectories (Ajay et al., 2022; Janner et al., 2022; Liang
et al., 2023; Sridhar et al., 2023; Chi et al., 2023; Mishra et al., 2023; Ding et al., 2024). Many
efforts have been made to improve the diffusion model for creating safe trajectories for safety-critical
systems. Control barrier functions (Xiao et al., 2023; Botteghi et al., 2023) and collision-avoidance
kernels (Chang et al., 2023) are employed to guide diffusion models to sample feasible trajectory
solutions. To adapt to new constraints in testing, prior work investigated composing diffusion models
to improve the generalizability (Power et al., 2023; Yang et al., 2023).

Different from existing work, our paper focuses on high-dimensional, highly nonlinear trajectory op-
timization problems with many local optima, and aims to find diverse solutions efficiently. Instead of
incorporating constraints in the sampling process, our constrained diffusion model in DiffuSolve+
includes a novel loss in training, which can be combined with the current work to further reduce
the violation. Moreover, DiffuSolve and DiffuSolve+ are equipped with an NLP solver that
finetunes the diffusion samples until feasibility and optimality are obtained at its best.

3 PRELIMINARIES

Non-Convex Trajectory Optimization. We consider a general open-loop trajectory optimization
problem: assume a known agent’s dynamical model, the predefined initial configuration, and the
obstacle settings, we aim to plan an optimal trajectory and controls for the agent to reach a target
while satisfying the dynamics and safety constraints. With the direct transcription (Betts, 1998), this
trajectory optimization problem can be discretized as the following nonlinear program Py:

Py :“

$

’

&

’

%

min
x

Jpx; yq

s.t., gipx; yq ď 0, i “ 1, 2, ..., l

hjpx; yq “ 0, j “ 1, 2, ...,m

(1)

where x P X Ă Rn is the decision variable to be optimized, and y P Y Ă Rk represents various
problem parameters. J P C1pRn,Rk;Rq is the objective function. Each hi P C1pRn,Rk;Rq and
gj P C1pRn,Rk;Rq are equality and inequality constraint functions, respectively. In trajectory
optimization, x might include a sequence of control u, the time variable t required to reach the target,
etc. Parameters y can include control limits, target and obstacle characteristics such as position and
shape, and other relevant factors. The objective function J can be time-to-reach, fuel expenditure, etc.
The constraint functions g and h could contain requirements for dynamical models, goal-reaching,
obstacle avoidance, etc.

When the problem parameter y is fixed, Py in Eq. (1) typically presents a non-convex optimization
problem with multiple local optima. To solve this problem Py, a gradient-based NLP solver π can
be used. A local optimum (feasible) x˚ to Py is verified by the solver π that satisfies the KKT
conditions with no constrained violation. To find different x˚, the user first provides multiple initial
guesses x0 for the decision variables x to the solver π, typically drawn from a uniform distribution or
some heuristic approach. Then the solver π performs an iterative, gradient-based optimization until a
local optimum x˚ is found. The popular methods to conduct such gradient-based optimization in
non-convex problems include the Interior Point Method (IPM) (Wright, 1997) and the Sequential
Quadratic Programming (SQP) (Boggs & Tolle, 1995).

Diffusion Probabilistic Model. As expressive generative models, the diffusion probabilistic mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) generate samples from random
noises through an iterative denoising process. The forward process (i.e., diffusion process) iteratively
adds Gaussian noise to sample xk at the k-th step according to the following equation:

qpxk`1|xkq “ N pxk`1;
a

1 ´ βkxk, βkIq, 0 ď k ď K ´ 1. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where βk is a given variance schedule. With the diffusion steps K Ñ 8, xK becomes a random
Gaussian noise. From above one can write:

xk “
?

sαkx0 `
?
1 ´ sαkε, (3)

where sαk “
śK

k1“1p1 ´ βk1 q and ε „ N p0, Iq is a random sample from a standard Gaussian. The
data generation process is the reverse denoising process that transforms random noise into data
sample:

pθpxk´1|xkq “ N
`

xk´1;µθpxkq, σkI
˘

, 1 ď k ď K (4)
with initial noisy data sampled from a random Gaussian distribution xK „ N p0, Iq. pθ is the
parameterized sampling distribution, and it can be optimized through an alternative εθpxk, kq which
is to predict ε injected for xk, for every diffusion step k. For conditional generation modeling, a
conditional variable y is added to both processes qpxk`1|xk, yq and pθpxk´1|xk, yq, respectively.
The classifier-free guidance (Ho & Salimans, 2022) can be applied to further promote the conditional
information, which learns both conditioned and unconditioned noise predictors as εθpxk, k, yq and
εθpxk, k,∅q. Specifically, εθ is optimized with the following loss function:

Ldiff “ Epx0,yq„XˆY,k,ε,b

›

›

›
εθ

´

xkpx0, εq, k, p1 ´ bq ¨ y ` b ¨ ∅
¯

´ ε
›

›

›

2

2
(5)

where x0 and y are sampled from groundtruth data, ε „ N p0, Iq, k „ Uniformp1,Kq,
b „ Bernoullippuncondq with given unconditioned probability puncond, and xk follows Eq. (3).

