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ABSTRACT

Personalized Federated Learning (PFL) addresses the challenge of data hetero-
geneity across clients by adapting global knowledge to local data distributions. A
promising approach within PFL is model decoupling, which separates the Feder-
ated Learning (FL) model into global and personalized parameters. Consequently,
a key question in PFL is determining which parameters should be personalized
to balance global knowledge sharing and local data adaptation. In this paper,
we propose a parameter decoupling algorithm with a quantile-based thresholding
mechanism and introduce an element-wise importance score, termed Federated Op-
timal Brain Personalization (FedOBP). This score extends Optimal Brain Damage
(OBD) pruning theory by incorporating a federated approximation of the first-order
derivative in the Taylor expansion to evaluate the importance of each parameter
for personalization. Extensive experiments demonstrate that FedOBP outperforms
state-of-the-art methods across diverse datasets and heterogeneity scenarios, while
requiring personalization of only a very small number of personalized parameters.

1 INTRODUCTION

Federated Learning (McMabhan et al.,2017) is a distributed paradigm that facilitates collaborative
model training across multiple clients while preserving the decentralized nature of their data. However,
data heterogeneity among clients, often characterized by non-independent and identically distributed
(non-IID), typically leads to sub-optimal performance (Karimireddy et al., 2020).

To address this challenge, personalized Federated Learning (PFL) enables individual clients to main-
tain customized models tailored to their local data distributions while also sharing knowledge across
clients (Collins et al., 2022). A representative type of PFL algorithm is model decoupling (Collins
et al.| 2021 |OH et al., [2022; Xu et al.| 2023} |Xingyan et al., [2024; Mclaughlin & Sul,2024), which
divides the neural network model into globally shared feature extractor and a locally personalized
prediction head. An extension of this approach, parameter decoupling (Yang et al.| [2023; Zhou et al.|
2024; Tamirisa et al., [2024), provides a finer-grained decomposition by dividing model parameters
into element-wise global and personalized subsets.

A critical challenge of parameter decoupling is identifying which parameters should be personal-
ized. Recent studies have proposed various approaches to address this issue. For example, FedSe-
lectTamirisa et al.| (2024) and PSPFLIZhou et al.| (2024) suggest that personalized parameters should
be characterized by higher parameter changes (e.g., accumulated gradients) during local training.
Meanwhile, FedDPA (Yang et al., [2023)) identifies parameters with larger Fisher information values
as more suitable for personalization. However, these methods often lack a solid theoretical foundation
for selecting personalized parameters.

In this paper, we propose a novel PFL framework and an element-wise importance score, named
Federated Optimal Brain Personalization (FedOBP) that achieves strong performance with very few
personalized parameters. The main contributions of this work are as follows:

* We introduce a parameter decoupling algorithm with a quantile-based thresholding mecha-
nism, selecting a small subset of personalized parameters to replace the global parameters
for each client.



Under review as a conference paper at ICLR 2026

* We propose a scoring function FedOBP for personalized parameter selection. This score
extends Optimal Brain Damage (OBD) pruning theory (LeCun et al.,[1989) by incorporating
a federated approximation of the first-order derivative within the Taylor expansion.

* We perform extensive experiments demonstrating that our method achieves state-of-the-art
performance with only a small number of personalized parameters (< 0.5%), ensuring both
efficiency and effectiveness in personalization.

2 RELATED WORKS

Personalized Federated Learning (PFL) PFL has been studied from multiple perspectives, focus-
ing on addressing data heterogeneity and enhancing model performance. For instance, APFL (Deng
et al.| [2020) allows clients to train local models while contributing to the global model by adaptively
combining local and global parameters. FedPer (Arivazhagan et al.,|2019) introduces a layer-wise
decoupling design, separating base and personalized layers to address data heterogeneity. LG-
FedAvg (Liang et al.,[2020) takes the opposite approach by training the feature extractor locally and
the classifier globally to mitigate the effects of data heterogeneity. In contrast, FedRep (Collins et al.}
2021) trains the feature extractor globally while training the classifier locally to tackle heterogeneity
issues. pFedFDA (Mclaughlin & Sul 2024) addresses the limitations of transitional layer-wise model
decoupling, particularly the bias-variance trade-off in classifier training, which relies solely on local
datasets. It also views classifier representation learning as a generative modeling task, training
representations based on the global feature distribution. FLOCO (Grinwald et al., [2024)) leverage
linear mode connectivity to identify a linearly connected low-loss region within the parameter space
of neural networks. This approach allows clients to personalize their local models within designated
subregions, while simultaneously collaborating to train a global model. FLUTE (Liu et al., [2024))
consider federated representation learning under-parameterized regime, which integrates low-rank
matrix approximation techniques with FL analysis. Some other methods (Chen & Chao} 2022 Tan
et al.| 2023) also treat the model as a global feature extractor and a personalized classifier head.

Personalized Parameter Importance Score Building on the concept of model decoupling, some
approaches use element-wise scoring strategies to identify personalized parameters. For instance,
FedSelect (Tamirisa et al,2024) and PSPFL (Zhou et al., [2024) identify the model parameters with
large local training updates for personalization. In contrast, FedDPA (Yang et al.,[2023)) employs
Fisher information-based scoring to assess the sensitivity of each parameter, thereby identifying
which parameters should be personalized.

Optimal Brain Damage (OBD) Optimal Brain Damage (LeCun et al.,|1989) and Optimal Brain
Surgery (OBS) (Hassibi & Stork} 1992) quantify parameter importance primarily through a second-
order Taylor expansion of the loss function. OBD has been well-established in theory and validated
across various fields, including large language models (Ma et al.,| 2023 Zhang et al.,|2023b). However,
to the best of our knowledge, its application to PFL remains unexplored due to the complexities of
the distributed learning paradigm. In this work, one of our key contributions is extending OBD by
incorporating a federated approximation for personalized parameter selection in PFL.

