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Abstract

Feedforward neural networks with homogeneous activation functions possess a gauge symme-
try: the functions they compute do not change when the incoming and outgoing weights at
any hidden unit are rescaled by reciprocal positive values. There are other important prop-
erties of these networks, however, that are not invariant under such transformations. For
example, deep networks with highly unbalanced weights may be slower to train or harder to
compare and interpret. We describe a simple procedure for gauge-fixing in these networks;
this procedure computes multiplicative rescaling factors—one at each hidden unit—that
rebalance the weights of these networks without changing the end-to-end functions that
they compute. Specifically, given an initial network with arbitrary weights, the procedure
determines the functionally equivalent network whose weights are as small as possible (as
measured by their ℓp-norm); this transformed network also has the property that the norms
of incoming and outgoing weights at each hidden unit are exactly balanced. The rescaling
factors that perform this transformation are found by solving a convex optimization, and
we derive simple multiplicative updates that provably converge to its solution. Next we
analyze the optimization landscape in these networks and derive conditions under which
this minimum-norm solution is preserved during learning. Finally we explore the effects
of gauge-fixing on the speed and outcomes of learning by stochastic gradient descent. On
multiple problems in classification we find that gauge-fixing leads to faster descent in the
regularized log-loss.

1 Introduction

Many recent studies of deep learning have focused on the important role of symmetries (Bronstein et al.,
2021; Kunin et al., 2021; Gluch & Urbanke, 2021; Armenta & Jodoin, 2021). In large part these studies were
inspired by the role that symmetries play in our understanding of the physical world (Anderson, 1972; Zee,
2016). Of particular interest, in both physics and machine learning, are so-called gauge symmetries (Gross,
1992); these are symmetries that arise when a model is overparameterized—that is, when the model is
formulated or expressed in terms of more parameters than its essential degrees of freedom.

One such model in machine learning is a feedforward neural network with rectified linear hidden units. Such
a network is specified by the values of its weights, but the function it computes does not change when the
incoming and outgoing weights at any hidden unit are inversely rescaled by some positive value (Glorot et al.,
2011). This invariance is illustrated in Fig. 1. In this case, the gauge symmetry arises from the freedom to
choose an arbitrary rescaling factor at each hidden unit.

This particular symmetry of deep learning has already led to many important findings. For example, it is
known that this symmetry gives rise to a conservation law: at each hidden unit, there is a synaptic balance—
defined as the difference in the sums of squared incoming and outgoing weights—that does not change when
networks are trained by gradient flow (i.e., gradient descent in the limit of an infinitesimally small learning
rate) (Du et al., 2018). From this conservation law follows another important observation: if the weights
are initially balanced across layers, then they remain so during training, a key condition for proving certain
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Figure 1: A rectified linear unit (ReLU) has the same effect if its incoming weights w and bias b are rescaled
by some factor a>0 while its outgoing weights w are rescaled by the inverse factor a−1.

convergence results (Arora et al., 2019). It is also possible, by analyzing the synaptic flows across adjacent
layers, to devise more powerful pruning algorithms (Tanaka et al., 2020). Finally, a number of authors have
proposed more sophisticated learning rules that are invariant to these rescaling transformations (Neyshabur
et al., 2015a; Meng et al., 2019) or that break this invariance in purposeful ways (Badrinarayanan et al.,
2015; Armenta et al., 2021; Zhao et al., 2022). These latter works highlight an important distinction:
though the functions computed by deep networks may be invariant to rescaling transformations, there are
other important properties of these networks—such as the speed and eventual outcomes of learning—that
are not.

Notwithstanding these contributions, as well as progress on many other fronts (Arora et al., 2018; Belkin
et al., 2019; Papyan et al., 2020; Zhang et al., 2021a), our theoretical understanding of deep learning has
not kept pace with its demand in real-world applications (LeCun et al., 2015). This gap provides the larger
context for this work. Large multilayer networks can be fickle to train (Glorot & Bengio, 2010; Sutskever
et al., 2013) and hard to interpret (Zhang et al., 2021b). Despite these challenges—which are often magnified
for new or unfamiliar tasks—most practitioners are still drawn to highly overparameterized models. In the
further development and analysis of these models, there may be no tool more broadly useful than symmetry.

To proceed, we consider how similar ideas have been developed to study the physical world. Perhaps the most
familiar gauge symmetry arises in classical electrodynamics (Jackson, 2002). Electric and magnetic fields
are often calculated from their corresponding potentials; these are the scalar electric potential Φ(r, t) and
the magnetic vector potential A(r, t). When the fields are expressed in terms of these potentials, Maxwell’s
equations are invariant under the gauge transformation

Φ ← Φ− ∂χ
∂t ,

A ← A +∇χ,
(1)

where χ(r, t) is any twice-differentiable function of space and time. In practice, this gauge degree of freedom
is often fixed to simplify or highlight certain physics of interest. For example, one choice is the Coulomb
gauge, satisfying ∇·A = 0, which has the property that it minimizes the volume integral (Gubarev et al.,
2001) of ∥A∥2. Another choice is the Lorenz gauge, satisfying ∇·A = 1

c
∂φ
∂t (where c is the speed of light),

which simplifies certain wave equations. It is natural to ask if there are analogous gauge-fixing conditions
for the weights of deep neural networks—for example, a rescaling transformation that minimizes the norm
of the weights, or that simplifies the dynamics of learning. We will see that in both cases the answer is yes;
in fact, there is a single rescaling transformation that achieves both these objectives. It is also one that is
simple to formulate and compute.

With these goals in mind, this paper investigates a family of norm-minimizing gauge transformations for
feedforward networks with rescaling symmetries. These gauge transformations are designed to minimize the
ℓp-norm of the weights in a network without changing the end-to-end function that the network computes.
(The value of p>0 may be chosen by the practitioner.) A particular gauge transformation is specified by a
set of multiplicative rescaling factors, one for each hidden unit of the network. The paper’s main technical
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contribution is show how to obtain these rescaling factors by solving a problem in convex optimization. More
concretely, we derive simple multiplicative updates for performing this optimization, analogous to those
for nonnegative matrix factorization (Lee & Seung, 1999; Gillis, 2021), and we prove that these updates
converge monotonically to fixed points that represent minimum-norm solutions (Theorem 2.1). Notably,
these multiplicative updates are parameter-free in the sense that they do not require the setting or tuning
of learning rates.