4 METHODOLOGY

We first propose DiffuSolve, a general framework for efficient and robust non-convex trajectory
optimization using diffusion models and NLP solvers. Then we introduce a novel constrained
diffusion model specifically designed to guide the diffusion models to generate feasible solutions,
which is included in DiffuSolve+.

4.1 DIFFUSOLVE FRAMEWORK

Figure 2: The DiffuSolve framework for solving non-convex trajectory optimization problems.

It has been observed that for similar trajectory optimization problems Py in Eq. (1), their solutions
x˚ often exhibit similar structures (Amos et al., 2023; Li et al., 2023). Similar problems are those Py

with the same objective J and constraints g, h, but with different parameters y. Thus, the key insight
of DiffuSolve is to use a diffusion model to learn ppx˚|yq, the conditional probability distribution
of locally optimal solutions based on pre-solved similar problems. Then the diffusion model can
generalize and predict diverse solutions x̃˚

new to new scenarios where the condition ynew value is
unseen. However, diffusion models inevitably make prediction errors, which can result in constraint
violations. To address this, we use diffusion samples x̃˚

new as initial guesses for the NLP solver, which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

fine-tunes them to derive the final solutions x˚
new, increasing both feasibility and optimality. This

approach acts like a safety net, enhancing the robustness of the solutions.

We illustrate our proposed DiffuSolve framework in Fig. 2. In the offline data generation process,
we use an NLP solver π to collect locally optimal and feasible solutions x˚ for various problem
instances Py with uniformly sampled initial guesses. The solutions with sub-optimal objective values
are filtered out manually and the remaining dataset is used as the training data. For DiffuSolve
training, we use a conditional diffusion model to learn ppx˚|yq with classifier-free guidance (Ho &
Salimans, 2022), with the loss function in Eq. 5. In the online testing process when a new problem
Pynew is presented with a priori unknown value ynew, we first use the diffusion model to predict diverse
solution candidates x̃˚

new as initial guesses. Then the NLP solver π only requires minor adjustments to
derive the final solutions x˚

new with improved feasibility and optimality. This warm-starting approach
is fully parallelizable for both diffusion sampling and the solving process of π.

4.2 DIFFUSOLVE+ WITH CONSTRAINED DIFFUSION MODEL

The original diffusion models in DiffuSolve aim to learn the distribution of locally optimal
solutions ppx|yq, x P X , y P Y with X as the variable space and Y as the problem parameter space.
DiffuSolve is optimized through the loss function as Eq. (5) without knowing any constraint
information. As a result, the sampled solutions could be close to the groundtruth but still largely
violate the constraints. To address this issue, we propose an improved DiffuSolve+ method
with a constrained diffusion model (CDM) to minimize the constraint violations in the sampled
trajectories. Inspired by the equation loss in PINN (Raissi et al., 2019), we define a violation function
V px, yq : X ˆ Y Ñ R for differentiable constraints in Eq. (1):

V “

l
ÿ

i“1

maxpgi, 0q `

m
ÿ

j“1

|hj |, (6)

where V p¨, ¨q P PC1pRn,Rk;Rq (piecewise differentiable except at gi “ 0 or hj “ 0) maps from a
sample x and parameter y and outputs the total constraint violation as a scalar value. In fact, each
constraint term can be further customized with different weights that allow different treatments. The
violation value is expected to decrease during the training process of diffusion models. We introduce
the newly proposed loss function and the corresponding training process as follows.

DiffuSolve+ Training. For the diffusion process, we try to generate samples from solution set
x0 P X . By reformulating the forward sampling process as in Eq. (3), we have x0 “

xk´
?
1´sαkε?
sαk

, ε „

N p0, Iq. The noise ε is approximated as the neural-network parameterized model εθpxk, k, yq for
condition y at timestep k. Replacing it into previous formula, the clean sample at timestep k “ 0 is
predicted as px0 “

xkpx0,εq´
?
1´sαkεθpxk,k,yq
?

sαk
. The benefits of direct px0 prediction is that it does not

need iterative diffusion sampling thus avoids gradient backpropagation through multi-step sampling.
For constrained diffusion generation with DiffuSolve+, we introduce a constraint violation loss
Lvio on the predicted px0 from xk, @k P rKs:

Lvio “ Epx0,yq„XˆY,kPrKs,ε„N p0,Iq

„

1

k
V

´

clip
`

px0pxk, εθq, xmin
0 , xmax

0

˘

, y
¯

ȷ

(7)

where the clip function preserves the range of px0 to be within the lower xmin
0 and upper bound xmax

0 for
x0 P X , ensuring the valid calculation of violation function V p¨, ¨q. The reason for the clipping is that
at the early phase of the training, the parameterized εθ as an approximation of ε is not accurate thus
the predicted px0 may not lie on the original range of the data x0. The scheduling factor 1

k regulates
the scale of the violation function V for different xk, k P rKs, since the predicted px0 will be more
noisy when k is large and the estimation of violation function can be less reliable. This may not be a
theoretically principled choice but is found effective and convenient in our experiments.

