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Robust Segmentation of Intima–Media Borders
With Different Morphologies and Dynamics

During the Cardiac Cycle
Shen Zhao , Zhifan Gao , Heye Zhang , Yaoqin Xie, Jianwen Luo , Dhanjoo Ghista,

Zhanghong Wei , Xiaojun Bi, Huahua Xiong, Chenchu Xu, and Shuo Li

Abstract—Segmentation of carotid intima-media (IM) bor-
ders from ultrasound sequences is challenging because
of unknown image noise and varying IM border morpholo-
gies and/or dynamics. In this paper, we have developed a
state-space framework to sequentially segment the carotid
IM borders in each image throughout the cardiac cycle. In
this framework, an H∞ filter is used to solve the state-space
equations, and a grayscale-derivative constraint snake is
used to provide accurate measurements for the H∞ filter.
We have evaluated the performance of our approach by
comparing our segmentation results to the manually traced
contours of ultrasound image sequences of three synthetic
models and 156 real subjects from four medical centers. The
results show that our method has a small segmentation er-
ror (lumen intima, LI: 53 ± 67 µm; media-adventitia, MA: 57
± 63 µm) for synthetic and real sequences of different image
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characteristics, and also agrees well with the manual seg-
mentation (LI: bias = 1.44 µm; MA: bias = −3.38 µm). Our
approach can robustly segment the carotid ultrasound se-
quences with various IM border morphologies, dynamics,
and unknown image noise. These results indicate the po-
tential of our framework to segment IM borders for clinical
diagnosis.

Index Terms—Carotid artery, H∞ filter, IM borders, snake
algorithm, ultrasound image sequences.

I. INTRODUCTION

THE development of atherosclerosis can lead to fatal car-
diovascular diseases such as heart attack or failure, which

is still the major cause of mortality throughout the world [1]. A
number of clinical studies have shown that the carotid intima-
media thickness (IMT) could be used as a risk indicator to
monitor the status of atherosclerosis [2]–[4]. As a non-invasive
and low-cost technique, ultrasound imaging has been frequently
applied to examine carotid IMT [5]. Furthermore, different seg-
mentation algorithms have been developed to detect the IMT
from ultrasound images [6]–[8]. Recently, a state-of-the-art
multi-ethnic study reported that the changes of the IMT dur-
ing the cardiac cycle are related to pulse pressure during systole,
which might be better associated with cardiovascular risk [9]. As
a result, the reliability and reproducibility of IMT segmentation
during the cardiac cycle has attracted great attention [3]. How-
ever, it remains challenging to acquire reliable and reproducible
segmentation of the intima-media border throughout the com-
plete cardiac cycle because of the uncertainties in ultrasound
data [10], [11]. The uncertainties in ultrasound data introduced
by different ultrasound systems, scanners, and physicians im-
pose great difficulties in robustly tracking the change of the
IMT during the cardiac cycle. Therefore, there is great demand
to develop a robust segmentation framework that can quantify
the change of the IMT during the cardiac cycle from different
ultrasound image sequences.

The main task of carotid ultrasound image segmentation is to
extract the borders of the intima-media (IM) complex, namely,
the lumen intima(LI) and media-adventitia(MA) borders on
the far wall of the artery [12]. Comprehensive reviews of
IMT segmentation algorithms for ultrasound images can be
found in [10], [11]. Most of these works focus on segmenting
images/sequences without atheromatous plaques [6], [7], [13]–
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[16], while a promising integrated system is specially designed
to segment plaques in ultrasound sequences in [17]. From the
aspect of methodology, these works can be grouped into edge
detectors [7], [13], dynamic programming [14], [15], [18],
snakes [6], [16], [19]–[22], and neural networks [23]. Among
these methods, the snake algorithm, which evolves the contours
under the action of external and internal forces, is a popular
method to detect image features (lines and edges) in ultrasound
images. The deformable snake model yields a smoothed curve
[24], which is beneficial for LI/MA segmentation [16]. Closed
snakes are used to segment IM borders with plaques in [17],
which is different from the open snakes commonly used to
segment IM borders without plaques.

However, the uncertainties in ultrasound image sequences
still hinder the snake algorithm from segmenting the IM bor-
ders correctly. The image sequences are obtained using different
ultrasound systems and scanners, which may yield images with
different image quality and characteristics. For example, in some
ultrasound sequences, the LI borders can be affected by speckle
noise in the lumens, while in others, the MA borders can be
influenced by the ambiguous appearance of the adventitia. The
noisy lumen can generate erroneous edges, while the blurred ad-
ventitia can hide the correct borders. Since the snake algorithm
uses image gradients to evolve the contour, the noise and/or
ambiguous borders can hinder segmentation of the LI/MA bor-
ders by producing erroneous image gradients or weakening the
correct image features. Another problem is that the snakes are
sensitive to the initial contours. In each frame of the sequence,
the snake should be initialized in the vicinity of the border of
interest; otherwise, it cannot be attracted to the correct bound-
ary [19]. Thus, for the segmentation of an ultrasound sequence,
initialization might be problematic if the temporal consistency
is not taken into consideration.

The state-space approach, however, is appropriate to segment
ultrasound sequences based on temporal consistency. The con-
secutive frames in an ultrasound sequence can be initialized
using the results of the previous frame [25] in state-space ap-
proaches. The Kalman filter is used to solve the state-space
equations for the optimal estimation of IM border positions by
minimizing the covariance of the system and measurement noise
in the state space [26]. The Kalman filter works well when the
system and measurement noise can be assumed to be Gaussian
distributed with known statistics. However, ultrasound image
sequences are often affected by unknown and uncertain speckle
noise. The wide variation of ultrasound systems and scanning
instruments makes it difficult to obtain the statistical features
of this noise, and it is not likely that the errors caused by this
noise are Gaussian distributed. The determination of parameters
in the state-space equations can be a problem because of these
uncertainties. Additionally, if the movement of the IM borders
in consecutive frames is large, the initialization of the snake
positions in the latter frame by simply using the results of the
previous frame could still cause problems. Therefore, a need ex-
ists for the development, implementation, and evaluation of an
approach that is more robust to different types of noises, IM bor-
der morphologies and dynamics for segmentation of ultrasound
sequences during cardiac cycles.

In this paper, we have proposed a H∞ grayscale-derivative
constraint snake by integrating the H∞ filter and the grayscale-
derivative constraint snake algorithm into an adaptive frame-
work. The contributions of our work in the context of IM
segmentation are: 1) segmentation of the IM border during the
cardiac cycle with the help of the H∞ filter, which can generate
the optimal estimation for the IM border positions. The worst-
case estimation error is minimized, and the requirement that the
noise is Gaussian distributed is eliminated; 2) our H∞ grayscale-
derivative constraint snake algorithm can adapt to the image
grayscale, curvature, and movement in consecutive frames. The
parameters do not need to be adjusted manually according to the
image characteristics of different sequences in different centers.
The algorithm is accurate and robust to uncertain noise.