Norm-minimizing gauge transformations also have the interesting property that they rebalance the weights
of a network in a special way. In particular, we obtain the following result (Lemma 2.2): given a network
with arbitrary weights, the norm-minimizing gauge transformation is also the gauge transformation that
equates the p-norms of incoming and outgoing weights at each hidden unit in the network. The balancing of
weights across layers has been a key tool for proving convergence theorems in deep learning (Du et al., 2018;
Arora et al., 2019). Thus, a second contribution of this paper is to show that for a large class of multilayer
networks, this balance can be restored at any time during the learning process by a well-chosen gauge
transformation. In particular, this can be done no matter how the weights of the network were initialized
and subsequently adapted.

A final contribution of this paper is to explore the effects of gauge-fixing on the dynamics of learning (and
vice-versa). Here we identify a natural pairing of gauge-fixing conditions and regularization penalties for deep
learning in networks with homogeneous activation functions. In these networks, we show (Theorem 3.4) that
if the gauge and regularizer are appropriately paired (e.g., minimum ℓ2-norm gauge-fixing and ℓ2-norm weight
decay), then the gauge-fixing condition is preserved by the dynamics of gradient flow in the regularized loss
function. Minimum-norm gauge transformations also provide an experimental probe for the implicit effect of
weight decay on learning rates (van Laarhoven, 2017). In practice, deep networks are not trained by gradient
flow, so for empirical results, we investigate how gauge-fixing affects the performance of stochastic gradient
descent (SGD). On multiple data sets we find that gauge-fixing leads to consistently faster descent in the
regularized loss.

2 Minimum-norm gauge fixing

In this section we consider how to shrink the weights in feedforward networks with homogeneous activation
functions without changing the end-to-end function that these networks compute. Specifically, section 2.1
describes the symmetry group of rescaling transformations in these networks, section 2.2 presents multiplica-
tive updates to optimize over the elements of this group, section 2.3 proves the convergence of these updates
to a global minimizer, and section 2.4 illustrates how these updates work in practice.

2.1 Preliminaries

Our interest lies in feedforward networks that parameterize vector-valued functions f : ℜd → ℜr. The
following notation will be useful. We denote the indices of a network’s input, hidden, and output units,
respectively, by I, H, and O, and we order the units so that I = {1, . . . , d}, H = {d+1, . . . , n−r}, and
O = {n−r+1, . . . , n} where n is the total number of units. Let x ∈ ℜd denote an input to the network and
f(x) ∈ ℜr its corresponding output. The mapping x→ f(x) is determined by the network’s weight matrix
W ∈ ℜn×n, biases b ∈ ℜn, and activation functions gi :ℜ → ℜ at each non-input unit (where i ∈ H ∪ O).
The mapping x→ f(x) can be computed by the feedforward procedure that sequentially activates all of the
units in the network—that is, setting hi = xi for the input units, propagating

hi = gi

(∑
j

Wijhj + bi

)
(2)

to the remaining units, and setting fi(x) = hn+i−r according to the ith output unit. Since the network is
feedforward, its weight matrix is strictly lower triangular. For simplicity, we assume that the output units
of the network are linear (with gi(z)=z for all i ∈ O) and unconnected (with Wij =0 if j ∈ O and i>j).
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A rescaling symmetry arises at each hidden unit of the network whose activation function is positive ho-
mogeneous of degree one (Neyshabur et al., 2015a; Dinh et al., 2017)—that is, whose activation function
satisfies

gi(az) = agi(z) (3)

for all a>0. In this paper we focus on networks of rectified linear hidden units (ReLUs), with the activation
function gi(z) = max(0, z) at all i ∈ H, but the property in eq. (3) is also satisfied by linear units (Saxe et al.,
2013), leaky ReLUs (He et al., 2015), and maxout units (Goodfellow et al., 2013). As illustrated in Fig. 1,
when a hidden unit’s activation function satisfies eq. (3), the function f computed by the network does
not change when the unit’s incoming weights (including the bias) and the outgoing weights are rescaled by
reciprocal amounts. Note that in layered architectures with homogeneous activation functions, the network’s
overall mapping f will also be a homogeneous function of its parameters (i.e., weights and biases) (Lyu &
Li, 2020) with a degree equal to the depth of the network; we refer to such architectures as homogeneous
networks. Our theoretical results in this paper apply generally to feedforward networks with homogeneous
activation functions, but our empirical investigations focus on the special case of layered architectures.

In these networks, a gauge transformation is specified by a set of rescaling factors, one for each hidden unit.
We use

A = {a ∈ ℜn | ai >0 if i ∈ H, ai =1 otherwise} (4)

to denote the set of these gauge transformations. Then under a particular rescaling, represented by some
a ∈ A, the network’s weights and biases are transformed multiplicatively as

Wij ←Wij(ai/aj), (5)
bi ← biai. (6)

It may seem redundant in eq. (4) to introduce rescaling factors at non-hidden units only to constrain them
to be equal to one. With this notation, however, we can express the transformations in eqs. (5–6) without
distinguishing between the network’s different types of units. As shorthand, we write (W′, b′) ∼ (W, b) to
denote that two networks are equivalent up to some (unspecified) rescaling, and we write (W′, b′) a∼ (W, b)
to denote that they are equivalent up to the particular rescaling a ∈ A.

2.2 Multiplicative updates

We can now state the first main result of this paper; it is a solution to the following problem. Let p > 0,
and let

∥W∥p,p =
(∑

ij

|Wij |p
)1/p

(7)

denote the entry-wise p-norm of the weight matrix W. Given an initial weight matrix W0, we consider
how to compute the gauge transformation in eqs. (5–6) that minimizes the p-norm in eq. (7). Algorithm 1
describes an iterative procedure to compute this norm-minimizing gauge transformation via a sequence of
multiplicative updates of the form in eqs. (5–6). For each update, the key step is to compute the rescaling
factor ai at each hidden unit i ∈ H from a ratio comparing the magnitudes of its ingoing and outgoing
weights; this step is derived later in eq. (12). Our first main result is contained in the following theorem:

Theorem 2.1 (Convergence of Multiplicative Updates). For all W0∈ℜn×n and b0∈ℜn, the multiplicative
updates in Algorithm 1 converge to a global minimizer of the entry-wise p-norm

argmin
W,b

∥W∥p,p such that (W, b) ∼ (W0, b0). (8)