For the violation loss Lvio, we always let the condition variable y appear in the noise prediction
εθpxk, k, yq without masking it out, contrary to the probabilistic masking in the original training
loss Ldiff. An intuitive interpretation of the additional loss term is that it guides the diffusion model
training with the gradients of minimizing the violation value for each denoising step.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, our proposed constrained diffusion training loss is a combination of the original diffusion
model training loss in DiffuSolve as Eq. 5 and the above violation loss:

L “ Ldiff ` λLvio (8)

where λ is a hyperparameter for adjusting the strength of Lvio. As the training proceeds, the original
loss function Ldiff will encourage px0 to be close to true x0, and Lvio further enforces the constraint
satisfaction of the generated samples.

Conditional Diffusion Sampling. For sampling from trained diffusion models, we adopt guided
sampling with classifier-free guidance as introduced in Sec. 3. The guided prediction noise with
guidance weight c is:

pεθ Ð c ¨ εθpxk, k, yq ` p1 ´ cq ¨ εθpxk, k,∅q (9)

Then we plug pεθ into εθ in the sampling process (Ho et al., 2020; Ho & Salimans, 2022), and through
iterative sampling xk´1 from xkpk “ K, . . . , 1q with initial random noise xK „ N p0, Iq, it produces
the generated samples x0. The diffusion sample serves as the predicted initial guess in Sec. 4.1 for a
new task: x̃˚

new :“ x0.

5 EXPERIMENT

In this section, we first evaluate DiffuSolve with a vanilla diffusion model (DM) on three
high-dimensional and highly nonlinear trajectory optimization tasks. Secondly, we present the
results of DiffuSolve+ with our novel constrained diffusion model (CDM). As a standalone
method, the CDM reduces problem constraint violation of the samples compared to DM. Within
DiffuSolve+, CDM helps further improve the efficiency of obtaining locally optimal and feasible
solutions compared to DiffuSolve.

The experiments mainly involve three stages: 1. Use an NLP solver to collect solutions on each task
domain; 2. Train the data-driven models to fit the solution dataset; 3. For unseen new tasks within
each domain, sample the initial guesses from each model that warm-start the solver to derive final
solutions. The details of data collection and model training refer to Appendix A.

5.1 TASK SETUP

Our experiments are conducted on three complex non-convex trajectory optimization tasks as illus-
trated in Figure 1. These tasks span diverse domains and present unique challenges: (i). Two-Car
Reach-Avoid: Multi-agent game-theoretical problem is difficult to scale and features multiple equilib-
ria. (ii). Quadrotor Navigation: High-dimensional nonlinear dynamical systems lead to computational
inefficiency. (iii). Cislunar Transfer: The highly nonlinear chaotic dynamical system makes space-
craft trajectory optimization time-consuming with numerous local optima. The detailed dynamical
settings for each task are as follows. The numerical settings can be seen in Appendix A.

Two-Car Reach-Avoid. This is a two-player game inspired by (Chen et al., 2018). Each car tries to
find a minimum-time path to reach the goal while avoiding collision with another car and obstacles,
shown in Figure 1. Specifically, both car1 and car2 follows the same dynamics as follows:

9px “ v cos θ, 9py “ v sin θ, 9v “ a, 9θ “ ω,

where ppx, py, v, θq denotes the state of each car. px, py are the position, v is the speed, and θ is the
orientation of the car. Each car has two-dimensional controls u1 “ pa1, ω1q, u2 “ pa2, ω2q, where
a P r´1, 1s is the acceleration and ω P r´1, 1s is the angular speed.

Quadrotor Navigation. This a navigation problem of a 10D quadrotor, inspired by (Herbert et al.,
2017). The quadrotor needs to find the minimum time to reach the goal position while avoiding
obstacles shown in Figure 1, where the goal and obstacles are randomly sampled. The quadrotor’s
dynamics is defined as follows:

9x “ vx, 9vx “ g tan θx, 9θx “ ´d1θx ` ωx, 9ωx “ ´d0θx ` n0ax, 9z “ vz,

9y “ vy, 9vy “ g tan θy, 9θy “ ´d1θy ` ωy, 9ωy “ ´d0θy ` n0ay, 9vz “ KTaz ´ g (10)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where x, y, z are the position of the quadrotor. θx, θy are the pitch and roll angle, and ωx, ωy are the
corresponding rates. vx, vy, vz are the speed of the quadrotor. d0, d1,KT , n0 are system parameters,
and g “ 9.81. The controls are u “ pax, ay, azq.

