

FEDOBP: FEDERATED OPTIMAL BRAIN PERSONALIZATION WITH FEW PERSONALIZED PARAMETERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Personalized Federated Learning (PFL) addresses the challenge of data heterogeneity across clients by adapting global knowledge to local data distributions. A promising approach within PFL is model decoupling, which separates the Federated Learning (FL) model into global and personalized parameters. Consequently, a key question in PFL is determining which parameters should be personalized to balance global knowledge sharing and local data adaptation. In this paper, we propose a parameter decoupling algorithm with a quantile-based thresholding mechanism and introduce an element-wise importance score, termed Federated Optimal Brain Personalization (FedOBP). This score extends Optimal Brain Damage (OBD) pruning theory by incorporating a federated approximation of the first-order derivative in the Taylor expansion to evaluate the importance of each parameter for personalization. Extensive experiments demonstrate that FedOBP outperforms state-of-the-art methods across diverse datasets and heterogeneity scenarios, while requiring personalization of only a very small number of personalized parameters.

1 INTRODUCTION

Federated Learning (McMahan et al., 2017) is a distributed paradigm that facilitates collaborative model training across multiple clients while preserving the decentralized nature of their data. However, data heterogeneity among clients, often characterized by non-independent and identically distributed (non-IID), typically leads to sub-optimal performance (Karimireddy et al., 2020).

To address this challenge, personalized Federated Learning (PFL) enables individual clients to maintain customized models tailored to their local data distributions while also sharing knowledge across clients (Collins et al., 2022). A representative type of PFL algorithm is model decoupling (Collins et al., 2021; OH et al., 2022; Xu et al., 2023; Xingyan et al., 2024; McLaughlin & Su, 2024), which divides the neural network model into globally shared feature extractor and a locally personalized prediction head. An extension of this approach, parameter decoupling (Yang et al., 2023; Zhou et al., 2024; Tamirisa et al., 2024), provides a finer-grained decomposition by dividing model parameters into element-wise global and personalized subsets.

A critical challenge of parameter decoupling is identifying which parameters should be personalized. Recent studies have proposed various approaches to address this issue. For example, FedSelectTamirisa et al. (2024) and PSPFLZhou et al. (2024) suggest that personalized parameters should be characterized by higher parameter changes (e.g., accumulated gradients) during local training. Meanwhile, FedDPA (Yang et al., 2023) identifies parameters with larger Fisher information values as more suitable for personalization. However, these methods often lack a solid theoretical foundation for selecting personalized parameters.

In this paper, we propose a novel PFL framework and an element-wise importance score, named Federated Optimal Brain Personalization (FedOBP) that achieves strong performance with very few personalized parameters. The main contributions of this work are as follows:

- We introduce a parameter decoupling algorithm with a quantile-based thresholding mechanism, selecting a small subset of personalized parameters to replace the global parameters for each client.

- We propose a scoring function FedOBP for personalized parameter selection. This score extends Optimal Brain Damage (OBD) pruning theory (LeCun et al., 1989) by incorporating a federated approximation of the first-order derivative within the Taylor expansion.
- We perform extensive experiments demonstrating that our method achieves state-of-the-art performance with only a small number of personalized parameters (< 0.5%), ensuring both efficiency and effectiveness in personalization.

2 RELATED WORKS

Personalized Federated Learning (PFL) PFL has been studied from multiple perspectives, focusing on addressing data heterogeneity and enhancing model performance. For instance, APFL (Deng et al., 2020) allows clients to train local models while contributing to the global model by adaptively combining local and global parameters. FedPer (Arivazhagan et al., 2019) introduces a layer-wise decoupling design, separating base and personalized layers to address data heterogeneity. LG-FedAvg (Liang et al., 2020) takes the opposite approach by training the feature extractor locally and the classifier globally to mitigate the effects of data heterogeneity. In contrast, FedRep (Collins et al., 2021) trains the feature extractor globally while training the classifier locally to tackle heterogeneity issues. pFedFDA (McLaughlin & Su, 2024) addresses the limitations of transitional layer-wise model decoupling, particularly the bias-variance trade-off in classifier training, which relies solely on local datasets. It also views classifier representation learning as a generative modeling task, training representations based on the global feature distribution. FLOCO (Grinwald et al., 2024) leverage linear mode connectivity to identify a linearly connected low-loss region within the parameter space of neural networks. This approach allows clients to personalize their local models within designated subregions, while simultaneously collaborating to train a global model. FLUTE (Liu et al., 2024) consider federated representation learning under-parameterized regime, which integrates low-rank matrix approximation techniques with FL analysis. Some other methods (Chen & Chao, 2022; Tan et al., 2023) also treat the model as a global feature extractor and a personalized classifier head.

Personalized Parameter Importance Score Building on the concept of model decoupling, some approaches use element-wise scoring strategies to identify personalized parameters. For instance, FedSelect (Tamirisa et al., 2024) and PSPFL (Zhou et al., 2024) identify the model parameters with large local training updates for personalization. In contrast, FedDPA (Yang et al., 2023) employs Fisher information-based scoring to assess the sensitivity of each parameter, thereby identifying which parameters should be personalized.

Optimal Brain Damage (OBD) Optimal Brain Damage (LeCun et al., 1989) and Optimal Brain Surgery (OBS) (Hassibi & Stork, 1992) quantify parameter importance primarily through a second-order Taylor expansion of the loss function. OBD has been well-established in theory and validated across various fields, including large language models (Ma et al., 2023; Zhang et al., 2023b). However, to the best of our knowledge, its application to PFL remains unexplored due to the complexities of the distributed learning paradigm. In this work, one of our key contributions is extending OBD by incorporating a federated approximation for personalized parameter selection in PFL.

3 METHOD

3.1 PRELIMINARY

Federated Learning (FL) We consider the FL training process to consist of T communication rounds. In each round t , a subset of clients $\mathcal{C}^t \subset \mathcal{C}$ is selected, where $|\mathcal{C}^t| = \gamma \cdot |\mathcal{C}|$ denotes the number of participating clients, with $t \in [1, T]$ and the participation rate γ . Initially, the server distributes the initialized model θ_g^0 to selected clients. These clients then perform local training using their client-specific datasets \mathcal{D}_i . The local objective for each client $i \in \mathcal{C}^t$ is to minimize the empirical loss over its local dataset \mathcal{D}_i :

$$\arg \min_{\theta_i} \mathcal{L}(\theta_i; \mathcal{D}_i) = \mathbb{E}_{(x,y) \sim \mathcal{D}_i} [\ell(\theta_i; (x, y))], \quad (1)$$

where $\ell(\theta_i; (x, y))$ is the loss function for a sample (x, y) with parameters θ_i , and $\mathcal{L}(\theta_i; \mathcal{D}_i)$ is the expected loss on dataset \mathcal{D}_i . After local training, clients send their updated models $\{\theta_i^t\}_{i \in \mathcal{C}^t}$ back to

108 the server for the global aggregation:
 109

$$110 \quad \theta_g^t = \sum_{i \in \mathcal{C}^t} \frac{m_i^t}{m^t} \theta_i^t, \quad (2)$$

$$111$$

$$112$$

113 where $m^t = \sum_{i \in \mathcal{C}^t} m_i^t$ and m_i^t is the local sample count of client i at t . The aggregated parameters
 114 θ_g^t are then distributed to the local clients for the next communication round. Therefore, the global
 115 objective can be expressed as:

$$116 \quad \arg \min_{\theta} \mathcal{L}(\theta_g; \mathcal{D}) = \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} \mathbb{E}_{(x, y) \sim \mathcal{D}_i} [\ell(\theta_g; (x, y))], \quad (3)$$

$$117$$

$$118$$

$$119$$

120 where $\mathcal{L}(\theta_g; \mathcal{D})$ represents the expected loss over the entire dataset $\mathcal{D} = \{\mathcal{D}_i\}_{i \in \mathcal{C}}$ across all clients.
 121

122 **Model Decoupling** Model Decoupling addresses data distribution heterogeneity by selecting a
 123 client-specific personalized subset \mathbf{u}_i^t from the previous local model θ_i^{t-1} and choosing a globally
 124 shared subset \mathbf{v}_i^t from the global model parameters θ_g^t . Client i combines the client-specific person-
 125 alized subset \mathbf{u}_i^t with the globally shared subset \mathbf{v}_i^t to create the merged model $\tilde{\theta}_i^t = \{\mathbf{u}_i^t, \mathbf{v}_i^t\}$. Let
 126 \mathcal{K} denote the set of all parameter indices, such that $\theta_g^t = \{\theta_g^{t,k}\}_{k \in \mathcal{K}}$. For subsets \mathbf{u}_i^t and \mathbf{v}_i^t , their
 127 corresponding parameter index sets are $\mathcal{K}(\mathbf{u}_i^t)$ and $\mathcal{K}(\mathbf{v}_i^t)$ respectively, where $\mathbf{u}_i^t = \{\theta_i^{t-1,k}\}_{k \in \mathcal{K}(\mathbf{u}_i^t)}$
 128 and $\mathbf{v}_i^t = \{\theta_g^{t,k}\}_{k \in \mathcal{K}(\mathbf{v}_i^t)}$. It is important to note that the element-wise parameter decoupling for
 129 each parameter k can vary across clients i and communication rounds t . While \mathbf{u}_i^t is updated exclu-
 130 sively using the client's local dataset \mathcal{D}_i , \mathbf{v}_i^t is involved in both local updates and global parameter
 131 aggregation. The local objective function for PFL with parameter decoupling can be expressed as:
 132

$$133 \quad \arg \min_{\{\tilde{\theta}_i^t\}_{i \in \mathcal{C}}} \left\{ \frac{1}{|\mathcal{C}|} \sum_{i \in \mathcal{C}} \mathcal{L}(\tilde{\theta}_i^t; \mathcal{D}_i) \right\}, \quad (4)$$

$$134$$

$$135$$

136 where $\mathcal{L}(\tilde{\theta}_i^t; \mathcal{D}_i) = \mathbb{E}_{(x, y) \sim \mathcal{D}_i} [\ell(\tilde{\theta}_i^t; (x, y))]$ represents the expected loss for client i with its decou-
 137 pled parameters. $\ell(\tilde{\theta}_i^t; (x, y))$ is the loss function for a sample (x, y) computed using the client-
 138 specific model $\tilde{\theta}_i^t$.
 139

