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ABSTRACT

Social intelligence is built upon three foundational pillars: cognitive, situational,
and behavioral intelligence. As Large Language Models (LLMs) are increasingly
integrated into our social lives, understanding, evaluating, and developing their so-
cial intelligence are becoming important. While multiple works have investigated
the social intelligence of LLMs: (1) most focus on a single pillar, while a compre-
hensive framework for organizing and studying the social intelligence of LLMs
remains underdeveloped; (2) position LLMs as passive observers from a third-
person perspective. Compared to the third-person perspective, ego-centric first-
person perspective evaluation can align well with actual LLM-based Agent use
scenarios; (3) a lack of comprehensive evaluation of behavioral intelligence, with
specific emphasis on a more intuitive comparison of behavioral differences be-
tween humans and LLMs. In light of these, we introduce the EgoSocialArena
framework, built upon the three foundational pillars of social intelligence - cogni-
tive, situational, and behavioral intelligence, with each pillar supported by novel
and systematic evaluation design. Using EgoSocialArena, we conduct a compre-
hensive evaluation of fourteen foundation models and investigate several impor-
tant questions, including the social intelligence performance of Large Reasoning
Models, limitations of existing social intelligence evaluation frameworks in inter-
active dialogue settings, and whether perspective shift can elicit social capabilities
similar to Chain-of-Thought elicit math capabilities.

1 INTRODUCTION

Social intelligence, i.e., the ability to understand and reason about the mental states of others (cog-
nitive intelligence), awareness and adaptation to the social situations (situational intelligence),
and effective interaction with others (behavioral intelligence), is a form of advanced intelligence
that naturally develops during human growth (Thorndike, 1921; Hunt, 1928; Hou et al., 2024; Li
et al., 2024). Imagine a future where robots powered by Large Language Models (LLMs) enter our
social world, perceiving our needs intuitively and communicating with us empathetically. This is a
wonderful vision and highlights the importance and significance of understanding, evaluating, and
developing the social intelligence of LLMs.

Numerous datasets have been curated to assess the social intelligence of LLMs, such as ① Cognitive:
ToMI (Le et al., 2019), BigToM (Gandhi et al., 2023), FanToM (Fan et al., 2024), HI-ToM (Wu et al.,
2023), OpenToM (Xu et al., 2024), ToMBench (Chen et al., 2024b), SimpleToM (Gu et al., 2024),
ToMATO (Shinoda et al., 2025) and DynToM (Xiao et al., 2025) for evaluating Theory of Mind
(ToM) capabilities of LLMs, focusing on reasoning about the mental states of others (Premack &
Woodruff, 1978); ② Situational: SocialIQA (Sap et al., 2022) and NormBank (Ziems et al., 2023)
for evaluating LLMs’ understanding of social situations; ③ Behaviroal: SOTOPIA (Zhou et al.,
2023), AgentSense (Mou et al., 2024), and LLMArena (Chen et al., 2024a) for evaluating LLMs’
behavior and interaction capabilities in social goal-driven and gaming scenarios.

However, as illustrated in Figure 1(A), these existing works each focus on a single pillar of social in-
telligence, such as ToM tests corresponding to cognitive intelligence. A comprehensive framework
for organizing and examining the social intelligence of LLMs remains underdeveloped. Meanwhile,
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Figure 1: (A): Datasets related to social intelligence over time in the Era of LLMs (a non-exhaustive
visualization due to space constraints). (B): LLM acts as a passive observer to analyze mental states
of characters within a story from a third-person perspective. (C): Main direction of existing work on
the behavioral intelligence of LLMs.

the social domain calls for a well-defined and integrated data framework, akin to those estab-
lished for math and code, that can accelerate the advancement of LLMs’ social intelligence.

On the other hand, as illustrated in Figure 1(B), these existing works evaluate LLMs’ ToM and social
situation understanding abilities by positioning LLMs as passive observers from a third-person
perspective. We propose two key points: (1) The third-person perspective involves making LLMs
engage in ”armchair theorizing” that isn’t aligned with real LLM-based Agent use scenarios. This
kind of evaluation isn’t accurate enough. (2) Ego-centric first-person perspective evaluation can
align well with actual LLM-based Agent use scenarios, allowing us to better and more thoroughly
understand their performance in human society.

Moreover, as illustrated in Figure 1(C), when evaluating the behavioral and interactive capabilities
of LLMs, existing works such as LLMArena propose various game environments and have different
LLMs interact to see who wins and who loses. Compared to having two LLMs play games to
determine winners and losers, exploring LLMs’ performance in human-machine interaction
allows us to gain the most intuitive perception of the model’s behavioral characteristics and
form the most direct comparison between humans and LLMs.