Cislunar Transfer. In this task, we consider a minimum-fuel cislunar low-thrust transfer with the
dynamical model to be a Circular Restricted Three-Body Problem (CR3BP) (Koon et al., 2000). As
shown in Figure 1, the example trajectory (orange) starts from the end of a geostationary transfer
spiral (blue) and ends at an arc of the invariant manifold (black). Assuming the mass of the spacecraft
is negligible, the CR3BP describes the equation of motion of a spacecraft under the gravitational
force from the Earth and moon. Let m1 be the mass of the Earth and m2 be the mass of the moon,
and µ “ m2{pm1 ` m2q, the dynamics of the spacecraft in the CR3BP is as follows:

:x ´ 2 9y “ ´ sUx, :y ` 2 9x “ ´ sUy, :z “ ´ sUz,

where sUpr1px, y, zq, r2px, y, zqq “ ´1
2

`

p1 ´ µqr21 ` µr22
˘

´
1´µ
r1

´
µ
r2

is the effective gravitational
potential, r1 “

a

px ` µq2 ` y2 ` z2q and r2 “
a

px ´ p1 ´ µqq2 ` y2 ` z2q are the distance
from the spacecraft to the sun and moon, respectively. This is a chaotic dynamical system.

5.2 EXPERIMENT SETUP

Numerical Solvers. We assume fully known dynamics and environment for the open-loop trajectory
optimization problem. For all three tasks, we formulate and solve the optimization problem with
Sparse Nonlinear OPTimizer (SNOPT) (Gill et al., 2005) as the solver π, which uses the SQP method
and supports warm-starting. For the cislunar transfer, we adopt pydylan, a Python interface of the
Dynamically Leveraged Automated (N) Multibody Trajectory Optimization (DyLAN) (Beeson et al.,
2022) to formulate the CR3BP dynamics in addition to SNOPT. The detailed problem formulation
and solving for each task are included in Appendix A.

Baselines. For comparison with the proposed DiffuSolve, we introduce the following baselines:

• Uniform: This method solely uses an NLP solver with uniformly sampled initial guesses
x P X for the non-convex trajectory optimization problem. It solves problems from scratch
without leveraging any problem-specific prior information.

• Optimal Uniform: This method uniformly samples from collected locally optimal solutions
tx˚u as initial guesses for the NLP solver. It establishes a performance lower bound for
data-driven methods since without learning it cannot generalize to new problems.

• CVAE LSTM: This method (Li et al., 2023) combines the convolutional variational auto-
encoder (CVAE) with long short-term memory (LSTM) to learn the conditional distribution
of locally optimal solutions. Specifically, a CVAE with Gaussian Mixture Model (GMM)
prior is first used to sample the non-control variables, e.g. time or mass variables, and then
an LSTM is adapted to sample the control sequence.

Although there exist graph-based methods for path planning, such as the Rapidly-exploring Random
Trees (RRT) (LaValle, 1998), A˚ (Hart et al., 1968), etc., they do not aim to produce optimal solutions,
nor handle the case of nonlinear dynamical systems in complex environmentally constrained problems
well. Thus, the comparison against them is not provided in our experiments.

Diversity Measure. We adopt the Vendi Score (Friedman & Dieng, 2022) as a quantitative metric for
measuring the diversity of the model samples. The similarity kernel we choose is kpx, yq “ e´||x´y||.

5.3 DIFFUSOLVE RESULTS

In this section, we evaluate DiffuSolve’s performance with a vanilla diffusion model (DM) against
baseline methods, focusing on solution optimality, feasibility, diversity, and computational efficiency.

5.3.1 OPTIMALITY AND FEASIBILITY

We generate 600 samples from each method and use them as warm starts for the NLP solver. In
Table 1, we present the percentage (ratio) of locally optimal and feasible solutions over 600 samples

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task Method

DiffuSolve+ DiffuSolve CVAE LSTM Uniform Optimal Uniform

Two-car 94.83 94.50 63.17 64.17 83.00
Quadrotor 100.00 99.83 99.67 99.17 98.50
Cislunar – 54.00 29.17 17.50 23.33

Note: All values are for ’+ Solver’ (measured on solver outputs with initial guesses from model samples). ’-
Solver’ values (measured on raw model samples) were 0% for all cases and are omitted for brevity.

Table 1: Percentage (%) (ratio) of locally optimal and feasible solutions over 600 samples.

Figure 3: In two-car reach-avoid problem: First row: raw samples (no solver); Second row: corre-
sponding solver derived locally optimal and feasible solutions.

which are fine-tuned by the NLP solver. Note that before finetuning, this ratio is zero for all methods’
raw samples. The optimality and feasibility are verified by checking the KKT condition and the
constraint violation based on the task setup in Sec. 5.1. As shown in Table 1, no method is able to
directly generate locally optimal and feasible solutions. When using the samples as warm starts for
the NLP solver, our proposed DiffuSolve obtains a greater number of locally optimal and feasible
solutions than any non-diffusion methods.

We also visualize the sampled trajectories and the corresponding solver-derived trajectories in Figure
3. For the Uniform and CVAE LSTM method, the generated trajectories are far from feasible,
thus many of them cannot serve as good initial guesses for the NLP solver. DiffuSolve already
generates near-feasible trajectories and thus makes NLP solver easier to derive locally optimal and
feasible solutions.