140 **Parameter Importance Score** PFL with parameter decoupling methods (Yang et al., 2023; Zhou
 141 et al., 2024; Tamirisa et al., 2024) identify the personalized parameter set \mathbf{u}_i^t and the globally shared
 142 parameter set \mathbf{v}_i^t based on an element-wise parameter importance score $I(\cdot)$.
 143

144 FedSelect (Tamirisa et al., 2024) and PSPFL (Zhou et al., 2024) propose using local updates from
 145 the pre-trained merged model $\tilde{\theta}_i^{t-1}$ in the previous round to compute the importance score of each
 146 parameter $\theta_i^{t-1,k}$, $k \in \mathcal{K}$. This approach relies on multiple local updates and gradient computations
 147 during local training. Specifically, the gradient-based importance score $I_G(\cdot)$ is calculated as the
 148 absolute difference between the merged model $\tilde{\theta}_i^{t-1,k}$ and the locally updated $\theta_i^{t-1,k}$ as follows:
 149

$$150 \quad I_G(\theta_i^{t-1,k}; \mathcal{D}_i) = \left| \tilde{\theta}_i^{t-1,k} - \theta_i^{t-1,k} \right|. \quad (5)$$

$$151$$

$$152$$

$$153$$

154 However, gradient-based importance scores can only be determined after local training in the previous
 155 communication round $t - 1$. This limitation means that the score can only be used if the client is
 156 selected again in subsequent rounds, introducing a delay issue when the participation rate $\gamma < 1$.
 157

158 FedDPA (Yang et al., 2023) takes a different approach by utilizing Fisher information to determine
 159 importance for personalization. The Fisher information-based importance score $I_F(\cdot)$ is defined as:
 160

$$161 \quad I_F(\theta_i^{t-1,k}; \mathcal{D}_i) = \left(\frac{\partial \mathcal{L}(\theta_i^{t-1,k}, \mathcal{D}_i)}{\partial \theta_i^{t-1,k}} \right)^2. \quad (6)$$

$$162$$

$$163$$

164 Unlike gradient-based methods, the Fisher information-based approach can be applied before local
 165 training and does not suffer from the delay issue. However, it still requires gradient computation in
 166 order to calculate the Fisher information for each parameter $\{\theta_i^{t-1,k}\}_{k \in \mathcal{K}}$ with the local dataset \mathcal{D}_i ,
 167

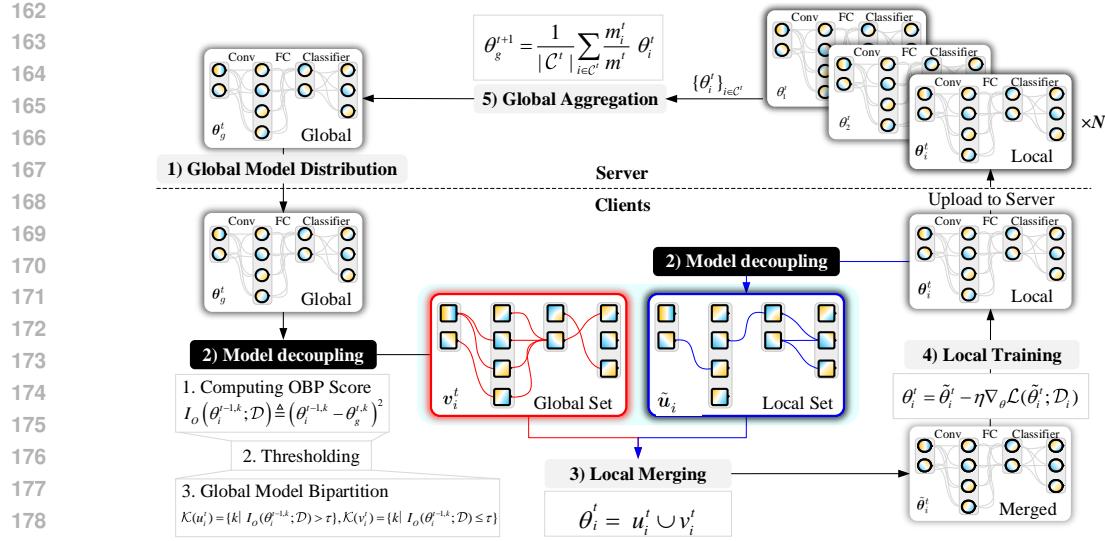


Figure 1: Overview of FedOBP. The server sends a global model θ_g^t to selected clients \mathcal{C}^t . Each client i determines the personalized parameters based on the Federated OBP parameter importance $I_O(\theta_i^{t-1}; \mathcal{D})$ using a quantile-based thresholding. The client i merges the globally shared parameters v_i^t and the personalized parameters u_i^t to form the merged model θ_i^t . The client i performs local training on the merged model $\tilde{\theta}_i^t$ and uploads the updated model θ_i^t to the server for global aggregation.

which introduces additional computational overhead. Furthermore, we observe that both the gradient-based and Fisher information-based methods require a relatively large proportion of personalized parameters to achieve optimal performance. This requirement for a large proportion of personalized parameters limits the ability of local models to effectively leverage shared knowledge across clients, thereby reducing the overall benefits of collaboration.

3.2 FEDOBP ALGORITHM

Algorithm The workflow of the FedOBP algorithm is illustrated in Figure 1. FedOBP follows the general framework of standard PFL, incorporating Federated OBP parameter importance score function $I_O(\cdot)$. The pseudocode of the main steps is provided in Algorithm 1.

1) Global Model Distribution: The server transmits the globally aggregated model θ_g^t to the selected clients $i \in \mathcal{C}^t$.

2) Model Decoupling: Each client i adopts a thresholding mechanism based on the Federated OBP parameter importance $I_O(\theta_i^{t-1}; \mathcal{D}) = \{I_O(\theta_i^{t-1,k}; \mathcal{D})\}_{k \in \mathcal{K}}$ to decouple the personalized set u_i^t from the previous local model θ_i^{t-1} and the globally shared subset v_i^t from the global model θ_g^t . We will provide the detail of Federated OBP parameter importance function in Section 3.3. The importance-based partitioning uses a quantile-based thresholding function $f_q : I_O(\theta_i^{t-1,k}; \mathcal{D}) \rightarrow \mathbb{R}$, which determines a threshold τ , as follows:

$$\begin{aligned} \tau &= f_q(I_O(\theta_i^{t-1}; \mathcal{D})) \\ &\triangleq \inf\{I_O(\theta_i^{t-1}; \mathcal{D}) \in \mathbb{R} : F(I_O(\theta_i^{t-1}; \mathcal{D})) \geq q\}, \end{aligned}$$

where $F(x)$ is the cumulative distribution function of $I_O(\theta_i^{t-1}; \mathcal{D})$ and $q \in [0, 1]$ is the quantile level.

Using this threshold τ , we can determine the personalized parameter set $u_i^t = \{\theta_i^{t-1,k}\}_{k \in \mathcal{K}(u_i^t)}$ and the globally shared parameter set $v_i^t = \{\theta_g^{t-1,k}\}_{k \in \mathcal{K}(v_i^t)}$ with the corresponding index sets as follows:

$$\mathcal{K}(u_i^t) = \{k \mid I_O(\theta_i^{t-1,k}; \mathcal{D}) > \tau\}, \quad (7)$$

$$\mathcal{K}(v_i^t) = \{k \mid I_O(\theta_i^{t-1,k}; \mathcal{D}) \leq \tau\}, \quad (8)$$

where $\theta_i^{t-1,k}$ represents the previous local model parameter at position k , and τ is a threshold.

216 **Algorithm 1: FedOBP** (T, γ)
217
218 **Input:** Total rounds T , participation rate γ .
219 **Output:** Global model θ_g^T , local models $\{\theta_i^T\}_{i \in \mathcal{C}}$
220 1 Initialize θ_g^0 ;
221 2 **for** $t = 1$ **to** T **do**
222 3 Distribute θ_g^t to selected clients \mathcal{C}^t , $|\mathcal{C}^t| = \gamma|\mathcal{C}|$;
223 4 **foreach** $i \in \mathcal{C}^t$ **in parallel do**
224 5 Compute FedOBP parameter importance $\{I_O(\theta_i^{t-1,k}; \mathcal{D})\}_{k \in \mathcal{K}}$ based on Eq. equation 19;
225 6 Decouple $\{\mathbf{u}_i^t, \mathbf{v}_i^t\}$ based on Eq. equation 7 equation 8;
226 7 Merge model $\tilde{\theta}_i^t = \mathbf{u}_i^t \cup \mathbf{v}_i^t$;
227 8 Training $\theta_i^t \leftarrow \tilde{\theta}_i^t - \eta \nabla_{\theta} \mathcal{L}(\tilde{\theta}_i^t; \mathcal{D}_i)$;
228 9 **end**
229 10 Aggregate $\{\theta_i^t\}_{i \in \mathcal{C}^t}$ based on Eq. equation 11 to get θ_g^{t+1} ;
230 11 Send θ_g^{t+1} to the next round client $i \in \mathcal{C}^{t+1}$;
231 12 **end**
232 13 **return** $\theta_g^T, \{\theta_i^T\}_{i \in \mathcal{C}}$;

234
235
236 Through extensive numerical experiments in Section 4.2, we found that FedOBP can achieve strong
237 performance by selecting very few personalized parameters \mathbf{u}_i . Notably, most selected personalized
238 parameters are concentrated in the classifier layer, aligning with theoretical insights from Centered
239 Kernel Alignment (CKA) (Hinton et al., 2015).

