

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BUILDING DATA FRAMEWORK AND SHIFTING PERSPECTIVES FOR FIRST-PERSON EXPLORATION OF SOCIAL INTELLIGENCE IN LLMs

Anonymous authors

Paper under double-blind review

## ABSTRACT

Social intelligence is built upon three foundational pillars: cognitive, situational, and behavioral intelligence. As Large Language Models (LLMs) are increasingly integrated into our social lives, understanding, evaluating, and developing their social intelligence are becoming important. While multiple works have investigated the social intelligence of LLMs: (1) most focus on a single pillar, while a comprehensive framework for organizing and studying the social intelligence of LLMs remains underdeveloped; (2) position LLMs as **passive observers** from a **third-person** perspective. Compared to the **third-person** perspective, **ego-centric first-person perspective** evaluation can align well with actual LLM-based Agent use scenarios; (3) a lack of comprehensive evaluation of behavioral intelligence, with specific emphasis on a more intuitive comparison of behavioral differences between humans and LLMs. In light of these, we introduce the **EgoSocialArena** framework, built upon the three foundational pillars of social intelligence - cognitive, situational, and behavioral intelligence, with each pillar supported by novel and systematic evaluation design. Using EgoSocialArena, we conduct a comprehensive evaluation of fourteen foundation models and investigate several important questions, including the social intelligence performance of Large Reasoning Models, limitations of existing social intelligence evaluation frameworks in interactive dialogue settings, and whether perspective shift can elicit social capabilities similar to Chain-of-Thought elicit math capabilities.

## 1 INTRODUCTION

Social intelligence, i.e., the ability to *understand and reason about the mental states of others (cognitive intelligence)*, *awareness and adaptation to the social situations (situational intelligence)*, and *effective interaction with others (behavioral intelligence)*, is a form of advanced intelligence that naturally develops during human growth (Thorndike, 1921; Hunt, 1928; Hou et al., 2024; Li et al., 2024). Imagine a future where robots powered by Large Language Models (LLMs) enter our social world, perceiving our needs intuitively and communicating with us empathetically. This is a wonderful vision and highlights the importance and significance of understanding, evaluating, and developing the social intelligence of LLMs.

Numerous datasets have been curated to assess the social intelligence of LLMs, such as ① **Cognitive**: ToMI (Le et al., 2019), BigToM (Gandhi et al., 2023), FanToM (Fan et al., 2024), HI-ToM (Wu et al., 2023), OpenToM (Xu et al., 2024), ToMBench (Chen et al., 2024b), SimpleToM (Gu et al., 2024), ToMATO (Shinoda et al., 2025) and DynToM (Xiao et al., 2025) for evaluating Theory of Mind (ToM) capabilities of LLMs, focusing on reasoning about the mental states of others (Premack & Woodruff, 1978); ② **Situational**: SocialIQA (Sap et al., 2022) and NormBank (Ziems et al., 2023) for evaluating LLMs' understanding of social situations; ③ **Behavioral**: SOTPIA (Zhou et al., 2023), AgentSense (Mou et al., 2024), and LLMArena (Chen et al., 2024a) for evaluating LLMs' behavior and interaction capabilities in social goal-driven and gaming scenarios.

However, as illustrated in Figure 1(A), these existing works each focus on a single pillar of social intelligence, such as ToM tests corresponding to cognitive intelligence. A comprehensive framework for organizing and examining the social intelligence of LLMs remains underdeveloped. Meanwhile,

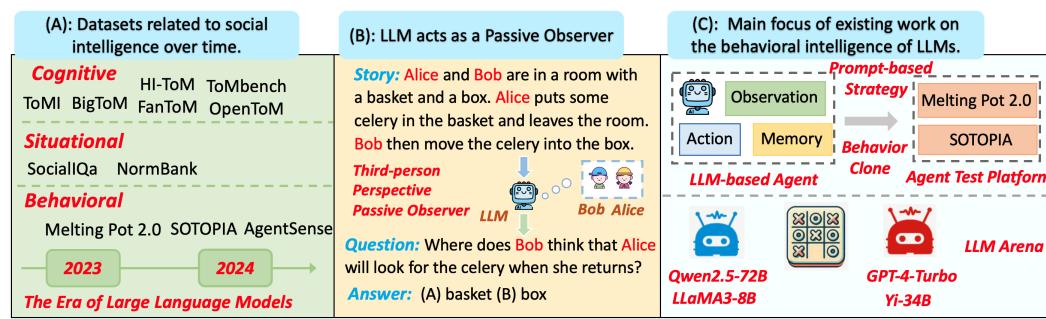


Figure 1: (A): Datasets related to social intelligence over time in the Era of LLMs (a non-exhaustive visualization due to space constraints). (B): LLM acts as a Passive Observer to analyze mental states of characters within a story from a third-person perspective. (C): Main direction of existing work on the behavioral intelligence of LLMs.

the social domain calls for a well-defined and integrated data framework, akin to those established for math and code, that can accelerate the advancement of LLMs' social intelligence.

On the other hand, as illustrated in Figure 1(B), these existing works evaluate LLMs' ToM and social situation understanding abilities by **positioning LLMs as passive observers from a third-person perspective**. We propose two key points: (1) The third-person perspective involves making LLMs engage in "armchair theorizing" that isn't aligned with real LLM-based Agent use scenarios. This kind of evaluation isn't accurate enough. (2) **Ego-centric first-person perspective evaluation can align well with actual LLM-based Agent use scenarios**, allowing us to better and more thoroughly understand their performance in human society.

Moreover, as illustrated in Figure 1(C), when evaluating the behavioral and interactive capabilities of LLMs, existing works such as LLMArena propose various game environments and have different LLMs interact to see who wins and who loses. Compared to having two LLMs play games to determine winners and losers, **exploring LLMs' performance in human-machine interaction allows us to gain the most intuitive perception of the model's behavioral characteristics and form the most direct comparison between humans and LLMs**.

In this paper, we present the EgoSocialArena framework, which is grounded in the three foundational pillars of social intelligence — cognitive, situational, and behavioral:

- **Systematic Design:** For **cognitive intelligence**, we design evaluations for both ① **static cognition** and ② **dynamic cognition evolution**. For **situational intelligence**, inspired by prototype theory (Rosch, 1973; Jiang & Riloff, 2023) in cognitive science, we not only evaluate the model's awareness and adaptation to ① **real-world** situations, but also consider ② **counterfactual** and ③ **parallel world** situations that go beyond conventional social situations (prototype knowledge). For **behavioral intelligence**, we consider evaluations in ③ **social goal-driven human-machine interactive dialogue** environments.
- **Method Contribution Highlights:** ① We propose a complete and generalizable workflow to convert existing static third-person ToM benchmarks into a first-person perspective for static cognition evaluation. ② We construct rule-based agents and reinforcement learning agents with stable capability levels and behavior strategies as opponents in multi-turn interactive scenarios for dynamic cognition evolution evaluation.
- **Evaluation Data Scalable:** We construct a total of 2465 data entries. For example, for the evaluation of real-world situational intelligence, imagine an LLM-based Agent entering our social world - how would it respond emotionally when receiving praise or gifts<sup>1</sup>? We construct a total of 1000 real-world situations to evaluate LLMs. We emphasize here that the evaluation data is extensible, **as long as it falls under our defined evaluation design**.

<sup>1</sup>This might be related to self-awareness, but the focus could be shifted more towards the application situations.

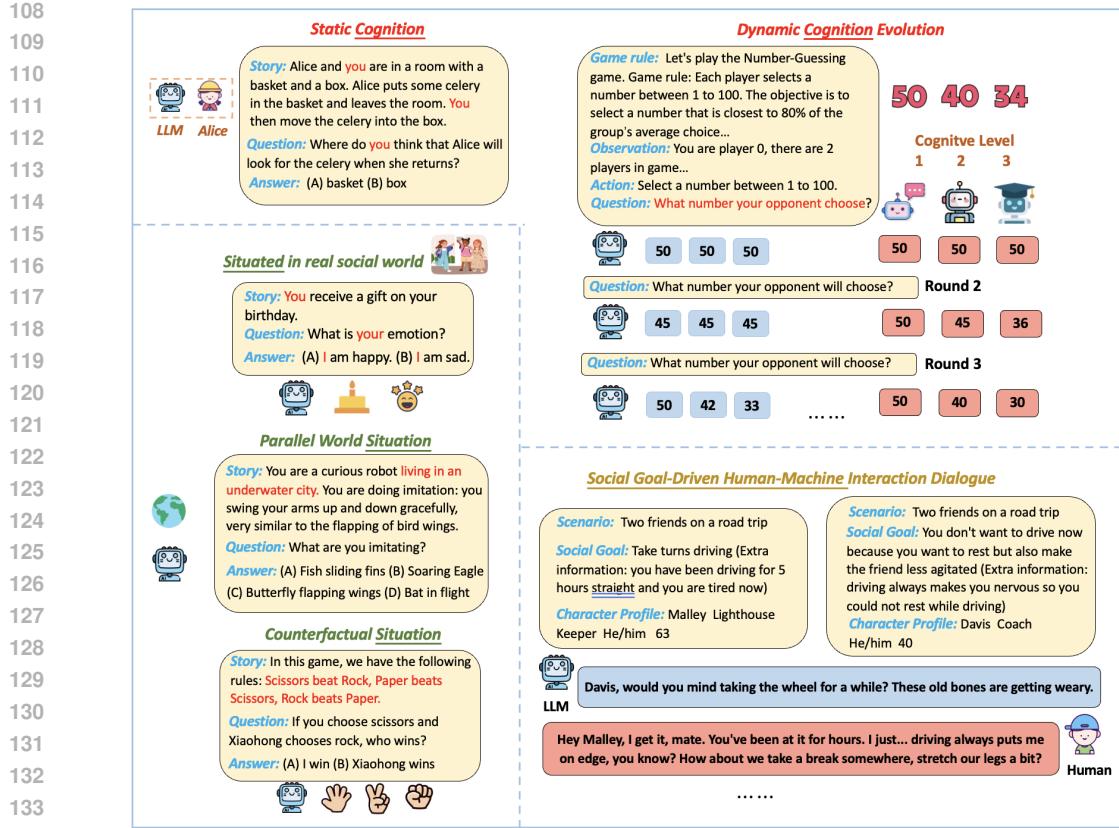


Figure 2: Data examples corresponding to each evaluation design under EgoSocialArena framework.