5.3.2 COMPUTATIONAL EFFICIENCY

For the locally optimal and feasible solutions obtained in Table 1, Table 2 presents the computational
time statistics, involving both sampling time from the model and the NLP solver time. In Table 2,
the DiffuSolve with a vanilla DM is 2 ˆ to 11 ˆ faster than the uniform method based on the
top 25%-quantile of the computational time for deriving the locally optimal and feasible solutions.
Also in the histogram plots in Figure 5, DiffuSolve obtains more solutions than baseline methods
within a short period of time. These results coincide with Figure 3 that since the DiffuSolve
generates samples that are close to local optima, it takes a shorter time for the NLP solver to converge.

Thus, it motivates us to set a proper cut-off time for the solver in the future, which can allow more
initial guesses to be fed. This could further improve the efficiency of DiffuSolve to derive locally
optimal and feasible solutions.

5.3.3 DIVERSITY

In this paper, our proposed DiffuSolve aims to learn the solution distribution of the non-convex
problem, instead of predicting a single solution. For example, for the two-car reach-avoid problem,
there are multiple equilibrium points that are locally optimal and feasible. In Figure 4, we present

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

TASK METHOD
SOLVING TIME VENDI SCORE

MEAN(˘STD) 25%-QUANTILE MEDIAN

TWO-CAR

DIFFUSOLVE+ (OURS) 17.86 ˘ 14.28 7.68 13.83 3873.60
DIFFUSOLVE (OURS) 18.82 ˘ 14.33 8.77 15.61 3574.66
CVAE LSTM 36.24 ˘ 20.55 19.45 33.26 1162.72
UNIFORM 46.17 ˘ 20.63 29.62 43.54 5256.75
OPTIMAL UNIFORM 25.15 ˘ 19.75 10.82 20.89 3708.58

QUADROTOR

DIFFUSOLVE+ (OURS) 6.65 ˘ 3.55 4.47 6.05 5458.23
DIFFUSOLVE (OURS) 7.30 ˘ 4.79 4.78 6.62 5428.63
CVAE LSTM 9.05 ˘ 8.30 5.00 6.74 309.18
UNIFORM 16.87 ˘ 13.60 9.28 12.48 5985.10
OPTIMAL UNIFORM 13.94 ˘ 12.08 7.66 10.13 5575.83

CISLUNAR

DIFFUSOLVE (OURS) 50.81 ˘ 70.30 9.97 26.68 5999.96
CVAE LSTM 141.31 ˘ 125.60 38.41 106.48 1403.38
UNIFORM 199.34 ˘ 116.59 114.02 174.35 6000.00
OPTIMAL UNIFORM 177.35 ˘ 123.22 70.03 153.97 5918.08

Table 2: Computational time (sampling + solving) statistics and Vendi Score.

Figure 4: Diverse trajectory solutions for two-car reach-avoid, quadrotor navigation and cislunar
transfer problem with DiffuSolve method, given the same conditional input.

4 qualitatively different solutions with DiffuSolve for each task, showing its ability to generate
diverse solutions even within a shorter period of time.

The Vendi Score is also evaluated on the samples from each method in Table 2. While the Uniform
method certainly generates the most diverse samples, the DiffuSolve is comparable to Optimal
Uniform and outperforms CVAE LSTM in sample diversity. Especially for the quadrotor navigation,
though the solving time for CVAE LSTM is competitive in Table 2, the Vendi Score shows that its
generated solutions are not diverse at all.

5.4 DIFFUSOLVE+ RESULTS

In this section, we present the results of DiffuSolve+ on the quadrotor navigation and two-car
reach-avoid task. The proposed CDM is evaluated both as a standalone method for reducing constraint
violations and within the DiffuSolve+ framework for improving computational efficiency.

Since the current cislunar transfer task originally adopted from (Beeson et al., 2022) uses an adaptive-
stepsize integrator for the dynamics constraint, it requires extra effort to incorporate it into the neural
network and is beyond our scope. We leave the CDM for this task as future work.

5.4.1 CONSTRAINT VIOLATION

As a standalone method without the NLP solver, our proposed CDM from Sec. 4.2 has fewer
constraint violations compared to the vanilla DM and CVAE LSTM, displayed in Table 3. For the
quadrotor navigation, the CDM is able to directly generate feasible solutions more than any other
methods. Also in Figure 3 for the two-car reach-avoid problem, the CDM generates a trajectory that
is the closest to the locally optimal and feasible solutions - only car 1 cannot reach the goal but it is
already near. It will be easy for the NLP solver to close this gap within DiffuSolve+.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

TASK METHOD
CONSTRAINT VIOLATION (NO SOLVER) FEASIBLE RATIO ‰

MEAN(˘STD) 25%-QUANTILE MEDIAN (NO SOLVER)

TWO-CAR
DIFFUSOLVE+ 3.00 ˘ 15.36 0.73 1.44 0
DIFFUSOLVE 10.99 ˘ 35.59 1.98 4.52 0
CVAE LSTM 282.72 ˘ 186.40 147.09 292.90 0

QUADROTOR
DIFFUSOLVE+ 3.06 ˘ 7.47 0.10 0.38 81.8
DIFFUSOLVE 3.85 ˘ 8.52 0.16 0.63 49.6
CVAE LSTM 20.19 ˘ 22.32 3.36 12.96 16.3

Table 3: Left: The constraint violation of the model samples. Right: The ratio of feasible solutions.
Both are measured directly on the model samples without the NLP solver. Here DiffuSolve+:
constrained diffusion model, DiffuSolve: vanilla diffusion model

(a) Two-car reach-avoid. (b) Quadrotor Navigation. (c) Cislunar transfer.