3 METHOD

3.1 PRELIMINARY

Federated Learning (FL) We consider the FL training process to consist of 7' communication
rounds. In each round ¢, a subset of clients C* C C is selected, where |C?| = - |C| denotes the number
of participating clients, with ¢ € [1,T] and the participation rate ~y. Initially, the server distributes
the initialized model 0_2 to selected clients. These clients then perform local training using their
client-specific datasets D;. The local objective for each client i € C! is to minimize the empirical
loss over its local dataset D;:

argemin L(0:;D;) = Eu yyop, [£(0i5 (2, )], M

i

where £(0;; (z,y)) is the loss function for a sample (x, y) with parameters 0;, and £(6;; D;) is the
expected loss on dataset D;. After local training, clients send their updated models {6} };cc+ back to
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the server for the global aggregation:

t __ z t
0, =% .0, @
ieCt
where m' =Y, cct My and m! is the local sample count of client 7 at ¢. The aggregated parameters

0; are then distributed to the local clients for the next communication round. Therefore, the global
objective can be expressed as:

arg min £(0y; D) E(z4)~ )
. m; e AUCRICA) “

= ]E(xay)ND [6(097 (.’,U, y))]a
where £(68,; D) represents the expected loss over the entire dataset D = {D; };c¢ across all clients.

Model Decoupling Model Decoupling addresses data distribution heterogeneity by selecting a
client-specific personalized subset u! from the previous local model 0;-5 ~! and choosing a globally
shared subset v! from the global model parameters 0t Client 7 combines the client-specific person-

alized subset u! with the globally shared subset v! to create the merged model 8! = {ul, Z} Let
KC denote the set of all parameter indices, such that 0, = {0} 3 kex. For subsets u! and v, their
corresponding parameter index sets are K (u!) and K(v}) respectively, where u! = {fol’k} keK (ul)
and v} = {92”“} kek(vt)- 1t is important to note that the element-wise parameter decoupling for

each parameter k can vary across clients ¢ and communication rounds ¢. While u! is updated exclu-
sively using the client’s local dataset D;, v! is involved in both local updates and global parameter
aggregation. The local objective function for PFL with parameter decoupling can be expressed as:

arg min { Z ,C } , “)
{6!}ice 1€C
where £(6%; D;) = IE(I Y)~D; [0(6; (x,y))] represents the expected loss for client i with its decou-

pled parameters. £(6!; (x,y)) is the loss function for a sample (x,y) computed using the client-
specific model 6!.

Parameter Importance Score PFL with parameter decoupling methods (Yang et al., 2023 Zhou
et al.,[2024; Tamirisa et al., 2024) identify the personalized parameter set u} and the globally shared
parameter set v} based on an element-wise parameter importance score I(-).

FedSelect (Tamirisa et al.| 2024)) and PSPFL (Zhou et al., [2024) propose using local updates from
the pre-trained merged model éf‘l in the previous round to compute the importance score of each
parameter fol’k, k € K. This approach relies on multiple local updates and gradient computations
during local training. Specifically, the gradient-based importance score I (-) is calculated as the
absolute difference between the merged model éf_l’k and the locally updated 92_1”“ as follows:

Is (9?_1’]6;731‘) =

3

;7 — gk )

3 ?

However, gradient-based importance scores can only be determined after local training in the previous
communication round ¢ — 1. This limitation means that the score can only be used if the client is
selected again in subsequent rounds, introducing a delay issue when the participation rate v < 1.

FedDPA (Yang et al.,|2023)) takes a different approach by utilizing Fisher information to determine
importance for personalization. The Fisher information-based importance score Iz (-) is defined as:

i 0L+, >\
t—1,k, _ i s H

Unlike gradient-based methods, the Fisher information-based approach can be applied before local
training and does not suffer from the delay issue. However, it still requires gradient computation in
order to calculate the Fisher information for each parameter {Gt‘m} kex with the local dataset D;,
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Figure 1: Overview of FedOBP. The server sends a global model 62 to selected clients Ct. Each
client ¢ determines the personalized parameters based on the Federated OBP parameter importance
Io (9;5 ~1: D) using a quantile-based thresholding. The client 4 merges the globally shared parameters

v} and the personalized parameters u! to form the merged model éf The client 7 performs local
training on the merged model 8 and uploads the updated model 6! to the server for global aggregation.

which introduces additional computational overhead. Furthermore, we observe that both the gradient-
based and Fisher information-based methods require a relatively large proportion of personalized
parameters to achieve optimal performance. This requirement for a large proportion of personalized
parameters limits the ability of local models to effectively leverage shared knowledge across clients,
thereby reducing the overall benefits of collaboration.

3.2 FEDOBP ALGORITHM

Algorithm The workflow of the FedOBP algorithm is illustrated in Figure|l] FedOBP follows
the general framework of standard PFL, incorporating Federated OBP parameter importance score
function I (+). The pseudocode of the main steps is provided in Algorithm

1) Global Model Distribution: The server transmits the globally aggregated model 62 to the selected
clients 7 € C*.

2) Model Decoupling: Each client ¢ adopts a thresholding mechanism based on the Federated OBP
parameter importance Io(0: "% D) = {Io(6'"": D)}rex to decouple the personalized set !
from the previous local model 0;5*1 and the globally shared subset v} from the global model ¢ .
We will provide the detail of Federated OBP parameter importance function in Section The

importance-based partitioning uses a quantile-based thresholding function f; : Io(Hf_l’k ;D) - R,
which determines a threshold 7, as follows:

fo(Io(6;71; D))
inf{Ip(8:"1;D) e R: F(Io(0: ' D)) > q},

T

>

where F(x) is the cumulative distribution function of I (8 ~'; D) and ¢ € [0, 1] is the quantile level.

Using this threshold 7, we can determine the personalized parameter set u! = {03_1’16} kek(ut) and
the globally shared parameter set v{ = {93’“} kek(vt) With the corresponding index sets as follows:

K(ut) = {k | Io(0;""*;D) > 7}, )
K!) = {k| Io(0, " D) < 7}, ®)
where Gf_l’k represents the previous local model parameter at position k, and 7 is a threshold.
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Algorithm 1: FedOBP (7, )
Input: Total rounds 7', participation rate ~y.
Output: Global model 87, local models {6 }icc
Initialize 69;
fort =1toT do
Distribute 8/, to selected clients C*, |C*| = ~|C
foreach i € C! in parallel do
Compute FedOBP parameter importance { I O(fol’k; D)} ek based on Eq. equation
Decouple {u!, v!} based on Eq. equation equation
Merge model éf =ulUv};
Training 8} < 0¢ — nVeL(8;D;);
end
Aggregate {6 };cc+ based on Eq. equation|11{to get 0/1;
Send 0+ to the next round client 7 € C**7;

b}

end
return 07, {0 }icc;

Through extensive numerical experiments in Section[d.2] we found that FedOBP can achieve strong
performance by selecting very few personalized parameters u;. Notably, most selected personalized
parameters are concentrated in the classifier layer, aligning with theoretical insights from Centered
Kernel Alignment (CKA) (Hinton et al.,[2015).