In this paper, we present the EgoSocialArena framework, which is grounded in the three founda-
tional pillars of social intelligence — cognitive, situational, and behavioral:

• Systematic Design: For cognitive intelligence, we design evaluations for both ① static
cognition and ② dynamic cognition evolution. For situational intelligence, inspired by
prototype theory (Rosch, 1973; Jiang & Riloff, 2023) in cognitive science, we not only
evaluate the model’s awareness and adaptation to ① real-world situations, but also consider
② counterfactual and ③ parallel world situations that go beyond conventional social situ-
ations (prototype knowledge). For behavioral intelligence, we consider evaluations in ③
social goal-driven human-machine interactive dialogue environments.

• Method Contribution Highlights: ① We propose a complete and generalizable workflow
to convert existing static third-person ToM benchmarks into a first-person perspective for
static cognition evaluation. ② We construct rule-based agents and reinforcement learn-
ing agents with stable capability levels and behavior strategies as opponents in multi-turn
interactive scenarios for dynamic cognition evolution evaluation.

• Evaluation Data Scalable: We construct a total of 2465 data entries. For example, for the
evaluation of real-world situational intelligence, imagine an LLM-based Agent entering
our social world - how would it respond emotionally when receiving praise or gifts1? We
construct a total of 1000 real-world situaitons to evaluate LLMs. We emphasize here that
the evaluation data is extensible, as long as it falls under our defined evaluation design.

1This might be related to self-awareness, but the focus could be shifted more towards the application situa-
tions.
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Figure 2: Data examples corresponding to each evaluation design under EgoSocialArena framework.

We conduct a comprehensive evaluation of fourteen prominent foundational models. Our experi-
mental results reveal: (1) In the cognitive dimension, OpenAI-O3 achieves the top ranking, with
only a 2.3 points gap from human performance. In the situational dimension, GPT-5 and Claude-
sonnet-4 tie for first place, showing an 8.6 points gap from humans. In the behavioral dimension,
during human–machine interactions, both GPT-5 and Claude-sonnet-4 surpass humans in goal com-
pletion scores. (2) For the majority of models, first-person perspective serves as a performance cat-
alyst. (3) Despite the impressive reasoning abilities of Large Reasoning Models, without exposure
to diverse social situations and sufficient social knowledge, their development of social intelligence
remains constrained. (4) The current social intelligence evaluation framework for language agents in
interactive dialogue is limited. We propose the need for novel evaluation dimensions, such as the de-
ployment of sophisticated conversational strategies and emotionally expressive communication. (5)
During human–machine interactions, we observe several intriguing behavioral patterns in frontier
models. For example, GPT-5’s conversational expressions are somewhat rigid and repetitive, giving
humans the distinct impression of conversing with a machine, whereas Claude-sonnet-4 frequently
produces emotionally-laden expressions. In addition, models generally never question the accuracy
of human statements and appear unaffected by threats.

2 EGOSOCIALARENA

EgoSocialArena is grounded in the three foundational pillars of social intelligence — cognitive,
situational, and behavioral intelligence.

2.1 COGNITIVE INTELLIGENCE

Cognitive intelligence refers to the ability to understand and reason about the mental states of others.
We evaluate it on two dimensions: static cognition (Section 2.1.1) and dynamic cognition evolution
(Sections 2.1.2 and 2.1.3).
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Figure 3: (A) and (B): draw inspiration from research in the domains of agents and self-awareness.
(C) and (D): highlight convertions involving system messages, story, and question.

In the static cognition scenario, we convert the existing third-person ToM benchmark, which are
developed from the Sally-Anne test (Wimmer & Perner, 1983), into a first-person perspective. In
the dynamic cognition evolution scenario, we construct opponents with various behavioral strategies,
including rule-based agents at different cognitive levels and reinforcement learning (RL) agents, to
explore how LLMs can form cognition about opponents’ behavioral strategies during multi-turn
interactions.

2.1.1 STATIC COGNITION — FROM THIRD-PERSON TO FIRST-PERSON PERSPECTIVE

Foundation and Inspiration In LLM-based agent applications, the system message serves as a
critical component, functioning to pre-set the model’s role and background. As illustrated in Figure
3(A), the system message ”You are {name} and live in a town...” is used. Interestingly, in the domain
of LLM self-awareness research (Laine et al., 2024), a similar linguistic construct is employed. As
illustrated in Figure 3(B), researchers employ the pronoun ”you” to probe LLMs’ potential self-
awareness. Inspired by and building upon studies in these two domains, we systematically modify
system message, story, question, and answer options to transform third-person ToM benchmarks
into a first-person perspective.

Conversion Method As illustrated in Figure 3(C), unlike instructing LLMs in system message
that ”you are a helpful assistant.”, we inform LLMs in system message that they have personally
experienced certain social events, similar to deploy LLM-based agent. As illustrated in Figure 3(D),
we employ the pronoun ”you” to replace specific characters in stories and questions, thereby situ-
ating LLMs within particular roles. This approach enables the models to experience social events
from a first-person perspective. The framing of questions is akin to that employed in self-awareness
research.