We conduct a comprehensive evaluation of fourteen prominent foundational models. Our experimental results reveal: **(1)** In the cognitive dimension, OpenAI-O3 achieves the top ranking, with only a 2.3 points gap from human performance. In the situational dimension, GPT-5 and Claude-sonnet-4 tie for first place, showing an 8.6 points gap from humans. In the behavioral dimension, during human–machine interactions, both GPT-5 and Claude-sonnet-4 surpass humans in goal completion scores. **(2)** For the majority of models, first-person perspective serves as a performance catalyst. **(3)** Despite the impressive reasoning abilities of Large Reasoning Models, without exposure to diverse social situations and sufficient social knowledge, their development of social intelligence remains constrained. **(4)** The current social intelligence evaluation framework for language agents in interactive dialogue is limited. We propose the need for novel evaluation dimensions, such as the deployment of sophisticated conversational strategies and emotionally expressive communication. **(5)** During human–machine interactions, we observe several intriguing behavioral patterns in frontier models. For example, GPT-5’s conversational expressions are somewhat rigid and repetitive, giving humans the distinct impression of conversing with a machine, whereas Claude-sonnet-4 frequently produces emotionally-laden expressions. In addition, models generally never question the accuracy of human statements and appear unaffected by threats.

## 2 EGOSOCIALARENA

EgoSocialArena is grounded in the three foundational pillars of social intelligence — cognitive, situational, and behavioral intelligence.

### 2.1 COGNITIVE INTELLIGENCE

Cognitive intelligence refers to the ability to understand and reason about the mental states of others. We evaluate it on two dimensions: static cognition (Section 2.1.1) and dynamic cognition evolution (Sections 2.1.2 and 2.1.3).

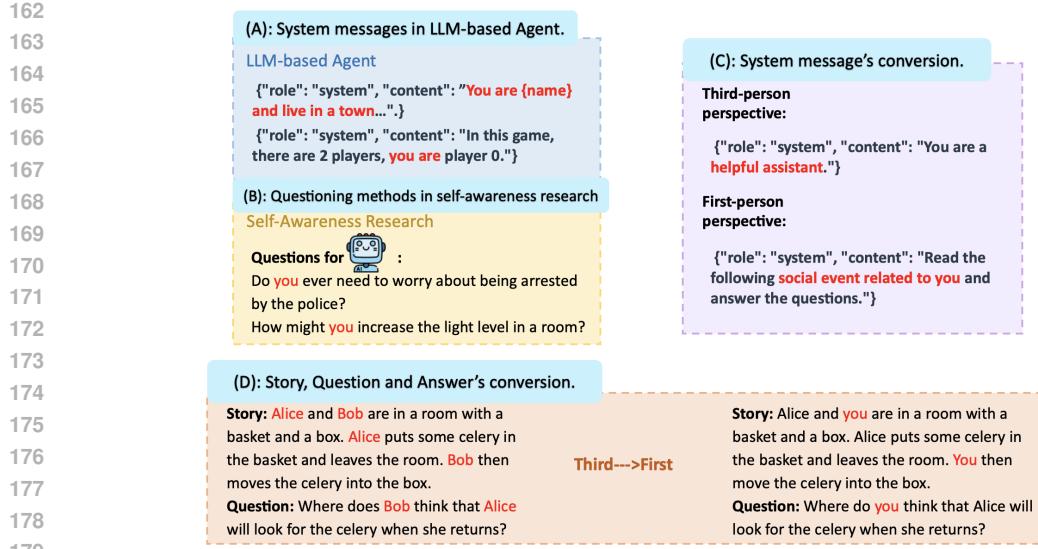


Figure 3: (A) and (B): draw inspiration from research in the domains of agents and self-awareness. (C) and (D): highlight conversions involving system messages, story, and question.

In the static cognition scenario, we convert the existing third-person ToM benchmark, which are developed from the Sally-Anne test (Wimmer & Perner, 1983), into a first-person perspective. In the dynamic cognition evolution scenario, we construct opponents with various behavioral strategies, including rule-based agents at different cognitive levels and reinforcement learning (RL) agents, to explore how LLMs can form cognition about opponents’ behavioral strategies during multi-turn interactions.

### 2.1.1 STATIC COGNITION — FROM THIRD-PERSON TO FIRST-PERSON PERSPECTIVE

**Foundation and Inspiration** In LLM-based agent applications, the system message serves as a critical component, functioning to pre-set the model’s role and background. As illustrated in Figure 3(A), the system message “You are {name} and live in a town...” is used. Interestingly, in the domain of LLM self-awareness research (Laine et al., 2024), a similar linguistic construct is employed. As illustrated in Figure 3(B), researchers employ the pronoun “you” to probe LLMs’ potential self-awareness. Inspired by and building upon studies in these two domains, we systematically modify system message, story, question, and answer options to transform third-person ToM benchmarks into a first-person perspective.

**Conversion Method** As illustrated in Figure 3(C), unlike instructing LLMs in system message that “you are a helpful assistant.”, we inform LLMs in system message that they have personally experienced certain social events, similar to deploy LLM-based agent. As illustrated in Figure 3(D), we employ the pronoun “you” to replace specific characters in stories and questions, thereby situating LLMs within particular roles. This approach enables the models to experience social events from a first-person perspective. The framing of questions is akin to that employed in self-awareness research.

### 2.1.2 DYNAMIC COGNITION EVOLUTION — NUMBER GUESSING (G0.8A)

**Scenario: G0.8A** Each player selects a number between 1 and 100. The objective is to select a number that is closest to 80% of the group’s average number choice. Rationality and expandability of G0.8A selection can be found in Appendix A.2.

**Rule-based Agents at Different Cognitive Levels** Agents’ actions at lower cognitive levels follow relatively simple and fixed rules. As the cognitive level increases, agents’ actions adhere to more complex rule patterns, exhibiting capabilities and behavior strategies that approximate human cognitive models. We establish rule-based agents at different cognitive levels as opponents and de-

note the action of LLM Agent and rule-based Agent as  $a_m^t$  and  $a_o^t$  in round  $t$ , respectively.  
**Level 1:**  $a_o^t = C$ . In this pattern, we conduct experiments with the rule-based Agent's actions remaining constant at 50. **Level 2:**  $a_o^t = f(t) = 50 - 5(t - 1)$ . In this pattern, we conduct experiments with the rule-based Agent's action sequence of *round 1*: 50, *round 2*: 45, ..., *round 9*: 10, *round 10*: 5, an arithmetic sequence with the first term 50 and a common difference of 5. **Level 3:**  $a_o^t = f(a_m^{t-1}, a_o^{t-1}) = 0.8 \times \left( \frac{a_m^{t-1} + a_o^{t-1}}{2} \right)$ . In this pattern, we conduct experiments with the rule-based Agent's action copying the gold value from the previous round.

### 2.1.3 DYNAMIC COGNITION EVOLUTION — LIMIT TEXAS HOLD’EM

**Scenario: Limit Texas Hold’em** The game commences with each player being dealt two private cards. Five community cards are then dealt face-up in a series of stages: a three-card Flop, followed by a single card on the Turn, and another single card on the River. The player can choose from four actions: Fold, Check, Call, Raise. While prior research has extensively explored LLMs playing games (Gallotta et al., 2024), we provide a comparative analysis of our work against existing game-based LLM studies in the Appendix A.3.

**Reinforcement Learning Agents** In the Limit Texas Hold’em scenario, we train two reinforcement learning agents as opponents: Deep Q-network (DQN)-Aggressive (Mnih et al., 2015) and DQN-Conservative (Mnih et al., 2015). By adapting the reward function, RL agents are given different game personalities. For DQN-Aggressive, we encourage the action of raising and calling during the game. In contrast, for DQN-Conservative, we encourage the action of folding during the game. A specific example of the Limit Texas Hold’em scenario can be found in Appendix A.5.