3) Local Merging: Each client ¢ obtains the merged model éf by combining the client-specific
personalized parameter subset u} with the global parameter subset v! as follows:

0! uf U vf. )

P =

4) Local Training: Each client 7 performs local training on the merged model éf with the local dataset
D; to obtain the locally trained model 67, following the update rule:

0! = 0! — nVeL(6!;D;), (10)

where 7 is the learning rate. In FL, such model updates can be performed multiple times. Then, each
client i uploads its locally trained model ! to the server.

5) Global Aggregation: The server aggregates the locally trained models {6 };cc: to compuate the
globally aggregated model 9;“ for the next communication round:

1 m}

t+1 1t

o' _@Zﬁoi. (11)
ieCt

3.3 FEDERATED OBP PARAMETER IMPORTANCE

Optimal Brain Damage (OBD) Optimal Brain Damage (LeCun et al., [1989; Hassibi & Storkl
1992} Molchanov et al.,2019; Zhang et al.l 2023b; Ma et al.l 2023) is a model pruning technique that
quantifies the element-wise importance of each parameter 0% in a model @ = {6*},.cx with respect
to the loss function £(-) on dataset D as:

Io(6%;D) = [AL(6"; D)| = |L(6%,; D) — L(6% D), (12)

where L (6% ,; D) represents the expected loss with parameter 6* is set to 0. The importance I (0%; D)
of parameter 6 at position k can be further expanded using a Taylor series approximation of
L(6F 4; D) at 6% to obtain:

|oc(er; )

k.
IO(Q 7D) o0F

50% + ééﬂkﬂkme’f +O(0%1%)], 66" = 0%, — 0F = 6" (13)
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where Hyy is the diagonal entry of the Hessian matrix, capturing the second-order curvature of £(-)
with respect to 0%. O(||6%||*) denotes higher-order terms. Classical OBD and Optimal Brain Surgeon
(OBS) methods primarily focus on pruning models after convergence relying on the second order
term of the Taylor series approximation while assuming the first order term to be negligible (LeCun
et al.,|1989; Hassibi & Storkl [1992)).

Federated Optimal Brain Personalization (FedOBP) As discussed in Section global aggre-
gation optimizes the global model 02 by minimizing the global loss equation [3{on the global dataset
D. However, due to data heterogeneity across clients, this aggregation can degrade the performance
of each personalized model 6! on its corresponding local dataset D;. To maximize the benefits of
shared global knowledge, we aim to share most parameters across clients and personalize very few

parameters. To achieve this, we choose to identify the local parameters Qf_l’k that are most critical
for the global dataset D.

Building on the OBD pruning theory, we introduce the Federated Optimal Brain Personalization
(FedOBP) score function to assess the importance of each local model parameter fol’k with respect
to the corresponding global model parameter 92”“ for the global dataset D. We use a Taylor series

approximation of £(0%%; D) at 0! ~* to obtain:
Io (6,4 D) = |c (04*:D) - £ (6~"*;D)| (14)

L6, " D)
a0: "

1 (
50! 4 559;?‘1”“}1%595‘1*’“ + o013, a5)

where 693_1”" = 02”“ - 02-_1’]“. In classical OBD, the importance of parameters is measured by the
loss difference between pruned and unpruned parameters. In the proposed FedOBP, the importance
of global parameters with respect to the global dataset is measured by the loss difference between
local and global parameters.

FedOBP applies parameter importance analysis during the FL training phase, where the first order
term often dominates the second order term in magnitude. As a result, FedOBP approximates
parameter importance using only the first order term (Molchanov et al.| 2019; Zhang et al.,2023b):

~ aL(6: = *; D) B
t—1,k, ~ i ) . tk t 1,k
Io (6,7%:D) ~ o0 =0 (16)

Meanwhile, we interpret the global aggregation process in Eq. equation [IT]as performing a single
update step for the local models {0;7 }icct on the global dataset D. Consequently, the gradient

descent formulation of the global aggregation for each parameter fol’k can be expressed as:
0L(6; " D)

e

According to the classical FedAvg, multi-step cumulative gradient updates provide more accurate

parameter improvements than a single-step gradient descent update (McMahan et al.| [2017). A

well-known federated optimization approach, Adaptive Federated Optimization (AFO) (Reddi et al.,

2021), also interprets global aggregation as one step of gradient descent. Therefore, the federated
gradient can be regarded as global-local parameter update as follows:

0L(6; " D)
a0; 1"

0L ~ 0,k — (17)

~ 0 bk, (18)
. . : : t—1,k _ gtk ac “oradient’
Unlike AFO, which treats sequential global aggregations (99 05") as “gradient”, we regard the

federated global-local parameter update (9;71’]C — 9;’“) in PFL as an approximation to the gradient.
Therefore, we can further approximate Eq. equati by replacing the gradient term with the

parameter update (0:71’k — 02”“ ) in Eq. equation |18| and obtain the FedOBP score function as
follows:

Io (675 D) & (6171F - 9;”6)2. (19)
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FedOBP introduces a interpretable and practical criterion by directly quantifying the discrepancy
between local and global parameters for the global dataset. This formulation enables a more principled
selection of parameters for personalization, allowing clients to identify and retain only the most
impactful parameters based on their relevance to global knowledge for efficient personalization.
Specifically, local parameters 0; ~LE Wwith higher FedOBP importance scores Ip (9:71’]“; D) are the
most influential in improving global model performance. Personalizing these parameters is crucial
to avoid excessive alignment with the global model, thereby preserving strong local performance.
This allows clients to personalize a minimal and critical subset of parameters while sharing the
rest globally, achieving an effective balance between local adaptation and collaborative learning.
Extensive experiments show that this OBD-based personalization strategy consistently achieves better
trade-offs between generalization and personalization, outperforming gradient- and Fisher-based
methods across diverse benchmarks.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Datasets We evaluate the propose method on four benchmark datasets, where EMNIST (Cohen
et al.,[2017)) covers 62-class handwriting image classification, CIFAR10 and CIFAR100 (Krizhevskyl
2009) are with 10 and 100 classes respectively. SVHN (Netzer et al., [2011) focuses on 10-class
digit classification. Data was evenly split into non-overlapping train and test sets per client, with
heterogeneity simulated using Dir(a), o € {0.1,0.5} distribution (lower values indicating higher
heterogeneity). The federated setup has global communication rounds 7" = 400 across 100 clients
with participation rate v = 0.1. Clients used Stochastic Gradient Descent optimization with a
learning rate n = 0.01, 32 batch size, and 5 local epochs. All methods were evaluated over four
random experiments, and the mean and standard deviation of the results were reported. Additional
experimental details and results are detailed in the Appendix [B]