240 3) *Local Merging*: Each client i obtains the merged model $\tilde{\theta}_i^t$ by combining the client-specific
241 personalized parameter subset \mathbf{u}_i^t with the global parameter subset \mathbf{v}_i^t as follows:

242
$$\tilde{\theta}_i^t = \mathbf{u}_i^t \cup \mathbf{v}_i^t. \quad (9)$$

244 4) *Local Training*: Each client i performs local training on the merged model $\tilde{\theta}_i^t$ with the local dataset
245 \mathcal{D}_i to obtain the locally trained model θ_i^t , following the update rule:

247
$$\theta_i^t = \tilde{\theta}_i^t - \eta \nabla_{\theta} \mathcal{L}(\tilde{\theta}_i^t; \mathcal{D}_i), \quad (10)$$

248 where η is the learning rate. In FL, such model updates can be performed multiple times. Then, each
249 client i uploads its locally trained model θ_i^t to the server.

251 5) *Global Aggregation*: The server aggregates the locally trained models $\{\theta_i^t\}_{i \in \mathcal{C}^t}$ to compute the
252 globally aggregated model θ_g^{t+1} for the next communication round:

253
$$\theta_g^{t+1} = \frac{1}{|\mathcal{C}^t|} \sum_{i \in \mathcal{C}^t} \frac{m_i^t}{m^t} \theta_i^t. \quad (11)$$

256
257 3.3 FEDERATED OBP PARAMETER IMPORTANCE
258

259 **Optimal Brain Damage (OBD)** Optimal Brain Damage (LeCun et al., 1989; Hassibi & Stork,
260 1992; Molchanov et al., 2019; Zhang et al., 2023b; Ma et al., 2023) is a model pruning technique that
261 quantifies the element-wise importance of each parameter θ^k in a model $\theta = \{\theta^k\}_{k \in \mathcal{K}}$ with respect
262 to the loss function $\mathcal{L}(\cdot)$ on dataset \mathcal{D} as:

263
$$I_O(\theta^k; \mathcal{D}) = |\Delta \mathcal{L}(\theta^k; \mathcal{D})| = |\mathcal{L}(\theta_{=0}^k; \mathcal{D}) - \mathcal{L}(\theta^k; \mathcal{D})|, \quad (12)$$

264 where $\mathcal{L}(\theta_{=0}^k; \mathcal{D})$ represents the expected loss with parameter θ^k is set to 0. The importance $I_O(\theta^k; \mathcal{D})$
265 of parameter θ^k at position k can be further expanded using a Taylor series approximation of
266 $\mathcal{L}(\theta_{=0}^k; \mathcal{D})$ at θ^k to obtain:

267
$$I_O(\theta^k; \mathcal{D}) = \left| \frac{\partial \mathcal{L}(\theta^k; \mathcal{D})}{\partial \theta^k} \delta \theta^k + \frac{1}{2} \delta \theta^k H_{kk} \delta \theta^k + \mathcal{O}(\|\theta^k\|^3) \right|, \delta \theta^k = \theta_{=0}^k - \theta^k = -\theta^k \quad (13)$$

270 where H_{kk} is the diagonal entry of the Hessian matrix, capturing the second-order curvature of $\mathcal{L}(\cdot)$
 271 with respect to θ^k . $\mathcal{O}(\|\theta^k\|^3)$ denotes higher-order terms. Classical OBD and Optimal Brain Surgeon
 272 (OBS) methods primarily focus on pruning models after convergence relying on the second order
 273 term of the Taylor series approximation while assuming the first order term to be negligible (LeCun
 274 et al., 1989; Hassibi & Stork, 1992).

275 **Federated Optimal Brain Personalization (FedOBP)** As discussed in Section 3.1, global aggre-
 276 gation optimizes the global model θ_g^t by minimizing the global loss equation 3 on the global dataset
 277 \mathcal{D} . However, due to data heterogeneity across clients, this aggregation can degrade the performance
 278 of each personalized model θ_i^t on its corresponding local dataset \mathcal{D}_i . To maximize the benefits of
 279 shared global knowledge, we aim to share most parameters across clients and personalize very few
 280 parameters. To achieve this, we choose to identify the local parameters $\theta_i^{t-1,k}$ that are most critical
 281 for the global dataset \mathcal{D} .

282 Building on the OBD pruning theory, we introduce the Federated Optimal Brain Personalization
 283 (FedOBP) score function to assess the importance of each local model parameter $\theta_i^{t-1,k}$ with respect
 284 to the corresponding global model parameter $\theta_g^{t,k}$ for the global dataset \mathcal{D} . We use a Taylor series
 285 approximation of $\mathcal{L}(\theta_g^{t,k}; \mathcal{D})$ at $\theta_i^{t-1,k}$ to obtain:

$$288 I_O(\theta_i^{t-1,k}; \mathcal{D}) = \left| \mathcal{L}(\theta_g^{t,k}; \mathcal{D}) - \mathcal{L}(\theta_i^{t-1,k}; \mathcal{D}) \right| \quad (14)$$

$$289 = \left| \frac{\partial \mathcal{L}(\theta_i^{t-1,k}; \mathcal{D})}{\partial \theta_i^{t-1,k}} \delta \theta_i^{t-1,k} + \frac{1}{2} \delta \theta_i^{t-1,k} H_{kk} \delta \theta_i^{t-1,k} + \mathcal{O}(\|\theta^{t-1,k}\|^3) \right|, \quad (15)$$

292 where $\delta \theta_i^{t-1,k} = \theta_g^{t,k} - \theta_i^{t-1,k}$. In classical OBD, the importance of parameters is measured by the
 293 loss difference between pruned and unpruned parameters. In the proposed FedOBP, the importance
 294 of global parameters with respect to the global dataset is measured by the loss difference between
 295 local and global parameters.

296 FedOBP applies parameter importance analysis during the FL training phase, where the first order
 297 term often dominates the second order term in magnitude. As a result, FedOBP approximates
 298 parameter importance using only the first order term (Molchanov et al., 2019; Zhang et al., 2023b):

$$300 I_O(\theta_i^{t-1,k}; \mathcal{D}) \approx \left| \frac{\partial \mathcal{L}(\theta_i^{t-1,k}; \mathcal{D})}{\partial \theta_i^{t-1,k}} \cdot (\theta_g^{t,k} - \theta_i^{t-1,k}) \right| \quad (16)$$

303 Meanwhile, we interpret the global aggregation process in Eq. equation 11 as performing a single
 304 update step for the local models $\{\theta_i^{t-1}\}_{i \in \mathcal{C}^t}$ on the global dataset \mathcal{D} . Consequently, the gradient
 305 descent formulation of the global aggregation for each parameter $\theta_i^{t-1,k}$ can be expressed as:

$$307 \theta_g^{t,k} \approx \theta_i^{t-1,k} - \eta \frac{\partial \mathcal{L}(\theta_i^{t-1,k}; \mathcal{D})}{\partial \theta_i^{t-1,k}}. \quad (17)$$

309 According to the classical FedAvg, multi-step cumulative gradient updates provide more accurate
 310 parameter improvements than a single-step gradient descent update (McMahan et al., 2017). A
 311 well-known federated optimization approach, Adaptive Federated Optimization (AFO) (Reddi et al.,
 312 2021), also interprets global aggregation as one step of gradient descent. Therefore, the federated
 313 gradient can be regarded as global-local parameter update as follows:

$$315 \frac{\partial \mathcal{L}(\theta_i^{t-1,k}; \mathcal{D})}{\partial \theta_i^{t-1,k}} \approx \theta_i^{t-1,k} - \theta_g^{t,k}. \quad (18)$$

317 Unlike AFO, which treats sequential global aggregations $(\theta_g^{t-1,k} - \theta_g^{t,k})$ as “gradient”, we regard the
 318 federated global-local parameter update $(\theta_i^{t-1,k} - \theta_g^{t,k})$ in PFL as an approximation to the gradient.
 319 Therefore, we can further approximate Eq. equation 16 by replacing the gradient term with the
 320 parameter update $(\theta_i^{t-1,k} - \theta_g^{t,k})$ in Eq. equation 18 and obtain the FedOBP score function as
 321 follows:

$$323 I_O(\theta_i^{t-1,k}; \mathcal{D}) \triangleq (\theta_i^{t-1,k} - \theta_g^{t,k})^2. \quad (19)$$

324 FedOBP introduces a interpretable and practical criterion by directly quantifying the discrepancy
 325 between local and global parameters for the global dataset. This formulation enables a more principled
 326 selection of parameters for personalization, allowing clients to identify and retain only the most
 327 impactful parameters based on their relevance to global knowledge for efficient personalization.
 328 Specifically, local parameters $\theta_i^{t-1,k}$ with higher FedOBP importance scores $I_O(\theta_i^{t-1,k}; \mathcal{D})$ are the
 329 most influential in improving global model performance. Personalizing these parameters is crucial
 330 to avoid excessive alignment with the global model, thereby preserving strong local performance.
 331 This allows clients to personalize a minimal and critical subset of parameters while sharing the
 332 rest globally, achieving an effective balance between local adaptation and collaborative learning.
 333 Extensive experiments show that this OBD-based personalization strategy consistently achieves better
 334 trade-offs between generalization and personalization, outperforming gradient- and Fisher-based
 335 methods across diverse benchmarks.