Our proposed H∞ grayscale-derivative constraint snake seg-
mentation method is evaluated using 156 ultrasound sequences
from four medical centers. First, our algorithm is trained on
40 ultrasound sequences obtained from three medical centers.
Then, the performance of our method is tested on the other 116
sequences from all four medical centers without any manual
adjustments of the parameters. In particular, both the training
set and the testing set include sequences with variant morpholo-
gies and/or dynamics (slanted, noisy, blurred, large movement
between consecutive images). Sequences with atheromatous
plaques, which are excluded in many classic and state-of-the-art
studies [6], [7], [13]–[16], are also included in our evaluation.
This means that sequences with and without plaques are seg-
mented without changing the method or the parameters. The
extensive validation of our algorithm using sequences of differ-
ent morphologies and dynamics can also help to ensure that our
model is not over-fitted. The segmented results are compared
with the manual tracing method as well as 4 other methods that
are used in recent works for similar applications: snake, Kalman
snake [20], dynamic programming [15], and level set method
using Chan-Vese energy functional [27].

II. METHODOLOGY

A. Pre-Processing

Before implementing the H∞ grayscale-derivative constraint
snake algorithm, the ultrasound sequences are processed as fol-
lows: (1) Normalization. The grayscale of each frame in the ul-
trasound sequence is normalized into [0, 255]. This eliminates
the influence of inhomogeneity of intensity distributions across
frames and/or sequences introduced by different gain settings,
ultrasound systems, and scanners [19]. (2) Image filtering. A
Gaussian low-pass filter is applied in every frame. This is used
for noise reduction and attenuation of the high intensity noisy
pixels. (3) ROI definition. A user-defined region of interest is
selected with size 360 pixels × 260 pixels, except for a few
sequences whose IM borders are too poorly visible.

B. The State-Space Framework

The vertical positions of each column in the image are
regarded as state-space variables, and their dynamics can be
described by the state-space equations ([26, p. 128]). The

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 22,2020 at 01:45:18 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: ROBUST SEGMENTATION OF INTIMA–MEDIA BORDERS WITH DIFFERENT MORPHOLOGIES 1573

Fig. 1. Flowcharts of our method. In the time updating process, û−
k is

predicted using û+
k−1. In the measurement updating process, the mea-

surement vk is first obtained using the grayscale-derivative constraint
snake; then, the optimal IM border positions û+

k are determined from
û−

k and vk by H∞ filter.

state-space equations are solved using the H∞ method, which
consists of a time updating step and a measurement updating
step, as illustrated in Fig. 1.

1) Time Updating Step: In the time updating step, the ini-
tial snake contour (a priori state estimate) ûk

− and its error
covariance Pk

− are calculated using (1).

û−
k = Fk−1û+

k−1

Pk
− = Fk−1Pk−1

+ Fk−1
T + Qk−1 (1)

where Pk−1
+ represents the a posteriori error covariance ma-

trix of the previous frame, and Qk−1 is the covariance matrix of
the process noise qk−1.

2) Measurement Updating Step: In the measurement
updating step, the optimal (or a posteriori) state estimate û+

k
is computed using a priori state û−

k and the measurement of
the current frame vk by minimizing the cost function J :

J =
∑N−1

k=0

∣
∣
∣
∣ũk − û+

k

∣
∣
∣
∣2

∣
∣
∣
∣ũ0 − û+

0

∣
∣
∣
∣2

P−1
0

+ ∑N−1
k=0 (||qk||2Q−1

k
+ ||rk||2R−1

k
)

(2)

where û+
k is the a posteriori estimate of the current state uk,

û+
0 is the estimate of the initial state u0, P0 is the covariance

of the initial estimate, Qk, and Rk are the covariance matrices
of the noise terms qk and rk, respectively. This minimization
is implemented by setting a user-specified upper bound θ for
the cost function (J < 1

θ
). The partial derivative of J with

respect to û+
k is obtained; then, û+

k is calculated by finding the
minimum point of J. The H∞ filter gain Kk and a posteriori
error covariance matrix Pk

+ are then calculated:

û+
k = û−

k + Kk(vk − Hkû−
k )

Kk = Pk
+ Hk

T Rk
−1

Pk
+ = Pk

− (I − θLkPk + Hk
T Rk

−1HkPk)−1 (3)

It can be seen from (3) that the H∞ estimation is less reliant
on modelling (namely, it is robust to modelling error) because
the H∞ filter gives more attention to the measurements as Kk

increases. However, a brute increment of Kk will also result
in poor estimation. The H∞ filter provides the optimal way to
increase Kk because the estimation error has an upper bound.
Thus, the H∞ filter is more robust to error in the system and
noise models in the state-space equations, which is required for
IM segmentation.

C. The Acquisition of Measurements

Since the robustness of the H∞ filter to error in the system and
the noise model originates from its larger weight on measure-
ment vk, precise measurements are very important. Therefore,
the snake algorithm is modified using grayscale and derivative
constraints to acquire accurate measurements of the IM borders
in each frame in the sequence. Before discussing the grayscale-
derivative constraint snake, we first provide a brief overview of
the classical snake.

1) The Classical Snake Algorithm and Its Limitations: A
snake model is a contour geometrically represented by the spa-
tial coordinates v(s) = [x(s), y(s)] (x, y) ∈ �2 of an image,
where s ∈[0, 1] is the parametric domain. By minimizing the
energy function (4), the snake dynamically adapts itself to fit
the shape of a target contour.