Baselines We implement the baselines based on an open-source benchmarkTan & Wang]| (2025)).
We compare the performance of our FedORP algorithm with eight current PFL methods, including
FedPer (Arivazhagan et al., [2019), APFL (Deng et al., [2020), LG-FedAvg (Liang et al., [2020),
FedRep (Collins et al.l [2021), pFedFDA (Mclaughlin & Sul 2024), FLUTE (Liu et al. [2024]),
FedDPA (Yang et al., |2023), FLOCO (Grinwald et al.| [2024) and FedALA (Zhang et al., [2023al).
FedAvg (McMabhan et al., 2017) and Local-Only served as baselines for assessing generalization and
personalization performance.

Model and Hyperparameters We use a simple 4-layer CNN model with two convolutional layers
and two fully connected (FC) layers, with the final FC layer serving as the classifier. The details of
the CNN model is shown in Appendix [B| In addition, we introduce two normalization strategies for
parameter importance (LayerNorm and GlobalNorm). Specifically, LayerNorm applies a layer-wise
min-max normalization procedure as (Yang et al., 2023), whereas GlobalNorm performs min-max
normalization across all parameters. Our ablation experiments in Appendix [C.5]|compare the two
strategies alongside the baseline without normalization. The primary evaluation metric is the average
accuracy, calculated for each client ¢ € C based on their local dataset D;. The overall metric is the
average of these individual accuracies across all clients C.

4.2 EXPERIMENTAL RESULTS

Performance Table|[I] presents a comparative accuracy analysis of our method against eight various
baselines methods on four image classification tasks. The results demonstrate that our method con-
sistently achieves superior accuracy under varying levels of non-IID data distributions. Specifically,
under Dir(0.1), FedOBP outperforms the second-best method by 0.59% and 8.28% on CIFAR10 and
CIFARI100, respectively, and achieves gains of 0.16% on EMNIST. On SVHN, FedOBP provides
a 0.87% improvement over the second-best FedPer. Even at heterogeneity Dir(0.5), our method
maintains its advantage on all datasets. The superiority of FedOBP in tackling the non-I1ID data
distribution issues highlights the advantages of using the FedOBP score to determine the parameters
that should be personalized. We also conducted tests on ResNet-18, where the distinction between the
feature extractor and classifier is less clearly defined. The results can be found in the Appendix[C.1.2]

Convergence Figure 2 provides the convergence performance of all various algorithms across
four datasets with @ = 0.1. we use a bold red line to highlight FedOBP. On CIFAR10, FedOBP
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Table 1: Average (standard deviation) test accuracy on four datasets. Bold and underlined indicate
the best and second-best respectively.

EMNIST SVHN
Dir(0.1) Dir(0.5) Dir(0.1) Dir(0.5) Dir(0.1) Dir(0.5)

Local-Only | 80.87(0.12) | 54.78(0.24) | 37.88(0.50) | 15.76(0.39) | 92.72(0.81) | 85.02(0.23) | 90.15(0.26) | 77.71(0.61)
FedAvg 58.15(0.26) | 63.98(0.29) | 26.18(0.36) | 25.40(0.22) | 82.11(0.12) | 84.02(0.17) | 88.21(0.76) | 90.24(0.66)

FedPer 84.98(0.43) | 65.87(0.67) | 42.09(0.47) | 20.68(0.27) | 94.20(0.02) | 87.55(0.09) | 94.73(0.23) | 89.46(0.65)
APFL 59.37(1.23) | 63.78(0.21) | 26.55(0.47) | 25.10(0.06) | 81.87(0.16) | 83.85(0.15) | 89.51(0.74) | 91.05(0.41)
LG-FedAvg | 81.74(0.25) | 57.46(0.87) | 39.08(0.73) | 16.89(0.73) | 93.69(0.09) | 86.32(0.34) | 91.68(0.41) | 8I.63(1.10)
FedRep 84.56(0.26) | 63.63(0.49) | 39.35(0.35) | 16.83(0.18) | 94.36(0.22) | 87.38(0.56) | 94.16(0.22) | 86.91(0.43)
pFedFDA | 86.43(0.10) | 68.72(0.19) | 41.72(0.45) | 16.71(0.77) | 93.39(0.13) | 86.24(0.21) | 93.95(0.14) | 87.53(0.28)
FLUTE 7478(0.00) | 4825(1.19) | 31.61(0.00) | 12.63(1.01) | 80.32(0.00) | 63.87(0.44) | 72.24(0.00) | 43.06(0.89)
FedDPA 81.39(0.02) | 57.37(1.19) | 38.88(0.11) | 16.74(1.27) | 93.73(0.02) | 86.64(0.29) | 91.99(0.01) | 82.83(1.39)
FLOCO 80.77(0.73) | 66.26(0.18) | 27.98(0.63) | 18.25(0.82) | 88.74(0.06) | 85.71(0.20) | 93.37(0.51) | 89.76(0.62)
FedALA | 56.94(0.09) | 63.58(0.00) | 26.00(0.09) | 25.69(0.00) | 82.06(0.05) | 83.89(0.00) | 87.61(0.12) | 89.91(0.00)
FedSelect | 79.89(0.00) | 53.59(0.00) | 36.33(0.00) | 15.12(0.00) | 92.91(0.00) | 84.57(0.00) | 90.14(0.00) | 77.58(0.00)

FedOBP ‘ 87.02(0.17) ‘ 70.22(0.16) ‘ 50.37(0.16) ‘ 27.05(0.30) ‘ 94.36(0.04) ‘ 88.82(0.05) ‘ 95.60(0.03) ‘ 91.75(0.47)

Dataset CIFAR10 CIFAR100
Partition Dir(0.1) Dir(0.5)

achieves the highest accuracy and comparable convergence. pFedFDA and FedPer also show good
convergence reaching above 85%. Other methods, such as APFL, FLUTE and FedAL, converge
slowly, with final accuracies below 75%. On CIFAR100 and EMNIST, FedOBP displays the fastest
convergence and highest final accuracy compared to all alternative solutions. Additionally, FedOBP
demonstrates comparable convergence on SVHN while achieving best final accuracy. Figure 3] shows
the convergence results with o = 0.5. FedOBP shows best accuracy with comparable convergence,
achieving optimal results at approximately 200 epochs for CIFAR10 and 200 epochs for CIFAR100,
respectively. FedOBP demonstrates fastest convergence, achieving the first position of accuracy
in SVHN and shows fast convergence on EMNIST. These results indicate that FedOBP achieves
competitive convergence across four datasets with varying levels of data heterogeneity.