In addition, the intermediate solutions from these updates yield monotonically decreasing values for these
p-norms.
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Algorithm 1 Procedure to compute a norm-minimizing gauge transformation for a network with weights
W0 ∈ ℜn×n and biases b0 ∈ ℜn. The procedure computes rescaled weights W and biases b via a sequence of
multiplicative updates that minimize the sum

∑
ij |Wij |p up to some tolerance δ >0. The network’s hidden

units are specified by the set H. The key step per update (shaded) is to compute the rescaling factor ai at
each hidden unit i ∈ H.

procedure (W, b) = MinNorm(W0, b0, H, p, δ)
W←W0, b← b0 ▷ Initialize the rescaled weights and biases.
repeat

for all i ∈ H do ▷ Compute the rescaling factor at each hidden unit.

ai ←
(∑

j>i
|Wji|p∑

j<i
|Wij |p

) 1
4p

for all i ∈ H do ▷ Rescale the weights and biases.
bi ← biai

for all j <i do
Wij ←Wij(ai/aj)

until maxi |ai−1| < δ ▷ Iterate until convergence.

Before proving the theorem, it is worth contrasting the goals and guarantees of this gauge-fixing procedure
versus those of typical learning algorithms for deep networks. Most importantly, the updates in Algorithm 1
do not constitute a learning algorithm; they only optimize over the set A of gauge transformations in eq. (4),
and they do not change the end-to-end functions of the networks to which they are applied. The main content
of the theorem is that the optimization in eq. (8) is considerably more tractable than the problem of learning,
and as a result, the multiplicative updates for gauge fixing have much stronger guarantees than (say) learning
via back-propagated gradients. In particular, these updates converge monotonically to a global minimizer of
the p-norm ∥W∥p,p, and they do not require the tuning of any hyperparameters, such as learning rates. One
might hope, therefore, that such gauge-fixing procedures—wherever beneficial—could piggyback on top of
existing learning algorithms without much extra cost. We explore these ideas further in subsequent sections,
but for now, we take up the task of proving Theorem 2.1.

2.3 Proof of convergence

Theorem 2.1 is proved by showing that the multiplicative updates in Algorithm 1 satisfy the preconditions
for Meyer’s convergence theorem (Meyer, 1976). Meyer’s result itself builds on the convergence theory
of Zangwill (1969). Our tools are similar to those that have been used to derive the convergence of other
multiplicative updates with nonnegativity constraints (Lee & Seung, 1999; Saul et al., 2003; Sha et al., 2007)
as well as more general iterative procedures in statistical learning (Dempster et al., 1977; Wu, 1983; Yuille &
Rangarajan, 2003; Gunawardana & Byrne, 2005; Sriperumbudur & Lanckriet, 2012). At the same time, we
have needed to develop some more specialized machinery, not only for the specific updates in Algorithm 1,
but also to to prove convergence to a global (as opposed to local) minimizer.

We prove the theorem via a sequence of lemmas. Our first lemma answers the following question: given
a fixed weight matrix W, when is it possible (or more precisely, when isn’t it possible) to find a matrix
W′ ∼W such that ∥W′∥p,p < ∥W∥p,p?

Lemma 2.2 (Weight Balancedness). Suppose that the p-norms of incoming and outgoing weights at each
hidden unit are equal: namely, ∑

j

|Wij |p =
∑

j

|Wji|p (9)

for all i ∈ H. Then there exists no weight matrix W′ ∼W such that ∥W′∥p,p < ∥W∥p,p.

5



Proof. Suppose that W′ a∼W, and consider how ∥W′∥p
p,p depends on the gauge transformation a ∈ A. This

dependence is captured (up to a multiplicative constant) by the continuous function F : A → ℜ, where

F (a) = 1
p

∑
ij

|Wij |p(ai/aj)p. (10)

Note that minimizing F over A is tantamount to a convex optimization in the transformed variable
log a = (log a1, log a2, ..., log an); therefore, any stationary point of F corresponds to a global minimum of F .
The partial derivatives of F are given by

∂F

∂ai
= 1

ai

∑
j

|Wij |p(ai/aj)p −
∑

j

|Wji|p(aj/ai)p

 . (11)

Now suppose that
∑

j |Wij |p =
∑

j |Wji|p as in eq. (9). Then from eq. (11), it follows that a global minimum
of F is obtained by the identity gauge transformation—that is, the gauge transformation with a = 1 where
1 ∈ ℜn is the vector of all ones. But if a global minimum occurs at a=1, then by definition there exists no
a′ ∈ A such that F (a′) < F (1), or equivalently, there exists no W′ ∼W such that ∥W′∥p,p < ∥W∥p,p.

The previous lemma shows that the balancedness of weights implies the minimality of their norm. The next
lemma considers the effect of a single rescaling transformation in the gauge-fixing procedure of Algorithm 1.
Here we prove that each update reduces the entry-wise p-norm of the weight matrix.

Lemma 2.3 (Monotone Improvement). Let F : A → ℜ be defined as in eq. (10), and let ã ∈ A be the
vector with elements

ãi =
(∑

j>i |Wji|p∑
j<i |Wij |p

) 1
4p

(12)

for i ∈ H and ãi = 1 otherwise. Then F (ã) ≤ F (1), and the inequality is strict unless F (1) is a global
minimum with ã = 1.

Proof. The proof is based on constructing an auxiliary function, as in the derivations of the Expectation-
Maximization algorithm (Dempster et al., 1977), nonnegative matrix factorization (Lee & Seung, 2000),
and the convex-concave procedure (Yuille & Rangarajan, 2003). Here we define the auxiliary function
G : A → ℜ by

G(a) = 1
2p

∑
ij

|Wij |p
(

a2p
i + a−2p

j

)
. (13)

Note that (ai/aj)p ≤ 1
2 (a2p

i + a−2p
j ) from the inequality of arithmetic and geometric means. Hence it follows

from eq. (10) that
F (a) ≤ G(a) (14)

for all a ∈ A. The partial derivatives of this auxiliary function are given by

∂G

∂ai
=
∑

j

|Wij |pa2p−1
i −

∑
j

|Wji|pa−2p−1
i , (15)

and for i ∈ H they vanish at ã ∈ A where the elements of ãi are defined by eq. (12). We claim that this
stationary point at ã is the unique global minimizer of G. To see this, note that minimizing G over A is
tantamount to a convex optimization in the variable ap = (ap