Esnake =
∫ 1

0
[Gint(v(s)) + Gext(v(s))] ds

Gint(v(s)) = α(s)
∣
∣v′(s)

∣
∣2 + β(s)

∣
∣v′′(s)

∣
∣2

Gext(v(s)) = wlGl + weGe + wt Gt (4)

where Gext(v(s)) and Gint(v(s)), respectively, denote the exter-
nal and internal energy fields. They are both matrices of the
same size as the image I. The two terms in Gint(v(s)) represent
the elastic energy and bending energy, and the three terms in
Gext(v(s)) represent the energies of lines, edges, and termina-
tions, respectively (wl , we and wt represent the weight factors
of these energies). A more detailed calculation of these energy
terms can be found in [24]. To solve v(s), (4) is discretized,
and the gradient descent method is used to minimize Esnake. Let
∂u
∂t = ∂ Esnake

∂u = 0, the snake can be moved iteratively towards the
local minima of Gext (the edges of the images) according to the
following equation:

Fi,t−1 = ui,t − ui,t−1

δt
+ β

δs4
ui−2,t−1

−
(

α

δs2
+ 4β

δs4

)

ui−1,t−1 +
(

2α

δs2
+ 6β

δs4

)

ui,t−1

−
(

2α

δs2
+ 4β

δs4

)

ui+1,t−1 + β

δs4
ui+2,t−1 (5)

where ui,t represents ui at time t , δt and δs are the time step
length and the spatial sampling distance, respectively, and Fi,t−1

is the value of ∂Gext
∂u (which can be regarded as the external

force field driving the snake) at the i th point at time t − 1.
By iteratively solving (5), the snake is driven to the desired
location, and one frame is segmented. To prevent the point on
the snake from gathering together, a limit is added to restrain
the displacement of the snake in the radial (y) direction [15].

For an ultrasound sequence with reasonable image quality,
the snake algorithm is able to segment the IM borders cor-
rectly using a set of two open-contour snakes [17], as shown in
Fig. 2(a). However, in images with noisy lumen and/or blurred
adventitia, the segmentation may fail because the correct bor-
ders vanish and erroneous borders appear (Fig. 2(b)). More-
over, in ultrasound sequences, the IM borders are periodically
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Fig. 2. Segmentation results of the traditional snake algorithm. The
green lines are the segmentation results, and the red lines are the ground
truth. (a): Correctly segmented borders in images with reasonable qual-
ity; (b) Segmentation failure due to noisy lumen and blurred adventitia;
(c) and (d): Although one frame is correctly segmented (c), the next frame
is not (d) because of large movement between the two frames; (e)–(h):
The segmentation using our methods corresponding to (a)–(d). It is no
longer an issue that the sequences are affected by noise, blurring, and
large movements.

moving up during diastole and moving down during systole. If
the IM borders move downwards rapidly (the downward move-
ment is particularly significant at the end of the T peak of the
ECG signal in some sequences), the traditional snake method
may lose track of the IM borders, and it cannot correctly seg-
ment until the borders move back upwards to a relatively close
location. For example, the segmentation is correct in Fig. 2(c),
but the IM borders move down rapidly in the successive frames
in Fig. 2(d). Resultantly, the segmentation fails in Fig. 2(d) as
well as in several successive frames until the IM borders move
up at diastole.

Thus, although the snake algorithm has existed for two
decades, a robust method to address noisy/blurred images and
large movement between sequences is needed in the context of
current applications. Therefore, grayscale and derivative con-
straint energies are added to the snake algorithm.

2) Adaptive Grayscale-Derivative Constraint Snake for Con-
secutive Image Segmentation: Before setting up the force equa-
tions for the grayscale-derivative snake, it is essential to estab-
lish the concept of the upper and lower neighboring zones of
one point in the snake contour. For an arbitrary point (x , y)
in the contour, the upper neighboring zone is the rectangle re-
gion characterized by the lower-middle coordinates, the width
and the height, which are (x , y), 3, and 5 respectively. Simi-
larly, the lower neighboring zone is a rectangle region whose
upper-middle coordinates are (x , y). The width and height of
the lower neighboring zone are the same as those of the upper
zone, as shown in Fig. 3(a) (the neighboring zones should be
thin, tall boxes, but they are shortened and widened in Fig. 3(a)
for clarity).

Although the segmentation failures shown in Fig. 2 can
be caused by different factors, their results are the same: the
grayscale and/or derivative near the snake contour is abnor-
mal. Thus, a grayscale constraint energy term, Ggc, as well as a
derivative constraint energy term, Gdc, are added to the external
energy to correct the snake positions:

Gext(v(s)) = wlGl + weGe + wt Gt

+ wgGgc + wdGdc (6)

The first three terms in Gext are the same as in the tradi-
tional snake. The added Ggc/Gdc term is decided by the
grayscale/derivative difference between the current frame and
the first frame in the sequence. The dimensions of Ggc and
Gdc are the same as those of Gext (and image I). wg and wd

are the weighting factors of the two constraint terms. For each
point (point i) in the snake contour in the current frame (frame
k), the mean grayscales of its upper/lower neighboring zones
(denoted as Eupper

i,k and Elower
i,k ) are calculated and compared

with the corresponding neighboring zone in the first frame
(denoted as Eupper

i,1 and Elower
i,1 ). If the difference between

these mean grayscales are less than some thresholds, Ggc is 0.
Similarly, for each point in the snake contour, the derivatives of
y with respect to x in the current frame and in the first frame
are calculated and denoted as y′

i,k and y′
i,1. If the relationship

between y′
i,k and y′

i,1 is acceptable, Gdc is 0. If both Ggc and
Gdc are 0, the grayscale-derivative constraint snake retrieves
to the traditional snake. This corresponds to the normal
sequences without noise, blurring, and large movements.
However, when the snake contour deviates from the correct
position and latches onto erroneous edges, the grayscale of its
upper and lower neighboring zones could be abnormal. In this
case, Ggc and/or Gdc are used to help the snake to return to
normal.

(I) Grayscale constraint energy. If the mean grayscale of the
neighboring zones in the current frame is too small (namely,
Eupper

i,1 − Eupper
i,k > tolupper

m or Elower
i,1 − Elower

i,k > tollower
m ), the

neighboring zone is considered to be darker than normal (or
its position is probably higher than the correct position). Then
Ggc is set to be positive in the upper neighboring zone. The
base value of Ggc is set to 200, which means that if wg=1,
the value 200 is added to Gext for each point in the 3 * 5 area of
the upper zone. Conversely, when Eupper

i,k − Eupper
i,1 > tolupper

m or
Elower

i,k − Elower
i,1 > tollower

m , Ggc is set to be positive in the lower
neighboring zone. Since the external force field ∂Gext

∂u always
drives the snake to positions where Gext is small, the positive
Ggc will generate a grayscale constraint force that pushes the
snake out of the erroneous edges. The weighting factor wg is set
to be positively correlated to the grayscale difference (|Eupper

i,1 −
Eupper

i,k | or |Elower
i,1 − Elower

i,k |), which means that the snake will be
pushed back by a larger force if the grayscale is more abnormal.