Figure 5: The histogram of computational time (including model sampling time and solver time) for
different methods to find locally optimal and feasible solutions.

5.4.2 COMPUTATIONAL EFFICIENCY

For DiffuSolve+ with the proposed CDM, the computational efficiency is further improved as
shown in Table 2. The intuition is clear from Figure 3: when the DiffuSolve+ sample is closer to
the local optima, it takes the NLP solver an even shorter time to derive the final solution. We also
present the histogram of the computational time in Figure 5. Here we visualize the density of locally
optimal and feasible solutions obtained within a time range, where DiffuSolve+ in red is able to
obtain more solutions than DiffuSolve within a short period of time from 600 initial guesses.

6 CONCLUSION AND DISCUSSION

This paper presents DiffuSolve: a general diffusion model-based solver for non-convex trajectory
optimization. It can generate locally optimal, feasible, and diverse solutions with high computational
efficiency. We also propose DiffuSolve+ which includes a novel constrained diffusion model.
It has fewer constraint violations as a standalone method and further improves the computational
efficiency when integrated with DiffuSolve+. It is also a general acceleration framework that has
the potential to solve optimization problems in other areas beyond trajectory optimization such as
finance, computational chemistry, etc.

Limitations also exist for the current paper. We don’t spend extra effort to optimize the diffusion
model’s sampling speed. As a result, the current DiffusSolve and CDM may not be able
to achieve real-time optimization for high-dimensional systems or highly dynamic environments.
This can be improved with existing acceleration techniques such as stride sampling, DDIM (Song
et al., 2020a), etc. In addition, although most constraint functions in trajectory optimization are
differentiable (almost everywhere), the current CDM does not work for non-differentiable violation
functions. For non-differentiable constraints, transforming them into differentiable functions or
applying approximation with appropriate bump functions or neural networks is possible.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Brandon Amos et al. Tutorial on amortized optimization. Foundations and Trends® in Machine
Learning, 16(5):592–732, 2023.

Ryne Beeson, Amlan Sinha, Bindu Jagannatha, Devin Bunce, and David Carroll. Dynamically
leveraged automated multibody (n) trajectory optimization. In AAS/AIAA Space Flight Mechanics
Conference, Charlotte, NC, 8 2022. American Astronautical Society.

John T Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control,
and Dynamics, 21(2):193–207, 1998.

Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica, 4:1–51, 1995.

Nicolò Botteghi, Federico Califano, Mannes Poel, and Christoph Brune. Trajectory generation,
control, and safety with denoising diffusion probabilistic models. arXiv preprint arXiv:2306.15512,
2023.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916–1923. IEEE, 2023.

Abhishek Cauligi, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo Stellato, and
Marco Pavone. Coco: Online mixed-integer control via supervised learning. IEEE Robotics and
Automation Letters, 7(2):1447–1454, 2021.

Junwoo Chang, Hyunwoo Ryu, Jiwoo Kim, Soochul Yoo, Joohwan Seo, Nikhil Prakash, Jongeun
Choi, and Roberto Horowitz. Denoising heat-inspired diffusion with insulators for collision free
motion planning. arXiv preprint arXiv:2310.12609, 2023.

Mo Chen, Somil Bansal, Jaime F Fisac, and Claire J Tomlin. Robust sequential trajectory planning
under disturbances and adversarial intruder. IEEE Transactions on Control Systems Technology,
27(4):1566–1582, 2018.

Steven W Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv preprint
arXiv:2402.03570, 2024.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints. arXiv preprint arXiv:2104.12225, 2021.

Erwin Fehlberg. Klassische runge-kutta-formeln fünfter und siebenter ordnung mit schrittweiten-
kontrolle. Computing, 4(2):93–106, 1969.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. arXiv preprint arXiv:2210.02410, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for large-scale
constrained optimization. SIAM review, 47(1):99–131, 2005.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

John W Hartmann, Victoria L Coverstone-Carroll, and Steven N Williams. Optimal interplanetary
spacecraft trajectories via a pareto genetic algorithm. The Journal of the Astronautical Sciences,
46:267–282, 1998.

Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and Claire J Tomlin. Fastrack:
A modular framework for fast and guaranteed safe motion planning. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pp. 1517–1522. IEEE, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Junwei Huang, Zhiqing Sun, and Yiming Yang. Accelerating diffusion-based combinatorial optimiza-
tion solvers by progressive distillation. arXiv preprint arXiv:2308.06644, 2023.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

William Karush. Minima of functions of several variables with inequalities as side constraints. M. Sc.
Dissertation. Dept. of Mathematics, Univ. of Chicago, 1939.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Wang Sang Koon, Martin W Lo, Jerrold E Marsden, and Shane D Ross. Dynamical systems, the
three-body problem and space mission design. In Equadiff 99: (In 2 Volumes), pp. 1167–1181.
World Scientific, 2000.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. arXiv preprint arXiv:2306.07180, 2023.

Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces and emergence of nonlinear
programming, pp. 247–258. Springer, 2013.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Advances
in Neural Information Processing Systems, 33:5126–5137, 2020.

Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Research Report
9811, 1998.

Anjian Li, Amlan Sinha, and Ryne Beeson. Amortized global search for efficient preliminary
trajectory design with deep generative models. arXiv preprint arXiv:2308.03960, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining: Long-
horizon skill planning with diffusion models. In Conference on Robot Learning, pp. 2905–2925.
PMLR, 2023.

Thomas Power, Rana Soltani-Zarrin, Soshi Iba, and Dmitry Berenson. Sampling constrained trajecto-
ries using composable diffusion models. In IROS 2023 Workshop on Differentiable Probabilistic
Robotics: Emerging Perspectives on Robot Learning, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ryan P Russell. Primer vector theory applied to global low-thrust trade studies. Journal of Guidance,
Control, and Dynamics, 30(2):460–472, 2007.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for Dynamics and Control Conference,
pp. 220–234. PMLR, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
policies for navigation and exploration. arXiv preprint arXiv:2310.07896, 2023.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
arXiv preprint arXiv:2302.08224, 2023.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks for
data-driven offline model-based optimization. In International Conference on Machine Learning,
pp. 21658–21676. PMLR, 2022.

Stephen J Wright. Primal-dual interior-point methods. SIAM, 1997.

Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, and Daniela Rus. Safediffuser: Safe planning with
diffusion probabilistic models. arXiv preprint arXiv:2306.00148, 2023.

Zhutian Yang, Jiayuan Mao, Yilun Du, Jiajun Wu, Joshua B Tenenbaum, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. Compositional diffusion-based continuous constraint solvers. arXiv
preprint arXiv:2309.00966, 2023.

Melanie Nicole Zeilinger, Colin Neil Jones, and Manfred Morari. Real-time suboptimal model
predictive control using a combination of explicit mpc and online optimization. IEEE Transactions
on Automatic Control, 56(7):1524–1534, 2011.

Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. Safe and near-optimal policy
learning for model predictive control using primal-dual neural networks. In 2019 American Control
Conference (ACC), pp. 354–359. IEEE, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION AND TASK DETAILS

A.1 MODEL DETAILS

For both vanilla and constrained diffusion models (DMs), we apply a UNet structure with three
hidden layers of 512, 512, and 1024 neurons. We also use a fully connected layer of 256 and 512
neurons to embed the conditional input y. The sampling step is set to be 500. Both DMs are trained
with 200 epochs using the Adam optimizer (Kingma & Ba, 2014). The constrained and unconstrained
DMs usually take 14 hours and 9 hours respectively as well as 20 GB VRAM to train on one NVIDIA
A100 GPU, for every 100k training data with batch size of 512.

A.2 TWO CAR REACH-AVOID

Problem formulation and solving. In this task Py, we aim to minimize the time for the two cars
to reach each own goal while avoiding colliding with the other car and obstacles. We fixed the start
pstart and goal pgoal position for car1 to be p0, 10q and p10, 0q, and for car2 to be p10, 0q and p0, 0q.
The conditional parameters y P R6 include the two obstacle positions pobs randomly sampled from
r2.0, 8.0s, and the obstacle radius robs randomly sampled from r0.5, 1.5s. We formulate this trajectory
optimization problem with a forward shooting method, with the discretized time step T “ 20. The
variable to optimize is x “ ptfinal, u

1
1, u

1
2, ..., u

1
T , u

2
1, u

2
2, ..., u

2
T q P R41, where u1

i and u2
i are controls

for two cars, respectively. The problem parameter is y “ ppobs, robsq. The objective is defined as
Jpx; yq “ tfinal. The constraint g includes the goal-reaching constraints at tfinal, and the collision
avoidance for obstacles and between each car for all time. We use the 4-th order Runge-Kutta (RK4)
method to integrate the dynamics and formulate the constraints.

Data collection and model training. In this task, we collect locally optimal solutions x˚ from 3k
different y, each with 100 uniformly sampled initial guesses using SNOPT (Gill et al., 2005). We
filter out those solutions whose objective is higher than 12 s and use the remaining 114k solutions as
the training data. Within this 114k data, 10% of the data are used as the validation set. The whole
data collection process takes around 8 hours with 200 AMD EPYC 9654 CPU cores.