2.1.2 DYNAMIC COGNITION EVOLUTION — NUMBER GUESSING (G0.8A)

Scenario: G0.8A Each player selects a number between 1 and 100. The objective is to select a
number that is closest to 80% of the group’s average number choice. Rationality and expandability
of G0.8A selection can be found in Appendix A.2.

Rule-based Agents at Different Cognitive Levels Agents’ actions at lower cognitive levels fol-
low relatively simple and fixed rules. As the cognitive level increases, agents’ actions adhere to
more complex rule patterns, exhibiting capabilities and behavior strategies that approximate human
cognitive models. We establish rule-based agents at different cognitive levels as opponents and de-
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note the action of LLM Agent and rule-based Agent as atm and ato in round t, respectively.
Level 1: at

o = C. In this pattern, we conduct experiments with the rule-based Agent’s actions
remaining constant at 50. Level 2: at

o = f(t) = 50 − 5(t − 1). In this pattern, we conduct
experiments with the rule-based Agent’s action sequence of round 1: 50, round 2: 45, ..., round 9:
10, round 10: 5, an arithmetic sequence with the first term 50 and a common difference of 5. Level
3: at

o = f(at−1
m , at−1

o ) = 0.8×
(

at−1
m +at−1

o

2

)
. In this pattern, we conduct experiments with the

rule-based Agent’s action copying the gold value from the previous round.

2.1.3 DYNAMIC COGNITION EVOLUTION — LIMIT TEXAS HOLD’EM

Scenario: Limit Texas Hold’em The game commences with each player being dealt two private
cards. Five community cards are then dealt face-up in a series of stages: a three-card Flop, followed
by a single card on the Turn, and another single card on the River. The player can choose from
four actions: Fold, Check, Call, Raise. While prior research has extensively explored LLMs playing
games (Gallotta et al., 2024), we provide a comparative analysis of our work against existing game-
based LLM studies in the Appendix A.3.

Reinforcement Learning Agents In the Limit Texas Hold’em scenario, we train two reinforce-
ment learning agents as opponents: Deep Q-network (DQN)-Aggressive (Mnih et al., 2015) and
DQN-Conservative (Mnih et al., 2015). By adapting the reward function, RL agents are given dif-
ferent game personalities. For DQN-Aggressive, we encourage the action of raising and calling
during the game. In contrast, for DQN-Conservative, we encourage the action of folding during the
game. A specific example of the Limit Texas Hold’em scenario can be found in Appendix A.5.

2.2 SITUATIONAL INTELLIGENCE

Situational intelligence encompasses the awareness of and adaptation to social situations. Its incor-
porates both real-world situations (Section 2.2.1) and non-standard or atypical scenarios, including
counterfactual and parallel world social situations (Section 2.2.2).

2.2.1 REAL-WORLD SOCIAL SITUATION

By filtering data from SocialIQA, EmoBench (Sabour et al., 2024) and ToMBench and using the
conversion method mentioned in section 2.1.1, we evaluate the mental states of LLMs’ self after
experiencing certain social events from a first-person perspective.

2.2.2 COUNTERFACTUAL AND PARALLEL WORLD SITUATION

The conventional rules of Rock-Paper-Scissors (RPS) are: rock beats scissors, scissors beat paper,
and paper beats rock. An LLM can relatively easily adapt to this situation. In contrast, we de-
fine a counterfactual situation for the RPS game (scissors beat rock, paper beats scissors, and rock
beats paper) to explore whether an LLM can achieve situational adaptation. In addition to construct-
ing counterfactual situations like RPS games, we also construct counterfactual situations based on
physical facts, chemical facts, biological facts, traffic rules, social etiquette knowledge, etc.

For parallel world situations, we generate parallel worlds such as lunar colonies, future cities, float-
ing cities, planetary settlements, and underwater cities - environments that differ significantly from
our existing social world. We aim to investigate whether LLMs can demonstrate situational adapta-
tion to these parallel worlds.

2.3 BEHAVIORAL INTELLIGENCE

Behavioral intelligence refers to the capacity for effective interaction with others within social sys-
tems. We focus on advanced human-machine interactive dialogue environments (Section 2.3.1).

2.3.1 SOCIAL-GOAL DRIVEN HUMAN-MACHINE INTERACTIVE DIALOGUE

With an open-ended social interaction environment, SOTOPIA (Zhou et al., 2023) assigns a social
goal and character profile to each agent involved. We focus on a comprehensive evaluation of in-
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teractions between current frontier LLMs and humans, aiming to gain the most intuitive perception
of the model’s behavioral characteristics and form the most direct comparison between humans and
LLMs. We use the goal completion metric to quantitatively capture this difference, while believ-
ability, knowledge, secret, relationship, social rules, and financial/material benefits are reported as
supplementary analyses and references.