For example, as shown in Fig. 3(b2), the LI snake (red dashed
line) may get stuck in regions of local noise without Ggc. How-
ever, by comparing the grayscale with that in the benchmark
(Fig. 3(a) and (b1)), it is found that the grayscale of the lower
zone (Elower

i,k ) is smaller than Elower
i,k − tollower

m ; thus, Ggc is set to
be positive (+200) in the upper neighboring zone of the LI snake
(Fig. 3(c2)) and the modified Gext is calculated (Fig. 3(c3)). The
external force is then calculated (Fig. 3(d)), and the LI snake
is pushed downwards to the correct position (red solid line in
Fig. 3(e)). This also applies to the situations in Fig. 2(b) and (d).
The LI snake is pushed down because the grayscale of the lower
zone is small in both figures.

To make our method adaptive to sequences with different
brightness, tolupper

m and tollower
m are chosen to be 0.2Eupper

i,1 and
0.2Elower

i,1 in most cases. However, there are two exceptions:
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Fig. 3. Illustration of the adaptive snake algorithm. (a): The 1st image is a benchmark. The red, magenta, cyan, and blue rectangles represent the
LI upper, LI lower, MA upper, and MA lower neighboring zones of the i th point on the LI/MA border; (b1) and (b2): The mean grayscale and curvature
in the neighboring zones in the kth image (b2) are compared with those in the 1st image (b1); (c1)–(c3): The Gext matrix is calculated using the
image features(c1). The zones where the grayscale-derivative constraint energy should be added in the Gext matrix are identified (c2) and the Gext
matrix is modified (c3); (d): The snakes are next driven to local minima of Gext (regions that are darker in the Gext matrix in (c3)); (e): The results of
the adaptive snake (vk) is thus calculated. This approach can automatically adjust the snake parameters according to the image characteristics.

TABLE I
DIFFERENT ULTRASOUND SYSTEMS, TRANSDUCER FREQUENCY, FRAME TIME, NUMBER OF SEQUENCES OBTAINED FROM EACH CENTER (n), AND NUMBER

OF SEQUENCES USED FOR TRAINING (ntraining) FOR EACH CENTER

Center
number

Canter name Ultrasound system Transducer frequency
(MHz)

Frame time (ms) n ntraining

1 The Second Hospital of Shenzhen,
China

iU22 (Philips Ultrasound, Bothell, WA,
USA)

3∼9 25.55∼29.56 62 20

2 Tongji Hospital, Wuhan, China Vivid E9(GE Vingmed Ultrasound, Fairfield,
USA)

4 40.03∼40.95 40 5

3 Tsinghua University Hospital,
Beijing, China

iU22 (Philips Ultrasound, Bothell, WA,
USA)

3∼9 9.78∼17.55 31 15

4 Renmin Hospital, Shenzhen, China iU Elite (Philips Ultrasound, Bothell, WA,
USA)

3∼9 or 5∼12 26.17∼36.70 20 0

(1)tolupper
m is chosen to be max(10, Eupper

i,1 ) to push LI up because
the mean grayscale in the upper zone of LI is generally less
than 10 in sequences without lumen noise [19]. This means
that if the lumen is not noisy (Eupper

i,1 < 10), the LI snake is
pushed up if Eupper

i,k − Eupper
i,1 > 10 (this could confirme that

Eupper
i,k is too large in unnoisy sequences); if the lumen is noisy

(Eupper
i,1 > 10), the LI snake is pushed up if Eupper

i,k > 2Eupper
i,1 .

This ensures that the LI snake is not pushed up too easily because
of a large Eupper

i,k caused by lumen noise. (2) If the lumen is not
noisy (Eupper

i,1 < 10), the information of Eupper
i,k is not used for

pushing down the LI snake because both Eupper
i,1 and Eupper

i,k of
the LI snake are relatively small, so Eupper

i,k might be less than
0.8 × Eupper

i,1 even if there is no need to push down the LI snake.
Instead, the LI snake is pushed down as long as Elower

i,k < 10
because the region under the LI snake (inside the IM complex)
should never be too dark.

Another reason for using the grayscale constraint energy term
is to reduce the influence of LI and MA on each other. Consider
a case in which the LI border is not distinct and the MA border
is. The LI snake might be attracted to the strong MA border.
Conversely, the MA snake could be attracted to the LI border if
the LI border is strong and the MA border is weak. However,

when the additional grayscale constraint energy is used, the
LI snake can automatically avoid the MA borders because the
neighboring zones are too bright. Additionally, the MA snake
would not be attracted to the LI borders because those locations
are dark. In this way, the grayscale constraint energy reduces or
eliminates the influence of the mutual effect of the two snakes.

(II) Derivative constraint energy. Similar to the grayscale con-
straint energy, if the shape of the snake at the i th point in the kth
frame is not in agreement with that in the 1st frame, Gdc is used
to correct the snake and to maintain a relatively fixed shape of
the snake throughout the sequence. In particular, the IM borders
are smooth curves, so bumps on the snake contour in the kth
frame (Fig. 2(b)) are considered to be not acceptable if there
are no bumps in the 1st frame. These bumps are identified by
finding local maxima(minima). If y is positive (negative) before
and negative (positive) after the i th point, this point is a the
local maximum(minimum). Then, the average absolute values
of the derivatives of each point in the neighborhood of the i th
point (denoted as ȳ′

i,k) are calculated and compared with the
mean absolute derivatives of the corresponding region in the
first frame (denoted as ȳ′

i,1). If ȳ′
i,k − ȳ′

i,1 > tolc (0.5ȳ′
i,1 in our

study), it will be confirmed that there does exist an abnormal
bump in the snake. Gdc is then set to be positive in the upper
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(lower) neighboring zones for local minima (maxima). Similar
to Ggc, the base value of Gdc is also set to 200, and the weight-
ing factor wd is set to be positively correlated with the curvature
difference (|ȳ′

i,k − ȳ′
i,1|). With these derivative constraints added

to the Gext matrix, the snakes are pushed to eliminate the ab-
normal bumps. Actually, the snakes should also be corrected if
ȳ′

i,1 − ȳ′
i,k > tolc , but this never occurs in our experiments. So

this case is temporarily not considered in the current version of
our algorithm.

For example, as shown in Fig. 3(b2), the MA snake (blue
dashed line) may fail to lock onto the correct (but blurred)
MA border without additional constraint energy. Unfortunately,
the grayscale constraint Ggc cannot be added because neither
the upper neighboring zone nor the lower neighboring zone of
the MA snake is bright enough in this frame (neither Eupper

i,k −
Eupper

i,1 > tolupper
m nor Elower

i,k − Elower
i,1 > tollower

m is satisfied).
With the help of Gdc, a local maximum (the lowest point in
the figure) is found. Then ȳ′

i,k is calculated and compared with
ȳ′

i,1. Since the contour near the i th point is nearly horizontal
in the 1st frame and slanted in the kth frame, ȳ′

i,k − ȳ′
i,1 > tolc

is satisfied and Gdc is set to be positive (+200) in the lower
neighboring zone of the MA snake (Fig. 3(c2)). Thus, the MA
snake is pushed upwards to the correct position (Fig. 3(e)).