336 4 EXPERIMENTS

337 4.1 EXPERIMENTAL SETUP

339 **Datasets** We evaluate the propose method on four benchmark datasets, where EMNIST (Cohen
 340 et al., 2017) covers 62-class handwriting image classification, CIFAR10 and CIFAR100 (Krizhevsky,
 341 2009) are with 10 and 100 classes respectively. SVHN (Netzer et al., 2011) focuses on 10-class
 342 digit classification. Data was evenly split into non-overlapping train and test sets per client, with
 343 heterogeneity simulated using $\text{Dir}(\alpha)$, $\alpha \in \{0.1, 0.5\}$ distribution (lower values indicating higher
 344 heterogeneity). The federated setup has global communication rounds $T = 400$ across 100 clients
 345 with participation rate $\gamma = 0.1$. Clients used Stochastic Gradient Descent optimization with a
 346 learning rate $\eta = 0.01$, 32 batch size, and 5 local epochs. All methods were evaluated over four
 347 random experiments, and the mean and standard deviation of the results were reported. Additional
 348 experimental details and results are detailed in the Appendix B.

349 **Baselines** We implement the baselines based on an open-source benchmark Tan & Wang (2025).
 350 We compare the performance of our FedOBP algorithm with eight current PFL methods, including
 351 FedPer (Arivazhagan et al., 2019), APFL (Deng et al., 2020), LG-FedAvg (Liang et al., 2020),
 352 FedRep (Collins et al., 2021), pFedFDA (McLaughlin & Su, 2024), FLUTE (Liu et al., 2024),
 353 FedDPA (Yang et al., 2023), FLOCO (Grinwald et al., 2024) and FedALA (Zhang et al., 2023a).
 354 FedAvg (McMahan et al., 2017) and Local-Only served as baselines for assessing generalization and
 355 personalization performance.

356 **Model and Hyperparameters** We use a simple 4-layer CNN model with two convolutional layers
 357 and two fully connected (FC) layers, with the final FC layer serving as the classifier. The details of
 358 the CNN model is shown in Appendix B. In addition, we introduce two normalization strategies for
 359 parameter importance (LayerNorm and GlobalNorm). Specifically, LayerNorm applies a layer-wise
 360 min-max normalization procedure as (Yang et al., 2023), whereas GlobalNorm performs min-max
 361 normalization across all parameters. Our ablation experiments in Appendix C.5 compare the two
 362 strategies alongside the baseline without normalization. The primary evaluation metric is the average
 363 accuracy, calculated for each client $i \in \mathcal{C}$ based on their local dataset \mathcal{D}_i . The overall metric is the
 364 average of these individual accuracies across all clients \mathcal{C} .

365 4.2 EXPERIMENTAL RESULTS

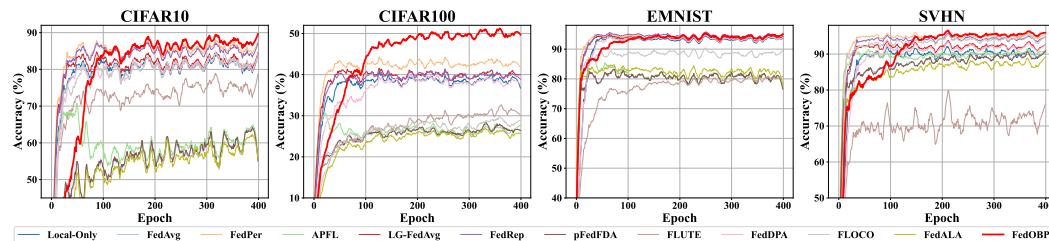
366 **Performance** Table 1 presents a comparative accuracy analysis of our method against eight various
 367 baselines methods on four image classification tasks. The results demonstrate that our method
 368 consistently achieves superior accuracy under varying levels of non-IID data distributions. Specifically,
 369 under $\text{Dir}(0.1)$, FedOBP outperforms the second-best method by 0.59% and 8.28% on CIFAR10 and
 370 CIFAR100, respectively, and achieves gains of 0.16% on EMNIST. On SVHN, FedOBP provides
 371 a 0.87% improvement over the second-best FedPer. Even at heterogeneity $\text{Dir}(0.5)$, our method
 372 maintains its advantage on all datasets. The superiority of FedOBP in tackling the non-IID data
 373 distribution issues highlights the advantages of using the FedOBP score to determine the parameters
 374 that should be personalized. We also conducted tests on ResNet-18, where the distinction between the
 375 feature extractor and classifier is less clearly defined. The results can be found in the Appendix C.1.2.

376 **Convergence** Figure 2 provides the convergence performance of all various algorithms across
 377 four datasets with $\alpha = 0.1$. we use a bold red line to highlight FedOBP. On CIFAR10, FedOBP

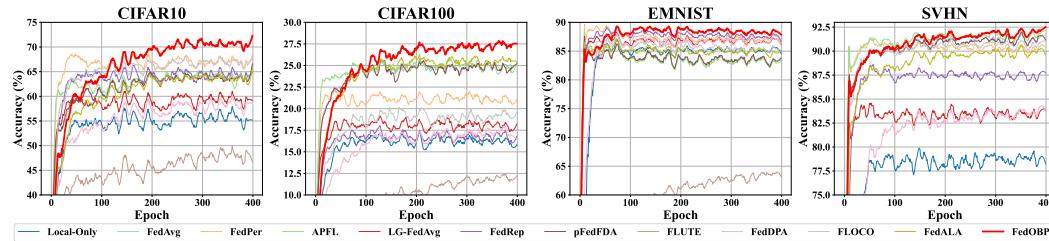
378 Table 1: Average (standard deviation) test accuracy on four datasets. Bold and underlined indicate
379 the best and second-best respectively.

Dataset Partition	CIFAR10		CIFAR100		EMNIST		SVHN	
	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)
Local-Only	80.87(0.12)	54.78(0.24)	37.88(0.50)	15.76(0.39)	92.72(0.81)	85.02(0.23)	90.15(0.26)	77.71(0.61)
FedAvg	58.15(0.26)	63.98(0.29)	26.18(0.36)	25.40(0.22)	82.11(0.12)	84.02(0.17)	88.21(0.76)	90.24(0.66)
FedPer	84.98(0.43)	65.87(0.67)	42.09(0.47)	20.68(0.27)	94.20(0.02)	87.55(0.09)	94.73(0.23)	89.46(0.65)
APFL	59.37(1.23)	63.78(0.21)	26.55(0.47)	25.10(0.06)	81.87(0.16)	83.85(0.15)	89.51(0.74)	91.05(0.41)
LG-FedAvg	81.74(0.25)	57.46(0.87)	39.08(0.73)	16.89(0.73)	93.69(0.09)	86.32(0.34)	91.68(0.41)	81.63(1.10)
FedRep	84.56(0.26)	63.63(0.49)	39.35(0.35)	16.83(0.18)	94.36(0.22)	87.38(0.56)	94.16(0.22)	86.91(0.43)
pFedFDA	86.43(0.10)	68.72(0.19)	41.72(0.45)	16.71(0.77)	93.39(0.13)	86.24(0.21)	93.95(0.14)	87.53(0.28)
FLUTE	74.78(0.00)	48.25(1.19)	31.61(0.00)	12.63(1.01)	80.32(0.00)	63.87(0.44)	72.24(0.00)	43.06(0.89)
FedDPA	81.39(0.02)	57.37(1.19)	38.88(0.11)	16.74(1.27)	93.73(0.02)	86.64(0.29)	91.99(0.01)	82.83(1.39)
FLOCO	80.77(0.73)	66.26(0.18)	27.98(0.63)	18.25(0.82)	88.74(0.06)	85.71(0.20)	93.37(0.51)	89.76(0.62)
FedALA	56.94(0.09)	63.58(0.00)	26.00(0.09)	25.69(0.00)	82.06(0.05)	83.89(0.00)	87.61(0.12)	89.91(0.00)
FedSelect	79.89(0.00)	53.59(0.00)	36.33(0.00)	15.12(0.00)	92.91(0.00)	84.57(0.00)	90.14(0.00)	77.58(0.00)
FedOBP	87.02(0.17)	70.22(0.16)	50.37(0.16)	27.05(0.30)	94.36(0.04)	88.82(0.05)	95.60(0.03)	91.75(0.47)

393 achieves the highest accuracy and comparable convergence. pFedFDA and FedPer also show good
394 convergence reaching above 85%. Other methods, such as APFL, FLUTE and FedAL, converge
395 slowly, with final accuracies below 75%. On CIFAR100 and EMNIST, FedOBP displays the fastest
396 convergence and highest final accuracy compared to all alternative solutions. Additionally, FedOBP
397 demonstrates comparable convergence on SVHN while achieving best final accuracy. Figure 3 shows
398 the convergence results with $\alpha = 0.5$. FedOBP shows best accuracy with comparable convergence,
399 achieving optimal results at approximately 200 epochs for CIFAR10 and 200 epochs for CIFAR100,
400 respectively. FedOBP demonstrates fastest convergence, achieving the first position of accuracy
401 in SVHN and shows fast convergence on EMNIST. These results indicate that FedOBP achieves
402 competitive convergence across four datasets with varying levels of data heterogeneity.



411 Figure 2: Convergence comparison of FedOBP and ten other solutions with $\alpha = 0.1$ on the 4-layer
412 CNN model across four datasets.



413 Figure 3: Convergence comparison of FedOBP and ten other solutions with $\alpha = 0.5$ on the 4-layer
414 CNN model across four datasets.