CIFAR10 CIFAR100 EMNIST
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Figure 2: Convergence comparison of FedOBP and ten other solutions with a = 0.1 on the 4-layer
CNN model across four datasets.
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Figure 3: Convergence comparison of FedOBP and ten other solutions with a = 0.5 on the 4-layer
CNN model across four datasets.

Importance Scores We further analyze the performance of three types of scores (Gradient I (-),
Fisher I (), and FedOBP Ip(+)) with different quantile ¢ settings ranging from 0.0 to 1.0, where
a larger quantile indicates a smaller proportion (1 — g) of personalized parameters. This analysis
employs a 4-layer CNN model on both the CIFAR-10 and CIFAR-100 datasets. The total number of
FL rounds is set to 200, with the default parameter value v = 0.1.

Across all datasets, as the quantile g increases, leading to fewer personalized parameters w; and more
global parameters v;, all three scores initially rise and then decline. Each score demonstrates a clear
phase transition upon achieving peak performance at varying quantile values across different datasets.
As shown in Figure ] for CIFAR10, I;(-) peaks at quantile ¢ = 0.1, Ip(-) at ¢ = 0.7, and I () at
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Figure 4: Comparison of three types of scores, including Gradient I(-), Fisher Ir(-), and OBP
Io(-), on CIFAR10 and CIFAR100.

g = 0.9999. These results indicate that to achieve optimal performance, I () requires approximately
790, 684 personalized parameters, I (-) needs 263, 561, while I (+) requires only 87. If we increase
the FL rounds to 400, the number of personalized parameters required for I (-) to achieve optimal
results will further decrease to 18 as shown in Appendix On CIFAR100, I (-) peaks at quantile
q=0.9 (87,853), Ir(-) at quantile ¢ = 0.9 (87,853), and I (-) at ¢ = 0.9998 (185). These results
demonstrate that I (+) score can accurately identify the necessary personalized parameters. This
phenomenon is also observed in the other datasets in Appendix [C.3]

Personalized Parameter Distribution Figure [3illustrates the proportion of personalized parame-
ters across various layers of the 4-layer CNN model during training over 450 epochs for four different
datasets. Across all datasets, a consistent trend is observed where the proportion of personalized
parameters in the first convolutional layer (conv1) gradually decreases, while the proportion in the
classifier layer increases over time. On CIFAR10 and CIFAR100, this distribution stabilizes between
300 and 450 epochs, with the classifier layer reaching 0.9 to 1.0 and convl stabilizing at 0.0 to 0.1.
In EMNIST, stability is reached around 250 to 450 epochs, with the classifier layer at 0.7 to 0.8 and
convl at 0.2 to 0.3. For SHVN, stability occurs between 300 to 450 epochs, with the classifier layer
at 0.7 to 0.9 and convl at 0.1 to 0.3.
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Figure 5: Personalized parameters distribution across layers varies with FL epochs using the 4-layer
CNN model on four datasets.

Many layer-wise model decoupling methods (Collins et al.,[2021}; |OH et al.| 2022; Mclaughlin &
Su, 2024), based on CKA theory (Hinton et al., 2015)), designate the final classifier layer as the
personalization layer. However, these methods typically treat all parameters in the classifier layer
as personalized, representing a simplified case compared to our FedOBP. In contrast, FedOBP
selectively identifies which parameters to personalize and has automatically discovered that only a
small subset of parameters in the classifier layer is sufficient for effective personalization. To some
extent, our results on personalized parameter selection align with the “last-layer-as-personalization”
insight from CKA-based methods, confirming that FedOBP score effectively identifies personalized
parameters.

5 CONCLUSION

In this paper, we address the challenge in PFL of identifying which parameters should be personalized
to effectively handle data heterogeneity across clients. We propose a parameter decoupling algorithm
that incorporates a quantile-based thresholding mechanism. In addition, we introduce an element-wise
importance score, referred to as Federated Optimal Brain Personalization (FedOBP). This score is
building on OBD pruning theory and utilizes a federated approximation of the first order derivative in
the Taylor series expansion to assess the significance of each local parameter in relation to the global
dataset D. Finally, we evaluate FedOBP on various datasets with different heterogeneity settings and
show that it outperforms baseline methods. Future research directions include developing adaptive
thresholding methods that go beyond static quantile-based approaches with fixed thresholds (7).
Additionally, exploring soft combinations of local and global model parameters represents another
promising direction.
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Appendix

A DISCUSSION

A.1 LIMITATIONS

The proposed FedOBP has several limitations that suggest promising directions for future research.

First, the threshold parameter 7, which governs optimal quantiling, significantly impacts performance.
While selecting a high threshold (e.g., 0.9995) to focus on a small subset often works well across
diverse datasets, identifying the optimal 7 still requires tuning. Developing adaptive methods to learn
or adjust 7 based on group-level signals could enhance generalization and reduce manual calibration.

Second, our use of a CNN model reflects a common practice in federated learning, where more
complex architectures like ResNet require batch normalization, which is known to underperform in
non-IID federated settings (Diao et al., 2021} |Li et al.| [2021). As a result, many prior works rely
on simpler networks for demonstration, and evaluating FedOBP with more advanced architectures
remains an important direction.

A.2 USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) to assist with manuscript editing. LLMs
were used to help polish the language of the manuscript. This includes surface-level edits such
as improving clarity, grammar, and conciseness of English expressions. All technical content,
algorithmic designs, and empirical results were authored and validated by the authors. No part of the
scientific contributions was generated by or delegated to an LLM.