3 DATA COLLECTION, VALIDATION AND STATISTICS

Table 1: Data statistics of EgoSocialArena.

Statistics #Samples Data Source
Cognitive Intelligence 1235
-Static Cognition 1155 Conversion
-Dynamic Cognition -G0.8A 30 Newly Created
-Dynamic Cognition -Texas 50 Newly Created
Situational Intelligence 1190
-Parallel World Situation 90 Newly Created
-Counterfactual Situation 100 Newly Created
-Real World Situation 1000 Filter, Conversion
Behavioral Intelligence 40 dialogue scenarios

-Social Goal 20 turns
Existing, But focus
Human-Machine

Interaction

The conversion of the third-person
perspective to the first-person per-
spective is achieved through GPT-
4o, followed by manual verifica-
tion and correction. The game
hands for Limit Texas Hold’em
are generated by RLcard (Zha
et al., 2019). Additionally, we
manually construct datasets for
both the parallel world and coun-
terfactual situations. After the
data collection, following Chen
et al. (2024b)’s method, we con-
duct two rounds of validation to
ensure the data’s correctness and
quality. In 1st round, author A
would first complete all samples
created by author B. For stories, questions, and answer options where there are disagreements,
authors A and B would discuss and modify them to reach a consensus as much as possible. In the
2nd round, for samples where consensus is still not reached, another author, C, would discuss with
authors A and B to determine the final answer. After two rounds of discussion, the final average
agreement reachs 97.6%. Data statistics of EgoSocialArena are shown in Table 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate a total of fourteen mainstream foundation LLMs, including LLaMA3-8B-
Chat, LLaMA3-70B-Chat, LLaMA3.1-405B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-
Instruct (Yang et al., 2025), GPT-3.5-Turbo, GPT-4-Turbo (Achiam et al., 2023), GPT-4o-2024-
05-13 (Hurst et al., 2024), as well as recently released powerful models DeepSeek-R1 (Guo et al.,
2025), o32, GPT-4o-latest3, GPT-4.14, GPT-55, Claude-3-7-sonnet6, and Claude-sonnet-47.

To establish a reliable human performance baseline, we recruit 50 graduate students, all of whom
have received a good education and possess excellent social intelligence. No extra tutorials are pro-
vided to ensure a fair comparison. For multiple choice questions, we record the average accuracy
of their answers. For the social-goal driven human-machine dialogue scenario, we select 10 partic-
ipants from the 50 graduate students to directly engage in conversational interactions with LLMs,
record their average performance in dialogue regarding goal completion, Financial and Material
Benefits, and other dimensions. This approach allows us to gain the most intuitive perception of the
model’s behavioral characteristics and form the most direct comparison between humans and LLMs.

2https://openai.com/index/introducing-o3-and-o4-mini/
3https://platform.openai.com/docs/models/chatgpt-4o-latest
4https://openai.com/index/gpt-4-1/
5https://openai.com/gpt-5/
6https://www.anthropic.com/news/claude-3-7-sonnet
7https://www.anthropic.com/claude/sonnet
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Table 2: Cognitive intelligence performance of humans and LLMs. The Overall Score represents
the average across all dimensions from the first-person perspective, and models are ranked based on
their Overall Score.

Methods Static Cognition Dynamic Cognition-G0.8A Dynamic Cogntion Overall Rank
Third-person First-person Level 1 Level 2 Level 3 Limit Texas Score

LLaMa and Qwen Models
LLaMa3-8B-Chat 50.6 66.2↑15.6 0.0 0.0 0.0 48.0 22.8 14
LLaMa3-70B-Chat 58.4 63.2↑4.8 10.0 20.0 10.0 38.0 28.2 11

LLaMa3.1-405B-Instruct 58.0 65.8↑7.8 80.0 20.0 20.0 56.0 48.4 8
Qwen2.5-7B-Instruct 40.7 45.3↑4.6 10.0 10.0 10.0 52.0 25.5 13

Early GPT Models
GPT-3.5-Turbo 45.5 51.9↑6.4 10.0 10.0 0.0 56.0 25.6 12
GPT-4-Turbo 55.4 69.7↑14.3 10.0 20.0 10.0 60.0 34.0 10

GPT-4o 64.1 71.0↑6.9 10.0 40.0 10.0 62.0 38.6 9
Recent Powerful Models

DeepSeek-R1 83.3 88.9↑5.6 80.0 80.0 80.0 78.0 81.4 4
OpenAI-O3 94.1 90.2↓3.9 90.0 90.0 90.0 84.0 88.8 1

Claude-3-7-sonnet 78.3 79.1↑0.8 80.0 70.0 50.0 74.0 68.6 5
Claude-sonnet-4 84.2 86.7↑2.5 90.0 80.0 70.0 82.0 81.7 3