1, ap
2, ..., ap

n); moreover, this optimization is
strongly convex because

∑
j |Wij |p > 0 and

∑
j |Wji|p > 0 for all i ∈ H. (The first condition is necessary

for a hidden unit to respond to the network’s inputs, and the second is necessary for it to influence the
network’s outputs; if either fails, then the hidden unit has no effect on the network’s input-output mapping,
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a situation we can exclude without loss of generality.) From this property of strong convexity, it follows that
ã is the unique global minimizer. Combining this observation with eq. (14), we have

F (ã) ≤ G(ã) ≤ G(1) = F (1), (16)

which proves the first part of the lemma. Now if ã ̸= 1, then G(ã) < G(1) (since G has a unique global
minimizer) and by extension F (ã) < F (1). To prove the second part of the lemma, we suppose that ã =1,
or equivalently that G(1) is the minimum of G. Then the partial derivatives in eq. (15) must vanish at
a=1, implying that

∑
j |Wij |p =

∑
j |Wji|p for all i ∈ H. But this is exactly the condition from the previous

lemma—namely, that the p-norms of incoming and outgoing weights are exactly balanced—and this exact
balancing occurs only when F (1) is a global minimum.

Lemma 2.3 shows that each multiplicative update in Algorithm 1 serves to decrease the entry-wise p-norm
∥W∥p,p; it also rules out oscillations between distinct global minima. But this by itself is not enough to prove
that the updates converge to a finite (i.e., bounded) solution. For this we also need the following lemma.

Lemma 2.4 (Compactness of sublevel sets). Let F : A → ℜ be defined as in eq. (10). Then the sublevel
set given by F1 = {a ∈ A |F (a) ≤ F (1)} is compact.

Proof. It follows from the continuity of F that its sublevel sets are closed; thus it remains only to show that
F1 is bounded. At a high level, this result will follow from the fact that the network has bounded depth. In
particular, suppose a ∈ F1 with F (a) ≤ F (1). Then if Wij ̸= 0, it must be the case that

ai

aj
≤
∥W∥p

p,p

|Wij |p
, (17)

because otherwise the ijth term of the sum in eq. (10) would by itself exceed F (1). Let j0 → j1 → · · · → jm

denote an m-step path through the network that starts at some input unit (j0 ∈ I), passes through the ith

hidden unit after k steps (so that jk = i), ends at some output unit (jm ∈ O), and traverses only nonzero
weights Wjℓ−1jℓ

̸= 0 in the process. Note that there must exist at least one such path if the ith hidden unit
contributes in some way to the function computed by the network. Since aj0 =1 and ajk

=ai, it follows that

ai = ajk

aj0

=
k∏

ℓ=1

ajℓ

ajℓ−1

≤
k∏

ℓ=1

∥W∥p
p,p

|Wjℓjℓ−1 |p
, (18)

where the inequality follows from eq. (17). Likewise, since ajm
=1 and ajk

=ai, it follows that

1
ai

= ajm

ajk

=
m∏

ℓ=k+1

ajℓ

ajℓ−1

≤
m∏

ℓ=k+1

∥W∥p
p,p

|Wjℓjℓ−1 |p
(19)

Eqs. (18–19) provide upper and lower bounds on ai for all a ∈ F1. Thus F1 is closed and bounded, hence
compact.

With these results from the previous two lemmas, we can now prove Theorem 1.

Proof of Theorem 2.1. It follows from Lemma 2.4 that the set C = {W |W ∼ W0, ∥W∥p,p ≤ ∥W0∥p,p}
is compact. Likewise it follows from Lemma 2.3 that starting from W0, each multiplicative update yields
a weight matrix W ∈ C whose p-norm is less than or equal to the previous one (with equality occurring
only when W is both a global minimizer and a fixed point of the updates). Finally we note that the
multiplicative coefficients in eq. (12) are a continuous function of the weights from which they are derived.
The procedure in Algorithm 1 therefore satisfies the preconditions of compactness, strict monotonicity, and
continuity for Meyer’s convergence theorem (Meyer, 1976) in the setting where fixed points occur at (and
only at) global minima of ∥W∥p,p in C.
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Figure 2: Convergence of gauge-fixing multiplicative updates in three randomly initialized networks with
differing numbers of hidden layers but the same overall numbers of input, hidden, and output units. The
panels show the results, respectively, for updates that minimize the ℓ2-norm (top) and ℓ1-norm (bottom)
of the weights. Likewise they plot the value of the objective function (left) and the maximum degree of
imbalance (right) in eq. (20) across all hidden units.

2.4 Demonstration of convergence

Fig. 2 plots the convergence of the multiplicative updates (with p = 1, 2) for three randomly initialized
networks with differing numbers of hidden layers but the same overall numbers of input (200), hidden
(3750), and output (10) units. From shallowest to deepest, the networks had 200-2500-1250-10 units, 200-
2000-1000-500-250-10 units, and 200-1000-750-750-500-500-250-10 units. The networks were initialized with
zero-valued biases and zero-mean Gaussian random weights whose variances were inversely proportional to
the fan-in at each unit (He et al., 2015). The left panels of the figure plot the value of ∥W∥p

p,p, and the right
panels plot the maximal imbalance γ ∈ [0, 1] across all hidden units, computed as

γ = max
i∈H

[∑
j(|Wij |p − |Wji|p)∑
j(|Wij |p + |Wji|p)

]
. (20)

As expected, the updates take longer to converge in deeper networks (where imbalances must propagate
through more layers), but in general a high degree of convergence is obtained for a modest number of
updates. The panels show that conventionally initialized networks are (i) far from minimal as measured by
the ℓp-norm of their weights and (ii) easily rebalanced by a sequence of rescaling transformations. Finally we
note that the results in Fig. 2 did not depend sensitively on the value of the random seed used to generate
them (though they might in networks with much smaller numbers of weights).
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3 Minimum-norm learning with gradient flow

The rescaling symmetry in Fig. 1 also has important consequences for learning (Kunin et al., 2021; Gluch &
Urbanke, 2021; Armenta & Jodoin, 2021; Neyshabur et al., 2015a; Meng et al., 2019; Badrinarayanan et al.,
2015; Armenta et al., 2021; Zhao et al., 2022). In this section we examine the conditions for learning under
which the incoming and outgoing weights at each hidden unit remain balanced, as defined in Lemma 2.2;
equivalently, these are the conditions for learning under which the entry-wise p-norm of the weight matrix
remains minimal with respect to rescaling transformations. Our interest lies mainly in the following question:
are there conditions such that the gauge-fixing procedure of the last section can be one and done at the
outset of learning? To answer this question, we must understand whether learning and gauge-fixing are
complementary procedures or whether they are operating in some way at cross-purposes (e.g., the former
undoing the latter).