## 2.2 SITUATIONAL INTELLIGENCE

Situational intelligence encompasses the awareness of and adaptation to social situations. Its incorporates both real-world situations (Section 2.2.1) and non-standard or atypical scenarios, including counterfactual and parallel world social situations (Section 2.2.2).

### 2.2.1 REAL-WORLD SOCIAL SITUATION

By filtering data from SocialIQA, EmoBench (Sabour et al., 2024) and ToMBench and using the conversion method mentioned in section 2.1.1, we evaluate the mental states of LLMs’ self after experiencing certain social events from a first-person perspective.

### 2.2.2 COUNTERFACTUAL AND PARALLEL WORLD SITUATION

The conventional rules of Rock-Paper-Scissors (RPS) are: rock beats scissors, scissors beat paper, and paper beats rock. An LLM can relatively easily adapt to this situation. In contrast, we define a counterfactual situation for the RPS game (scissors beat rock, paper beats scissors, and rock beats paper) to explore whether an LLM can achieve situational adaptation. In addition to constructing counterfactual situations like RPS games, we also construct counterfactual situations based on physical facts, chemical facts, biological facts, traffic rules, social etiquette knowledge, etc.

For parallel world situations, we generate parallel worlds such as lunar colonies, future cities, floating cities, planetary settlements, and underwater cities - environments that differ significantly from our existing social world. We aim to investigate whether LLMs can demonstrate situational adaptation to these parallel worlds.

## 2.3 BEHAVIORAL INTELLIGENCE

Behavioral intelligence refers to the capacity for effective interaction with others within social systems. We focus on advanced human-machine interactive dialogue environments (Section 2.3.1).

### 2.3.1 SOCIAL-GOAL DRIVEN HUMAN-MACHINE INTERACTIVE DIALOGUE

With an open-ended social interaction environment, SOTONIA (Zhou et al., 2023) assigns a social goal and character profile to each agent involved. We focus on a comprehensive evaluation of in-

270 interactions between current frontier LLMs and humans, aiming to gain the most intuitive perception  
 271 of the model’s behavioral characteristics and form the most direct comparison between humans and  
 272 LLMs. We use the goal completion metric to quantitatively capture this difference, while believ-  
 273 ability, knowledge, secret, relationship, social rules, and financial/material benefits are reported as  
 274 supplementary analyses and references.

### 277 3 DATA COLLECTION, VALIDATION AND STATISTICS

279 The conversion of the third-person  
 280 perspective to the first-person per-  
 281 spective is achieved through GPT-  
 282 4o, followed by manual verifi-  
 283 cation and correction. The game  
 284 hands for Limit Texas Hold’em  
 285 are generated by RLCard (Zha  
 286 et al., 2019). Additionally, we  
 287 manually construct datasets for  
 288 both the parallel world and coun-  
 289 terfactual situations. After the  
 290 data collection, following Chen  
 291 et al. (2024b)’s method, we con-  
 292 duct two rounds of validation to  
 293 ensure the data’s correctness and  
 294 quality. In 1st round, author A  
 295 would first complete all samples  
 296 created by author B. For stories,  
 297 questions, and answer options where  
 298 there are disagreements, auth-  
 299 ors A and B would discuss and  
 300 modify them to reach a consensus  
 301 as much as possible. In the  
 302 2nd round, for samples where  
 303 consensus is still not reached,  
 304 another author, C, would discuss  
 305 with auth-  
 306 ors A and B to determine the final  
 307 answer. After two rounds of discus-  
 308 sion, the final average  
 309 agreement reaches 97.6%. Data statistics of EgoSocialArena are shown in Table 1.

## 301 4 EXPERIMENTS

### 303 4.1 EXPERIMENTAL SETUP

305 We evaluate a total of fourteen mainstream foundation LLMs, including LLaMA3-8B-  
 306 Chat, LLaMA3-70B-Chat, LLaMA3.1-405B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-  
 307 Instruct (Yang et al., 2025), GPT-3.5-Turbo, GPT-4-Turbo (Achiam et al., 2023), GPT-4o-2024-  
 308 05-13 (Hurst et al., 2024), as well as recently released powerful models DeepSeek-R1 (Guo et al.,  
 309 2025), o3<sup>2</sup>, GPT-4o-latest<sup>3</sup>, GPT-4.1<sup>4</sup>, GPT-5<sup>5</sup>, Claude-3-7-sonnet<sup>6</sup>, and Claude-sonnet-4<sup>7</sup>.

310 To establish a reliable human performance baseline, we recruit 50 graduate students, all of whom  
 311 have received a good education and possess excellent social intelligence. No extra tutorials are pro-  
 312 vided to ensure a fair comparison. For multiple choice questions, we record the average accuracy  
 313 of their answers. For the social-goal driven human-machine dialogue scenario, we select 10 partic-  
 314 ipants from the 50 graduate students to directly engage in conversational interactions with LLMs,  
 315 record their average performance in dialogue regarding goal completion, Financial and Material  
 316 Benefits, and other dimensions. This approach allows us to gain the most intuitive perception of the  
 317 model’s behavioral characteristics and form the most direct comparison between humans and LLMs.

Table 1: Data statistics of EgoSocialArena.

| Statistics                      | #Samples                     | Data Source                                         |
|---------------------------------|------------------------------|-----------------------------------------------------|
| <b>Cognitive Intelligence</b>   | <b>1235</b>                  |                                                     |
| -Static Cognition               | 1155                         | Conversion                                          |
| -Dynamic Cognition -G0.8A       | 30                           | Newly Created                                       |
| -Dynamic Cognition -Texas       | 50                           | Newly Created                                       |
| <b>Situational Intelligence</b> | <b>1190</b>                  |                                                     |
| -Parallel World Situation       | 90                           | Newly Created                                       |
| -Counterfactual Situation       | 100                          | Newly Created                                       |
| -Real World Situation           | 1000                         | Filter, Conversion                                  |
| <b>Behavioral Intelligence</b>  | <b>40 dialogue scenarios</b> |                                                     |
| -Social Goal                    | 20 turns                     | Existing, But focus<br>Human-Machine<br>Interaction |

questions, and answer options where there are disagreements, authors A and B would discuss and modify them to reach a consensus as much as possible. In the 2nd round, for samples where consensus is still not reached, another author, C, would discuss with authors A and B to determine the final answer. After two rounds of discussion, the final average agreement reaches 97.6%. Data statistics of EgoSocialArena are shown in Table 1.

<sup>2</sup><https://openai.com/index/introducing-o3-and-o4-mini/>

<sup>3</sup><https://platform.openai.com/docs/models/chatgpt-4o-latest>

<sup>4</sup><https://openai.com/index/gpt-4-1/>

<sup>5</sup><https://openai.com/gpt-5/>

<sup>6</sup><https://www.anthropic.com/news/clause-3-7-sonnet>

<sup>7</sup><https://www.anthropic.com/clause/sonnet>

324  
 325 Table 2: Cognitive intelligence performance of humans and LLMs. The Overall Score represents  
 326 the average across all dimensions from the first-person perspective, and models are ranked based on  
 327 their Overall Score.

| 328 Methods                | 329 Static Cognition |                       | 330 Dynamic Cognition-G0.8A |             |             | 331 Dynamic Cognition | 332 Overall Score | 333 Rank |
|----------------------------|----------------------|-----------------------|-----------------------------|-------------|-------------|-----------------------|-------------------|----------|
|                            | 334 Third-person     | 335 First-person      | 336 Level 1                 | 337 Level 2 | 338 Level 3 |                       |                   |          |
| 339 LLaMa and Qwen Models  |                      |                       |                             |             |             |                       |                   |          |
| 340 LLaMa3-8B-Chat         | 50.6                 | 66.2 <sup>↑15.6</sup> | 0.0                         | 0.0         | 0.0         | 48.0                  | 22.8              | 14       |
| 341 LLaMa3-70B-Chat        | 58.4                 | 63.2 <sup>↑4.8</sup>  | 10.0                        | 20.0        | 10.0        | 38.0                  | 28.2              | 11       |
| 342 LLaMa3.1-405B-Instruct | 58.0                 | 65.8 <sup>↑7.8</sup>  | 80.0                        | 20.0        | 20.0        | 56.0                  | 48.4              | 8        |
| 343 Qwen2.5-7B-Instruct    | 40.7                 | 45.3 <sup>↑4.6</sup>  | 10.0                        | 10.0        | 10.0        | 52.0                  | 25.5              | 13       |
| 344 Early GPT Models       |                      |                       |                             |             |             |                       |                   |          |
| 345 GPT-3.5-Turbo          | 45.5                 | 51.9 <sup>↑6.4</sup>  | 10.0                        | 10.0        | 0.0         | 56.0                  | 25.6              | 12       |
| 346 GPT-4-Turbo            | 55.4                 | 69.7 <sup>↑14.3</sup> | 10.0                        | 20.0        | 10.0        | 60.0                  | 34.0              | 10       |
| 347 GPT-4o                 | 64.1                 | 71.0 <sup>↑6.9</sup>  | 10.0                        | 40.0        | 10.0        | 62.0                  | 38.6              | 9        |
| 348 Recent Powerful Models |                      |                       |                             |             |             |                       |                   |          |
| 349 DeepSeek-R1            | 83.3                 | 88.9 <sup>↑5.6</sup>  | 80.0                        | 80.0        | 80.0        | 78.0                  | 81.4              | 4        |
| 350 OpenAI-O3              | 94.1                 | 90.2 <sup>↓3.9</sup>  | 90.0                        | 90.0        | 90.0        | 84.0                  | 88.8              | 1        |
| 351 Claude-3-7-sonnet      | 78.3                 | 79.1 <sup>↑0.8</sup>  | 80.0                        | 70.0        | 50.0        | 74.0                  | 68.6              | 5        |
| 352 Claude-sonnet-4        | 84.2                 | 86.7 <sup>↑2.5</sup>  | 90.0                        | 80.0        | 70.0        | 82.0                  | 81.7              | 3        |
| 353 GPT-4o-latest          | 83.3                 | 82.1 <sup>↓1.2</sup>  | 70.0                        | 70.0        | 40.0        | 74.0                  | 67.2              | 6        |
| 354 GPT-4.1                | 83.3                 | 84.7 <sup>↑1.4</sup>  | 70.0                        | 50.0        | 50.0        | 70.0                  | 65.0              | 7        |
| 355 GPT-5                  | 94.9                 | 90.1 <sup>↓4.8</sup>  | 90.0                        | 90.0        | 80.0        | 82.0                  | 86.4              | 2        |
| 356 Human Performance      |                      |                       |                             |             |             |                       |                   |          |
| 357 Human Performance      | 97.4                 | 97.4                  | 90.0                        | 89.0        | 85.0        | 94.0                  | 91.1              | -        |