From the above examples, we observe that the use of an ap-
propriate grayscale constraint energy and derivative constraint
energy complement each other and yield reasonable segmen-
tation results even if the sequence has a noisy lumen, blurred
adventitia, and large movements between consecutive frames.
With these accurate measurement, the H∞ filter is able to ro-
bustly obtain the optimal estimation by minimizing the worst-
case error.

III. EXPERIMENTS AND RESULTS

A. Population Study, Data Collection, and
Parameter Training

A total of 3 synthetic models and 153 subjects were enrolled
in our study. The synthetic sequences were generated from the
toolbox for in silico evaluation of motion estimators for the ar-
terial wall, developed by the BioSim Laboratory of the National
Technical University of Athens [29]. For the real subjects, four
ultrasound physicians from four different medical centers col-
lected carotid ultrasound sequences using ultrasound systems
and linear array transducers. The ultrasound system name, fre-
quency of the transducers, frame time, number of sequences (n)
obtained from each center, and number of sequences used for
training the optimal parameter settings (ntraining) are presented
in Table I. The ultrasound sequences were recorded through
3∼6 consecutive full cardiac cycles with a recognizable R peak
in the ECG wave. During collection, the subjects were examined
in the supine position, with their heads turned 45◦ away from the
examined side. All imaging data were saved in DICOM format
for off-line analysis. We ran our program on Matlab 2015B on
a desktop computer with an Intel(R) Core(TM) i5-5200U CPU
(2.20 GHz) and 8 GB RAM. First, the sequences from the four
centers were divided into a training set and a testing set. The

Fig. 4. The frames that are manually delineated in a sequence (marked
by the blue arrows).

Fig. 5. The segmentation results of some sample images in the se-
quences. Though the image characteristics of these sequences are sig-
nificantly different, the segmentation results of all the sequences are
close to the manual delineations, which means our method performs
well in different data sets.

parameters of our H-inf grayscale-derivative constraint snake
were determined using the training set. Then, the testing set was
used to evaluate our proposed method. All the sequences from
Renmin Hospital were used for testing to evaluate the robust-
ness of our method to sequences with unknown morphologies
and/or dynamics.

After the training process, the optimal parameter settings
were empirically determined and kept unchanged throughout
the testing process. The kernel size and standard deviation
of the Gaussian filter used for pre-processing were 5 × 5 and
1px; the user-specified performance bound of H∞ filter θ =
0.1; the weight factors of elastic energy α(s) = 4 and bending
energy β(s)=2; the time step length δt= 0.0025; the number of
iterations for solving ui using (5) was 20; the spatial sampling
distance δs = 1; the weight factors for Gl, Ge, and Gt were
0.9, 10, and 2, respectively; the weight factor of the grayscale
constraint energy term wg was (1 + 0.05 × |Eupper

i,1 − Eupper
i,k |)

or (1 + 0.05 × |Elower
i,1 − Elower

i,k |); and the weight factor of the
derivative constraint term wd was 10 × |ȳ′

i,k − ȳ′
i,1|.

Three ultrasound physicians (P1∼P3) were asked to man-
ually delineate the IM borders. The manual delineation was
performed at the end of the R and T peaks, as well as for the
frames in the middle of the two peaks, as shown by the blue
arrows in Fig. 4. The reason for this decision was that the R
peak represents the end of diastole (corresponding to the largest
IMT), and the end of the T peak represents the end of sys-
tole (corresponding to the smallest IMT). A total of 1404 (156
sequences × 9 = 1404) ultrasound frames in the sequences
were delineated. P1, P2 and P3 manually segmented all the
abovementioned frames blinded to the other results. The dif-
ferences between these segmentations were used to assess the
inter-operator variability. Then, P1 segmented the IM borders
again one month after his first segmentation without seeing his
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TABLE II
SEGMENTATION ERROR DISPLAYED AS M AE ± STANDARD DEVIATION

Center number Pixel size Border name Error in pixel Error in μm Inter obs error 1 Inter obs error 2 Intra obs error

0 – LI 0.58 ± 0.69 – – – –
MA 0.57 ± 0.74 – – – –
1 52 LI 0.62 ± 0.72 32 ± 37 39 ± 41 33 ± 44 27 ± 38
MA 0.67 ± 0.79 35 ± 41 40 ± 39 44 ± 50 31 ± 41
2 111 LI 0.62 ± 0.80 68 ± 89 57 ± 80 64 ± 81 39 ± 52
MA 0.64 ± 0.68 71 ± 75 64 ± 77 81 ± 79 59 ± 71
3 53 LI 1.25 ± 1.37 67 ± 73 77 ± 86 71 ± 76 51 ± 52
MA 1.29 ± 1.13 69 ± 60 82 ± 68 77 ± 70 61 ± 46
4 84 LI 0.81 ± 0.82 69 ± 70 73 ± 53 84 ± 60 58 ± 72
MA 0.95 ± 0.93 81 ± 79 103 ± 61 105 ± 72 63 ± 100
average 72 LI 0.77 ± 0.94 53 ± 67 56 ± 66 51 ± 61 43 ± 58
MA 0.82 ± 0.89 57 ± 63 63 ± 63 65 ± 64 52 ± 67

The center numbers correspond to those in Table I, and 0 indicates the synthetic models. Except the fourth row (error in pixels), all the errors are in μm. The
denotation inter obs error 1 means the segmentation error between P1 and P2, inter obs error 2 means the segmentation error between P1 and P3, and intra obs
error means the segmentation error between the two delineations of P1. In the 3rd ∼ 8th rows, the number in the upper cell of each column represents the LI
segmentation error, and that in the lower cell represents the MA segmentation error.

initial segmentation. This information was used to assess intra-
operator variability.