B EXPERIMENTAL SETUP

B.1 COMPUTING ENVIRONMENT

We implement our experiments using PyTorch 2.1.0+cul21 and run all experiments on Microsoft
Windows 11 Professional Edition. Our system configuration includes a 13th Gen Intel(R) Core(TM)
19-13900K CPU @ 3.00GHz with 24 cores and 32 logical processors, combined with an NVIDIA
GeForce RTX 4090 GPU. The system is built on a Micro-Star International Co., Ltd. MS-7D25
model (PRO Z690-A WIFI DDR4) with 64.0 GB of RAM.

B.2 DATASETS DETAILS

Table 2: Statistical information of used datasets on clients.

Dataset Samples Classes Description Resolution Year
CIFAR10/100 60,000 10/100 Images in 10/100 classes including airplanes, cars, birds, etc. 32 x 32 2009
EMNIST 805,263 62 Extended MNIST with letters and digits 28 x 28 2017
FMNIST 70,000 10 Fashion item images 28 x 28 2017
MNIST 70000 10 Handwritten digits 28 x 28 1998
MEDMNISTA/C  58,850/23,600 11 Biomedical images on abdominal CT. 28 x 28 2019
SVHN 600,000 10 Street view house numbers 32 x 32 2011

The fundamental details of the datasets used in our experiments are presented in Table[2] Each dataset
is partitioned into 100 subsets and assigned to 100 clients to simulate the non-IID scenario. The data
distribution remains consistent throughout the experiments, ensuring a uniform basis for evaluating
the effectiveness of various methods.

B.3 MODEL ARCHITECTURE

A four-layer neural network is utilized as the backbone model in our experiments. The detailed
architecture is presented in Table 3] with layer abbreviations following the PyTorch style. In Table[5]
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Table 3: The 4-layer CNNs. Conv2D consists of a 2D convolution layer, ReLU activation, and
MaxPool2D layer executed sequentially. The in, out, kernel represent the input channel, output
channel, and kernel size, respectively; MaxPool2D is a max pooling layer for 2D input; Flatten
reshapes input from 2D to 1D; FC is a fully connected layer, where out indicates the number of output
features.

Layer Operation Parameters

Conv2D (convl) 2D Convolution INPUT_CHANNELS x 32 x 5 x 5 + 32
ReLU (activationl) Activation -

MaxPool2D (pooll) Max Pooling -

Conv2D (conv2) 2D Convolution 32x5x5+64

ReLU (activation2) Activation -

MaxPool2D (pool2) Max Pooling -

Flatten (flatten) Reshape -

FC (fcl) Fully Connected 64 x4 x4 x512+ 512

ReLU (activation3)  Activation -

Classifier FC (out=NUM_CLASSES) 512 x NUM_CLASSES + NUM_CLASSES

Table 4: ResNet-18 Architecture. Each block consists of a series of 2D convolution layers, followed
by ReLU activation and batch normalization. The in, out, kernel represent the input channel, output
channel, and kernel size, respectively; FC is a fully connected layer, where out indicates the number
of output features.

Layer Operation Parameters

Conv2D (convl) 2D Convolution 3X64X7XT7464
ReLU (activationl) Activation -

BatchNorm (bnl) Batch Normalization

MaxPool2D (pooll) Max Pooling

Residual Block (block1) 2 Conv2D + ReLU + BatchNorm 64 X 64 X3 Xx3+64,64x64x3x%x3+64
Residual Block (block2) 2 Conv2D + ReLU + BatchNorm 64 X 128 X 3 X 3 + 128,128 X 128 X 3 X 3 + 128
Residual Block (block3) 2 Conv2D + ReLU + BatchNorm 128 x 256 x 3 X 3 4 256,256 X 256 X 3 X 3 + 256
Residual Block (block4) 2 Conv2D + ReLU + BatchNorm 256 X 512 X 3 X 3 4+ 512,512 x 512 x 3 X 3 4+ 512
FC (fcl) Fully Connected 512 x 1000 + 1000

Classifier FC (out=num_classes) 1000 x NUM_CLASSES 4 NUM_CLASSES

we present the FedOBP quantile settings for the eight datasets (MNIST, FMNIST, MEDMNISTA
and MEDMNISTC) under two heterogeneity configurations (« € {0.1,0.5}).

B.4 HYPERPARAMETER SETTINGS FOR COMPARATIVE METHODS

We present a detailed overview of the hyperparameter settings for all the comparison methods
discussed above. Most baseline hyperparameters are consistent with the values reported in their
respective original papers.

* FedRep (Collins et al.}[2021)) We set the epoch for training feature extractor part to 1.

» FedDPA (Yang et al., 2023)) We set the fisher threshold 7 = 0.4.

C EXPERIMENTAL RESULTS

C.1 PERFORMANCE

C.1.1 PERFORMANCE FOR AVGCNN (4-LAYER CNNYS)

The results summarized in Table[6] provide a comprehensive evaluation of the average test accuracy
across multiple datasets, comparing our method, FedOBP, with various SOTA approaches and a
Local-Only baseline under different non-IID data distributions.

In the MNIST dataset, FedOBP achieves the highest accuracy of 99.34% under the Dir(0.1) partition,
surpassing the second-best method, FedPer, by 0.31%. Under the Dir(0.5) partition, FedOBP
maintains a competitive accuracy of 98.97%, closely following APFL. For the FMNIST dataset,
FedOBP again leads with an accuracy of 96.89% under Dir(0.1), showing an improvement of 0.65%
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Table 5: Quantile(q) thresholds and corresponding number of personalized parameters for Dir(0.1)
and Dir(0.5) across four datasets.

Dir(0.1 Dir(0.5

Datasets q ( Nzlrnber q ( Nzlmber
CIFAR10 0.99998 18 0.99979 185
CIFAR100 0.9998 185 0.99992 74
EMNIST 0.995 3,044 0.9991 548
SVHN 0.99997 27 0.9998 176
MNIST 0.9998 117 0.99993 41
FMNIST 0.99993 41 0.9999 59
MEDMNISTA | 0.9999 53 0.99995 30
MEDMNISTC | 0.9997 175 0.99995 30

over the next best method, FedPer. In the Dir(0.5) partition, it also achieves 93.11%, marking a
1.73% increase compared to FLOCO. In the MEDMNISTA dataset, FedOBP records an accuracy
of 67.31% under Dir(0.1), with only a 0.16% gap from the optimal solution. However, under
Dir(0.5), it achieves 41.22%, which ties with pFedFDA as the best-performing solution. Lastly, for
the MEDMNISTC dataset, FedOBP achieves 66.84% under Dir(0.1) and 41.36% under Dir(0.5),
both of which are competitive but slightly below the best performances.