There are many forms of learning in deep networks. Perhaps the simplest to analyze is gradient flow (Elkabetz
& Cohen, 2021), where a network’s weights and biases are adapted in continuous time to decrease its loss
function. Gradient flow provides a reasonable approximation to the behavior of deep networks with small
learning rates. In this section we analyze how the entry-wise p-norm of the weight matrix evolves under
gradient flow. Section 3.1 analyzes this evolution for an unregularized loss function (i.e., no weight decay),
while section 3.2 does the same for a regularized one. Our main result (Theorem 3.4) is to derive a regularized
gradient flow under which the entry-wise p-norm of the weight matrix remains minimal with respect to
rescaling transformations; this is done for any p>0 and for any amount of regularization.

3.1 Unregularized flows

As in the previous section, we focus on feedforward networks with homogeneous activation functions. Let
C(y, f(x)) denote the cost when a network’s actual output f(x) is evaluated against some reference output y.
Suppose further that the network is trained to minimize the average empirical loss

L = 1
T

T∑
t=1

C(yt, f(xt)), (21)

on some training set {(xt, yt)}T
t=1 of labeled examples. Note that while the loss in eq. (21) may depend in a

complicated way on the network’s weights and biases, it is necessarily invariant to the rescaling transforma-
tions of these parameters in eqs. (5–6).

Many authors have observed that the rescaling symmetry in Fig. 1 gives rise to a conservation law when these
networks are trained by gradient flow (Du et al., 2018; Kunin et al., 2021; Bronstein et al., 2021; Gluch &
Urbanke, 2021; Armenta & Jodoin, 2021). The connection between symmetries and conservation laws is well
known from Noether’s theorem (Noether, 1918), but it is worth noting that the dynamics of gradient flow
were not historically derived from a Lagrangian. Some recent works, however, have explored the connection
to the dynamics of damped Lagrangian systems (Wibisono et al., 2016; Tanaka & Kunin, 2021).

In this work we will consider a slightly generalized family of gradient flows in which the learning rate of each
parameter is modulated by its magnitude. In particular, we suppose that

Ẇij = −|Wij |2−p · ∂L

∂Wij
, (22)

ḃi = −|bi|2−p · ∂L

∂bi
, (23)

where we have highlighted the additional modulating terms in blue. It is easy to see that the standard form
of gradient descent is recovered for p=2. This small bit of extra generality will be all that is needed for us
to obtain results for the evolution of the entry-wise matrix p-norm ∥W∥p,p, where p>0. It also leads to our
first result of this section.

9



Lemma 3.1 (Conservation Law for Gradient Flow). Consider a feedforward network with homogeneous
activation functions. At each hidden unit i ∈ H, let

∆i = |bi|p +
∑

j

|Wij |p −
∑

j

|Wji|p (24)

measure the difference in norms of incoming and outgoing weights (including the bias) for some p>0. Then
this difference is a constant of the motion under the gradient flow in eqs. (21–23).

Proof. The proof is an extension of previous results for the special case p=2 (Du et al., 2018; Kunin et al.,
2021; Bronstein et al., 2021; Gluch & Urbanke, 2021; Armenta & Jodoin, 2021). Differentiating ∆i in eq. (24)
with respect to time, we find:

∆̇i = ḃ· ∂∆i

∂b + Ẇ· ∂∆i

∂W , (25)

= ḃi
∂∆i

∂bi
+
∑

j

[
Ẇij

∂∆i

∂Wij
+ Ẇji

∂∆i

∂Wji

]
, (26)

= ḃi
p|bi|p

bi
+
∑

j

[
Ẇij

p|Wij |p

Wij
− Ẇji

p|Wji|p

Wij

]
. (27)

Next we use the gradient flow in eqs. (22–23) to replace the time-derivatives in eq. (27) of the network’s
weights and biases:

∆̇i = −p
∂L

∂bi
bi − p

∑
j

[
∂L

∂Wij
Wij −

∂L

∂Wji
Wji

]
, (28)

= −p

[
∂L

∂b ·
db
dai

+ ∂L

∂W · dW
dai

]∣∣∣∣
a=1

, (29)

= −p

[
dL

dai

]∣∣∣∣
a=1

, (30)

= 0. (31)

Here, the final steps follow from the form of the rescaling transformations in eqs. (5–6) and the invariance
of the loss in eq. (21) to these transformations.

The conservation law in Lemma 3.1 was derived from the gradient flows in eq. (22–23). To proceed, we focus
on networks in which the biases at all hidden units are frozen at zero. By this we simply mean that for
all i ∈ H, we set ḃi = bi = 0 in place of the flow of eq. (23). Doing so, we obtain the following result as an
immediate but important corollary.

Corollary 3.2. Consider a feedforward network with homogeneous activation functions whose biases at all
hidden units are frozen at zero. Then in place of eq. (24), we obtain the conserved quantities

∆i =
∑

j

|Wij |p −
∑

j

|Wji|p. (32)

This corollary has important implications for minimum-norm gauge-fixing. The mathematical connection is
the following: the difference that appears in eq. (32) as a conserved quantity is also the partial derivative
that appears in eq. (11) for minimizing the p-norm of the network’s weight matrix. Put another way, the
network’s symmetry group of rescaling transformations gives rise to multiple constants of the motion—one
per hidden unit—and it is precisely when all these constants of the motion vanish that the network’s weight
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matrix has a minimal entry-wise p-norm with respect to these transformations. From this observation we
obtain the following theorem.

Theorem 3.3 (Minimality-Preserving Flows). Suppose that the weight matrix W has been initialized
and/or rescaled by the gauge-fixing procedure of Algorithm 1 such that ∥W∥p,p cannot be further mini-
mized by any rescaling transformation. Then this property of minimality is preserved by the gradient flow
in eqs. (21–23) if in addition the biases at all hidden units are frozen at zero.