415 **Importance Scores** We further analyze the performance of three types of scores (Gradient $I_G(\cdot)$,
416 Fisher $I_F(\cdot)$, and FedOBP $I_O(\cdot)$) with different quantile q settings ranging from 0.0 to 1.0, where
417 a larger quantile indicates a smaller proportion $(1 - q)$ of personalized parameters. This analysis
418 employs a 4-layer CNN model on both the CIFAR-10 and CIFAR-100 datasets. The total number of
419 FL rounds is set to 200, with the default parameter value $\gamma = 0.1$.

420 Across all datasets, as the quantile q increases, leading to fewer personalized parameters u_i and more
421 global parameters v_i , all three scores initially rise and then decline. Each score demonstrates a clear
422 phase transition upon achieving peak performance at varying quantile values across different datasets.
423 As shown in Figure 4, for CIFAR10, $I_G(\cdot)$ peaks at quantile $q = 0.1$, $I_F(\cdot)$ at $q = 0.7$, and $I_O(\cdot)$ at

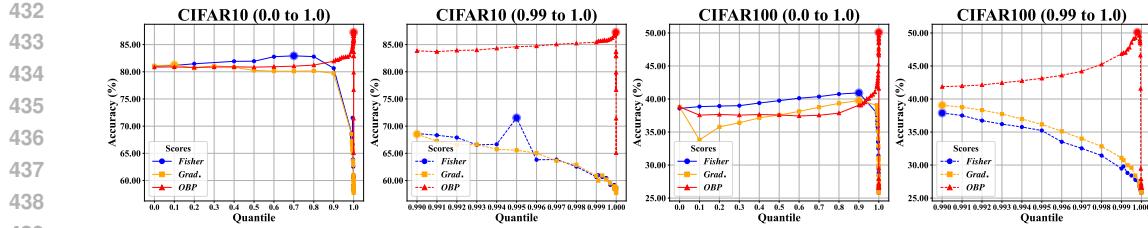


Figure 4: Comparison of three types of scores, including Gradient $I_G(\cdot)$, Fisher $I_F(\cdot)$, and OBP $I_O(\cdot)$, on CIFAR10 and CIFAR100.

$q = 0.9999$. These results indicate that to achieve optimal performance, $I_G(\cdot)$ requires approximately 790,684 personalized parameters, $I_F(\cdot)$ needs 263,561, while $I_O(\cdot)$ requires only 87. If we increase the FL rounds to 400, the number of personalized parameters required for $I_O(\cdot)$ to achieve optimal results will further decrease to 18 as shown in Appendix B.3. On CIFAR100, $I_G(\cdot)$ peaks at quantile $q = 0.9$ (87,853), $I_F(\cdot)$ at quantile $q = 0.9$ (87,853), and $I_O(\cdot)$ at $q = 0.9998$ (185). These results demonstrate that $I_O(\cdot)$ score can accurately identify the necessary personalized parameters. This phenomenon is also observed in the other datasets in Appendix C.3.

Personalized Parameter Distribution Figure 5 illustrates the proportion of personalized parameters across various layers of the 4-layer CNN model during training over 450 epochs for four different datasets. Across all datasets, a consistent trend is observed where the proportion of personalized parameters in the first convolutional layer (conv1) gradually decreases, while the proportion in the classifier layer increases over time. On CIFAR10 and CIFAR100, this distribution stabilizes between 300 and 450 epochs, with the classifier layer reaching 0.9 to 1.0 and conv1 stabilizing at 0.0 to 0.1. In EMNIST, stability is reached around 250 to 450 epochs, with the classifier layer at 0.7 to 0.8 and conv1 at 0.2 to 0.3. For SHVN, stability occurs between 300 to 450 epochs, with the classifier layer at 0.7 to 0.9 and conv1 at 0.1 to 0.3.

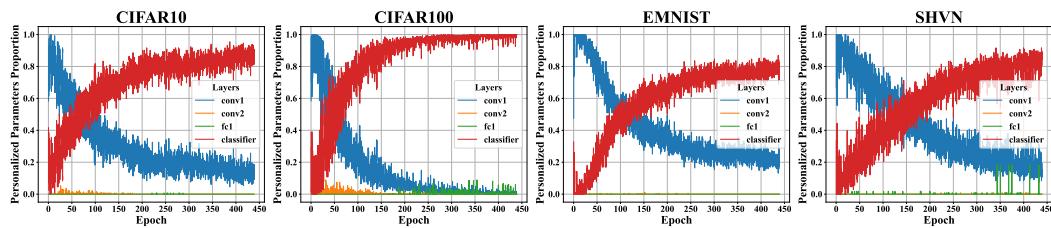


Figure 5: Personalized parameters distribution across layers varies with FL epochs using the 4-layer CNN model on four datasets.

Many layer-wise model decoupling methods (Collins et al., 2021; OH et al., 2022; McLaughlin & Su, 2024), based on CKA theory (Hinton et al., 2015), designate the final classifier layer as the personalization layer. However, these methods typically treat all parameters in the classifier layer as personalized, representing a simplified case compared to our FedOBP. In contrast, FedOBP selectively identifies which parameters to personalize and has automatically discovered that only a small subset of parameters in the classifier layer is sufficient for effective personalization. To some extent, our results on personalized parameter selection align with the “last-layer-as-personalization” insight from CKA-based methods, confirming that FedOBP score effectively identifies personalized parameters.

5 CONCLUSION

In this paper, we address the challenge in PFL of identifying which parameters should be personalized to effectively handle data heterogeneity across clients. We propose a parameter decoupling algorithm that incorporates a quantile-based thresholding mechanism. In addition, we introduce an element-wise importance score, referred to as Federated Optimal Brain Personalization (FedOBP). This score is building on OBD pruning theory and utilizes a federated approximation of the first order derivative in the Taylor series expansion to assess the significance of each local parameter in relation to the global dataset \mathcal{D} . Finally, we evaluate FedOBP on various datasets with different heterogeneity settings and show that it outperforms baseline methods. Future research directions include developing adaptive thresholding methods that go beyond static quantile-based approaches with fixed thresholds (τ). Additionally, exploring soft combinations of local and global model parameters represents another promising direction.

486
487
ETHICS STATEMENT488
489
490
491
492
The authors of this work have read and commit to adhering to the Code of Ethics. Our research
proposes a personalized Federated Learning framework inspired by model pruning and, to the best of
our knowledge, does not present any direct ethical concerns. The work does not involve the use of
personally identifiable information, sensitive human-subject data, or applications with immediate
potential for societal harm.493
494
REPRODUCIBILITY STATEMENT
495496
497
498
We provide the complete source code in the supplementary materials. Further details on the experi-
mental setup, including hyperparameters, datasets, model architecture and computing environment,
are documented in the Appendix.500
501
REFERENCES502
503
Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. *arXiv preprint arXiv:1912.00818*, 2019.504
505
Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
image classification. In *International Conference on Learning Representations*, 2022.506
507
508
Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In *2017 International Joint Conference on Neural Networks (IJCNN)*, pp.
2921–2926. IEEE, 2017.509
510
511
Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
512
513
tations for personalized federated learning. In *International Conference on Machine Learning*, pp.
2089–2099. PMLR, 2021.514
515
Liam Collins, Enmao Diao, Tanya Roosta, Jie Ding, and Tao Zhang. Perfedsi: A framework for
516
517
personalized federated learning with side information. In *Workshop on Federated Learning: Recent
Advances and New Challenges (in Conjunction with NeurIPS 2022)*, 2022.518
519
Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
520
learning. *arXiv preprint arXiv:2003.13461*, 2020.521
522
Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient
523
federated learning for heterogeneous clients. In *9th International Conference on Learning Repre-
sentations, ICLR 2021*, 2021.524
525
Dennis Grinwald, Philipp Wiesner, and Shinichi Nakajima. Federated learning over connected modes.
In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.526
527
Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in Neural Information Processing Systems, 5, 1992.528
529
Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *STAT*,
1050:9, 2015.530
531
532
Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
533
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
534
International conference on machine learning, pp. 5132–5143. PMLR, 2020.535
536
A Krizhevsky. Learning multiple layers of features from tiny images. *Master’s thesis, University of
Tront*, 2009.537
538
539
Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in Neural Information
Processing Systems*, 2, 1989.

540 Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated learning
 541 on non-IID features via local batch normalization. In *International Conference on Learning*
 542 *Representations*, 2021. URL <https://openreview.net/forum?id=6YEQU0QICG>.

543

544 Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen, Randy P Auerbach, David Brent, Ruslan
 545 Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
 546 local and global representations. *arXiv preprint arXiv:2001.01523*, 2020.

547

548 Renpu Liu, Cong Shen, and Jing Yang. Federated representation learning in the under-parameterized
 549 regime. In *Forty-first International Conference on Machine Learning*, 2024.

550

551 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 552 language models. *Advances in Neural Information Processing Systems*, 36:21702–21720, 2023.

553 Connor McLaughlin and Lili Su. Personalized federated learning via feature distribution adaptation.
 554 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

555 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 556 Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelli-
 557 gence and Statistics*, pp. 1273–1282. PMLR, 2017.

558

559 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 560 for neural network pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 561 *Pattern Recognition*, pp. 11264–11272, 2019.

562

563 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 564 Reading digits in natural images with unsupervised feature learning. In *NIPS Workshop on Deep*
 565 *Learning and Unsupervised Feature Learning*, pp. 4. Granada, 2011.

566

567 JAE HOON OH, Sangmook Kim, and Seyoung Yun. Fedbabu: Toward enhanced representation for
 568 federated image classification. In *10th International Conference on Learning Representations*,
 569 *ICLR 2022*. International Conference on Learning Representations (ICLR), 2022.