B. Examples of IM Segmentation in Ultrasound
Sequences With Variant Morphologies and Dynamics

The IM borders were successfully segmented for all the se-
quences enrolled, although the morphologies and dynamics of
the sequences varied widely. The segmentations of the figures
that were wrongly segmented by traditional snake method are
presented in Fig. 2(f) and (h). Moreover, representative segmen-
tations of the synthetic models and real images are illustrated in
Fig. 5. The red lines represent the reference contours segmented
by the physicians (the mean value of the four independent de-
lineations by P1∼P3), and the green lines represent the results
of our segmentation method. Fig. 5 represents image sequences
with different morphologies from the 4 centers. Fig. 5(a) is the
synthetic sequence, and its IM borders are clear and horizon-
tal; Fig. 5(b)–(f) are selected from five sequences from center 1,
Fig. 5(b) is characterized by relatively clear IM borders, Fig. 5(c)
is characterized by noise just above the LI border, Fig. 5(d) is
characterized by severe noise in the lumen, Fig. 5(e) is character-
ized by a blurred MA border and noise just above the LI border,
and Fig. 5(f) is characterized by plague and a rather thick IMT.
Fig. 5(g)–(i) are from center 2, Fig. 5(g) is affected by severe
lumen noise, Fig. 5(h) has a significant horizontal edge inside
the IM complex, Fig. 5(i) has a blurred flocculent structure on
the left half of the LI border. Fig. 5(j)–(m) are from center 3,
Fig. 5(j) is characterized a plaque with some very bright points
inside (which form erroneous edges), and the blurred flocculent
structure also exists on the right half of the LI border; Fig. 5(k)
has twisting IM borders (horizontal on the left side, bending in
the middle, and horizontal on the right side) with a blurred MA
border, and Fig. 5(l) has a significant plague whose shape is
different from that in Fig. 5(f), a bright spot also occurs inside
the plague, Fig. 5(m) also has a significant plague, but several
places inside it are very dark. Fig. 5(n) and (o) are from center
4, Fig. 5(n) has a similar morphology to those from center 2,
but it suffers from large radial movement of the IM borders in

consecutive frames, Fig. 5(o) is characterized by a discontinu-
ous LI border and a dark IM complex. It should also be noted
that some of these IM borders are horizontal, some are slanted,
while others have plagues with arc-shaped structures.

The accuracy of our method is quantitatively evaluated using
the mean absolute average error (M AE) [10] in both pixels and
μm, as shown in Table II (M AE ± standard deviation). All the
unitary segmentation errors of each point are aggregated into a
single vector; then, M AE and standard deviation are computed.
It should be noted that the pixel size of the synthetic models
is not given in [29]; thus, the error of the synthetic models is
only given in pixels. Moreover, the average error in pixels is
the weighted average (the weight factor of each center is the
number of sequences) of all the sequences, while the average
error in μm is the weighted average of the real sequences (the
synthetic models are excluded). For the 156 sequences involved,
the overall accuracy of our method is approximately less than
1 pixel, and the absolute error in μm is ∼55 μm. This error is
very close to the inter- and intra-analyst variability.

The computation time is proportional to the number of points
in the snake and inversely proportional to the number of itera-
tions used to solve ui . When there are 360 pixels in the snake,
the processing time is ∼0.24 s for a single frame.

The Bland-Altman plots in Fig. 6 show that the IM border po-
sitions estimated by our method are in agreement with the man-
ual delineations. The plot consists of more than 50000 points
from the 156 sequences. The different colors represent data from
different centers (blue: synthetic, red: center 1, yellow: center 2,
magenta: center 3, black: center 4, the data from the synthetic
sequences are not shown in Fig. 6(c) and (d)). Fig. 6 shows
that the signed bias between our approach and the ground truth
is 1.44 μm (0.020 pixel) for LI and −3.38 μm (0.047 pixel)
for MA. The 95 % confidence intervals (dark green lines) are
227 μm for LI and 239 μm for MA. Furthermore, the scattered
points are linearly fitted, and the absolute values of the slopes of
the fitted lines (black dashed lines) are less than 0.001 for both
LI and MA. The average of our approach and the ground truth
has little effect on their difference.
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Fig. 6. Bland-Altman plot for segmentation ((a): LI, in pixels; (b): MA,
in pixels; (c): LI, in μm; (d): LI, in μm). The blue lines represent the
difference between our method and the ground truth. The intervals be-
tween the dark green lines are the 95% confidence intervals. The black
dashed lines are the linearly fitted results.

Fig. 7. Linear regression of the IMT obtained from our method and the
manual delineations.

In addition to the radial positions, the IMT is also evaluated
to further assess the results. Fig. 7 shows the results of a linear
regression analysis of all the sequences. Each circle in Fig. 7
corresponds to the IMT value of one sequence. Again, the liner
regression shows that the IMTs obtained using our proposed
method are consistent with the segmentations performed by
P1∼P3. The R2 value of the linear regression is 0.92.

Our approach is compared with four other methods: (1)
Kalman snake method; (2) snake method; (3) dynamic pro-
gramming [15]; (4) level set method using Chan-Vese energy
functional [27]. We attempted to re-implement these methods,
performed the evaluations using the same sequences from the 4
medical centers, and calculated the mean absolute errors (M AE
s). Fig. 8 compares the average M AE of these methods. The
error of our method is generally smaller than that of the other
methods for the sequences from the four centers. The aver-
age M AE using our method is 53 μm for LI and 57 μm for
MA, whereas those using Kalman snake, snake, dynamic pro-
gramming, and level set method are, respectively, 66 μm for
LI and 68 μm for MA, 65 μm for LI and 68 μm for MA,

Fig. 8. Comparison of the MAE of our method with those of other meth-
ods (HS: H∞ snake, our proposed method; KS: Kalman snake method;
S: snake method; H: H∞ filter used with snake (not modified by the
grayscale-derivative constraints); DP: dynamic programming; CV: level
set method using Chan-Vese energy functional; inter1: inter-observer
variability of P1 and P2; inter2: inter-observer variability of P1 and P3;
intra: intra-observer variability). The red/blue bars represent the LI/MA
segmentation error.

74 μm for LI and 70 μm for MA, and 81 μm for LI and
71 μm for MA. Specifically, the p-values are 0.027 and 0.043
for, respectively, LI and MA if we use the mean error of each
sequence as the samples to perform a t-test to compare the pro-
posed method and the Kalman snake method. For other meth-
ods, the p-values are less than 0.05 (snake: 0.027 for LI and
0.04 for MA; Chan-Vese: 0.018 for LI and 0.026 for MA; Dy-
namic programming: 0.022 for LI and 0.038 for MA). These
results shows that the superiority of our method is statistically
significant.

To evaluate the sensitivity of our method to noise, six dif-
ferent types of noise: (I) Gaussian white noise, (II) Pepper-salt
noise, (III) Uniform distribution noise, (IV) Poisson noise, (V)
Rayleigh noise, and (VI) Speckle noise with different signal-to-
noise ratios (SNR = 30 dB∼3 dB) generated by Matlab software
are added to the ultrasound sequences. Because there are only
3 synthetic sequences, and the noise characteristics can not be
exactly the same even for the same subject due to phase de-
viation caused by the operation of the physicians [30], some
unknown noise may occur in ultrasound sequences, even if the
image features of the IM complex are almost identical. To test
the robustness of our method to this unknown noise, we also
add these six types of noise to the real ultrasound sequences.
These six types of noises are of different characteristics, such as
additive and multiplicative, as well as zero mean and none-zero
mean. Fig. 9 shows that the segmentation error of our approach
remains small even if the signal-to-noise ratio becomes small.
Overall, the largest effect of additional noise at the smallest
SNR is 21 μm for LI and 22 μm for MA, as shown in Fig. 9(a)
and (b).

