
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FREQKV: FREQUENCY DOMAIN KEY-VALUE COM-
PRESSION FOR EFFICIENT CONTEXT WINDOW EXTEN-
SION

Anonymous authors
Paper under double-blind review

ABSTRACT

Extending the context window in large language models (LLMs) is essential for
applications involving long-form content generation. However, the quadratic com-
plexity of self-attention and the linear increase in key-value (KV) cache memory
requirements with respect to sequence length present significant challenges dur-
ing fine-tuning and inference. Although LongLoRA achieves efficient fine-tuning
by employing shifted sparse attention, inference remains inefficient due to the re-
quirement for dense global attention. In this work, we introduce a novel context
extension method that optimizes both fine-tuning and inference efficiency. Our
method exploits a key observation: in the frequency domain, the energy distri-
bution of the KV cache is primarily concentrated in low-frequency components.
By filtering out the high-frequency components, the KV cache can be effectively
compressed with minimal information loss. Building on this insight, we propose
an efficient compression technique, FreqKV, that iteratively reduces the increasing
KV cache to a fixed size in the frequency domain, applicable to both fine-tuning
and inference. With minimal fine-tuning, LLMs can learn to leverage the lim-
ited cache that is compressed in the frequency domain and extend the context
window efficiently. FreqKV introduces no additional parameters or architectural
modifications, ensuring compatibility with the original full attention post-training.
Experiments on long context language modeling and understanding demonstrate
the efficiency and efficacy of the proposed method.

1 INTRODUCTION

Large language models (LLMs) typically have a limited size of context window, which is pre-defined
during the pre-training process. However, it is inevitable for LLMs to process sequences that exceed
the preset context size. LLMs struggle to maintain their performance when generalized to longer
contexts. Additionally, the computation cost of the self-attention mechanism (Vaswani et al., 2023)
grows quadratically with the context length, meaning that doubling the context window results in a
fourfold increase in the computational cost of attention modules.

For efficiency, existing efforts aim to compress the key-value (KV) cache for long contexts dur-
ing inference. They evict (Xiao et al., 2024; Li et al., 2024) or merge (Zhang et al., 2024b; Wan
et al., 2024) KV states of less important tokens following certain rules. They use attention scores to
measure the importance and approximate the original full attention. However, while these methods
provide an approximation of full computation on existing tokens through different strategies, they
can not fully prevent performance degradation when decoding future tokens.

Recent studies propose to fine-tune LLMs to longer contexts to extend the context window. Lon-
gLoRA (Chen et al., 2024) trains LLMs using shifted sparse attention. Despite training efficiency,
their sparse attention fails to be applied during inference, and they still require the original atten-
tion on the full sequence. Concurrently, LoCoCo (Cai et al., 2024a) and Activation Beacon (Zhang
et al., 2024a) introduce additional modules to compress KV states. They incorporate the fine-tuned
compressing pattern into the decoding procedure of LLMs.

In the field of computer vision, studies have shown that low-frequency channels are more important
for convolutional neural networks (CNNs) (Xu et al., 2020). Moreover, Fourier Transformer (He

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2023) discards the high-frequency parts of the contexts and downsample the hidden states
in the encoders. Inspired by these work, we seek to compress KV states in the frequency domain
without the need for additional compression modules in decoder-only LLMs. We transform key
states and value states in LLaMA-2-7b (Touvron et al., 2023) from the time domain to the frequency
domain for power spectrum analysis. As shown in Figure 1, the energy distribution increasingly
concentrates on low-frequency components as the computation process progresses inside the model.
This suggests that high-frequency components, which contribute less to the overall information,
can be discarded without a significant impact on performance, thereby enhancing computational
efficiency.

In this paper, we introduce FreqKV, an efficient context extension method that iteratively com-
presses key-value states in the frequency domain. Compression is triggered only when the KV cache
reaches the predefined context window size. We keep the first few tokens uncompressed due to the
attention sinks of LLMs (Xiao et al., 2024; Han et al., 2024). During each compression step, the
low-frequency components of the KV states are preserved at a specified retaining ratio. Subsequent
tokens are appended to the compressed cache until it is filled again. This ensures that the maximum
number of cached KV states that each query token can attend to is limited below the context window
size. To reduce memory and computational costs, the compressed cache will be further compressed
together with the incoming tokens. This iterative compression mechanism leads to an increased
compression level of the earlier contexts as the sequence length grows. Without introducing ad-
ditional compression modules, LLMs could learn to utilize the compressed cache efficiently when
extending to longer contexts. FreqKV demonstrates comparable performance to other methods that
employ full KV cache or additional compressors in long context language modeling. Furthermore,
experiments on LongBench (Bai et al., 2024) indicate that FreqKV surpasses recently studied KV
compression methods in long-context understanding, achieving higher scores on open-ended text
generation tasks.