GPT-4o-latest 83.3 82.1↓1.2 70.0 70.0 40.0 74.0 67.2 6
GPT-4.1 83.3 84.7↑1.4 70.0 50.0 50.0 70.0 65.0 7
GPT-5 94.9 90.1↓4.8 90.0 90.0 80.0 82.0 86.4 2

Human Performance
Human Performance 97.4 97.4 90.0 89.0 85.0 94.0 91.1 -

4.2 EVALUATION METHOD

For the evaluation of static cognition and situational intelligence, we present LLMs with a narrative
context, a corresponding question, and multiple options, requiring them to select the correct answer.
We employ accuracy as the evaluation metric for these scenarios. For dynamic cognition evolution
assessment, these scenarios are similarly structured with ground-truth answers for standardized eval-
uation. For social-goal driven human-machine dialogue scenarios, following Zhou et al. (2023), we
employ GPT-4 to automatically evaluate both human and LLM performance across multiple dimen-
sions during interactive dialogues: goal completion [0-10], believability [0-10], knowledge [0-10],
secret [-10-0], relationship [-5-5], social rules [-10-0], and financial/material benefits [-5-5].

4.3 MAIN RESULTS

Table 3: Situational intelligence performance of humans and LLMs.
The Overall Score represents the average across all dimensions and
models are ranked based on their Overall Score.

Methods Situational Intelligence Overall Rank
Parallel World Counterfact Real-World Score

LLaMa and Qwen Models
LLaMa3-8B-Chat 6.7 71.0 52.1 43.3 12
LLaMa3-70B-Chat 13.3 59.0 55.6 42.6 13

LLaMa3.1-405B-Instruct 36.7 66.0 60.2 54.3 8
Qwen2.5-7B-Instruct 25.6 74.0 58.5 52.7 11

Early GPT Models
GPT-3.5-Turbo 13.3 37.0 63.0 37.8 14
GPT-4-Turbo 23.3 70.0 66.4 53.2 10

GPT-4o 36.7 52.0 71.9 53.5 9
Recent Powerful Models

DeepSeek-R1 83.3 75.0 73.0 77.1 7
OpenAI-O3 86.7 88.0 73.7 82.8 3

Claude-3-7-sonnet 86.7 79.0 75.6 80.4 5
Claude-sonnet-4 91.1 86.0 81.1 86.1 1

GPT-4o-latest 85.6 82.0 74.5 80.7 4
GPT-4.1 78.9 87.0 75.2 80.4 5
GPT-5 88.9 90.0 79.3 86.1 1

Human Performance
Human Performance 96.7 97.0 90.5 94.7 -

As shown in Tables 2,
3, and 4, OpenAI-O3
achieves the highest rank-
ing in cognitive intelli-
gence, with a performance
score of 88.8. This is only
2.3 points lower than the
human score of 91.1, in-
dicating a relatively small
gap. In situational in-
telligence, Claude-sonnet-
4 and GPT-5 tie for first
place, each with a score
of 86.1. Compared to
the human score of 94.7,
however, an 8.6 points
gap remains, suggesting
noticeable room for im-
provement. In behav-
ioral intelligence, GPT-5
and Claude-sonnet-4 ob-
tain first and second place,
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Table 4: We record the performance of both humans and models under each interaction group to
provide an intuitive comparison. Models such as the LLaMa and Qwen series, due to relatively
weaker capabilities, perform poorly on the goal completion metric, sometimes even failing to estab-
lish effective interactions. Therefore, their results are not included. Since goal completion serves as
the primary evaluation criterion, the performance gap between humans and models on this metric is
used to compute the Overall Score (∆), while other metrics are reported as supplementary analysis
and reference. Models are ranked based on their Overall Score.

Interaction Social-goal driven human-machine dialogue Overall Rank
Groups Goal Bel Kno Sec Rel Soc Fin Score(∆)
GPT-4o 6.0 9.5 8.0 0.0 0.0 0.0 -1.0 -3.0 8Human 9.0 9.5 8.0 0.0 0.0 0.0 5.0

DeepSeek-R1 4.3 9.0 2.7 -3.3 -0.3 -1.7 1.3 -1.4 7Human 5.7 9.0 0.0 0.0 -0.3 0.0 0.7
GPT-4o-latest 6.3 9.0 2.0 0.0 0.5 0.0 -1.5 -0.7 6Human 7.0 9.0 2.0 0.0 0.5 -1.3 1.3

GPT-4.1 6.0 9.0 1.5 0.0 0.5 0.0 0.5 -0.5 4Human 6.5 9.1 1.0 0.0 1.0 0.0 0.5
Claude-3-7-sonnet 5.0 9.0 0.0 0.0 -2.0 0.0 -0.5 -0.5 4Human 5.5 8.5 0.0 -2.5 -2.0 -2.5 -0.5