We train each of our proposed constrained and unconstrained DMs and baseline models with 3
different random seeds and test the warm-starting performance with 600 initial guesses sampled from
3 random seeds across 20 unseen obstacle settings, i.e. unseen y values.

A.3 QUADROTOR NAVIGATION

Problem formulation and solving. In this task Py , we aim to minimize the time for the quadrotor
to reach the goal while avoiding the obstacles. The start position is fixed at p´12, 0, 0q, and the
reference goal position is p12, 0, 0q. The conditional parameter y includes the perturbation dgoal
randomly chosen from r´2, 2s that is added to the goal position, 4 obstacle positions pobs randomly
sampled between the start and goal, and the obstacle radius robs randomly sampled from r1.5, 3.5s.
We discretize this problem into T timesteps where T “ 80. The variable to optimize is x “

ptfinal, u
1
1, .., u

1
T , u

2
1, ...u

2
T , u

3
1, ...u

3
T q P R241, and the conditional parameter is y “ pdgoal, pobs, robsq P

R17. The objective is defined as Jpx; yq “ tfinal. The constraint g includes the goal-reaching
constraints at tfinal and the collision avoidance for obstacles at all time. We use the 4-th order
Runge-Kutta (RK4) method to integrate the dynamics and formulate the constraints.

Data collection and model training. In this task, to collect the training data we sample 4000
different y, each with 50 uniformly sampled initial guesses. Then we use the SNOPT (Gill et al.,
2005) solver for each problem instance to collect locally optimal solutions. Finally, we filter out
those solutions with objective values greater than 4.57 s and use the remaining 179k data as training
data. Within this 179k data, 10% of the data are used as the validation set. The whole data collection
process takes around 20 hours with 200 AMD EPYC 9654 CPU cores.

We train each of our proposed constrained and unconstrained DMs and baseline models with 3
different random seeds. The models are tested for the warm-starting performance with 600 initial
guesses from 3 random seeds across 20 unseen locations of the goal and obstacles, i.e. unseen y
values.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 CISLUNAR TRANSFER

Problem formulation and solving. In this problem Py, as shown in Fig. 1, the spacecraft is
planned to start from a Geostationary Transfer Spiral (blue) and reach a stable manifold arc (green)
of a Halo orbit near L1 Lagrange point (green). A candidate trajectory solution is plotted in orange.
The CR3BP is a chaotic system, where a smaller perturbation will lead to a significantly different
final trajectory. Therefore, trajectory optimization of this problem contains many local optima. We
choose the conditional parameter y P r0.1, 1.0s Newton to be the maximum allowable thrust of the
spacecraft.

We use the forward-backward shooting method to formulate the trajectory optimization problem in
Eq. (1). For the spacecraft, we set the constant specific impulse (CSI) Isp “ 1000 s. The initial dry
mass is 300 kg and the initial fuel mass is 700 kg. We choose T discretized control segments where
T “ 20 and the control u are uniformly applied on each segment. The variable x to optimize is as
follows:

x “ ptburn, t
initial
coast , t

final
coast,mf , u1, u2, ..., uN q P R64 (11)

where tburn, t
initial
coast , t

final
coast are the effective burning time for the engine, initial and final coast time, mf

is the final mass, and ui is a three-dimensional thrust control of the spacecraft. The objective is
defined as Jpx; yq “ ´mf , which is to minimize fuel expenditure. The constraint g is the midpoint
agreement when integrating dynamics from forward and backward. The problem parameter y is the
maximum allowable thrust for the spacecraft and is bounded by r0.1, 1s Newton. To integrate the
dynamics, we use the Runge-Kutta-Fehlberg 5-4th order (RK54) method (Fehlberg, 1969).

Data collection and model training. To collect the training data, we sample 12 different y
values from a grid in r0.1, 1s Newton, and for each y we collect 25k locally optimal solutions with
mf ě 415kg total amount of 300k data. The problem is solved using pydylan, a python interface of
the Dynamically Leveraged Automated (N) Multibody Trajectory Optimization (DyLAN) (Beeson
et al., 2022) and the solver SNOPT (Gill et al., 2005). Within this 300k data, 10% of the data are used
as the validation set. The whole data collection process takes around 3 days with 500 Intel Skylake
CPU cores.

We train the unconstrained DM and baseline models on 3 random seeds, and we test the warm-starting
performance with 600 initial guesses sampled from 3 random seeds on y “ 0.15 Newton, which is
unseen in training data.

15

	Introduction
	Related Work
	Preliminaries
	Methodology
	DiffuSolve Framework
	DiffuSolve+ with Constrained Diffusion Model

	Experiment
	Task setup
	Experiment Setup
	DiffuSolve Results
	Optimality and Feasibility
	Computational Efficiency
	Diversity

	DiffuSolve+ Results
	Constraint violation
	Computational Efficiency

	Conclusion and Discussion
	Implementation and Task Details
	Model Details
	Two Car Reach-Avoid
	Quadrotor Navigation
	Cislunar Transfer