Proof. When a hidden unit has zero bias (i.e., bi = 0), the conserved quantity in eq. (24) reduces to the
simple difference ∆i =

∑
j |Wij |p−

∑
j |Wji|p in eq. (32). Since ∥W∥p,p cannot be further minimized, the

partial derivative in eq. (11) must vanish at the identity gauge transformation a = 1. It follows that∑
j |Wij |p−

∑
j |Wji|p = 0 at each hidden unit i ∈ H. But this quantity is conserved by the gradient flow

in eqs. (21–23) subject to the additional constraint bi = ḃi = 0. It follows that the weights at future times
must also satisfy

∑
j |Wij |p =

∑
j |Wji|p, and thus by Lemma 2.2, the minimality property is preserved.

The significance of Theorem 3.3 is that it establishes relatively mild conditions under which the network’s
weight matrix W never leaves the submanifold of weight space in which its entry-wise p-norm ∥W∥p,p is
minimized with respect to rescaling transformations. The first of these conditions is that the hidden (but
not the output) units have zero biases, and the second is that the learning rates of weights and biases
are modulated by a power of their magnitudes. It is interesting that the minimality-preserving flows in
Theorem 3.3 provide independent motivation for these practices, both of which have been previously studied
for different reasons. It has been noted, for example, that zero-valued biases are required for rectified-linear
units to learn intensity-equivariant representations of sensory inputs (Hinton et al., 2011; Mohan et al., 2020);
these are representations in which the hidden-layer activations scale in proportion to the intensity of visual
or auditory signals. Such networks also have certain margin-maximizing properties when they are trained
by gradient descent (Lyu & Li, 2020). Additionally, we note that for p = 1, the modulated gradient flow in
eqs. (22–23) approximates a discrete update that is additive in the log domain; in such an update, parameters
of fixed sign are multiplied by the elements of an exponentiated gradient. Similar updates have been studied
in many different contexts (Kivinen & Warmuth, 1997; Arora et al., 2012; Bernstein et al., 2020).

3.2 Regularized flows

Our goal in this section is to generalize Theorem 3.3 to learning in the presence of a regularizer. Regular-
ization is a common practice to avoid overfitting of the training data by large networks (Goodfellow et al.,
2016). In this paper we consider regularized losses of the form

Lλ = 1
T

∑
t

C(yt, f(xt)) + λ

p
∥W∥p

p,p (33)

with λ > 0. Regularizers are designed to prevent overfitting by penalizing large weights. But if regularizers
were originally introduced for this reason, it is now widely appreciated that they also serve other purposes. It
has been observed, for example, that regularizers help to learn better models on the training data (Krizhevsky
et al., 2012), suggesting that smaller weights lead to better behaved gradients. Likewise, it has been observed
that highly unbalanced weights lead to much slower training in homogeneous networks; the reason is that
partial derivatives such as ∂L/∂Wij scale inversely as the weights under rescaling transformations (Neyshabur
et al., 2015a; Dinh et al., 2017). More generally, it has been argued (van Laarhoven, 2017) that “by decreasing
the scale of the weights, weight decay increases the effective learning rate” and that “if no regularization is
used the weights can grow unbounded, and the effective learning rate goes to 0.”

These observations suggest a natural pairing of regularization and minimum-norm gauge-fixing. In particular,
if regularization has purely dynamical benefits—if (say) smaller or more balanced weights lead to faster
learning—then one might expect similar benefits by minimizing the norm of the weights with respect to
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rescaling transformations. Our final theorem examines the interplay between regularization and gauge-fixing
during learning. Intuitively, it states that if the regularizer and gauge-fixing condition are appropriately
paired, then the minimality of the weight matrix is also preserved under gradient flow in the regularized loss
function of eq. (33). Specifically, we consider the dynamics

Ẇij = −|Wij |2−p · ∂Lλ

∂Wij
, (34)

ḃi = −|bi|2−p · ∂Lλ

∂bi
for i ∈ O, (35)

where the biases at all hidden units are frozen at zero (i.e., bi = ḃi = 0 for all i ∈ H). With this flow we
obtain the following result.

Theorem 3.4 (Pairing Theorem). Suppose that the weight matrix W has been initialized and/or rescaled by
the gauge-fixing procedure of Algorithm 1 such that ∥W∥p,p cannot be further minimized. Then this property
of minimality is preserved by the regularized gradient flow in eqs. (34–35); specifically this is the flow (for
any λ>0) that pairs the gauge-fixing condition with the corresponding entry-wise p-norm regularizer.

Proof. Again we proceed by differentiating the difference ∆i =
∑

j |Wij |p −
∑

j |Wji|p with respect to time.
Since the hidden-unit biases are frozen at zero, we have

∆̇i = Ẇ · ∂∆i

∂W =
∑

j

[
Ẇij

∂∆i

∂Wij
+ Ẇji

∂∆i

∂Wji

]
. (36)

Next write Lλ = L0 + λR where L0 is the unregularized loss in eq. (21) and R = (1/p)∥W∥p
p,p. Note that

the gradient flow for Ẇ has two components, one generated by the gradient of L0, the other by the gradient
of the regularizer, R. We have already shown, via Theorem 3.3, that ∆i is unchanged by the component
from L0. It therefore suffices to consider only the component from R. From this component, we see that

∆̇i = −λ
∑

j

[
|Wij |2−p ∂R

∂Wij

∂∆i

∂Wij
+ |Wij |2−p ∂R

∂Wji

∂∆i

∂Wji

]
,

= −λ
∑

j

[
W 2

ij

|Wij |p
|Wij |p

Wij

p|Wij |p

Wij
−

W 2
ji

|Wji|p
|Wji|p

Wji

p|Wji|p

Wji

]
,

= −λp
∑

j

[
|Wij |p − |Wji|p

]
,

= −λ p ∆i. (37)

By assumption W is initialized such that ∥W∥p,p is minimal with respect to rescaling transformations. Thus
as before, the partial derivative in eq. (11) must vanish at the identity gauge transformation a=1, implying
that ∆i =

∑
j |Wij |p−

∑
j |Wji|p = 0 at each hidden unit i ∈ H. But this also implies, via eq. (37), that

∆̇i = 0, and hence that ∆i is a vanishing constant of the motion for all i ∈ H. The theorem then follows
from Lemma 2.2.