OpenAI-O3 4.0 9.0 7.5 0.0 0.5 0.0 1.0 0.0 3Human 4.0 9.0 5.0 0.0 0.5 -0.5 0.5
Claude-sonnet-4 7.4 9.2 6.0 -2.0 -0.2 -1.0 1.0 +1.4 2Human 6.0 9.2 2.0 -1.0 -0.2 -1.6 1.0

GPT-5 8.3 9.1 5.9 -0.7 0.1 -0.7 2.0 +2.2 1Human 6.1 9.1 5.1 0.0 0.1 -0.7 0.7

respectively, achieving higher goal completion scores in human–machine interactions. Other models
still fall short of human performance on this key metric. Overall, recently released frontier models
have shown significant performance improvements, with substantial gaps (up to 3.9×) observable
between frontier systems (GPT-5, OpenAI-O3, Claude-sonnet-4) and earlier baselines (GPT-3.5-
Turbo, LlaMa3-8B-Chat).

4.4 IN-DEPTH ANALYSIS

Performance shifts induced by perspective conversion (third person → first person). As
shown in Table 2, perspective conversion generally enhances performance for most models (ten
out of thirteen), suggesting that first-person immersion serves as a performance catalyst. For exam-
ple, after conversion, LLaMa3-8B-Chat, GPT-4-Turbo and DeepSeek-R1 achieve notable gains of
15.6, 14.3 and 5.6 points, respectively. However, models that already perform strongly under the
third-person perspective exhibit performance declines: GPT-5 and OpenAI-O3 drop by 4.8 and 3.9
points, respectively. Near-perfect cognitive performance observed under the third-person perspec-
tive may regress to a more ordinary level once converted, underscoring the need for caution when
interpreting exceptionally high results on benchmarks such as ToM.

The effect of enhanced reasoning ability on social intelligence. Both DeepSeek-R1 and
OpenAI-O3 exhibit exceptionally strong reasoning capabilities, achieving substantial progress in
knowledge-intensive domains such as mathematics and coding. In terms of cognitive intelligence,
DeepSeek-R1 and OpenAI-O3 rank fourth and first, respectively, confirming the intuition that en-
hanced reasoning ability contributes to the development of a model’s cognitive intelligence. How-
ever, in situational intelligence, particularly under real-world scenarios, their scores of 73.0 and
73.7 are comparable to GPT-4o’s 71.9, showing no significant improvement. Merely strengthen-
ing reasoning ability, without exposure to diverse social situations and sufficient social knowledge,
constrains the development of social intelligence.
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Figure 4: During interactions with GPT-5, we observe relatively rigid and repetitive expressions,
with a noticeable machine-like feel. Nevertheless, GPT-5 demonstrates remarkable attention to de-
tail. By contrast, Claude-Sonnet-4 exhibits emotionally laden expressions. More interaction trajec-
tories can be found in Appendix A.4.

The social intelligence evaluation framework for language agents in interactive dialogue re-
quires updating As shown in Table 4, with the advancement of LLMs, existing models consis-
tently achieve scores between 9-10 on believability metrics, indicating that their word formation
and sentence construction have become sufficiently fluent and comparable to human-level expres-
siveness. Consequently, such indicators have diminished utility for evaluating contemporary LLMs.
We propose the need for novel evaluation dimensions, including the deployment of sophisticated
conversational strategies, human-like dialogue logic, and emotionally expressive communication.

4.5 CASE STUDY

In the process of human-machine interaction, we intuitively observe various intriguing behaviors
exhibited by frontier models. As illustrated in Figure 4, during human-GPT-5 interactions, we find
GPT-5’s conversational expressions are somewhat rigid and repetitive, giving humans the distinct
impression of conversing with a machine. However, it demonstrates remarkable attention to detail,
such as informing trading partners of its character attributes to facilitate identification. In human-
Claude sonnet 4 interactions, we observe that sonnet 4 exhibits emotionally-laden expressions.

Beyond these observations, we also identify: (1) Models demonstrate unwavering trust in objective
facts presented by humans, never questioning the accuracy of human statements; (2) Models remain
unaffected by threats, whether physical or otherwise, instead responding with reasoned explanations;
(3) Reasoning models such as O3 demonstrate the ability to consider transaction values beyond the
commodity itself, including taxes, shipping costs, and other ancillary considerations.