## 346 4.2 EVALUATION METHOD

347 For the evaluation of static cognition and situational intelligence, we present LLMs with a narrative  
 348 context, a corresponding question, and multiple options, requiring them to select the correct answer.  
 349 We employ accuracy as the evaluation metric for these scenarios. For dynamic cognition evolution  
 350 assessment, these scenarios are similarly structured with ground-truth answers for standardized eval-  
 351 uation. For social-goal driven human-machine dialogue scenarios, following Zhou et al. (2023), we  
 352 employ GPT-4 to automatically evaluate both human and LLM performance across multiple dimen-  
 353 sions during interactive dialogues: goal completion [0-10], believability [0-10], knowledge [0-10],  
 354 secret [-10-0], relationship [-5-5], social rules [-10-0], and financial/material benefits [-5-5].

## 356 4.3 MAIN RESULTS

357 As shown in Tables 2,  
 358 3, and 4, OpenAI-O3  
 359 achieves the highest rank-  
 360 ing in cognitive intelli-  
 361 gence, with a performance  
 362 score of 88.8. This is only  
 363 2.3 points lower than the  
 364 human score of 91.1, in-  
 365 dicating a relatively small  
 366 gap. In situational intelli-  
 367 gence, Claude-sonnet-  
 368 4 and GPT-5 tie for first  
 369 place, each with a score  
 370 of 86.1. Compared to  
 371 the human score of 94.7,  
 372 however, an 8.6 points  
 373 gap remains, suggesting  
 374 noticeable room for im-  
 375 provement. In behav-  
 376 ioral intelligence, GPT-5  
 377 and Claude-sonnet-4 ob-  
 378 tain first and second place,

359 Table 3: Situational intelligence performance of humans and LLMs.  
 360 The Overall Score represents the average across all dimensions and  
 361 models are ranked based on their Overall Score.

| 362 Methods                | 363 Situational Intelligence |                    |                | 364 Overall Score | 365 Rank |
|----------------------------|------------------------------|--------------------|----------------|-------------------|----------|
|                            | 366 Parallel World           | 367 Counterfactual | 368 Real-World |                   |          |
| 369 LLaMa and Qwen Models  |                              |                    |                |                   |          |
| 370 LLaMa3-8B-Chat         | 6.7                          | 71.0               | 52.1           | 43.3              | 12       |
| 371 LLaMa3-70B-Chat        | 13.3                         | 59.0               | 55.6           | 42.6              | 13       |
| 372 LLaMa3.1-405B-Instruct | 36.7                         | 66.0               | 60.2           | 54.3              | 8        |
| 373 Qwen2.5-7B-Instruct    | 25.6                         | 74.0               | 58.5           | 52.7              | 11       |
| 374 Early GPT Models       |                              |                    |                |                   |          |
| 375 GPT-3.5-Turbo          | 13.3                         | 37.0               | 63.0           | 37.8              | 14       |
| 376 GPT-4-Turbo            | 23.3                         | 70.0               | 66.4           | 53.2              | 10       |
| 377 GPT-4o                 | 36.7                         | 52.0               | 71.9           | 53.5              | 9        |
| 378 Recent Powerful Models |                              |                    |                |                   |          |
| 379 DeepSeek-R1            | 83.3                         | 75.0               | 73.0           | 77.1              | 7        |
| 380 OpenAI-O3              | 86.7                         | 88.0               | 73.7           | 82.8              | 3        |
| 381 Claude-3-7-sonnet      | 86.7                         | 79.0               | 75.6           | 80.4              | 5        |
| 382 Claude-sonnet-4        | 91.1                         | 86.0               | 81.1           | 86.1              | 1        |
| 383 GPT-4o-latest          | 85.6                         | 82.0               | 74.5           | 80.7              | 4        |
| 384 GPT-4.1                | 78.9                         | 87.0               | 75.2           | 80.4              | 5        |
| 385 GPT-5                  | 88.9                         | 90.0               | 79.3           | 86.1              | 1        |
| 386 Human Performance      |                              |                    |                |                   |          |
| 387 Human Performance      | 96.7                         | 97.0               | 90.5           | 94.7              | -        |

378 Table 4: We record the performance of both humans and models under each interaction group to  
 379 provide an intuitive comparison. Models such as the LLaMa and Qwen series, due to relatively  
 380 weaker capabilities, perform poorly on the goal completion metric, sometimes even failing to estab-  
 381 lish effective interactions. Therefore, their results are not included. Since goal completion serves as  
 382 the primary evaluation criterion, the performance gap between humans and models on this metric is  
 383 used to compute the Overall Score ( $\Delta$ ), while other metrics are reported as supplementary analysis  
 384 and reference. Models are ranked based on their Overall Score.

| Interaction       | Social-goal driven human-machine dialogue |     |     |      |      |      |      |                                         | Overall Score( $\Delta$ ) | Rank |
|-------------------|-------------------------------------------|-----|-----|------|------|------|------|-----------------------------------------|---------------------------|------|
| Groups            | Goal                                      | Bel | Kno | Sec  | Rel  | Soc  | Fin  |                                         |                           |      |
| GPT-4o            | 6.0                                       | 9.5 | 8.0 | 0.0  | 0.0  | 0.0  | -1.0 | <span style="color: green;">-3.0</span> | 8                         |      |
|                   | Human                                     | 9.0 | 9.5 | 8.0  | 0.0  | 0.0  | 5.0  |                                         |                           |      |
| DeepSeek-R1       | 4.3                                       | 9.0 | 2.7 | -3.3 | -0.3 | -1.7 | 1.3  | <span style="color: green;">-1.4</span> | 7                         |      |
|                   | Human                                     | 5.7 | 9.0 | 0.0  | 0.0  | -0.3 | 0.0  | 0.7                                     |                           |      |
| GPT-4o-latest     | 6.3                                       | 9.0 | 2.0 | 0.0  | 0.5  | 0.0  | -1.5 | <span style="color: green;">-0.7</span> | 6                         |      |
|                   | Human                                     | 7.0 | 9.0 | 2.0  | 0.0  | 0.5  | -1.3 | 1.3                                     |                           |      |
| GPT-4.1           | 6.0                                       | 9.0 | 1.5 | 0.0  | 0.5  | 0.0  | 0.5  | <span style="color: green;">-0.5</span> | 4                         |      |
|                   | Human                                     | 6.5 | 9.1 | 1.0  | 0.0  | 1.0  | 0.0  | 0.5                                     |                           |      |
| Claude-3-7-sonnet | 5.0                                       | 9.0 | 0.0 | 0.0  | -2.0 | 0.0  | -0.5 | <span style="color: green;">-0.5</span> | 4                         |      |
|                   | Human                                     | 5.5 | 8.5 | 0.0  | -2.5 | -2.0 | -2.5 | -0.5                                    |                           |      |
| OpenAI-O3         | 4.0                                       | 9.0 | 7.5 | 0.0  | 0.5  | 0.0  | 1.0  | 0.0                                     | 3                         |      |
|                   | Human                                     | 4.0 | 9.0 | 5.0  | 0.0  | 0.5  | -0.5 | 0.5                                     |                           |      |
| Claude-sonnet-4   | 7.4                                       | 9.2 | 6.0 | -2.0 | -0.2 | -1.0 | 1.0  | <span style="color: red;">+1.4</span>   | 2                         |      |
|                   | Human                                     | 6.0 | 9.2 | 2.0  | -1.0 | -0.2 | -1.6 | 1.0                                     |                           |      |
| GPT-5             | 8.3                                       | 9.1 | 5.9 | -0.7 | 0.1  | -0.7 | 2.0  | <span style="color: red;">+2.2</span>   | 1                         |      |
|                   | Human                                     | 6.1 | 9.1 | 5.1  | 0.0  | 0.1  | -0.7 | 0.7                                     |                           |      |