2 RELATED WORK

KV Compression for LLMs. To extend the context window of LLMs efficiently, researchers
attempt to compress the KV cache as more tokens are fed into the model. One common approach is
selective token eviction (Xiao et al., 2024; Li et al., 2024; Cai. et al., 2024b), where less significant
tokens are discarded. Although the eviction strategies ensure that the size of KV cache involved
in each decoding step does not exceed the pre-defined context window size, LLMs suffer from
the permanent loss of the information associated with evicted tokens. To address this limitation,
some researchers introduce cache merging techniques to approximate the original full attention of
the existing contexts (Zhang et al., 2024b; Wan et al., 2024; Wang et al., 2024). However, these
inference methods often sacrifice performance for efficiency.

Context Extension for LLMs. Recent advancements in context extension for LLMs have fo-
cused on efficiently scaling models to handle longer input sequences without significantly increas-
ing computational costs. LongLoRA (Chen et al., 2024) employs shifted sparse attention during
the parameter-efficient fine-tuning. However, this sparse attention mechanism is not applicable dur-
ing inference, necessitating a return to the original full attention post-training. Other techniques,
such as LoCoCo (Cai et al., 2024a), integrate convolutional operations into LLMs for compressing
long contexts. They fine-tune the compression modules together with LLMs. Landmark attention
(Mohtashami & Jaggi, 2023) uses landmark tokens to retrieve previous input blocks. Similarly, Ac-
tivation Beacon (Zhang et al., 2024a) proposes the use of a special token to represent the previous
context for compression. However, they introduce a copy of multi-head attention parameters, which
can amount to approximately 2 billion for 7 billion parameter models. In contrast, our proposed
method achieves context extension without introducing any additional parameters.

Learning in the Frequency Domain. Learning in the frequency domain is a well-established
technique to compress images and accelerate CNNs (Gueguen et al., 2018). It has been observed
that CNNs are more sensitive to low-frequency channels than high-frequency channels (Xu et al.,
2020). These works have inspired efforts to process natural language. FNet (Lee-Thorp et al., 2022)
enhances the efficiency of Transformer encoder architectures by replacing the self-attention layers
with the Fourier transform to serve the purpose of mixing tokens. Additionally, Fourier Transformer

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(He et al., 2023) eliminates redundancies in the context through frequency domain processing within
encoder architectures.

However, because of the auto-regressive nature, it remains unclear how to leverage frequency com-
ponents for decoder-only Transformer, which is the main architecture of generative LLMs. To the
best of our knowledge, FreqKV is the first work that explores compressing key-value states in the
frequency domain for decoder-only LLMs.

3 PRELIMINARIES

3.1 DISCRETE COSINE TRANSFORM

The Discrete Cosine Transform (DCT) transforms a signal from the spatial domain (time or position)
into the frequency domain. Several variants of the DCT exist, with DCT-II being the most common.
For a real-value discrete signal X0:N−1 = [x0, . . . , xN−1] of length N , it is defined as:

yt = αt

N−1∑
n=0

xn · cos
[
πt(2n+ 1)

2N

]
, αt =


√

1
N if t = 0,√
2
N otherwise

(1)

where t = 0, 1, · · · , N − 1. αt is the normalization factor. The original signal X0:N−1 can be
recovered by applying the inverse DCT (IDCT) on the frequency components Y0:N−1:

xn =

N−1∑
t=0

αt · yt · cos
[
πt(2n+ 1)

2N

]
. (2)

The frequency components are expressed as a combination of the original signals. The values can be
computed using the Fast Fourier Transform (FFT) with a complexity of O(N logN). The amplitudes
of frequency components are utilized in the power spectrum analysis to represent the energy or
magnitude of components. The components of higher energy in the frequency domain indicate they
are more informative (He et al., 2023).

3.2 SELF-ATTENTION

For the incoming token xN , the prefilled N tokens X0:N−1 are utilized as the cache during de-
coding. Denote the hidden states of the N + 1 tokens input to a specific layer of LLMs as
H0:N = [h0, · · · ,hN ]. The query, key and value states of xN are are computed as follows::

qN = hNWQ, kN = hNWK , vN = hNW V , (3)

where WQ,WK ,W V are the projection matrices for the query, key and value states, respectively.
For simplicity, indices corresponding to layers and heads have been omitted.

The cached KV states for the previous N tokens X0:N−1 are:

K0:N−1 = H0:N−1W
K , V0:N−1 = H0:N−1W

V . (4)

When calculating attention scores, the incoming token xN attends to all cached KV states as well as
to itself:

A(N) = Softmax
(
qN [K0:N−1 ⊕ kN ]T√

d

)
· [V0:N−1 ⊕ vN ], (5)

where d is the hidden dimension. ⊕ means the concatenation of the KV cache and KV states of xN

4 FREQKV

4.1 ENERGY CONCENTRATION IN THE FREQUENCY DOMAIN

We transform key states and value states from the time domain, which is the sequence dimension,
to the frequency domain. The average power spectrums in different decoder layers of LLaMA-2-7b
are calculated and presented in Figure 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

layer 0 layer 4 layer 8 layer 16 layer 31

(a) The average power spectrums of key states.

layer 0 layer 4 layer 8 layer 16 layer 31

(b) The average power spectrums of value states.