570

571 Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
 572 Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In *International*
 573 *Conference on Learning Representations*, 2021.

574

575 Rishabh Iyer, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian. Fedselect:
 576 Personalized federated learning with customized selection of parameters for fine-tuning. In
 577 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 578 23985–23994, 2024.

579

580 Jiahao Tan and Xinpeng Wang. FL-bench: A federated learning benchmark for solving image
 581 classification tasks, 2025. URL <https://github.com/KarhouTam/FL-bench>.

582

583 Jiahao Tan, Yipeng Zhou, Gang Liu, Jessie Hui Wang, and Shui Yu. pfedsim: Similarity-aware model
 584 aggregation towards personalized federated learning. *arXiv preprint arXiv:2305.15706*, 2023.

585

586 Chen Xingyan, Du Tian, Wang Mu, Gu Tiancheng, Zhao Yu, Kou Gang, Xu Changqiao, and
 587 Wu Dapeng Oliver. Towards optimal customized architecture for heterogeneous federated learning
 588 with contrastive cloud-edge model decoupling. *IEEE Transactions on Computers*, 2024.

589

590 Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
 591 and classifier collaboration. In *The Eleventh International Conference on Learning Representations*,
 592 2023.

593

594 Xiyuan Yang, Wenke Huang, and Mang Ye. Dynamic personalized federated learning with adaptive
 595 differential privacy. *Advances in Neural Information Processing Systems*, 36:72181–72192, 2023.

596

597 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
 598 Fedala: Adaptive local aggregation for personalized federated learning. In *Proceedings of the*
 599 *AAAI Conference on Artificial Intelligence*, volume 37, pp. 11237–11244, 2023a.

594 Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Lo-
595 raprune: Pruning meets low-rank parameter-efficient fine-tuning. *arXiv preprint arXiv:2305.18403*,
596 2023b.

597 Huan Zhou, Mingze Li, Peng Sun, Bin Guo, and Zhiwen Yu. Accelerating federated learning via
598 parameter selection and pre-synchronization in mobile edge-cloud networks. *IEEE Transactions*
599 *on Mobile Computing*, 23(11):10313–10328, 2024.

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Appendix

A DISCUSSION

A.1 LIMITATIONS

The proposed FedOBP has several limitations that suggest promising directions for future research.

First, the threshold parameter τ , which governs optimal quantiling, significantly impacts performance. While selecting a high threshold (e.g., 0.9995) to focus on a small subset often works well across diverse datasets, identifying the optimal τ still requires tuning. Developing adaptive methods to learn or adjust τ based on group-level signals could enhance generalization and reduce manual calibration.

Second, our use of a CNN model reflects a common practice in federated learning, where more complex architectures like ResNet require batch normalization, which is known to underperform in non-IID federated settings (Diao et al., 2021; Li et al., 2021). As a result, many prior works rely on simpler networks for demonstration, and evaluating FedOBP with more advanced architectures remains an important direction.

A.2 USE OF LARGE LANGUAGE MODELS

In this work, we used large language models (LLMs) to assist with manuscript editing. LLMs were used to help polish the language of the manuscript. This includes surface-level edits such as improving clarity, grammar, and conciseness of English expressions. All technical content, algorithmic designs, and empirical results were authored and validated by the authors. No part of the scientific contributions was generated by or delegated to an LLM.

B EXPERIMENTAL SETUP

B.1 COMPUTING ENVIRONMENT

We implement our experiments using PyTorch 2.1.0+cu121 and run all experiments on Microsoft Windows 11 Professional Edition. Our system configuration includes a 13th Gen Intel(R) Core(TM) i9-13900K CPU @ 3.00GHz with 24 cores and 32 logical processors, combined with an NVIDIA GeForce RTX 4090 GPU. The system is built on a Micro-Star International Co., Ltd. MS-7D25 model (PRO Z690-A WIFI DDR4) with 64.0 GB of RAM.

B.2 DATASETS DETAILS

Table 2: Statistical information of used datasets on clients.

Dataset	Samples	Classes	Description	Resolution	Year
CIFAR10/100	60,000	10/100	Images in 10/100 classes including airplanes, cars, birds, etc.	32 × 32	2009
EMNIST	805,263	62	Extended MNIST with letters and digits	28 × 28	2017
FMNIST	70,000	10	Fashion item images	28 × 28	2017
MNIST	70000	10	Handwritten digits	28 × 28	1998
MEDMNISTA/C	58,850/23,600	11	Biomedical images on abdominal CT.	28 × 28	2019
SVHN	600,000	10	Street view house numbers	32 × 32	2011

The fundamental details of the datasets used in our experiments are presented in Table 2. Each dataset is partitioned into 100 subsets and assigned to 100 clients to simulate the non-IID scenario. The data distribution remains consistent throughout the experiments, ensuring a uniform basis for evaluating the effectiveness of various methods.

B.3 MODEL ARCHITECTURE

A four-layer neural network is utilized as the backbone model in our experiments. The detailed architecture is presented in Table 3, with layer abbreviations following the PyTorch style. In Table 5,

702 Table 3: The 4-layer CNNs. Conv2D consists of a 2D convolution layer, ReLU activation, and
 703 MaxPool2D layer executed sequentially. The *in*, *out*, *kernel* represent the input channel, output
 704 channel, and kernel size, respectively; MaxPool2D is a max pooling layer for 2D input; Flatten
 705 reshapes input from 2D to 1D; FC is a fully connected layer, where *out* indicates the number of output
 706 features.

708 Layer	709 Operation	710 Parameters
710 Conv2D (conv1)	711 2D Convolution	712 INPUT_CHANNELS \times 32 \times 5 \times 5 + 32
711 ReLU (activation1)	712 Activation	713 -
712 MaxPool2D (pool1)	713 Max Pooling	714 -
713 Conv2D (conv2)	714 2D Convolution	715 32 \times 5 \times 5 + 64
714 ReLU (activation2)	715 Activation	716 -
715 MaxPool2D (pool2)	716 Max Pooling	717 -
716 Flatten (flatten)	718 Reshape	719 -
717 FC (fc1)	720 Fully Connected	721 64 \times 4 \times 4 \times 512 + 512
718 ReLU (activation3)	719 Activation	722 -
719 Classifier	723 FC (<i>out</i> =NUM_CLASSES)	726 512 \times NUM_CLASSES + NUM_CLASSES

719 Table 4: ResNet-18 Architecture. Each block consists of a series of 2D convolution layers, followed
 720 by ReLU activation and batch normalization. The *in*, *out*, *kernel* represent the input channel, output
 721 channel, and kernel size, respectively; FC is a fully connected layer, where *out* indicates the number of output
 722 features.

724 Layer	725 Operation	726 Parameters
725 Conv2D (conv1)	726 2D Convolution	727 3 \times 64 \times 7 \times 7 + 64
726 ReLU (activation1)	727 Activation	728 -
727 BatchNorm (bn1)	729 Batch Normalization	730 -
728 MaxPool2D (pool1)	731 Max Pooling	732 -
729 Residual Block (block1)	733 2 Conv2D + ReLU + BatchNorm	734 64 \times 64 \times 3 \times 3 + 64, 64 \times 64 \times 3 \times 3 + 64
730 Residual Block (block2)	735 2 Conv2D + ReLU + BatchNorm	736 64 \times 128 \times 3 \times 3 + 128, 128 \times 128 \times 3 \times 3 + 128
731 Residual Block (block3)	737 2 Conv2D + ReLU + BatchNorm	738 128 \times 256 \times 3 \times 3 + 256, 256 \times 256 \times 3 \times 3 + 256
732 Residual Block (block4)	739 2 Conv2D + ReLU + BatchNorm	740 256 \times 512 \times 3 \times 3 + 512, 512 \times 512 \times 3 \times 3 + 512
733 FC (fc1)	741 Fully Connected	742 512 \times 1000 + 1000
734 Classifier	743 FC (<i>out</i> =num_classes)	746 1000 \times NUM_CLASSES + NUM_CLASSES

734 we present the FedOBP quantile settings for the eight datasets (MNIST, FMNIST, MEDMNISTA
 735 and MEDMNISTC) under two heterogeneity configurations ($\alpha \in \{0.1, 0.5\}$).

737 B.4 HYPERPARAMETER SETTINGS FOR COMPARATIVE METHODS

739 We present a detailed overview of the hyperparameter settings for all the comparison methods
 740 discussed above. Most baseline hyperparameters are consistent with the values reported in their
 741 respective original papers.

- 742 • FedRep (Collins et al., 2021) We set the epoch for training feature extractor part to 1.
- 743 • FedDPA (Yang et al., 2023) We set the fisher threshold $\tau_F = 0.4$.

745 C EXPERIMENTAL RESULTS

746 C.1 PERFORMANCE

748 C.1.1 PERFORMANCE FOR AVGCNN (4-LAYER CNNs)

750 The results summarized in Table 6 provide a comprehensive evaluation of the average test accuracy
 751 across multiple datasets, comparing our method, FedOBP, with various SOTA approaches and a
 752 Local-Only baseline under different non-IID data distributions.

753 In the MNIST dataset, FedOBP achieves the highest accuracy of 99.34% under the Dir(0.1) partition,
 754 surpassing the second-best method, FedPer, by 0.31%. Under the Dir(0.5) partition, FedOBP
 755 maintains a competitive accuracy of 98.97%, closely following APFL. For the FMNIST dataset,
 FedOBP again leads with an accuracy of 96.89% under Dir(0.1), showing an improvement of 0.65%

756 Table 5: Quantile(q) thresholds and corresponding number of personalized parameters for $\text{Dir}(0.1)$
 757 and $\text{Dir}(0.5)$ across four datasets.