The calculation in this proof yields another insight. From eq. (37), we see that ∆i decays exponentially to
zero in the presence of regularization, so that even in the absence of a gauge-fixing procedure, the weights at
hidden units are driven to satisfy the balancedness condition of Lemma 2.2. Note, however, that the time
constant of this decay varies inversely with the magnitude of the regularization hyperparameter λ > 0. In
practice, typical values of λ are quite small. Thus gauge-fixing can be viewed as a way of balancing the
weights at the outset and throughout the entire course of learning, rather than relying on the asymptotic
effects of regularization to do so in the limit.
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4 Minimum-norm learning with stochastic gradient descent

In previous sections, we have analyzed the interplay between gauge-fixing and learning via gradient flow.
In this section, we investigate empirically how gauge-fixing affects the performance of stochastic gradient
descent. Our goal is to observe these effects in a controlled setting where experiments can be meaningfully
compared along a few essential axes of variation. There are, of course, many aspects of deep learning for
which the theorems of the previous section do not have any obvious implications, and here we attempt to
limit the potentially combinatorial number of experimental choices to a few essential ones.

4.1 Experimental results

We focus on the cases of ℓp-norm regularization with p=1, 2. For ℓ2-norm regularization, the gradient flow
in eqs. (34–35) can be approximated by the additive updates

Wij ←Wij − η
〈

∂C
∂Wij

〉
− ηλWij , (38)

bi ← bi − η
〈

∂C
∂bi

〉
for i ∈ O, (39)

where η >0 is a learning rate and ⟨·⟩ indicates a mini-batch estimate of the gradient of the cost in eq. (21).
Likewise for ℓ1-norm regularization, the gradient flow in eqs. (34–35) can be approximated by the multi-
plicative updates

Wij ←Wij exp
(
−η sign(Wij)

〈
∂C

∂Wij

〉
− ηλ

)
, (40)

bi ← bi exp
(
−η sign(bi)

〈
∂C
∂bi

〉)
for i ∈ O. (41)

The updates in eqs. (40–41) can be viewed as exponentiated gradient updates for parameters whose signs
are fixed at initialization but whose magnitudes are adapted over time (Kivinen & Warmuth, 1997; Arora
et al., 2012; Bernstein et al., 2020). As shorthand, we refer to eqs. (38–39) as updates for stochastic gradient
descent (SGD) and eqs. (40–41) as updates for exponentiated (stochastic) gradient descent (EGD).

We experimented with the gradient-based updates in eqs. (38–41) both with and without an additional
procedure for gauge-fixing. For the latter, we simply called Algorithm 1 before each step of SGD or EGD to
minimize ∥W∥p,p up to some tolerance δ. In general, this additional procedure did not incur much overhead
relative to the mini-batch updates for learning. Note that the amount of overhead is determined essentially
by the number of rescaling transformations computed by Algorithm 1. This number may be moderate at
initialization (as shown by Figure 2), but once the gauge has been fixed, the property of norm-minimality
is preserved by gradient flow (as shown by Theorem 3.4) and only violated to O(η2) by each discrete-time
update in eqs. (38–41). Therefore many fewer rescaling transformations are required to minimize ∥W∥p,p

throughout the course of learning. The relative overhead of the gauge-fixing procedure also decreases in
proportion to the size of the mini-batch.

Our experiments examined the effects of gauge-fixing on the optimization of the regularized loss in eq. (33).
We studied problems in multiway classification where each input xt in the training set was labeled by a
unary vector yt that provided a one-hot encoding of the correct class. In these experiments we optimized
the regularized log-loss where the cost per example was computed via the softmax operation:

C(y, f(x)) = −
∑

α yα log ρα where ρα = efα(x)∑
β efβ(x) . (42)

We experimented on the four publicly available datasets shown in Table 1. Also, for each data set, we
performed a singular value decomposition (Eckart & Young, 1936) to project the inputs into a smaller space
of 200 dimensions; this was done to reduce training times.

We trained three-layer, five-layer, and seven-layer networks on these datasets, where each network had a total
of 3750 hidden units. From shallowest to deepest, the networks had hidden layers with 2500-1250 hidden
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Dataset Examples Dimension Classes Abbrev.
mnist-digits (LeCun et al., 1998) 60000 784 10 digits
Fashion-mnist (Xiao et al., 2017) 60000 784 10 fashion

emnist-balanced (Cohen et al., 2017) 112800 784 47 chars
cifar10 (Krizhevsky, 2009) 50000 3072 10 cifar10

Table 1: Data sets of grayscale (LeCun et al., 1998; Xiao et al., 2017; Cohen et al., 2017) and
color (Krizhevsky, 2009) images that were used to train the networks in this paper.

units, 2000-1000-500-250 hidden units, and 1000-750-750-500-500-250 hidden units; the number of output
units was equal to the number of classes (either 10 or 47). We used an initial learning rate of η = 0.001
and a weight decay of λ = 10−4 in the networks with ℓ2-norm regularization and an initial learning rate of
η = 0.1 and a weight decay of λ = 5×10−6 in those with ℓ1-norm regularization. All networks were trained
for 30 epochs with a mini-batch size of 32, and we reduced the learning rate by a factor of 0.95 after each
epoch. As suggested by Theorem 3.4, we only adapted the biases for output units, while those for hidden
units were frozen at zero. We allowed the multiplicative updates in Algorithm 1 to converge to a precision
of δ = 10−3. In all, we present a summary of results from 240 experiments—one for each type of network
(with three, five, or seven layers) on each data set in Table 1, with either ℓ1-norm or ℓ2-norm regularization,
starting from five different random seeds, and evaluating the performance with and without an additional
procedure for gauge-fixing.

Fig. 3 plots the regularized log-loss and training error rates in the experiments with ℓ2-norm regularization
as a function of the number of epochs of training. The left panels in this figure show that the minimum-norm
gauge leads to consistently faster descent in the regularized log-loss. The right panels show that gauge-fixing
also leads to lower error rates on the training set; this is an indication that gauge-fixing affects the course of
learning in ways beyond the mere rescaling of weights. (Note that two networks cannot be equivalent up to
rescaling transformations if they have different error rates.)

Fig. 4 shows the same plots for the experiments with ℓ1-norm regularization. Here again we observe that
the minimum-norm gauge leads to faster descent in the regularized log-loss, but in this case we do not see a
similar effect on the training error rates. It should be noted, however, that the magnitude of these effects is
largely controlled by the amount of regularization. By increasing λ, one can (arbitrarily) increase the gap
between the curves in the left panels, while by decreasing λ, one can weaken the regularizer in an attempt to
obtain smaller error rates. We have fixed the value of λ in these experiments to understand, in a controlled
setting, how gauge-fixing affects the optimization of the regularized log-loss (which is the actual quantity
being optimized). However, the right panels of Fig. 4 suggest that weaker regularizers (i.e., smaller λ) may
be more appropriate when the weights are being continually rebalanced by rescaling transformations.