Figure 1: The average power spectrums of key states and value states in different layers of LLaMA-
2-7b. 1000 documents are sampled from CNN/Daily Mail (Hermann et al., 2015). We use DCT to
transform key states and value states to the frequency domain, and average power spectrums over
these samples and hidden dimensions.

The figure shows that the energy of key states and value states is increasingly concentrated in the
low-frequency components. Although there is no obvious energy concentration in the frequency
domain for the initial embeddings of natural languages such as value states from layer 0, the model
tends to aggregate energy in the low-frequency components along the decoding procedure. The
observation of energy concentration suggests that we could maintain low-frequency components
and filter out high-frequency components which could be redundant. Head-wise analysis of the
power spectrum is provided in Appendix A.

4.2 KV COMPRESSION IN THE FREQUENCY DOMAIN

We conduct DCT along the sequence dimension to transfer the KV cache to the frequency domain:

Y K
0:N−1 = DCT(K0:N−1), Y V

0:N−1 = DCT(V0:N−1). (6)

As observed in Figure 1, since the lower-frequency components are of higher magnitude and carry
more information, we will retain them and remove higher-frequency components for compression.
Given the retaining ratio γ, the retaining size is L = γ ·N . N − L high-frequency components are
filtered out to reduce redundancy:

Ỹ
K

0:L−1 = Y K
0:N−1[0 : L− 1], Ỹ

V

0:L−1 = Y V
0:N−1[0 : L− 1]. (7)

Then we conduct IDCT along the frequency dimension to convert the compressed components back
to the time dimension. It should be noted that the time-domain signals are normalized by the square
root of the component number as shown in the formula of IDCT (Equation 2). Therefore, the

compressed signals should be rescaled with
√

L
N to restore the original amplitude:

K̃
0:N−1

0:L−1 =

√
L

N
IDCT(Ỹ

K

0:L−1), Ṽ
0:N−1

0:L−1 =

√
L

N
IDCT(Ỹ

V

0:L−1). (8)

K̃
0:N−1

0:L−1 and Ṽ
0:N−1

0:L−1 are the KV cache of size L in the time domain. The superscript “0:N − 1”

means that K̃
0:N−1

0:L−1 and Ṽ
0:N−1

0:L−1 are the compressed KV of the cached N tokens. The subscript
“0:L− 1” means the retaining size is L. The incoming token xN will attend to the compressed KV
cache:

Ã(N,L) = Softmax

qN [K̃
0:N−1

0:L−1 ⊕ kN ]T
√
d

 · [Ṽ
0:N−1

0:L−1 ⊕ vN ]. (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

KV Cache

Context Window

Compressing

Attention Mask

masked

unmasked

K
Q

sink tokens:

compressed tokens:

incoming tokens:

KV Cache

Context Window

Compressing

(a) First Compression (b) Iterative Compression

Figure 2: The illustration of our FreqKV. The KV cache will be compressed in an iterative manner
as the cache reaches the context window size. Sink tokens remain uncompressed throughout the
process. (a) The tokens after sink tokens will be compressed in the frequency domain and subsequent
tokens will continue to get into the cache. (b) When the cache is filled again, the compressed tokens
and incoming tokens will be compressed together. The compression is performed iteratively to
extend the context window.

4.3 CONTEXT EXTENSION WITH THE COMPRESSED KV

When extending the context window, the memory requirement of KV cache increases linearly and
the computation cost of the original full attention grows quadratically with the length. To limit the
size of KV cache for each query token to attend below the context window size, we will compress
KV cache in the frequency domain iteratively as the cache is filled. We illustrate our FreqKV in
Figure 2.

For tokens within the context window, the standard attention will be conducted. For tokens out of
the window, we will compress the cached KV states in the frequency domain. Because the retaining
size L is smaller than the cache size N , subsequent tokens could get in and fill the cache. We discard
the original KV states of the prefilling tokens and maintain the compressed KV states. They will be
concatenated with the KV states of the incoming tokens and compressed together when the cache
is filled again. Tokens that appear earlier in the sequence undergo more iterations of compression
as the context window expands, whereas less compression will be performed on the more recent
tokens. With the iterative FreqKV, the KV cache size is not fixed and is reduced below the context
window size during decoding. Since the compression is only performed when the sum of cached KV
and incoming tokens reaches the preset size, the computation overhead of the compression could be
negligible. For example, with the context size of 4096 and the retaining size of 2048, compression
is performed every 2048 tokens for contexts exceeding the original window.

Recent work has found the phenomenon of attention sinks that LLMs tend to assign high attention
scores to initial tokens (Xiao et al., 2024; Han et al., 2024). Therefore, we maintain these initial
tokens uncompressed in the cache and only compress tokens that come after them.