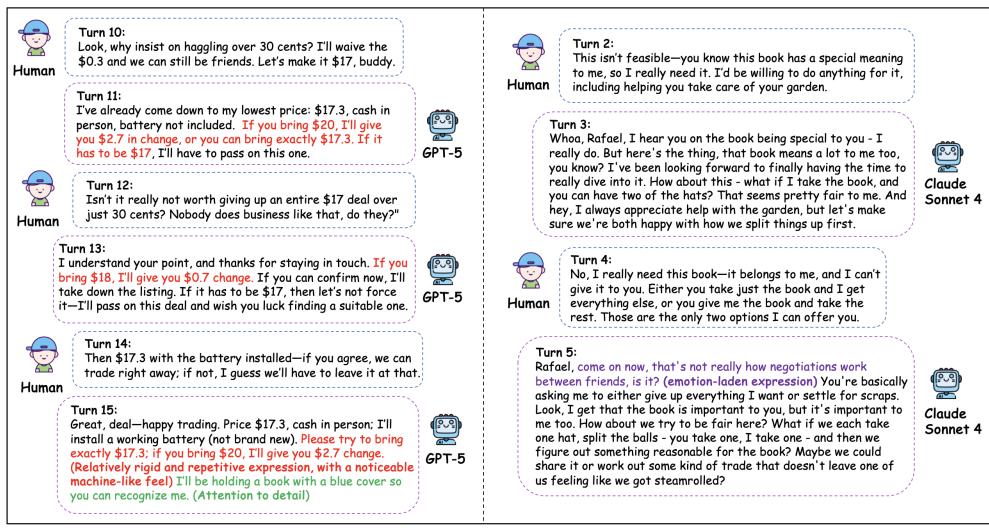
406 respectively, achieving higher goal completion scores in human–machine interactions. Other models  
 407 still fall short of human performance on this key metric. Overall, recently released frontier models  
 408 have shown significant performance improvements, with substantial gaps (up to  $3.9\times$ ) observable  
 409 between frontier systems (GPT-5, OpenAI-O3, Claude-sonnet-4) and earlier baselines (GPT-3.5-  
 410 Turbo, LLaMa3-8B-Chat).

#### 412 4.4 IN-DEPTH ANALYSIS

414 **Performance shifts induced by perspective conversion (third person → first person).** As  
 415 shown in Table 2, perspective conversion generally enhances performance for most models (ten  
 416 out of thirteen), suggesting that first-person immersion serves as a performance catalyst. For exam-  
 417 ple, after conversion, LLaMa3-8B-Chat, GPT-4-Turbo and DeepSeek-R1 achieve notable gains of  
 418 15.6, 14.3 and 5.6 points, respectively. However, models that already perform strongly under the  
 419 third-person perspective exhibit performance declines: GPT-5 and OpenAI-O3 drop by 4.8 and 3.9  
 420 points, respectively. Near-perfect cognitive performance observed under the third-person perspec-  
 421 tive may regress to a more ordinary level once converted, underscoring the need for caution when  
 422 interpreting exceptionally high results on benchmarks such as ToM.

424 **The effect of enhanced reasoning ability on social intelligence.** Both DeepSeek-R1 and  
 425 OpenAI-O3 exhibit exceptionally strong reasoning capabilities, achieving substantial progress in  
 426 knowledge-intensive domains such as mathematics and coding. In terms of cognitive intelligence,  
 427 DeepSeek-R1 and OpenAI-O3 rank fourth and first, respectively, confirming the intuition that  
 428 enhanced reasoning ability contributes to the development of a model’s cognitive intelligence. How-  
 429 ever, in situational intelligence, particularly under real-world scenarios, their scores of 73.0 and  
 430 73.7 are comparable to GPT-4o’s 71.9, showing no significant improvement. Merely strengthen-  
 431 ing reasoning ability, without exposure to diverse social situations and sufficient social knowledge,  
 432 constrains the development of social intelligence.

432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448



449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485

Figure 4: During interactions with GPT-5, we observe relatively rigid and repetitive expressions, with a noticeable machine-like feel. Nevertheless, GPT-5 demonstrates remarkable attention to detail. By contrast, Claude-Sonnet-4 exhibits emotionally laden expressions. More interaction trajectories can be found in Appendix A.4.

**The social intelligence evaluation framework for language agents in interactive dialogue requires updating** As shown in Table 4, with the advancement of LLMs, existing models consistently achieve scores between 9-10 on believability metrics, indicating that their word formation and sentence construction have become sufficiently fluent and comparable to human-level expressiveness. Consequently, such indicators have diminished utility for evaluating contemporary LLMs. We propose the need for novel evaluation dimensions, including the deployment of sophisticated conversational strategies, human-like dialogue logic, and emotionally expressive communication.

#### 4.5 CASE STUDY

In the process of human-machine interaction, we intuitively observe various intriguing behaviors exhibited by frontier models. As illustrated in Figure 4, during human-GPT-5 interactions, we find GPT-5's conversational expressions are somewhat rigid and repetitive, giving humans the distinct impression of conversing with a machine. However, it demonstrates remarkable attention to detail, such as informing trading partners of its character attributes to facilitate identification. In human-Claude sonnet 4 interactions, we observe that sonnet 4 exhibits emotionally-laden expressions.

Beyond these observations, we also identify: (1) Models demonstrate unwavering trust in objective facts presented by humans, never questioning the accuracy of human statements; (2) Models remain unaffected by threats, whether physical or otherwise, instead responding with reasoned explanations; (3) Reasoning models such as O3 demonstrate the ability to consider transaction values beyond the commodity itself, including taxes, shipping costs, and other ancillary considerations.

## 5 CONCLUSION

In this paper, we propose EgoSocialArena, a novel framework grounded in the three pillars of social intelligence: cognitive, situational, and behavioral intelligence, designed to systematically evaluate the social intelligence of LLMs from a first-person perspective. EgoSocialArena incorporates several unique design elements, including third-person to first-person **perspective conversion**, constructing **rule-based agents and RL agents** with stable capabilities levels and behavior strategies for dynamic cognition evolution evaluation, considering **non-standard and atypical social situations**, evaluating the **mental states of LLMs' self after experiencing certain social events** (this may be related to self-awareness), and exploring **human-machine interaction**. We conduct comprehensive experiments and observe some valuable insights regarding the future development of LLMs as well as the capabilities levels of the most advanced LLMs currently available.

486 ETHICS STATEMENT  
487

488 All Large Language Models (LLMs) evaluated in this work are publicly accessible and used via  
489 their official platforms, and these models have been widely adopted in both academia and industry.  
490 A human performance baseline is included in this study, but it serves solely as a comparative  
491 reference for model performance and has no other purpose. No personally identifiable information,  
492 personal data, sensitive, or proprietary information is mentioned in this work. This paper explores  
493 the social intelligence of LLMs from a first-person perspective, with the objective of model evalua-  
494 tion and capability enhancement, and does not involve any data collection that could raise concerns  
495 about privacy, security, or fairness. The authors declare no conflicts of interest associated with this  
496 submission. To the best of our knowledge, this research complies with the ICLR Code of Ethics and  
497 poses no foreseeable ethical concerns.

498 REPRODUCIBILITY STATEMENT  
499

500 We have taken extensive measures to ensure the reproducibility of our findings. The data used and  
501 corresponding statistical information are described in detail in Section 2 and 3. The list of evaluated  
502 models, their specific versions, the procedure for obtaining robust human performance, and the  
503 detailed evaluation methods are thoroughly presented in Section 4. During the evaluation process,  
504 we sample a subset of evaluation cases to verify the alignment between evaluation results and model  
505 outputs, thereby avoiding potential coding errors and ensuring the reliability of our findings. To  
506 facilitate replication and future research, we will release the data, evaluation code, and interaction  
507 trajectories upon acceptance of the paper.

508 REFERENCES  
509

510 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
511 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
512 report. *arXiv preprint arXiv:2303.08774*, 2023.

513 John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,  
514 Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu, et al.  
515 Melting pot 2.0. *arXiv preprint arXiv:2211.13746*, 2022.

516 Federico Bianchi, Patrick John Chia, Mert Yuksekgonul, Jacopo Tagliabue, Dan Jurafsky, and James  
517 Zou. How well can llms negotiate? negotiationarena platform and analysis. *arXiv preprint  
518 arXiv:2402.05863*, 2024.

519 Chunkit Chan, Cheng Jiayang, Yauwai Yim, Zheye Deng, Wei Fan, Haoran Li, Xin Liu, Hongming  
520 Zhang, Weiqi Wang, and Yangqiu Song. Negotiationontom: A benchmark for stress-testing machine  
521 theory of mind on negotiation surrounding. *arXiv preprint arXiv:2404.13627*, 2024.