To test the effect of noise in the initial contour, the initial
contours are: (1) 1 pixel above the ground truth; (2) 1 pixel
below the ground truth; (3) added with uniformly distributed
noise between −1 and 1; (4) 2 pixels above the ground truth; (5)
2 pixels below the ground truth; and (6) added with uniformly
distributed noise between −2 and 2. As shown in Fig. 10, the
mean effect of the initial contour on the segmentation error is
less than 1 pixel (≈ 72 μm on average) when the error of initial
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Fig. 9. Errors of our approach for segmentation at different noise levels.
The denotation Inf represents the case without additional noise. Fig. 9(a)
and (b) represent the average LI/MA segmentation error at different noise
levels. Each plot in these figures corresponds to one type of noise.

Fig. 10. The effect of initial contour error on segmentation error. The
denotations 0, 1u, 1d, 1r, 2u, 2d, 2r respectively represents the initial
contour is at the ground truth, 1 pixel above the ground truth, 1 pixel
below the ground truth, added with a uniformly distributed noise between
−1 pixel and 1 pixel, 2 pixels above the ground truth, 2 pixels below the
ground truth, added with a uniformly distributed noise between −2 pixels
and 2 pixels. The red/blue bars represent the LI/MA segmentation error.

TABLE III
SEGMENTATION ERROR M AE IN μm WHEN SEQUENCES FROM DIFFERENT

CENTER IS USED FOR TESTING

experiment
name

training
centers

testing center M AE in μm
(LI)

M AE in μm
(MA)

EXP1 1 2 3 4 53 ± 67 57 ± 63
EXP2 1 2 4 3 61 ± 89 62 ± 76
EXP3 1 3 4 2 56 ± 72 59 ± 68
EXP4 2 3 4 1 65 ± 89 66 ± 74

4 experiments are carried out using respectively sequences from 1,2,3 for training and 4
for testing, 1 2 4 for training and 3 for testing, 1 3 4 for training and 2 for testing, 2 3 4 for
training and 1 for testing (named as EXP1∼4).

contour is less than 2 pixels, regardless of the type of noise
added to the initial contour.

To ensure that our method is not over-fitted to the training
data shown in Table I, we conducted a set of experiments
using sequences from different centers as training sets. In each
experiment, sequences from one center are left out for testing,
and the sequences from the other three centers are used for
training. The results are shown in Table III. The standard
deviation of the 4 M AEs is small (LI: 5.79 μm, MA: 4.31 μm),
which demonstrates that our method is not over-fitted to any of
these data sets.

IV. DISCUSSIONS

1) The H∞ State-Space Framework: The H∞ filter is used
to guarantee robustness to discrepancies in the system models.
In the time updating process of the framework, the IM border
positions in the current frame are initiallized with ûk−1. This
can eliminate the effect of erroneous strong edges far from the
correct IM border positions in consecutive frames. Similar work
using ûk−1 as the a priori estimate can also be seen in many
works on segmentation [14], [20] and/or tracking [20], [31],
[32], where different segmentation/tracking methods (dynamic
programming, Kalman snake, block matching, ultrasound tag-
ging) are used. In the Kalman filter, the system model (Fk, Hk,
Qk, and Rk) is assumed to be precisely known, and the trace of
the error covariance matrix Tr(Pk) is minimized as cost function
J .

In the measurement updating process, the superiority of the
H∞ filter is due to its robustness to unknown errors in the system
and noise model because it minimizes the worst-case error. This
is exactly the case in sequence segmentation because the IM
border positions are not the same in consecutive frames, and we
have no a priori idea of the precise movement for each point.
Thus, we have to assume that the state transition matrix Fk−1

in (1) is I, which unfortunately does not always represent the
reality. Similar problems are encountered when determining the
Q and R matrices. This means that there may be errors in the
state-space model. Thus, we should give more attention to the
measurements vk by increasing Kk. However, vk may also be
inaccurate; thus, blindly placing more emphasis on vk may also
result in poor results. One way to solve this problem is to obtain
more precise vk (which will be discussed next); another way is
to find an optimal solution to minimize the largest error. This
is done in the H∞ filter by assuming that there is an adversary
that maximizes J to degrade our state estimate by choosing
u0, qk, and rk. Then, we minimize J (2) under the worst case
caused by the adversary with respect to û+

k and vk. Thus, it is
derived that (as shown in (3)) the H∞ filter gain Kk is larger
than the Kalman gain because the term θLkPk is subtracted.
In this way, the largest error is restricted to a relatively small
scale (<1/θ ). This provides the optimal way to increase Kk.
In our experiments, Fig. 8 shows that the segmentation error is
smallest when using H∞ filter. Additionally, the first and third
bars in Fig. 8 show that the H∞ filter results in a decrease of
segmentation error by ∼10 μm, which demonstrates the role
of the H∞ filter. Additionally, for sequences from the synthetic
models and center 1 (which is the most fully trained center), the
errors of the H∞ filter and that of the Kalman filter are similar
(Fig. 8(a)); however, for the sequences that are not fully trained,
the superiority of the H∞ filter to the Kalman filter can be more
clearly demonstrated. (The segmentation errors in pixels using
Kalman are: synthetic models: 0.60(LI) and 0.64(MA); center 1:
0.68(LI) and 0.73(MA); center 2: 0.74(LI) and 0.74(MA); center
3: 1.72(LI) and 1.58(MA); center 4: 0.93(LI) and 1.09(MA).
These results can be compared with the results in the fourth row
of Table II.)

2) The Grayscale-Derivative Constraint Snake: Under the
H∞ state-space framework, the grayscale-derivative constraint
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snake algorithm is used to acquire accurate measurements. In
previous work, [6], [33], [34] use traditional snakes or Williams
and Shah snakes to segment the IM borders. However, traditional
snakes may fail in the cases shown in Fig. 2(b) and (d). In [16],
the snakes are modified by an attractive term to segment single
ultrasound frames. The snake is pushed to the correct border
by an additional constraint energy that is proportional to the
distance of the snake from the edge if it is in image regions with
a uniform intensity. This algorithm also maintains a constrained
distance between the two snakes. This modification can solve
the problem shown in Fig. 2(d); however, when there are strong
erroneous edges, or when the shape of the LI/MA border is
irregular (such as those in Fig. 5(d)–(f) and (j)–(l)), constraining
the snakes only by attracting them to the edges may be not
sufficient.