During training and the prefilling stage of inference, the whole sentence is tokenized and fed into
the model. The attention is computed chunk-wise interleaved with the compression operation. After
each compression, N − L − S incoming tokens are regarded as a chunk and fill the cache, with
S sink tokens uncompressed. As shown in Figure 2 (b), the incoming tokens in each chunk can
not attend to the subsequent tokens. The newly incoming token xM will attend to S sink tokens, L
compressed “tokens”, M −N previous incoming tokens, and xM itself. The calculation of attention
in Equation 9 can be reformulated as follows:

Ã(S,N,L,M) = Softmax

(
qM [K0:S−1 ⊕ K̃

S:N−1

0:L−1 ⊕KN :M ]T
√
d

)
· [V0:S−1 ⊕ Ṽ

S:N−1

0:L−1 ⊕ VN :M ]. (10)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Perplexity evaluation on the test sets of PG-19 and Proof-pile. The superscript “*” means
that we reproduce LoCoCo following their official code for evaluation. The results of full fine-tuning
and LongLoRA are reported from Chen et al. (2024).

Training
Length

Method Inference
Cache

Evaluation Context Length
2048 4096 8192 16384 32768

PG-19

8192

Full FT Full 7.55 7.21 6.98 - -
LongLoRA Full 7.70 7.35 7.14 - -
LoCoCo* Compressed 8.15 8.08 7.27 - -
FreqKV Compressed 7.53 7.19 7.13 - -

16384 LongLoRA Full 7.65 7.28 7.02 6.86 -
FreqKV Compressed 7.77 7.40 7.32 7.29 -

32768 LongLoRA Full 8.29 7.83 7.54 7.35 7.22
FreqKV Compressed 8.14 7.73 7.61 7.56 7.54

Proof-pile

8192

Full FT Full 3.14 2.85 2.66 - -
LongLoRA Full 3.20 2.91 2.72 - -
LoCoCo* Compressed 3.40 3.20 2.88 - -
FreqKV Compressed 3.16 2.88 2.80 - -

16384 LongLoRA Full 3.17 2.87 2.66 2.51 -
FreqKV Compressed 3.22 2.93 2.84 2.80 -

32768 LongLoRA Full 3.35 3.01 2.78 2.61 2.50
FreqKV Compressed 3.34 3.03 2.93 2.88 2.86

5 EXPERIMENTS

5.1 IMPLEMENTATION

We conduct experiments on long context language modeling and understanding tasks with LLaMA-
2-7b (Touvron et al., 2023) base and chat models. Minimal training is introduced to adapt the model
to this frequency-domain compression method. For long context language modeling, we fine-tune
LLaMA-2-7b on the RedPajama (Computer, 2023) pre-training dataset for 1000 steps, extending
the context window size from 4K to 8K, 16K, and 32K. Perplexity (PPL) evaluation is conducted on
PG-19 (Rae et al., 2019) and Proof-pile (Azerbayev et al., 2022). For long context understanding,
the instruction following dataset LongAlpaca (Chen et al., 2024) is used for the supervised fine-
tuning (SFT) of the chat model. The context window size is extended from 4K to 8K. The model
is trained on 6.28K long-context QA samples for 5 epochs and evaluated on LongBench (Bai et al.,
2024).

The total batch size (GPU number×Batch size per device×Gradient accumulation steps)
is 64. The learning rate increases linearly from 1e-6 to 2e-5 with 20 warm-up steps and remains
constant in the following steps. The rank used in the LoRA (Hu et al., 2021) fine-tuning is set to
8. Following LongLoRA (Chen et al., 2024), the embedding and normalization layers are learnable
during training.

The preset context window size of LLaMA-2 is 4096, which is also the maximum KV cache size
N . We maintain S = 4 sink tokens uncompressed. The retaining ratio γ in compression is set to
0.5. Therefore, the retaining size during each compression is L = γ · (N − S) = 2046. As long
as the cache size reaches its capacity of 4096, the 4092 states since the 5-th state in the cache will
be compressed into 2046 states. All the experiments are conducted on ADA6000 and RTX4090
GPUs. Moreover, we equip our method with FlashAttention-2 (Dao, 2023) for further acceleration
and memory saving.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Training time and memory usage of
FreqKV when extending to 8K, 16K and 32K.
All the statistics are collected with the same ex-
perimental settings.

Training Training Memory
Length Time (hours) Usage (GB)

8K 17.61 25.08
16K 39.40 33.07
32K 89.99 44.90

1K 4K 8K 12K 16K 20K 24K 28K 32K
Sequence Length

0

500

1000

1500

2000

De
co

di
ng

 T
im

e 
(s

)

Full Cache
FreqKV

Figure 3: Decoding time with the full cache and
FreqKV on the increasing sequence length.

5.2 LONG CONTEXT LANGUAGE MODELING

We use FreqKV to train the model on RedPajama (Computer, 2023) with lengths of 8192, 16384,
and 32768. Perplexity is measured on test sets of the book corpus dataset PG-19 (Rae et al., 2019)
and the Arxiv math dataset Proof-pile (Azerbayev et al., 2022) with the evaluation sliding window of
256. We compare our method with other baselines including full fine-tuning (Full FT), LongLoRA
(Chen et al., 2024), and LoCoCo (Cai et al., 2024a). While Full FT and LongLoRA leverage full
KV cache during inference, LoCoCo, and our FreqKV use compressed cache.