Datasets	$\text{Dir}(0.1)$		$\text{Dir}(0.5)$	
	q	Number	q	Number
CIFAR10	0.99998	18	0.99979	185
CIFAR100	0.9998	185	0.99992	74
EMNIST	0.995	3,044	0.9991	548
SVHN	0.99997	27	0.9998	176
MNIST	0.9998	117	0.99993	41
FMNIST	0.99993	41	0.9999	59
MEDMNISTA	0.9999	53	0.99995	30
MEDMNISTC	0.9997	175	0.99995	30

768
 769 over the next best method, FedPer. In the $\text{Dir}(0.5)$ partition, it also achieves 93.11%, marking a
 770 1.73% increase compared to FLOCO. In the MEDMNISTA dataset, FedOBP records an accuracy of
 771 67.31% under $\text{Dir}(0.1)$, with only a 0.16% gap from the optimal solution. However, under
 772 $\text{Dir}(0.5)$, it achieves 41.22%, which ties with pFedFDA as the best-performing solution. Lastly, for
 773 the MEDMNISTC dataset, FedOBP achieves 66.84% under $\text{Dir}(0.1)$ and 41.36% under $\text{Dir}(0.5)$,
 774 both of which are competitive but slightly below the best performances.

775 Overall, the results indicate that FedOBP consistently delivers strong performance across various
 776 datasets and non-IID distributions, demonstrating its effectiveness in addressing the challenges posed
 777 by heterogeneous data.

779 Table 6: Average (standard deviation) test accuracy on multiple datasets. Bold and underlined indicate
 780 the best and second-best respectively.

Dataset Partition	MNIST		FMNIST		MEDMNISTA		MEDMNISTC	
	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)	Dir(0.1)	Dir(0.5)
Local-Only	97.49(0.05)	94.44(0.13)	94.93(0.08)	86.49(0.24)	67.22(0.05)	41.08(0.07)	66.92(0.07)	41.21(0.15)
FedAvg	98.58(0.13)	98.89(0.08)	87.29(0.45)	90.37(0.22)	18.10(0.00)	18.28(0.55)	22.28(0.00)	22.33(0.11)
FedPer	99.03(0.06)	98.10(0.22)	96.24(0.19)	91.06(0.38)	67.44(0.03)	41.10(0.05)	66.83(0.02)	41.35(0.06)
APFL	98.98(0.18)	99.04(0.09)	89.37(0.51)	91.00(0.39)	58.50(0.97)	35.89(1.78)	56.06(0.74)	38.81(0.19)
LG-FedAvg	97.82(0.13)	95.46(0.45)	95.24(0.07)	87.36(0.30)	67.23(0.07)	41.10(0.13)	66.97(0.01)	41.34(0.03)
FedRep	98.59(0.10)	97.16(0.20)	95.80(0.20)	89.85(0.46)	67.09(0.12)	41.08(0.08)	66.35(0.16)	41.18(0.05)
pFedFDA	98.78(0.09)	97.80(0.22)	96.09(0.15)	91.10(0.48)	67.47(0.00)	41.22(0.01)	66.79(0.00)	41.45(0.00)
FLUTE	91.13(0.00)	80.48(0.00)	88.56(0.00)	72.83(0.00)	67.47(0.00)	41.14(0.00)	66.79(0.00)	41.27(0.00)
FedDPA	98.04(0.00)	95.92(0.52)	95.06(0.00)	88.01(0.51)	67.02(0.10)	40.34(0.97)	66.66(0.05)	40.94(0.34)
FLOCO	98.80(0.17)	98.50(0.10)	95.06(0.58)	91.38(0.54)	59.47(0.23)	33.40(0.44)	60.66(1.26)	34.78(0.89)
FedALA	98.58(0.04)	98.88(0.04)	86.98(0.04)	90.18(0.00)	18.10(0.00)	17.96(0.00)	9.03(0.00)	22.27(0.00)
FedSelect	97.46(0.00)	94.44(0.00)	93.83(0.00)	86.21(0.00)	67.13(0.00)	40.96(0.00)	66.62(0.00)	41.32(0.00)
FedOBP	99.34(0.02)	98.97(0.04)	96.89(0.03)	93.11(0.04)	67.31(0.00)	41.22(0.13)	66.84(0.06)	41.36(0.09)

C.1.2 PERFORMANCE FOR RESNET-18

795
 796 Table 7: Average test accuracy on multiple datasets under ResNet-18. Bold and underlined indicate
 797 the best and second-best respectively. The personalized parameter ratio selected by FedOBP is shown
 798 in parentheses.

Method	CIFAR10	CIFAR100	EMNIST	FMNIST	MNIST	SVHN
FedAvg	69.33	45.33	82.07	89.93	99.19	89.45
Local-Only	86.25	50.71	93.17	95.57	98.13	91.62
APFL	70.60	45.70	81.78	90.24	99.23	90.05
FedALA	69.95	45.30	82.22	90.02	99.19	89.33
FedDPA	86.27	51.15	93.53	95.75	98.23	91.94
FedPer	90.36	<u>64.18</u>	94.18	97.08	99.63	95.97
FedRep	90.10	58.18	<u>94.42</u>	96.60	99.42	95.68
FedSelect	85.70	50.02	92.91	95.60	98.11	91.40
FLUTE	71.73	35.81	80.29	92.05	93.32	71.02
LG-FedAvg	87.01	53.32	93.66	95.96	98.60	93.33
FedOBP	90.04 (0.14%)	64.58 (0.15%)	95.31 (0.40%)	<u>96.93</u> (0.18%)	<u>99.48</u> (0.06%)	95.57 (0.16%)

We evaluated the performance of our method on ResNet-18, with architectural details provided in 4. The experiment used a heterogeneity parameter of $\alpha = 0.1$. As shown in Table 7, FedOBP achieves impressive results even with minimal parameter personalization, particularly on CIFAR100 and EMNIST, where it outperforms all baselines with performance scores of 64.58% and 95.31%, respectively. Notably, on the MNIST dataset, our method achieves 99.48% performance by personalizing just 0.06% of the model parameters. These results demonstrate the adaptability of our approach across different architectures, performing excellently not only on simpler models like AvgCNN (4-layer CNNs) but also on more complex ones such as ResNet-18.

C.2 CONVERGENCE

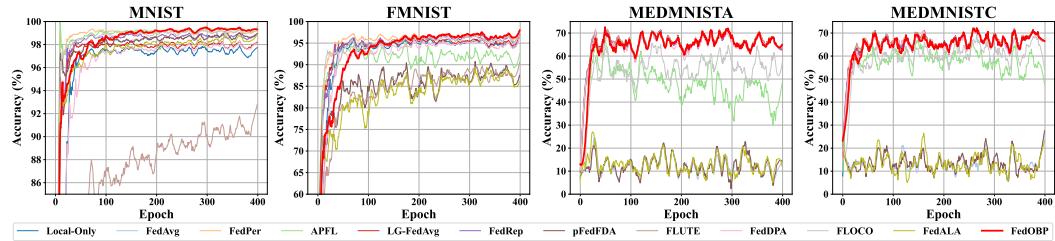


Figure 6: Convergence comparison of FedOBP and ten other solutions with $\alpha = 0.1$ on the 4-layer CNN model across four datasets.

Figures 6 and 7 illustrate the convergence performance of eleven algorithms across MNIST, FMNIST, MEDMNISTA, and MEDMNISTC under $\alpha = 0.1$ and $\alpha = 0.5$, respectively. On MNIST and FMNIST, FedOBP outperforms or is slightly inferior to other methods in terms of accuracy and convergence rates. However, on MEDMNISTA and MEDMNISTC, it slightly lags behind all other methods in accuracy but demonstrates faster convergence. Among model decoupling approaches, LG-FedAvg and pFedFDA also demonstrate competitive performance, surpassing 67% and 66% accuracy on MEDMNISTA and MEDMNISTC under $\alpha = 0.1$, respectively. Overall, FedOBP proves to be a robust solution across different datasets and heterogeneity levels.

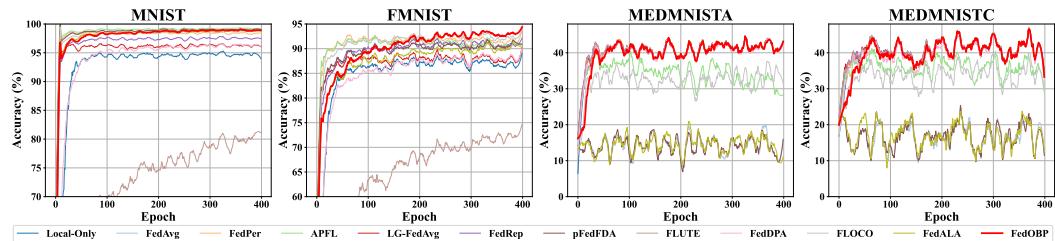


Figure 7: Convergence comparison of FedOBP and ten other solutions with $\alpha = 0.5$ on the 4-layer CNN model across four datasets.

C.3 IMPORTANCE SCORES

Across all datasets, as the quantile q increases, resulting in a reduction of personalized parameters \mathbf{u}_i and an increase in global parameters \mathbf{v}_i , the accuracy scores for all three scores initially rise before experiencing a decline. To achieve optimal performance, $I_G(\cdot)$ requires approximately 60% personalized parameters, $I_F(\cdot)$ needs 30%, while $I_O(\cdot)$ only requires less than 0.1% on MNIST. For FMNIST, $I_G(\cdot)$ peaks at $q = 0.1$, $I_F(\cdot)$ reaches its maximum at quantile $q = 0.4$, and $I_O(\cdot)$ peaks at $q = 0.99993$. This suggests that the $I_O(\cdot)$ score effectively identifies the necessary few personalized parameters. For MEDMNISTA and MEDMNISTC, the OBP score shows stable performance across various quantile ranges compared to the gradient and Fisher-based scores.