4.2 Related Work

Many previous studies have investigated how to reformulate gradient-based learning in networks with rescal-
ing symmetries. In a seminal paper, Neyshabur et al. (2015a) showed that SGD performs poorly in highly
unbalanced networks, and in its place, they proposed PathSGD, a rescaling-invariant procedure that approx-
imates steepest descent with respect to a special path-based regularizer. Notably, this regularizer has the
distinguishing property that it computes the minimum value of a max-norm regularizer, where the minimum
is performed over all networks equivalent up to rescaling (Neyshabur et al., 2015b). PathSGD was followed
by other formulations of rescaling-invariant learning. For example, Badrinarayanan et al. (2015) fixed the
rescaling degrees of freedom in multilayer networks by constraining certain weight vectors to have unit norm,
while Meng et al. (2019) showed how to perform SGD in the vector space of paths (as opposed to weights),
where the rescaling-invariant value of a path is given by the product of its weights.
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Figure 3: Comparison of SGD with and without rescaling transformations to minimize the sum of the
squares of the weights. The left and right panels plot the ℓ2-regularized log loss and the training error rate,
respectively, as a function of the number of epochs. Results are shown for three different architectures and
four different data sets. Each curve is the result from averaging over five random seeds.
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Figure 4: Comparison of EGD with and without rescaling transformations to minimize the sum of the
magnitudes of the weights. The left and right panels plot the ℓ1-regularized log loss and the training error
rate, respectively, as a function of the number of epochs. Results are shown for three different architectures
and four different data sets. Each curve is the result from averaging over five random seeds.

More recent work has considered how to accelerate learning with particular rescaling transformations. For
instance, Armenta et al. (2021) showed that the magnitudes of backpropagated gradients are boosted on
average by randomly rescaling the weights before or in the middle of the learning—a process they call neural
teleportation. Likewise, Zhao et al. (2022) explored how to choose symmetry group transformations that
purposefully increase or maximize the norms of gradients for learning. Because these gradients are computed
with respect to particular training examples, this approach can be viewed as a data-driven procedure for
manipulating the optimization landscape via symmetry group transformations.

Within this body of work, our main contribution is to derive the gauge-fixing multiplicative updates in
Algorithm 1 that minimize the ℓp-norms of weights under rescaling transformations. This gauge-fixing
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criterion yields another rescaling-invariant procedure for learning, one motivated by the same underlying
appeals to symmetry as in earlier studies (Neyshabur et al., 2015a; Badrinarayanan et al., 2015; Meng et al.,
2019), but more closely aligned (via Theorem 3.4) with the widespread use of ℓp-norm regularization. Our
approach differs from work on neural teleportation (Armenta et al., 2021; Zhao et al., 2022) by employing
rescaling transformations to minimize the norms of weights rather than to increase the norms of gradients.
These approaches may have similar effects in practice; we note, however, that the norms of gradients are
unbounded above with respect to the (non-compact) group of rescaling transformations, and therefore one
must be careful to identify the regime in which they serve as a reliable proxy for rates of convergence.

5 Discussion

Deep learning is a revolutionary technology whose workings are not fully understood. In this paper, we
have shown that further understanding may be gained from the symmetries of multilayer networks and the
analogies they suggest to physical systems (Bronstein et al., 2021; Kunin et al., 2021; Gluch & Urbanke,
2021; Armenta & Jodoin, 2021). As in Lagrangian mechanics, these symmetries lead to conserved quantities
when networks are trained by dynamical flows; as in gauge theories, they reveal redundant degrees of freedom
that can be fixed in opportune ways.

In this paper we have focused specifically on the rescaling symmetries of homogeneous networks. Inspired
by these symmetries, we have shown how to rebalance the weights W of a feedforward network without
changing the function that it computes. Specifically, we derived closed-form multiplicative updates that
minimize the entry-wise p-norm ∥W∥p,p over the equivalence class of networks that are related by rescaling
transformations. We also showed that this property of minimality was preserved by gradient flow in a
correspondingly regularized loss function. Finally we considered how these rescaling symmetries might
be exploited in conjunction with SGD. Our experimental results provide further evidence that learning
can be accelerated by fixing (or otherwise controlling for) the degrees of freedom associated with these
symmetries (Neyshabur et al., 2015a; Badrinarayanan et al., 2015; Meng et al., 2019; Armenta et al., 2021;
Zhao et al., 2022).

There are many questions deserving of further investigation. One important question is how to combine
gauge-fixing with accelerated gradient-based methods, such as those involving momentum (Polyak, 1964)
or adaptive learning schedules (Kingma & Ba, 2015; Duchi et al., 2010; Tieleman & Hinton, 2018). These
methods may already be compensating, to some extent, for the rescaling symmetries in the optimization
landscape, but if so, these effects need to be further clarified.

Other potential benefits of gauge-fixing are suggested in the more familiar setting of matrix factoriza-
tion (Horn & Johnson, 2012). The basic problem of factorization is underdetermined: any matrix can
be written in an infinite number of ways as the product of two or more other matrices. But consider the
wealth of information that is revealed by certain canonical factorizations of large matrices: for example, from
the singular value decomposition, it is straightforward to compute the low-rank approximation that is opti-
mal in a least-squares sense (Eckart & Young, 1936). It is natural to ask whether the functions computed by
multilayer networks can be represented in a similarly canonical way, and if so, whether such representations
might suggest more effective strategies for pruning, compressing, or otherwise approximating their weight
matrices. The search for such representations provides yet another motivation for gauge-fixing.

Finally we note that there are many possible criteria for gauge-fixing in multilayer networks with rescaling
symmetries. In this paper we studied how to minimize the entry-wise p-norm of the weight matrix, a problem
we found to be especially tractable. It would be interesting to study other criteria for gauge-fixing and to
derive the conditions (analogous to those in Theorems 3.3–3.4) under which these criteria are preserved
by gradient-based learning. We believe that the present work can provide a template for these further
investigations—and also that such investigations will reveal a similarly rich mathematical structure.
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