PPL scores on different evaluation context lengths are reported in Table 1. Although FreqKV em-
ploys an iterative compression manner, its performance does not deteriorate on extended context
length. When compared to Full FT and LongLoRA, our compressed cache method effectively
extends the context window without sacrificing much performance. Moreover, our method out-
performs LoCoCo on the extended context length (8192) as well as the shorter lengths (2048 and
4096).

5.3 MEMORY AND COMPUTATIONAL COST

In Table 2, we present the training time and memory usage of FreqKV when extending to different
context lengths. All statistics are collected under the condition that Batch size per device = 1
and Gradient accumulation steps = 8 with 8 ADA6000 GPUs.

With FreqKV, we can conduct training to extend the context window size of LLaMA2-7b from 4K
to 32K. While 49GB memory is required by LongLoRA and 50GB for LoCoCo when extending to
16K (Cai et al., 2024a).

Furthermore, we compare the decoding time required by the full cache and our FreqKV when the
sequence length increases. As shown in Figure 3, the decoding time starts to diverge at the length
of 4K. While the full cache utilization leads to a quadratic growth in decoding time, the decod-
ing time of FreqKV increases approximately linearly with a negligible time spent on compression,
showcasing its efficiency.

5.4 LONG CONTEXT UNDERSTANDING

To further validate the performance of FreqKV on downstream tasks, we SFT LLaMA-2-chat-7b
on LongAlpaca (Chen et al., 2024) to extend the context window size from 4K to 8K, and evaluate
it on the long context understanding benchmark LongBench (Bai et al., 2024). Scores on the 6
categories of LongBench are reported in Table 3. Detailed results on the 16 tasks can be referred to
in Appendix B.

We compare our method with different KV compression strategies, including LM-Infinite (Han et al.,
2024), LongHeads (Lu et al., 2024), SnapKV (Li et al., 2024) and PyramidKV (Cai. et al., 2024b).
Since the KV cache size of our FreqKV is not fixed and ranges between 2K and 4K during decoding,
the cache size used in these baseline methods is set to 4K for comparison. FreqKV achieves SOTA

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Scores of different KV compression methods on LongBench. The superscript “*” means
that we reproduce SanpKV and PyramidKV following their official code for evaluation. The results
of LM-Infinite and LongHeads are reported from Lu et al. (2024). The above four methods are
evaluated with a cache size of 4K.

Method Single- Multi- Summarization Few-shot Code Synthetic Avg.Doc QA Doc QA Learning
llama2-chat 24.90 22.60 24.70 60.00 48.10 5.90 31.0

LM-Infinite 14.63 7.36 7.67 25.18 29.37 5.41 14.94
LongHeads 19.45 21.42 20.59 55.80 49.04 8.03 29.06
SnapKV* 25.39 22.52 24.62 62.92 57.70 5.34 33.08
PyramidKV* 25.98 22.48 24.62 62.90 57.71 4.14 32.87
FreqKV 26.70 27.10 25.54 59.97 56.02 6.66 33.67

Table 4: FLOPs (TFLOPs) with input sequences of different lengths. We calculate FLOPs for
Llama-2-7b with the original attention which leverages full KV states, and with FreqKV with re-
taining ratios of 0.1, 0.25, 0.5, and 0.75. Experiments are conducted on the ADA6000 GPU of
48GB, where full KV of 10k tokens with float16 will cause an OOM (Out-of-Memory) issue.

Models Retaining Ratio 4K 6K 8K 10K 12K
Full KV - 62.93 101.00 143.46 OOM OOM

FreqKV

0.1 62.93 92.65 125.17 155.77 187.58
0.25 62.93 93.31 124.79 157.35 187.73
0.5 62.93 94.42 125.90 157.38 188.85

0.75 62.93 94.45 125.94 157.44 188.94

(state-of-the-art) on the single-document QA, multi-document QA, and summarization tracks. Our
method is also comparable on the other three tracks and obtains the highest average score across all
six tracks.

6 ABLATION STUDY

6.1 RETAINING RATIO

We conduct further studies on the computation cost and performance regarding different retaining
ratios. As introduced in Section 4.3, chunk-wise attention is performed for the prefilling tokens. The
size of the attention matrix in each chunk is (N−L−S)·N except for the last few tokens. Therefore,
the computational cost of self-attention grows approximately linearly with the input length like
sliding window attention (Beltagy et al., 2020).

We use torchprofile1 to count the number of Floating Point Operations (FLOPs) with input sequences
of different lengths for LLaMA-2-7b. The statistics given in Table 4 show that FreqKV reduces more
FLOPs as the input length grows from 4K to 12K. Despite more compressions will be performed
with the retaining ratio ranging from 0.1 to 0.75, the growth in FLOPs is minimal. This is because
the compression is performed every N − L − S tokens with the complexity of O(N logN), which
is negligible compared to the quadratic self-attention.