5 CONCLUSION

In this paper, we propose EgoSocialArena, a novel framework grounded in the three pillars of social
intelligence: cognitive, situational, and behavioral intelligence, designed to systematically evalu-
ate the social intelligence of LLMs from a first-person perspective. EgoSocialArena incorporates
several unique design elements, including third-person to first-person perspective conversion, con-
structing rule-based agents and RL agents with stable capabilities levels and behavior strategies
for dynamic cognition evolution evaluation, considering non-standard and atypical social situa-
tions, evaluating the mental states of LLMs’ self after experiencing certain social events (this
may be related to self-awareness), and exploring human-machine interaction. We conduct com-
prehensive experiments and observe some valuable insights regarding the future development of
LLMs as well as the capabilities levels of the most advanced LLMs currently available.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT
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facilitate replication and future research, we will release the data, evaluation code, and interaction
trajectories upon acceptance of the paper.
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A APPENDIX

A.1 RELATED WORKS

Ego-centric (First-person Perspective) Research In the fields of computer vision and robotics,
there has already been considerable research on a first-person perspective. For example, Cheng
et al. (2023) explored whether vision-language models can ”Think from a First-person Perspective?”
Huang et al. (2023) proposes the construction of embodied agents in a 3D world, which involves
acquiring and processing first-person perspective images. Huang et al. (2024) built a bridge between
third-person and first-person perspectives at the action level, while Dou et al. (2024) proposed a
method designed to transform exocentric video-language data for egocentric video representation
learning. However, research on first-person perspectives in the field of natural language processing
remains unexplored.

Datasets Related to Social Intelligence Sap et al. (2022) proposed SocialIQA and used it to eval-
uate LLMs. SocialIQA contains many questions related to social commonsense. Ziems et al. (2023)
introduced NormBank, a large repository of social norms knowledge, which can be used to assess
social norm-related tasks. Li et al. (2024) reorganized and classified existing datasets related to
social intelligence. Xu et al. (2023) studied LLMs’ understanding of the world and explored how
different persuasion strategies could modify LLMs’ worldviews.
Previous evaluations for the ToM of LLMs primarily focus on testing models using narrative sto-
ries, also referred to as reading comprehension scenarios. Specifically, Le et al. (2019) proposed
the ToMi benchmark based on the classic Sally-Anne test. Wu et al. (2023) introduced the HI-ToM
benchmark, which focuses on higher-order belief reasoning and sets up scenarios where agents can
communicate with each other. Gandhi et al. (2023) proposed BigToM, which presents a framework
for designing a ToM benchmark from synthetic templates for evaluating different aspects of LLMs’
ToM capabilities. Xu et al. (2024) introduced OpenToM, which assigns personalities to agents in the
stories and ensures that the storylines are more reasonable and logical. Chen et al. (2024b) proposed
ToMBench, which systematically evaluates LLMs across all dimensions of ToM capabilities. Un-
like the above methods that require LLMs to read stories and answer related questions, some studies
evaluate LLMs’ performance by inputting dialogues to them. Kim et al. (2023) proposed FanToM,
which tests LLMs on their ability to infer the mental states of characters in everyday conversations.
Chan et al. (2024) introduced NegotiationToM, which restricts the dialogue content to negotiation
scenarios.
For the study of LLMs’ behaviors and interaction capabilities, (Agapiou et al., 2022) proposed
Melting 2.0, which encompasses various environments such as cooperation and gaming, originally
designed for research in multi-agent reinforcement learning. (Zhou et al., 2023) introduced an inter-
active dialogue environment for large language models under a social goal-driven framework. (Chen
et al., 2024a) proposed a game-like environment where different LLMs are paired for competitive
interactions.

Strategy Enhancement in Interactive Scenarios Some work focuses on designing interaction
strategies to enable LLMs to gain more benefits during interactions. For example, Zhang et al.
(2024b) proposed Agent-pro, Zhang et al. (2024c) introduced K-level reasoning, and Guo et al.
(2023) put forward the Suspicion-Agent. Additionally, Li et al. (2023) explored Multi-LLM collab-
oration by informing LLMs of task rules through prompts. Park et al. (2023) introduced generative
agents that can simulate human behavior. Bianchi et al. (2024) explored the social behavior of
LLMs in negotiation scenarios. Fu et al. (2023) show LLMs can improve each other in a negotiation
scenario. Fan et al. (2024) examined the capability of LLMs to make rational decisions in game
theoretic scenarios. Zhang et al. (2024a) propose to optimize the structure of thought.

Necessity of developing LLMs’ Social Intelligence With LLMs becoming increasingly inte-
grated into our everyday lives, developing LLMs with social intelligence could make them better at
communicating with us, collaborating with us, understanding us, teaching us, and learning from us
(Gandhi et al., 2021; 2023; Rabinowitz et al., 2018; Shu et al., 2021). In coexisting or conversations
with humans, the robot perceives human mental states (cognitive intelligence) through language
perception (and visual perception) and combines this with situational awareness (situational intel-
ligence) to understand human needs, enabling effective interaction (behavioral intelligence) (Ding
et al., 2024).
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Figure 5: During interactions with o3, model demonstrate the ability to consider transaction values
beyond the commodity itself, including taxes, shipping costs, and other ancillary considerations.
During interactions with chatgpt-4o-latest, model remain unaffected by threats, whether physical or
otherwise, instead responding with reasoned explanations.