Overall, the results indicate that FedOBP consistently delivers strong performance across various
datasets and non-IID distributions, demonstrating its effectiveness in addressing the challenges posed
by heterogeneous data.

Table 6: Average (standard deviation) test accuracy on multiple datasets. Bold and underlined indicate
the best and second-best respectively.

Dataset MNIST FMNIST MEDMNISTA MEDMNISTC
Partition ‘ Dir(0.1) Dir(0.5) ‘ Dir(0.1) Dir(0.5) ‘ Dir(0.1) Dir(0.5) ‘ Dir(0.1) Dir(0.5)
Local-Only | 97.49(0.05) | 94.44(0.13) | 94.93(0.08) | 86.49(0.24) | 67.22(0.05) | 41.08(0.07) | 66.92(0.07) | 41.21(0.15)

FedAvg ‘ 98.58(0.13) ‘ 98.89(0.08) ‘ 87.29(0.45) ‘ 90.37(0.22) ‘ 18.10(0.00) ‘ 18.28(0.55) ‘ 22.28(0.00) ‘ 22.33(0.11)
FedPer 99.03(0.06) | 98.10(0.22) | 96.24(0.19) | 91.06(0.38) | 67.44(0.03) | 41.10(0.05) | 66.83(0.02) | 41.35(0.06)

APFL 98.98(0.18) | 99.04(0.09) | 89.37(0.51) | 91.00(0.39) | 58.50(0.97) | 35.89(1.78) | 56.06(0.74) | 38.81(0.19)
LG-FedAvg | 97.82(0.13) | 95.46(0.45) | 95.24(0.07) | 87.36(0.30) | 67.23(0.07) | 41.10(0.13) | 66.97(0.01) | 41.34(0.03)
FedRep 98.59(0.10) | 97.16(0.20) | 95.80(0.20) | 89.85(0.46) | 67.09(0.12) | 41.08(0.08) | 66.35(0.16) | 41.18(0.05)
pFedFDA 98.78(0.09) | 97.80(0.22) | 96.09(0.15) | 91.10(0.48) | 67.47(0.00) | 41.22(0.01) | 66.79(0.00) | 41.45(0.00)
FLUTE 91.13(0.00) | 80.48(0.00) | 88.56(0.00) | 72.83(0.00) | 67.47(0.00) | 41.14(0.00) | 66.79(0.00) | 41.27(0.00)
FedDPA 98.04(0.00) | 95.92(0.52) | 95.06(0.00) | 88.01(0.51) | 67.02(0.10) | 40.34(0.97) | 66.66(0.05) | 40.94(0.34)
FLOCO 98.80(0.17) | 98.50(0.10) | 95.06(0.58) | 91.38(0.54) | 59.47(0.23) | 33.40(0.44) | 60.66(1.26) | 34.78(0.89)
FedALA 98.58(0.04) | 98.88(0.04) | 86.98(0.04) | 90.18(0.00) | 18.10(0.00) | 17.96(0.00) | 9.03(0.00) | 22.27(0.00)
FedSelect 97.46(0.00) | 94.44(0.00) | 93.83(0.00) | 86.21(0.00) | 67.13(0.00) | 40.96(0.00) | 66.62(0.00) | 41.32(0.00)
FedOBP ‘ 99.34(0.02) ‘ 98.97(0.04) ‘ 96.89(0.03) ‘ 93.11(0.04) ‘ 67.31(0.00) ‘ 41.22(0.13) ‘ 66.84(0.06) ‘ 41.36(0.09)

C.1.2 PERFORMANCE FOR RESNET-18

Table 7: Average test accuracy on multiple datasets under ResNet-18. Bold and underlined indicate
the best and second-best respectively. The personalized parameter ratio selected by FedOBP is shown

in parentheses.

Method CIFAR10 CIFAR100 EMNIST FMNIST MNIST SVHN
FedAvg 69.33 4533 82.07 89.93 99.19 89.45
Local-Only 86.25 50.71 93.17 95.57 98.13 91.62
APFL 70.60 45.70 81.78 90.24 99.23 90.05
FedALA 69.95 45.30 82.22 90.02 99.19 89.33
FedDPA 86.27 51.15 93.53 95.75 98.23 91.94
FedPer 90.36 64.18 94.18 97.08 99.63 95.97
FedRep 90.10 58.18 94.42 96.60 99.42 95.68
FedSelect 85.70 50.02 9291 95.60 98.11 91.40
FLUTE 71.73 35.81 80.29 92.05 93.32 71.02
LG-FedAvg 87.01 53.32 93.66 95.96 98.60 93.33
FedOBP 90.04 (0.14%)  64.58 (0.15%)  95.31(0.40%)  96.93 (0.18%)  99.48 (0.06%)  95.57 (0.16%)
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We evaluated the performance of our method on ResNet-18, with architectural details provided in
A The experiment used a heterogeneity parameter of &« = 0.1. As shown in Table []] FedOBP
achieves impressive results even with minimal parameter personalization, particularly on CIFAR100
and EMNIST, where it outperforms all baselines with performance scores of 64.58% and 95.31%,
respectively. Notably, on the MNIST dataset, our method achieves 99.48% performance by personal-
izing just 0.06% of the model parameters. These results demonstrate the adaptability of our approach
across different architectures, performing excellently not only on simpler models like AvgCNN
(4-layer CNN5s) but also on more complex ones such as ResNet-18.

C.2 CONVERGENCE
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Figure 6: Convergence comparison of FedOBP and ten other solutions with o = 0.1 on the 4-layer
CNN model across four datasets.

Figures[6]and [7)illustrate the convergence performance of eleven algorithms across MNIST, FMNIST,
MEDMNISTA, and MEDMNISTC under @ = 0.1 and @ = 0.5, respectively. On MNIST and
FMNIST, FedOBP outperforms or is slightly inferior to other methods in terms of accuracy and
convergence rates. However, on MEDMNISTA and MEDMNISTC, it slightly lags behind all other
methods in accuracy but demonstrates faster convergence. Among model decoupling approaches,
LG-FedAvg and pFedFDA also demonstrate competitive performance, surpassing 67% and 66%
accuracy on MEDMNISTA and MEDMNISTC under o = 0.1, respectively. Overall, FedOBP
proves to be a robust solution across different datasets and heterogeneity levels.
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Figure 7: Convergence comparison of FedOBP and ten other solutions with o = 0.5 on the 4-layer
CNN model across four datasets.