Moreover, we use the validation set of PG-19 to measure the performance and inference overhead of
FreqKV with different retaining ratios. The evaluation context length is 8192. Results are shown in
Figure 4. While the model performs better in long context language modeling as the retaining ratio
increases, the total inference time grows significantly. Although the difference of FLOPs presented
in Table 4 is minimal, larger retaining ratios lead to smaller chunk sizes, which determines how

1https://github.com/zhijian-liu/torchprofile

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.1 0.25 0.5 0.75
Retaining Ratio

7.80

7.85

7.90

7.95

8.00

PP
L

7.965

7.926

7.864 7.857

6

8

10

12

14

In
fe

re
nc

e 
Ti

m
e 

(h
ou

rs
)

7.02 7.21

8.83

12.75
PPL (Left Y Axis)
Inference Time (Right Y Axis)

Figure 4: Perplexity evaluation and total infer-
ence time on the validation set of PG-19 with
different retaining ratios. The evaluation con-
text length is 8192.

2K 4K 8K 16K 32K
Evaluation Context Length

2.8

2.9

3.0

3.1

3.2

3.3

PP
L

3.34

3.03

2.93
2.88 2.862.85

2.76
2.84

FreqKV
FreqKV + Full Cache

Figure 5: Perplexity evaluation on the test set of
Proof-pile for FreqKV with full KV cache and
compressed cache. The context window of the
model is extended to 32K by FreqKV.

0 200 400 600 800 1000
Training Step

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Lo
ss

with rescaling
without rescaling

Figure 6: Curves of training loss for FreqKV with and without rescaling.

many attention scores will be masked. As a result, the attention matrix becomes denser and costs an
increase in inference overhead. This study justifies our choice of setting a 0.5 retaining ratio as the
default for effectiveness and efficiency.

6.2 USING FULL KV CACHE DURING INFERENCE

With the model trained with FreqKV, we also evaluate its performance on the test set of Proof-pile
when enabling full KV cache during inference. As shown in Figure 5, despite training with the
compressed KV on longer contexts, the model achieves better performance when leveraging full
KV. It demonstrates that learning the iterative compression of KV states in the frequency domain
does not conflict with the original context information.

6.3 EFFECT OF RESCALING

In Equation 8,
√

L
N =

√
γ works as a rescaling factor for the compressed signals to restore the orig-

inal amplitude when conducting IDCT (the factor is
√

L
N−S when S sink tokens are uncompressed).

To investigate the effect of the rescaling factor, we also use FreqKV to train LLaMA-2-7b without
rescaling for comparison. The training curves for FreqKV with and without rescaling are presented
in Figure 6.

It can be learned from the figure that, the training loss is significantly higher at the early stages when
the compressed signals are not rescaled. This is because IDCT amplifies the compressed states

with the normalization factor
√

1
L progressively in each compression iteration. By rescaling the

compressed signals, the training process becomes more stable in its initial phases.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 CONCLUSION

In this paper, we introduce FreqKV to compress KV states iteratively in the frequency domain for
LLMs. We exploit the energy concentration of KV states in the frequency domain within the de-
coder layers. Specifically, we filter out the high-frequency components that are of low magnitude
and retain the low-frequency components for compression. The KV cache is compressed in the fre-
quency domain without introducing additional compression modules. Iteratively compressing the
KV cache, FreqKV could extend the context window efficiently for LLMs. With minimal training
of low-rank adaption, LLMs learn to leverage the compressed KV cache. Through extensive experi-
ments and analysis on long context modeling and understanding, FreqKV demonstrates its efficiency
and effectiveness in context extension.

ETHICS STATEMENTS

Our work pertains to key-value compression and context extension of large language models. In this
work, we use only publicly available data and artifacts. There are no ethical issues in our paper,
including its motivation and experiments.

REPRODUCIBILITY STATEMENTS

We have provided detailed implementations of our method throughout the paper. Our method is
comprehensively elaborated in Section 4. Detailed settings of our experiments and analyses are
given in Section 5 and 6. We will release our code for reproducibility later.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Zhangir Azerbayev, Edward Ayers, and Bartosz Piotrowski. Proof-pile, 2022. URL https://
huggingface.co/datasets/hoskinson-center/proof-pile.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions
for long context compression, 2024a. URL https://arxiv.org/abs/2406.05317.

Zefan Cai., Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024b. URL https://arxiv.org/abs/2406.02069.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster neural net-
works straight from jpeg. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2406.05317
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2307.08691


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models, 2024. URL https:
//arxiv.org/abs/2308.16137.