C.4 PERSONALIZED PARAMETER DISTRIBUTION

Figure 10 illustrates the proportion of personalized parameters across various layers of the 4-layer CNN model during training over 450 epochs across four different datasets. For all datasets, there is a clear trend where the proportion of personalized parameters located at the conv1 decreases over time, while the proportion at the classifier layer increases. On MNIST stability is achieved between 350 to 450 epochs, with the classifier layer reaching 0.4 to 0.8 and conv1 stabilizing at 0.2 to 0.6. FMNIST stability occurs around 250 to 450 epochs, with the classifier layer at 0.5 to 0.6 and conv1

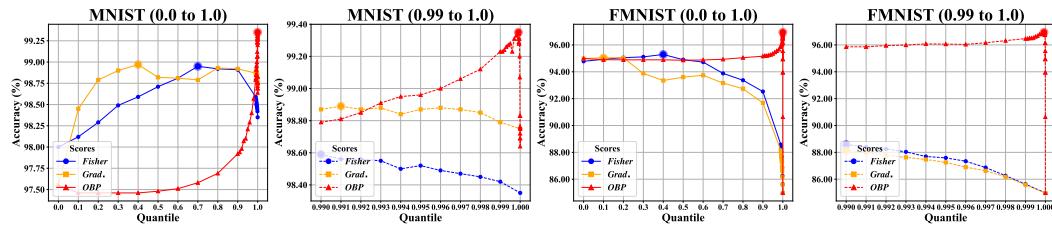


Figure 8: Comparison of three types of scores, including Gradient $I_G(\cdot)$, Fisher $I_F(\cdot)$, and OBP $I_O(\cdot)$, on MNIST and FMNIST.

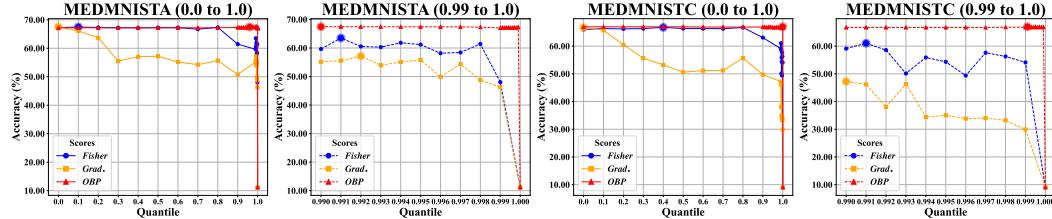


Figure 9: Comparison of three types of scores, including Gradient $I_G(\cdot)$, Fisher $I_F(\cdot)$, and OBP $I_O(\cdot)$, on MEDMNISTA and MEDMNISTC.

at 0.4 to 0.5. MEDMNISTA and MEDMNISTC stability is observed from 50 to 450 epochs, with the classifier layer at 0.8 to 1.0 and conv1 at 0.0 to 0.2.

C.5 ABLATION STUDIES

The ablation studies evaluate the performance by implementing three normalization techniques for our FedOBP score $I_O(\cdot)$ including NoNorm, LayerNorm, and GlobalNorm across the four datasets. NoNorm apply raw FedOBP scores for personalized parameter selection. LayerNorm normalizes the FedOBP scores in layer-wise which is adapt in (Yang et al., 2023). GlobalNorm computes normalization statistics across the entire model. We explore two additional variants of GlobalNorm including GlobalNorm without CLS (w/o CLS), GlobalNorm with CLS, where the CLS variant selects personalized parameters from the classifier layer.

The ablation studies in Table 8 show that NoNorm achieves the highest accuracy in FMNIST (96.82%) and MEDMNISTC (66.60%), while GlobalNorm without CLS yields the best performance in MNIST (99.40%) and MEDMNISTA (67.47%). LayerNorm consistently underperforms across all datasets, indicating that GlobalNorm are more effective normalization techniques for the evaluated tasks.

Table 8: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm on four datasets. Additionally, the ablation study examines GlobalNorm w/o CLS and with CLS.

Dataset	NoNorm	LayerNorm	GlobalNorm	
			w/o CLS	with CLS
CIFAR10	87.36	85.00	87.36	87.37
CIFAR100	45.98	41.83	45.98	44.89
EMNIST	94.92	94.14	94.92	94.78
SHVN	95.88	93.34	95.88	95.88
MNIST	<u>99.38</u>	99.27	<u>99.38</u>	99.39
FMNIST	96.82	96.31	96.82	96.81
MEDMNISTA	67.47	<u>67.39</u>	67.47	67.47
MEDMNISTC	66.60	65.17	66.60	66.38

Figure 11 shows the ablation experiment on MNIST, FMNIST, MEDMNISTA and MEDMNISTC datasets. NoNorm and GlobalNorm (NA) consistently achieved high accuracy with quick convergence across all datasets. LayerNorm underperforms, especially in MNIST, FMNIST, and MEDMNISTC, with significantly lower accuracy in MNIST and FMNIST. Among GlobalNorm variations, the configuration without CLS delivers the highest accuracy.

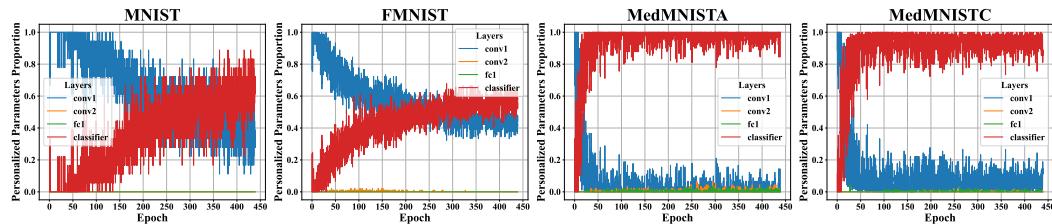


Figure 10: Personalized parameters distribution across layers varies with FL epochs using the 4-layer CNN model on four datasets.

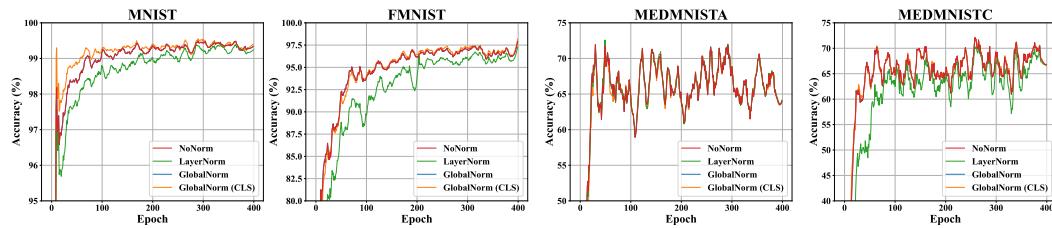


Figure 11: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm on MNIST, FMNIST, MEDMNISTA, and MEDMNISTC datasets. GlobalNorm has two variants, one with CLS and one without (w/o CLS).

As demonstrated in Figure 12, both NoNorm and GlobalNorm consistently outperformed LayerNorm in terms of accuracy. In the CIFAR10 dataset, NoNorm and GlobalNorm (without CLS) achieve an accuracy of 87.52%, while LayerNorm records 85.00%. In CIFAR100, NoNorm and GlobalNorm again lead with 45.98%, whereas LayerNorm drops to 41.83%. GlobalNorm configurations perform similarly to NoNorm. For the EMNIST dataset, NoNorm and GlobalNorm (NA) achieve an accuracy of 94.92%, outperforming LayerNorm, which achieves 94.14%. The SHVN dataset shows similar results to CIFAR10 and CIFAR100. Notably, LayerNorm tends to select at least one personalized parameter per layer, whereas NoNorm and GlobalNorm primarily select personalized parameters from the classifier layer, indicating that LayerNorm may degrade the performance of FedOBP score.

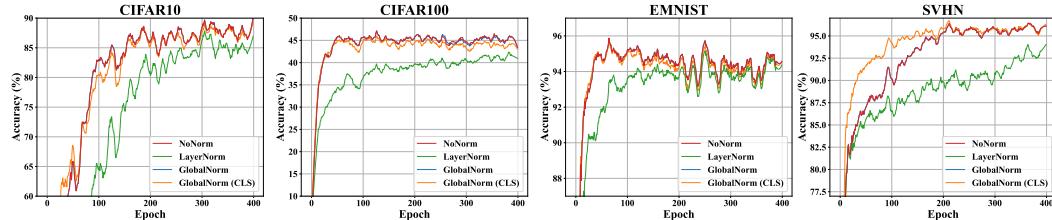


Figure 12: Ablation experiment comparing NoNorm, LayerNorm, and GlobalNorm (including w/o CLS and with CLS) on CIFAR10, CIFAR100, EMNIST, and SVHN datasets

Compared with selecting personalized parameters globally (w/o CLS), selecting personalized parameters only from the classifier layer (CLS) produces comparable results in CIFAR10 and SVHN datasets and slightly worse results of 44.89 % in CIFAR100 datasets and 94.78% in EMNIST dataset. However, constraining personalized parameter selection to the classifier layer reduces the algorithm's complexity and may be a promising direction for future works.

Overall, the ablation experiment results demonstrate that LayerNorm negatively affects the performance of the FedOBP score, while GlobalNorm combined with CLS can slightly degrade the performance. Notably, even without normalization, the FedOBP performance remains robust, showcasing the scalability of our scoring method.