C.3 IMPORTANCE SCORES

Across all datasets, as the quantile g increases, resulting in a reduction of personalized parameters
u; and an increase in global parameters v;, the accuracy scores for all three scores initially rise
before experiencing a decline. To achieve optimal performance, I (+) requires approximately 60%
personalized parameters, Ir(-) needs 30%, while I () only requires less than 0.1% on MNIST. For
FMNIST, I¢(-) peaks at ¢ = 0.1, I(-) reaches its maximum at quantile ¢ = 0.4, and I (-) peaks at
g = 0.99993. This suggests that the I (-) score effectively identifies the necessary few personalized
parameters. For MEDMNISTA and MEDMNISTC, the OBP score shows stable performance across
various quantile ranges compared to the gradient and Fisher-based scores.

C.4 PERSONALIZED PARAMETER DISTRIBUTION

Figure[I0]illustrates the proportion of personalized parameters across various layers of the 4-layer
CNN model during training over 450 epochs across four different datasets. For all datasets, there is
a clear trend where the proportion of personalized parameters located at the convl decreases over
time, while the proportion at the classifier layer increases. On MNIST stability is achieved between
350 to 450 epochs, with the classifier layer reaching 0.4 to 0.8 and convl stabilizing at 0.2 to 0.6.
FMNIST stability occurs around 250 to 450 epochs, with the classifier layer at 0.5 to 0.6 and conv1
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Figure 8: Comparison of three types of scores, including Gradient I(-), Fisher Ir(-), and OBP
I6(+), on MNIST and FMNIST.
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Figure 9: Comparison of three types of scores, including Gradient I(-), Fisher Ir(-), and OBP
Io(+), on MEDMNISTA and MEDMNISTC.

at 0.4 to 0.5. MEDMNISTA and MEDMNISTC stability is observed from 50 to 450 epochs, with the
classifier layer at 0.8 to 1.0 and conv1 at 0.0 to 0.2.

C.5 ABLATION STUDIES

The ablation studies evaluate the performance by implementing three normalization techniques for
our FedOBP score I (-) including NoNorm, LayerNorm, and GlobalNorm across the four datasets.
NoNorm apply raw FedOBP scores for personalized parameter selection. LayerNorm normalizes
the FedOBP scores in layer-wise which is adapt in (Yang et al.l 2023). GlobalNorm computes
normalization statistics across the entire model. We explore two additional variants of GlobalNorm
including GlobalNorm without CLS (w/o CLS), GlobalNorm with CLS, where the CLS variant
selects personalized parameters from the classifier layer.

The ablation studies in Table[§]show that NoNorm achieves the highest accuracy in FMNIST (96.82%)
and MEDMNISTC (66.60%), while GlobalNorm without CLS yields the best performance in MNIST
(99.40%) and MEDMNISTA (67.47%). LayerNorm consistently underperforms across all datasets,
indicating that GlobalNorm are more effective normalization techniques for the evaluated tasks.

Table 8: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm on four datasets.
Additionally, the ablation study examines GlobalNorm w/o CLS and with CLS.

GlobalNorm

Dataset NoNorm LayerNorm w/o CLS  with CLS
CIFAR10 87.36 85.00 87.36 87.37
CIFAR100 45.98 41.83 45.98 44.89
EMNIST 94.92 94.14 94.92 94.78
SHVN 95.88 93.34 95.88 95.88
MNIST 99.38 99.27 99.38 99.39
FMNIST 96.82 96.31 96.82 96.81
MEDMNISTA 67.47 67.39 67.47 67.47
MEDMNISTC 66.60 65.17 66.60 66.38

Figure E] shows the ablation experiment on MNIST, FMNIST, MEDMNISTA and MEDMNISTC
datasets. NoNorm and GlobalNorm (NA) consistently achieved high accuracy with quick convergence
across all datasets. LayerNorm underperforms, especially in MNIST, FMNIST, and MEDMNISTC,
with significantly lower accuracy in MNIST and FMNIST. Among GlobalNorm variations, the
configuration without CLS delivers the highest accuracy.
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Figure 10: Personalized parameters distribution across layers varies with FL epochs using the 4-layer
CNN model on four datasets.
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Figure 11: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm on MNIST,
FMNIST, MEDMNISTA, and MEDMNISTC datasets. GlobalNorm has two variants, one with CLS
and one without (w/o CLS).

As demonstrated in Figure[I2} both NoNorm and GlobalNorm consistently outperformed LayerNorm
in terms of accuracy. In the CIFAR10 dataset, NoNorm and GlobalNorm (without CLS) achieve an
accuracy of 87.52%, while LayerNorm records 85.00%. In CIFAR100, NoNorm and GlobalNorm
again lead with 45.98%, whereas LayerNorm drops to 41.83%. GlobalNorm configurations perform
similarly to NoNorm. For the EMNIST dataset, NoNorm and GlobalNorm (NA) achieve an accuracy
of 94.92%, outperforming LayerNorm, which achieves 94.14%. The SHVN dataset shows similar
results to CIFAR10 and CIFAR100. Notably, LayerNorm tends to select at least one personalized
parameter per layer, whereas NoNorm and GlobalNorm primarily select personalized parameters
from the classifier layer, indicating that LayerNorm may degrade the performance of FedOBP score.
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Figure 12: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm (including w/o
CLS and with CLS) on CIFAR10, CIFAR100, EMNIST, and SVHN datasets

Compared with selecting personalized parameters globally (w/o CLS), selecting personalized pa-
rameters only from the classifier layer (CLS) produces comparable results in CIFAR10 and SVHN
datastes and slightly worse results of 44.89 % in CIFAR100 datasets and 94.78% in EMNIST dataset.
However, constraining personalized parameter selection to the classifier layer reduces the algorithm’s
complexity and may be a promising direction for future works.

Overall, the ablation experiment results demonstrate that LayerNorm negatively affects the per-
formance of the FedOBP score, while GlobalNorm combined with CLS can slightly degrade the
performance. Notably, even without normalization, the FedOBP performance remains robust, show-
casing the scalability of our scoring method.
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