Ziwei He, Meng Yang, Minwei Feng, Jingcheng Yin, Xinbing Wang, Jingwen Leng, and Zhouhan
Lin. Fourier transformer: Fast long range modeling by removing sequence redundancy with fft op-
erator. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 8954–8966.
Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.findings-acl.570. URL
http://dx.doi.org/10.18653/v1/2023.findings-acl.570.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend, 2015.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
fourier transforms, 2022. URL https://arxiv.org/abs/2105.03824.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Yi Lu, Xin Zhou, Wei He, Jun Zhao, Tao Ji, Tao Gui, Qi Zhang, and Xuanjing Huang. Longheads:
Multi-head attention is secretly a long context processor, 2024. URL https://arxiv.org/
abs/2402.10685.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers, 2023. URL https://arxiv.org/abs/2305.16300.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019. URL https://arxiv.org/abs/
1911.05507.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative
inference of large language models, 2024. URL https://arxiv.org/abs/2406.13035.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks, 2024. URL https://arxiv.org/
abs/2407.08454.

11

https://proceedings.neurips.cc/paper_files/paper/2018/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7af6266cc52234b5aa339b16695f7fc4-Paper.pdf
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
http://dx.doi.org/10.18653/v1/2023.findings-acl.570
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2105.03824
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2402.10685
https://arxiv.org/abs/2402.10685
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2407.08454
https://arxiv.org/abs/2407.08454


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Wenhan Xiong, Barlas Oğuz, Anchit Gupta, Xilun Chen, Diana Liskovich, Omer Levy, Wen tau
Yih, and Yashar Mehdad. Simple local attentions remain competitive for long-context tasks,
2022. URL https://arxiv.org/abs/2112.07210.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain, 2020. URL https://arxiv.org/abs/2002.12416.

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao, Qiwei Ye, and Zhicheng Dou. Soaring from
4k to 400k: Extending llm’s context with activation beacon, 2024a. URL https://arxiv.
org/abs/2401.03462.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong
Ji. CaM: Cache merging for memory-efficient LLMs inference. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 58840–58850. PMLR, 21–27 Jul 2024b. URL
https://proceedings.mlr.press/v235/zhang24n.html.

A HEAD-WISE ANALYSIS OF POWER SPECTRUMS

We also explore the power spectrum distribution of key states and value states in different attention
heads of LLaMA-2-7b as shown in Figure 7. Although values of power spectrums vary in different
heads, their distribution exhibits similar patterns. They have a consistent tendency to aggregate
energy in the low-frequency components along the decoding procedure. It could be promising to
study specific differences and associations in different heads or other modules.

B DETAILED RESULTS ON LONGBENCH

Table 5: Scores of different KV compression methods on LongBench.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code Synthetic

NtrvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

LCC
RB-P

PCount
PRe

llama2-chat 18.7 19.2 36.8 25.4 32.8 9.4 27.3 20.8 25.8 61.5 77.8 40.7 52.4 43.8 2.1 9.8

LM-Infinite 0.00 18.57 25.33 27.34 31.96 7.76 11.30 2.99 8.72 32.50 29.22 13.82 34.19 24.55 5.61 5.20
LongHeads 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 53.85 44.22 6.39 9.67
SnapKV 18.78 20.68 36.70 27.83 31.51 8.21 26.92 20.68 26.25 64.00 83.26 41.49 60.70 54.69 2.92 7.75
PyramidKV 18.44 23.09 36.41 27.43 32.11 7.90 26.83 21.02 26.02 64.00 83.26 41.45 60.58 54.83 2.03 6.25
FreqKV 17.96 27.69 34.44 35.52 34.06 11.91 26.63 22.31 27.69 55.50 83.95 40.45 56.99 55.05 2.81 10.50

Detailed results on the 16 tasks of LongBench are reported in Table 5. FreqKV achieves SOTA on 9
of the 16 long context understanding tasks.

C RUSULTS ON NEEDLE-IN-A-HAYSTACK

We report Needle-in-a-Haystack results on LLaMA-2-Chat-7B with an extended context window
from 4k to 8k using FreqKV. We also implement the “Local Attention” (Xiong et al., 2022) to extend
the context window, which keeps sink tokens and the latest tokens in the cache. It shares the same
sink size and retaining size as FreqKV. It is also trained on LongAlpaca using the same setttings.
Results of the two extension methods are shown in Figure 8a and Figure 8b. They demonstrate that
FreqKV surpasses using a simple local window attention when extending the context window from
4k to 8k.2

2FreqKV does not perform well when the token limit is 4300. This is because the question is around 4k and
will be separated under this setting.

12

https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2112.07210
https://arxiv.org/abs/2002.12416
https://arxiv.org/abs/2401.03462
https://arxiv.org/abs/2401.03462
https://proceedings.mlr.press/v235/zhang24n.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

layer 0 layer 4 layer 8 layer 16 layer 31

head 0

head 1

head 2

(a) The average power spectrums of key states.

layer 0 layer 4 layer 8 layer 16 layer 31

head 0

head 1

head 2

(b) The average power spectrums of value states.

Figure 7: The average power spectrums of key states and value states in different heads of Llama-2-
7b.

Moreover, our method achieves an average accuracy of 86.8%, significantly outperforming the KV
compression method SnapKV, which achieves only 49.6% (Figure 8c) and fails beyond 4k tokens.