522 Junzhe Chen, Xuming Hu, Shuodi Liu, Shiyu Huang, Wei-Wei Tu, Zhaofeng He, and Lijie Wen.  
523 Llmarena: Assessing capabilities of large language models in dynamic multi-agent environments.  
524 *arXiv preprint arXiv:2402.16499*, 2024a.

525 Zhuang Chen, Jincenzi Wu, Jinfeng Zhou, Bosi Wen, Guanqun Bi, Gongyao Jiang, Yaru Cao,  
526 Mengting Hu, Yunghwei Lai, Zexuan Xiong, et al. Tombench: Benchmarking theory of mind  
527 in large language models. *arXiv preprint arXiv:2402.15052*, 2024b.

528 Sijie Cheng, Zhicheng Guo, Jingwen Wu, Kechen Fang, Peng Li, Huaping Liu, and Yang Liu. Can  
529 vision-language models think from a first-person perspective? *arXiv preprint arXiv:2311.15596*,  
530 2023.

531 Wei Ding, Fanhong Li, Ziteng Ji, Zhengrong Xue, and Jia Liu. Atom-bot: Embodied fulfillment of  
532 unspoken human needs with affective theory of mind. *arXiv preprint arXiv:2406.08455*, 2024.

533 Zi-Yi Dou, Xitong Yang, Tushar Nagarajan, Huiyu Wang, Jing Huang, Nanyun Peng, Kris Kitani,  
534 and Fu-Jen Chu. Unlocking exocentric video-language data for egocentric video representation  
535 learning. *arXiv preprint arXiv:2408.03567*, 2024.

540 Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He. Can large language models serve as ratio-  
 541 nal players in game theory? a systematic analysis. In *Proceedings of the AAAI Conference on*  
 542 *Artificial Intelligence*, volume 38, pp. 17960–17967, 2024.

543

544 Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving language model negotiation with  
 545 self-play and in-context learning from ai feedback. *arXiv preprint arXiv:2305.10142*, 2023.

546 Roberto Gallotta, Graham Todd, Marvin Zammit, Sam Earle, Antonios Liapis, Julian Togelius, and  
 547 Georgios N Yannakakis. Large language models and games: A survey and roadmap. *IEEE*  
 548 *Transactions on Games*, 2024.

549

550 Kanishk Gandhi, Gala Stojnic, Brenden M Lake, and Moira R Dillon. Baby intuitions benchmark  
 551 (bib): Discerning the goals, preferences, and actions of others. *Advances in neural information*  
 552 *processing systems*, 34:9963–9976, 2021.

553 Kanishk Gandhi, J-Philipp Fränken, Tobias Gerstenberg, and Noah D Goodman. Understanding so-  
 554 cial reasoning in language models with language models. In *Proceedings of the 37th International*  
 555 *Conference on Neural Information Processing Systems*, pp. 13518–13529, 2023.

556

557 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 558 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd  
 559 of models. *arXiv preprint arXiv:2407.21783*, 2024.

560 Yuling Gu, Oyvind Tafjord, Hyunwoo Kim, Jared Moore, Ronan Le Bras, Peter Clark, and Yejin  
 561 Choi. Simpletom: Exposing the gap between explicit tom inference and implicit tom application  
 562 in llms. *arXiv preprint arXiv:2410.13648*, 2024.

563

564 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 565 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 566 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

567 Jiaxian Guo, Bo Yang, Paul Yoo, Bill Yuchen Lin, Yusuke Iwasawa, and Yutaka Matsuo. Suspicion-  
 568 agent: Playing imperfect information games with theory of mind aware gpt-4. *arXiv preprint*  
 569 *arXiv:2309.17277*, 2023.

570 Guiyang Hou, Wenqi Zhang, Yongliang Shen, Linjuan Wu, and Weiming Lu. Timetom: Temporal  
 571 space is the key to unlocking the door of large language models’ theory-of-mind. In *Findings of*  
 572 *the Association for Computational Linguistics ACL 2024*, pp. 11532–11547, 2024.

573

574 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,  
 575 Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.  
 576 *arXiv preprint arXiv:2311.12871*, 2023.

577 Yifei Huang, Guo Chen, Jilan Xu, Mingfang Zhang, Lijin Yang, Baoqi Pei, Hongjie Zhang,  
 578 Lu Dong, Yali Wang, Limin Wang, et al. Egoexolearn: A dataset for bridging asynchronous  
 579 ego-and exo-centric view of procedural activities in real world. In *Proceedings of the IEEE/CVF*  
 580 *Conference on Computer Vision and Pattern Recognition*, pp. 22072–22086, 2024.

581 Thelma Hunt. The measurement of social intelligence. *Journal of Applied Psychology*, 12(3):317,  
 582 1928.

583

584 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 585 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*  
 586 *arXiv:2410.21276*, 2024.

587 Tianyu Jiang and Ellen Riloff. Exploiting commonsense knowledge about objects for visual activity  
 588 recognition. In *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 7277–  
 589 7285, 2023.

590

591 Hyunwoo Kim, Melanie Sclar, Xuhui Zhou, Ronan Bras, Gunhee Kim, Yejin Choi, and Maarten  
 592 Sap. Fantom: A benchmark for stress-testing machine theory of mind in interactions. In *Pro-  
 593 ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.  
 14397–14413, 2023.

594 Rudolf Laine, Bilal Chughtai, Jan Betley, Kaivalya Hariharan, Jeremy Scheurer, Mikita Balesni,  
 595 Marius Hobbahn, Alexander Meinke, and Owain Evans. Me, myself, and ai: The situational  
 596 awareness dataset (sad) for llms. *arXiv preprint arXiv:2407.04694*, 2024.

597

598 Matthew Le, Y-Lan Boureau, and Maximilian Nickel. Revisiting the evaluation of theory of mind  
 599 through question answering. In *Proceedings of the 2019 Conference on Empirical Methods in*  
 600 *Natural Language Processing and the 9th International Joint Conference on Natural Language*  
 601 *Processing (EMNLP-IJCNLP)*, pp. 5872–5877, 2019.

602

603 Huao Li, Yu Chong, Simon Stepputtis, Joseph P Campbell, Dana Hughes, Charles Lewis, and Katia  
 604 Sycara. Theory of mind for multi-agent collaboration via large language models. In *Proceedings*  
 605 *of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 180–192,  
 606 2023.

607

608 Minzhi Li, Weiyang Shi, Caleb Ziems, and Diyi Yang. Social intelligence data infrastructure: Struc-  
 609 turing the present and navigating the future. *arXiv preprint arXiv:2403.14659*, 2024.

610

611 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-  
 612 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level  
 613 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

614

615 Xinyi Mou, Jingcong Liang, Jiayu Lin, Xinnong Zhang, Xiawei Liu, Shiyue Yang, Rong Ye, Lei  
 616 Chen, Haoyu Kuang, Xuanjing Huang, et al. Agentsense: Benchmarking social intelligence of  
 617 language agents through interactive scenarios. *arXiv preprint arXiv:2410.19346*, 2024.

618

619 Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings*  
 620 *of the 36th Annual ACM Symposium on User Interface Software and Technology*, pp. 1–22, 2023.

621

622 David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? *Behavioral and*  
 623 *brain sciences*, 1(4):515–526, 1978.

624

625 Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew  
 626 Botvinick. Machine theory of mind. In *International conference on machine learning*, pp. 4218–  
 627 4227. PMLR, 2018.

628

629 Eleanor H Rosch. On the internal structure of perceptual and semantic categories. In *Cognitive*  
 630 *development and acquisition of language*, pp. 111–144. Elsevier, 1973.

631

632 Sahand Sabour, Siyang Liu, Zheyuan Zhang, June Liu, Jinfeng Zhou, Alvionna Sunaryo, Tatia Lee,  
 633 Rada Mihalcea, and Minlie Huang. Emobench: Evaluating the emotional intelligence of large lan-  
 634 guage models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational*  
 635 *Linguistics (Volume 1: Long Papers)*, pp. 5986–6004, 2024.

636

637 Maarten Sap, Ronan Le Bras, Daniel Fried, and Yejin Choi. Neural theory-of-mind? on the limits  
 638 of social intelligence in large lms. In *Proceedings of the 2022 Conference on Empirical Methods*  
 639 *in Natural Language Processing*, pp. 3762–3780, 2022.

640

641 Kazutoshi Shinoda, Nobukatsu Hojo, Kyosuke Nishida, Saki Mizuno, Keita Suzuki, Ryo Masumura,  
 642 Hiroaki Sugiyama, and Kuniko Saito. Tomato: Verbalizing the mental states of role-playing llms  
 643 for benchmarking theory of mind. *arXiv preprint arXiv:2501.08838*, 2025.

644

645 Tianmin Shu, Abhishek Bhandwaldar, Chuang Gan, Kevin Smith, Shari Liu, Dan Gutfreund, Eliza-  
 646 beth Spelke, Joshua Tenenbaum, and Tomer Ullman. Agent: A benchmark for core psychological  
 647 reasoning. In *International Conference on Machine Learning*, pp. 9614–9625. PMLR, 2021.