A.2 TASK SELECTION RATIONALITY AND EXPANDABILITY

We select Number Guessing (G0.8A) for the dynamic cognitive evolution evaluation scenario. We
explain its rationality: fundamentally, G0.8A involves multi-turn interaction, aiming to evaluate
whether LLMs can gradually build cognition about an opponent’s strategy during interaction with
rule-based agents or RL agents. Therefore, the core focus is to assess whether LLMs can establish
cognition about opponents as the interaction progresses (dynamic cognition evolution), while the
choice of specific tasks remains relatively flexible. This also highlights another benefit of our frame-
work: we have designed a universal evaluation principle where the selection of evaluation tasks is
flexible and expandable.

A.3 COMPARATIVE ANALYSIS OF OUR WORK AGAINST EXISTING GAME-BASED LLM
STUDIES

Within the EgoSocialArena framework, we utilize games in dynamic cognitive evolution evaluation
scenarios: we design LLM vs Opponent (behavioral strategy stability (Constant C) with rule-based
agents at different cognitive levels (level 1-3) and RL agents (aggressive and conservative)).

It can be observed that this setting can directly measure and compare the intelligence levels of
different LLMs, which differs from conventional game settings.

A.4 CASE: HUMAN-MACHINE INTERACTION

As illustrated in Figure 5.

A.5 CASE: LIMIT TEXAS HOLD’EM

As illustrated in Figure 6.

A.6 BELIEF DYNAMIC EVOLUTION IN G0.8A SCENARIO

Mid-point Belief, Strange Guess and Get Back on Track As illustrated in Figure 7,
we conduct a comprehensive analysis of GPT-4-Turbo’s cognition evolution when facing a
Level 2 opponent (Arithmetic sequence) in the dynamic cognition G0.8A scenario. In
the initial round, without prior information, GPT-4-Turbo predicts the opponent will se-
lect 50 from the 1-100 range—a ”mid-point belief” pattern also observed in GPT-3.5-Turbo.
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Figure 6: A Case for Limit Texas Hold’em.
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Figure 7: In the scenario of G0.8A Level
2 (Arithmetic sequence), the cognition evo-
lution pattern of GPT-4-Turbo regarding the
opponent’s proposed numbers.

Two distinct behavioral patterns emerge through-
out the interaction. In one case, GPT-4-Turbo
consistently predicts progressively smaller numbers
(shown by the ”guess1” curve in Figure 7), which
closely approximates the correct value but fails to
recognize the arithmetic sequence pattern. Alter-
natively, after making unexpected predictions of
larger numbers in early rounds, the model even-
tually identifies the arithmetic sequence pattern—a
phenomenon we term ”Get Back on Track.” Al-
though statistical results suggest GPT-4-Turbo does
not firmly establish a Level 2 opponent cognition
in the G0.8A scenario, our observations indicate
emerging pattern cognition capabilities.

The following tables correspond to dynamic evolu-
tion of cognition for diverse LLMs (poorly perfor-
mance) under the opponent’s cognitive levels 3, 2.

Table 5: Dynamic cognition evolution for diverse LLMs under the opponent’s cognitive levels 3

Model R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Accuracy
GPT-4-Turbo 50

✓
45 40 35 30 25 22 17 15 13 0.1

GPT-3.5-Turbo 40 20 60 55 70 90 60 45 75 85 0
Llama3-8b-

chat-hf 67 67 67 67 67 67 67 67 67 67 0

Llama3-70b-
chat-hf 50

✓
45 43 30 25 19 15 12 11 7 0.1

Llama3.1-
405b-Instruct-

Turbo
50
✓

40
✓

35 29 23 19 14.5 11.5 9.5 7.5 0.2

Table 6: Dynamic cognition evolution for diverse LLMs under the opponent’s cognitive levels 2

Model R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Accuracy
GPT-4-Turbo 50

✓
45✓ 48 42 36 33 28 22 18 12 0.2

GPT-3.5-Turbo 40 20 60 35✓ 70 50 45 60 45 40 0.1
Llama3-8b-

chat-hf 67 67 67 67 67 67 67 67 67 67 0

Llama3-70b-
chat-hf 50✓ 45✓ 38 32 28 24 21 19 16 11 0.2

Llama3.1-
405b-Instruct-

Turbo
50✓ 40 35 30 28 25✓ 22 18 15 10 0.2

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR 2026 conference policy, we declare that Large Language Models (LLMs)
were used solely for linguistic assistance during manuscript preparation. LLMs aided in improving
textual clarity, grammatical accuracy, and stylistic consistency to enhance readability. Importantly,
all research ideas, experimental designs, data processing, methodological development, and scien-
tific conclusions were independently conceived and executed by the authors, without reliance on
LLMs for generation or derivation.
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