D COMPRESSION OVERHEAD

To quantify the compression overhead, we have measured FLOPs (TFLOPs) of the “Local Atten-
tion”. It shares the same sink size and retaining size as FreqKV. The difference in FLOPs between
the two methods shows the overhead of compression. The statistics are given in Table 6. The re-
taining ratio is set to 0.5. The compression times of FreqKV with different context lengths are also
reported in the table. It shows that the computation overhead of our compression process grows less
than 0.5% even with a length of 16K, which could be negligible.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

10
00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00
51

00
52

00
53

00
54

00
55

00
56

00
57

00
58

00
59

00
60

00
61

00
62

00
63

00
64

00
65

00
66

00
67

00
68

00
69

00
70

00
71

00
72

00
73

00
74

00
75

00
76

00
77

00
78

00
79

00
80

00

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) The Needle-in-a-Haystack results of FreqKV. The average accuracy is 86.8%.

10
00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00
51

00
52

00
53

00
54

00
55

00
56

00
57

00
58

00
59

00
60

00
61

00
62

00
63

00
64

00
65

00
66

00
67

00
68

00
69

00
70

00
71

00
72

00
73

00
74

00
75

00
76

00
77

00
78

00
79

00
80

00

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) The Needle-in-a-Haystack results of “Local Attention”. The average accuracy is 75.5%.

10
00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00
51

00
52

00
53

00
54

00
55

00
56

00
57

00
58

00
59

00
60

00
61

00
62

00
63

00
64

00
65

00
66

00
67

00
68

00
69

00
70

00
71

00
72

00
73

00
74

00
75

00
76

00
77

00
78

00
79

00
80

00

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) The Needle-in-a-Haystack results for SnapKV show an average accuracy of 49.6%, which drops sharply
when the context length exceeds LLaMA2’s 4k token window.

Figure 8: The Needle-in-a-Haystack resultson LLaMA-2-Chat-7B, with the x-axis representing the
document length (“haystack”) ranging from 1K to 8K tokens, and the y-axis showing the position
of the “needle” (a short sentence) within the document.

Table 6: FLOPs (TFLOPs) with input sequences of different lengths. The difference between Fre-
qKV and “Local Attention” shows the computation overhead of compression.

Models 4K 8K 12K 16K
Full KV 62.93 143.46 OOM OOM
Local Attention 62.93 125.86 188.79 251.72
FreqKV 62.93 125.90 188.85 251.81

Compression Times 0 3 5 7
Compression Overhead 0 (0%) 0.039 (0.031%) 0.064 (0.034%) 0.090 (0.036%)

E PERFORMANCE ON LLAMA3

The original context window length of Llama3-8B-Instruct (AI@Meta, 2024) is 8K. It is equipped
with GQA (Grouped-Query Attention), which means it has a lower proportion of parameters for
attention modules than Llama2-7B-Base/Chat (Multi-Head Attention, MHA). We use FreqKV to
extend the context window from 8K to 16K and evaluate the performance on six Single-Doc QA
and Summarization tasks from LongBench. The results of the vanilla model and the SOTA KV
compression method SnapKV are also reported in Table 7.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Performance of FreqKV on Llama3-8B-Instruct.

Method Single-Document QA Summarization
Narrative QA Qasper MultiFieldQA-en GovReport QMSum MultiNews

Llama3-8B-Instruct 22.52 31.83 41.04 28.87 23.25 26.46

SnapKV 22.27 31.93 41.03 28.77 23.14 26.62
FreqKV 20.55 32.59 45.53 30.86 22.61 28.19

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Figure 9: The Needle-in-a-Haystack results of
FreqKV on Llama3-8B-Instruct. The average
accuracy is 95.2%.

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Figure 10: The Needle-in-a-Haystack results of
SnapKV on Llama3-8B-Instruct. The average
accuracy is 51.5%.

Llama3 and SnapKV are evaluated with a context length of 8K. Their performance drops signifi-
cantly when setting the context length to 16K. FreqKV is evaluated with a context length of 16K.
While SnapKV maintains the performance of the vanilla model, FreqKV enables the model to handle
longer contexts and achieves improvements on most tasks.

Moreover, we evaluate FreqKV and SnapKV on Needle-in-a-Haystack with the document length
ranging from 1K to 16K as in Figure 9 and Figure 10. FreqKV performs well in extending the con-
text window and achieves an average accuracy of 95.2%, which significantly outperforms SnapKV.
These experimental results demonstrate the effectiveness of FreqKV when applied to Llama3-8B-
Instruct.

15


	Introduction
	Related Work
	Preliminaries
	Discrete Cosine Transform
	Self-Attention

	FreqKV
	Energy Concentration in the Frequency Domain
	KV Compression in the Frequency Domain
	Context Extension with the Compressed KV

	Experiments
	Implementation
	Long Context Language Modeling
	Memory and Computational Cost
	Long Context Understanding

	Ablation Study
	Retaining Ratio
	Using Full KV Cache during Inference
	Effect of rescaling

	Conclusion
	Head-wise Analysis of Power Spectrums
	Detailed Results on LongBench
	Rusults on Needle-in-a-Haystack
	Compression Overhead
	Performance on Llama3