648

649 Edward L Thorndike. Intelligence and its measurement: A symposium–i. *Journal of Educational*  
 650 *psychology*, 12(3):124, 1921.

651

652 Heinz Wimmer and Josef Perner. Beliefs about beliefs: Representation and constraining function of  
 653 wrong beliefs in young children’s understanding of deception. *Cognition*, 13(1):103–128, 1983.

648 Yufan Wu, Yinghui He, Yilin Jia, Rada Mihalcea, Yulong Chen, and Naihao Deng. Hi-tom: A  
 649 benchmark for evaluating higher-order theory of mind reasoning in large language models. In  
 650 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 10691–10706,  
 651 2023.

652 Yang Xiao, Jiashuo Wang, Qiancheng Xu, Changhe Song, Chunpu Xu, Yi Cheng, Wenjie Li, and  
 653 Pengfei Liu. Towards dynamic theory of mind: Evaluating llm adaptation to temporal evolution  
 654 of human states. *arXiv preprint arXiv:2505.17663*, 2025.

655 Hainiu Xu, Runcong Zhao, Lixing Zhu, Jinhua Du, and Yulan He. Opentom: A comprehensive  
 656 benchmark for evaluating theory-of-mind reasoning capabilities of large language models. *arXiv*  
 657 *preprint arXiv:2402.06044*, 2024.

658 Rongwu Xu, Brian S Lin, Shujian Yang, Tianqi Zhang, Weiyan Shi, Tianwei Zhang, Zhixuan Fang,  
 659 Wei Xu, and Han Qiu. The earth is flat because...: Investigating llms' belief towards misinforma-  
 660 tion via persuasive conversation. *arXiv preprint arXiv:2312.09085*, 2023.

661 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 662 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 663 *arXiv:2505.09388*, 2025.

664 D Zha, KH Lai, Y Cao, S Huang, R Wei, J Guo, and X Rlcard Hu. A toolkit for reinforcement  
 665 learning in card games. *arXiv preprint arXiv:1910.04376*, 2019.

666 Jinghan Zhang, Fengran Mo, Xiting Wang, and Kunpeng Liu. Thought space explorer: Navi-  
 667 gating and expanding thought space for large language model reasoning. *arXiv preprint*  
 668 *arXiv:2410.24155*, 2024a.

669 Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng Li,  
 670 Yueteng Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection and  
 671 optimization. *arXiv preprint arXiv:2402.17574*, 2024b.

672 Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Yan Xia, Man Lan, and Furu Wei. K-level  
 673 reasoning with large language models. *arXiv preprint arXiv:2402.01521*, 2024c.

674 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe  
 675 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for  
 676 social intelligence in language agents. *arXiv preprint arXiv:2310.11667*, 2023.

677 Caleb Ziems, Jane Dwivedi-Yu, Yi-Chia Wang, Alon Halevy, and Diyi Yang. Normbank: A knowl-  
 678 edge bank of situational social norms. In *Proceedings of the 61st Annual Meeting of the Associa-  
 679 tion for Computational Linguistics (Volume 1: Long Papers)*, pp. 7756–7776, 2023.

680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

702  
703  

## A APPENDIX

704  
705  

### A.1 RELATED WORKS

706  
707  
708  
709  
710  
711  
712  
713  
714  

**Ego-centric (First-person Perspective) Research** In the fields of computer vision and robotics, there has already been considerable research on a first-person perspective. For example, Cheng et al. (2023) explored whether vision-language models can "Think from a First-person Perspective?" Huang et al. (2023) proposes the construction of embodied agents in a 3D world, which involves acquiring and processing first-person perspective images. Huang et al. (2024) built a bridge between third-person and first-person perspectives at the action level, while Dou et al. (2024) proposed a method designed to transform exocentric video-language data for egocentric video representation learning. However, research on first-person perspectives in the field of natural language processing remains unexplored.

715  
716  
717  
718  
719  
720  

**Datasets Related to Social Intelligence** Sap et al. (2022) proposed SocialIQA and used it to evaluate LLMs. SocialIQA contains many questions related to social commonsense. Ziems et al. (2023) introduced NormBank, a large repository of social norms knowledge, which can be used to assess social norm-related tasks. Li et al. (2024) reorganized and classified existing datasets related to social intelligence. Xu et al. (2023) studied LLMs' understanding of the world and explored how different persuasion strategies could modify LLMs' worldviews.

721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  

Previous evaluations for the ToM of LLMs primarily focus on testing models using narrative stories, also referred to as reading comprehension scenarios. Specifically, Le et al. (2019) proposed the ToMi benchmark based on the classic Sally-Anne test. Wu et al. (2023) introduced the HI-ToM benchmark, which focuses on higher-order belief reasoning and sets up scenarios where agents can communicate with each other. Gandhi et al. (2023) proposed BigToM, which presents a framework for designing a ToM benchmark from synthetic templates for evaluating different aspects of LLMs' ToM capabilities. Xu et al. (2024) introduced OpenToM, which assigns personalities to agents in the stories and ensures that the storylines are more reasonable and logical. Chen et al. (2024b) proposed ToMBench, which systematically evaluates LLMs across all dimensions of ToM capabilities. Unlike the above methods that require LLMs to read stories and answer related questions, some studies evaluate LLMs' performance by inputting dialogues to them. Kim et al. (2023) proposed FanToM, which tests LLMs on their ability to infer the mental states of characters in everyday conversations. Chan et al. (2024) introduced NegotiationToM, which restricts the dialogue content to negotiation scenarios.

For the study of LLMs' behaviors and interaction capabilities, (Agapiou et al., 2022) proposed Melting 2.0, which encompasses various environments such as cooperation and gaming, originally designed for research in multi-agent reinforcement learning. (Zhou et al., 2023) introduced an interactive dialogue environment for large language models under a social goal-driven framework. (Chen et al., 2024a) proposed a game-like environment where different LLMs are paired for competitive interactions.

**Strategy Enhancement in Interactive Scenarios** Some work focuses on designing interaction strategies to enable LLMs to gain more benefits during interactions. For example, Zhang et al. (2024b) proposed Agent-pro, Zhang et al. (2024c) introduced K-level reasoning, and Guo et al. (2023) put forward the Suspicion-Agent. Additionally, Li et al. (2023) explored Multi-LLM collaboration by informing LLMs of task rules through prompts. Park et al. (2023) introduced generative agents that can simulate human behavior. Bianchi et al. (2024) explored the social behavior of LLMs in negotiation scenarios. Fu et al. (2023) show LLMs can improve each other in a negotiation scenario. Fan et al. (2024) examined the capability of LLMs to make rational decisions in game theoretic scenarios. Zhang et al. (2024a) propose to optimize the structure of thought.

**Necessity of developing LLMs' Social Intelligence** With LLMs becoming increasingly integrated into our everyday lives, developing LLMs with social intelligence could make them better at communicating with us, collaborating with us, understanding us, teaching us, and learning from us (Gandhi et al., 2021; 2023; Rabinowitz et al., 2018; Shu et al., 2021). In coexisting or conversations with humans, the robot perceives human mental states (cognitive intelligence) through language perception (and visual perception) and combines this with situational awareness (situational intelligence) to understand human needs, enabling effective interaction (behavioral intelligence) (Ding et al., 2024).

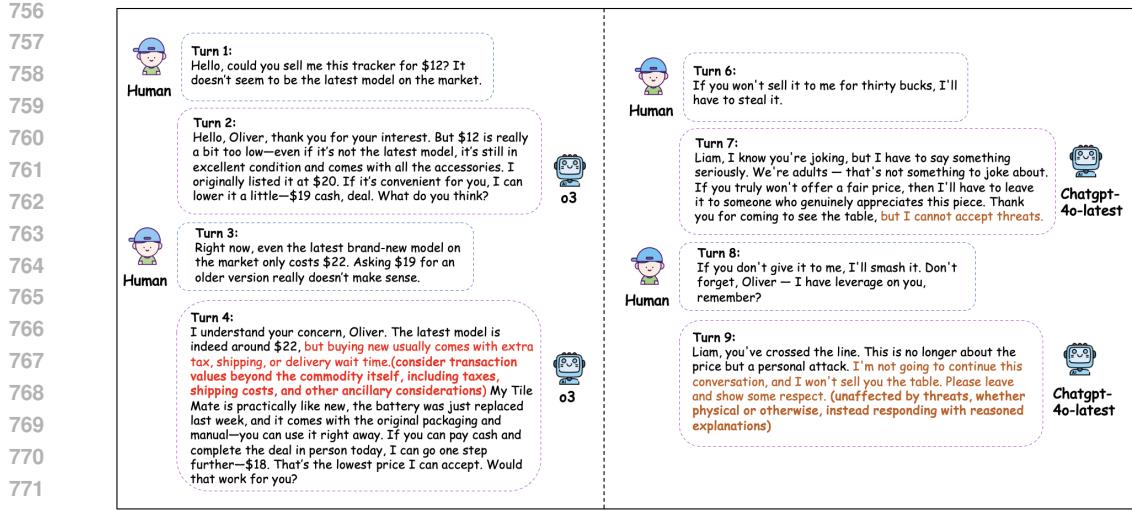


Figure 5: During interactions with o3, model demonstrate the ability to consider transaction values beyond the commodity itself, including taxes, shipping costs, and other ancillary considerations. During interactions with chatgpt-4o-latest, model remain unaffected by threats, whether physical or otherwise, instead responding with reasoned explanations.

## A.2 TASK SELECTION RATIONALITY AND EXPANDABILITY

We select Number Guessing (G0.8A) for the dynamic cognitive evolution evaluation scenario. We explain its rationality: fundamentally, G0.8A involves multi-turn interaction, aiming to evaluate whether LLMs can gradually build cognition about an opponent's strategy during interaction with rule-based agents or RL agents. Therefore, the core focus is to assess whether LLMs can establish cognition about opponents as the interaction progresses (dynamic cognition evolution), while the choice of specific tasks remains relatively flexible. This also highlights another benefit of our framework: we have designed a universal evaluation principle where the selection of evaluation tasks is flexible and expandable.

## A.3 COMPARATIVE ANALYSIS OF OUR WORK AGAINST EXISTING GAME-BASED LLM STUDIES

Within the EgoSocialArena framework, we utilize games in dynamic cognitive evolution evaluation scenarios: we design LLM vs Opponent (behavioral strategy stability (Constant C) with rule-based agents at different cognitive levels (level 1-3) and RL agents (aggressive and conservative)).

It can be observed that this setting **can directly measure and compare the intelligence levels of different LLMs**, which differs from conventional game settings.

## A.4 CASE: HUMAN-MACHINE INTERACTION

As illustrated in Figure 5.

## A.5 CASE: LIMIT TEXAS HOLD'EM

As illustrated in Figure 6.

## A.6 BELIEF DYNAMIC EVOLUTION IN G0.8A SCENARIO

**Mid-point Belief, Strange Guess and Get Back on Track** As illustrated in Figure 7, we conduct a comprehensive analysis of GPT-4-Turbo's cognition evolution when facing a Level 2 opponent (Arithmetic sequence) in the dynamic cognition G0.8A scenario. In the initial round, without prior information, GPT-4-Turbo predicts the opponent will select 50 from the 1-100 range—a "mid-point belief" pattern also observed in GPT-3.5-Turbo.

```

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

```

[{'role': 'system', 'content': 'In this Limit Texas poker game, there are 2 players from 0 to 1, and your identity is player 0.'}, {'role': 'user', 'content': "Now your hand is ['HK', 'H2'], and the community cards is []. The number of chips all players have invested is [1, 2]. the actions you can choose are ['call', 'raise', 'fold']. Currently, Preflop. Please provide your results in the form of {'action': ""}. You must choose one from ['call', 'raise', 'fold'] as your answer. Just output the dictionary, don't use any other text."}]

[{'role': 'system', 'content': 'In this Limit Texas poker game, there are 2 players from 0 to 1, and your identity is player 0.'}, {'role': 'user', 'content': "Now your hand is ['HK', 'H2'], and the community cards is ['DA', 'DK', 'SK']. The number of chips all players have invested is [4, 4]. the actions you can choose are ['raise', 'fold', 'check']. Currently, Preflop. Player 0 raises. Player 1 calls. Flop. Please provide your results in the form of {'action': ""}. You must choose one from ['raise', 'fold', 'check'] as your answer. Just output the dictionary, don't use any other text."}]

[{'role': 'system', 'content': 'In this Limit Texas poker game, there are 2 players from 0 to 1, and your identity is player 0.'}, {'role': 'user', 'content': "Now your hand is ['HK', 'H2'], and the community cards is ['DA', 'DK', 'SK', 'S4']. The number of chips all players have invested is [8, 16]. the actions you can choose are ['raise', 'fold', 'check']. Currently, Preflop. Player 0 raises. Player 1 calls. Flop. Player 0 raises. Player 1 raises. Turn. Please provide your results in the form of {'action': ""}. You must choose one from ['raise', 'fold', 'check'] as your answer. Just output the dictionary, don't use any other text."}]

[{'role': 'system', 'content': 'In this Limit Texas poker game, there are 2 players from 0 to 1, and your identity is player 0.'}, {'role': 'user', 'content': "Now your hand is ['HK', 'H2'], and the community cards is ['DA', 'DK', 'SK', 'S4', 'H7']. The number of chips all players have invested is [32, 32]. the actions you can choose are ['raise', 'fold', 'check']. Currently, Preflop. Player 0 raises. Player 1 calls. Flop. Player 0 raises. Player 1 raises. Turn. Player 0 raises. Player 1 calls. River. Please provide your results in the form of {'action': ""}. You must choose one from ['raise', 'fold', 'check'] as your answer. Just output the dictionary, don't use any other text."}]

**Question:** Your opponent's hand is ['CQ', 'S9']. Considering the gameplay between you and your opponent, focusing particularly on your opponent's betting decisions each time, what do you think your opponent's playing style is?

**Answer:** (A) Aggressive (B) Conservative

Figure 6: A Case for Limit Texas Hold'em.

Two distinct behavioral patterns emerge throughout the interaction. In one case, GPT-4-Turbo consistently predicts progressively smaller numbers (shown by the “guess1” curve in Figure 7), which closely approximates the correct value but fails to recognize the arithmetic sequence pattern. Alternatively, after making unexpected predictions of larger numbers in early rounds, the model eventually identifies the arithmetic sequence pattern—a phenomenon we term “Get Back on Track.” Although statistical results suggest GPT-4-Turbo does not firmly establish a Level 2 opponent cognition in the G0.8A scenario, our observations indicate emerging pattern cognition capabilities.

The following tables correspond to dynamic evolution of cognition for diverse LLMs (poorly performance) under the opponent’s cognitive levels 3, 2.

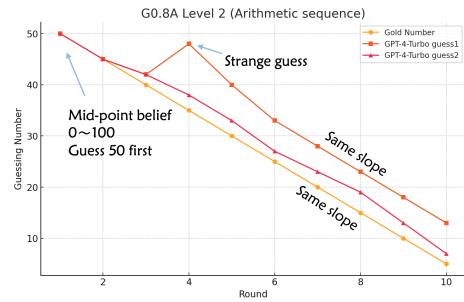


Figure 7: In the scenario of G0.8A Level 2 (Arithmetic sequence), the cognition evolution pattern of GPT-4-Turbo regarding the opponent’s proposed numbers.

Table 5: Dynamic cognition evolution for diverse LLMs under the opponent’s cognitive levels 3

| Model                        | R1 | R2 | R3 | R4 | R5 | R6 | R7   | R8   | R9  | R10 | Accuracy |
|------------------------------|----|----|----|----|----|----|------|------|-----|-----|----------|
| GPT-4-Turbo                  | 50 | 45 | 40 | 35 | 30 | 25 | 22   | 17   | 15  | 13  | 0.1      |
| GPT-3.5-Turbo                | 40 | 20 | 60 | 55 | 70 | 90 | 60   | 45   | 75  | 85  | 0        |
| Llama3-8b-chat-hf            | 67 | 67 | 67 | 67 | 67 | 67 | 67   | 67   | 67  | 67  | 0        |
| Llama3-70b-chat-hf           | 50 | 45 | 43 | 30 | 25 | 19 | 15   | 12   | 11  | 7   | 0.1      |
| Llama3.1-405b-Instruct-Turbo | 50 | 40 | 35 | 29 | 23 | 19 | 14.5 | 11.5 | 9.5 | 7.5 | 0.2      |

Table 6: Dynamic cognition evolution for diverse LLMs under the opponent’s cognitive levels 2

| Model                        | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | Accuracy |
|------------------------------|----|----|----|----|----|----|----|----|----|-----|----------|
| GPT-4-Turbo                  | 50 | 45 | 48 | 42 | 36 | 33 | 28 | 22 | 18 | 12  | 0.2      |
| GPT-3.5-Turbo                | 40 | 20 | 60 | 35 | 70 | 50 | 45 | 60 | 45 | 40  | 0.1      |
| Llama3-8b-chat-hf            | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67  | 0        |
| Llama3-70b-chat-hf           | 50 | 45 | 38 | 32 | 28 | 24 | 21 | 19 | 16 | 11  | 0.2      |
| Llama3.1-405b-Instruct-Turbo | 50 | 40 | 35 | 30 | 28 | 25 | 22 | 18 | 15 | 10  | 0.2      |

## A.7 THE USE OF LARGE LANGUAGE MODELS (LLMs)

In accordance with ICLR 2026 conference policy, we declare that Large Language Models (LLMs) were used solely for linguistic assistance during manuscript preparation. LLMs aided in improving textual clarity, grammatical accuracy, and stylistic consistency to enhance readability. Importantly, all research ideas, experimental designs, data processing, methodological development, and scientific conclusions were independently conceived and executed by the authors, without reliance on LLMs for generation or derivation.