Except for the image derivatives, our grayscale-derivative
constraint snake makes full use of the local grayscale and
derivative information. By comparing the local grayscales of
the neighboring zones of each point in the current frame with
its benchmark, the grayscale constraint snake can determine
whether the snake position is correct (if not, Ggc will be au-
tomatically used to modify the snake). This determination is
not affected by blurred borders, so our method can segment se-
quences with a blurred flocculent structure near the LI border
(as in some sequences in center 3). Moreover, the derivative
constraints prefer a relatively fixed and smooth shape and pre-
vent abrupt variation in radial position. The weighting factor wd

is relatively large and positively correlated with the curvature
difference, so a strong force is formed to counteract the erro-
neous force caused by the bright or dark spots inside the IM
complex (as in some sequences in center 3). Thus, our method
produces reasonable results for sequences with large discrep-
ancies in morphology, intensity, and dynamics (Figs. 2(e)–(h)
and 5). The third and fourth bars in Fig. 8 indicate that the er-
ror using the H∞ filter and snake without grayscale-derivative
constraints is larger than that using grayscale-derivative con-
straint snake without the H∞ filter. Thus, accurate measure-
ments for the H∞ filter is important in the state estimation.
Nevertheless, we should not ignore the contribution made by
the robustness of the H∞ filter. Actually, the accuracy of the
grayscale-derivative snake and the robustness of the H∞ filter
are two complementary strategies for accurate segmentation.
The H∞ filter gives more attention to the measurements, and the
grayscale-derivative snake helps the measurements to be more
precise.

The GVF snake [35] is much newer than the traditional snake.
However, we find that the GVF snake does not statistically out-
perform the traditional snake in our application. This may be
because the main advantage of the GVF snake is that it is able to
attract snakes into boundary concavities from relatively farther
positions in homogeneous regions [35]. However, in our appli-
cation, there are almost no concavities in the IM borders. Also,
the grayscale is not uniform in most regions of the ultrasound
images because IM borders and non-Gaussian image noises can
produce boundaries. Although the parameter μ can be tuned to
address image noise, we find that if μ is large, the results can
be poor (the condition of convergence may be violated); if μ

is small, the role of the GVF force is not significant (the result
is almost the same as that of the traditional snake). Thus, we
designed our algorithm basing on the traditional snake to reduce
the computational cost.

It is also interesting that the base value of Ggc (which is
set to 200) need not be changed throughout our experiments.
It works well with sequences with different morphologies and
dynamics. This can be explained by the fact that a positive Ggc

will generate a grayscale constraint force and change the force
acting at each point of the snake (Fi,t−1 in (5), which drives the
snake to the correct positions). For different sequences, Fi,t−1

differs for the same Ggc. However, the movement of the snake
is determined by iteratively solving (5), so the snake position
is decided by the combined effects of the force Fi,t−1, time
step length δt , and number of iterations. Thus, the difference in
Fi,t−1 can be compensated by changing the number of iterations
automatically (if Fi,t−1 is larger, fewer iterations are needed and
the snake stops iteration automatically at the image boundaries;
if Fi,t−1 is smaller, more iterations are needed, but the snake can
still arrive at the minimum in 20 iterations). Therefore, when
the force Fi,t−1 changes within a certain limit, the results of the
snake do not change, so the same Ggc can be used for different
sequences.

3) Evaluation of our Method: As shown in Table I, the manu-
facturers model name, the transducer frequency, and the frame
time are not the same in these datasets. Thus, these datasets pro-
vide sequences with different characteristics and image quality:
sequences from the synthetic models have the best image quality
(Fig. 5(a)) with well-visible IM borders; sequences from cen-
ter 1 are the most fully trained, because they have reasonable
image quality and a large variety of morphologies, noise, blur-
ring, intensity, and dynamics (Fig. 5(b)–(f)); sequences from
center 2 are mostly horizontal with relatively clear MA bor-
ders, but the lumen is always noisy and the LI border is some-
times not clearly detailed. Additionally, large movements of
IM borders are observed in consecutive frames in several se-
quences (Fig. 5(g)–(i)); sequences from center 3 are the most
challenging because they have irregular, unexpected morpholo-
gies and poorly visible IM borders, and in several sequences,
there are high-intensity spots inside the IM complex, while
in some others, there are blurred flocculent structure on the
LI border (Fig. 5(j)–(m)); sequences from center 4 are simi-
lar to those from center 2, but they are more challenging be-
cause the movements are larger. Moreover, the IM borders are
sometimes discontinuous and not sufficiently clear (Fig. 5(n)
and (o)). All 156 sequences with different characteristics are
properly segmented without changing the parameters in our
method.

The accuracy of the method is of the same order of magnitude
as the inter-/intra-observer variabilities, as shown in Table II
and the first bars in Fig. 8. The segmentation errors in pixels
of centers 1 and 2 and the synthetic models are small. The
segmentation error in pixels of center 3 is the largest, but
the error is still close to the inter-/intra-observer variabilities.
The error in pixels of center 4 is relatively large, probably
because the grayscale and/or morphology of the IM complex
are not the same in the 1st and kth frames in several sequences
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(which is a limitation of our method that will be discussed
next). However, the error increment is not significant (0.2
pixels for LI and 0.3 pixels for MA compared with centers
1 and 2).

Table III confirms that our method is not over-fitted to the
training datasets. The mean absolute average errors for both LI
and MA are all small (∼60 μm or ∼0.83 pixel) regardless of
which center is left out as the testing set. The standard deviation
of the 4 M AE s is small (LI: 5.79 μm, MA: 4.31 μm). The vari-
ance of the model (measured by the variance of the four M AE
s) is also small (LI: 33.52 μm2, MA: 18.58 μm2). Addition-
ally, we perform a supplementary experiment using another 20,
5, and 15 sequences (which means none of these sequences are
used for training in the original experiment mentioned in Table I
and II) from center 1, 2 and 3 for training. The results of this
experiment are MAE for LI: 59 ± 70 μm and MAE for MA: 60
± 71 μm, which are very close to those in Table II. This shows
that our model is stable when the training data set is perturbed.
These results demonstrates that our method is not over-fitted to
any of these data sets in our experiment. Also, the fact that our
model trained using center 1, 2, and 3 performs well for center
4 (which is unknown to the model during the training process)
proves that our model is able to accurately segment sequences
from medical centers whose sequences are not encountered in
the training process.

In comparison with other methods, Fig. 8 shows that the ac-
curacy of our method is higher. Also, as reported in the review
papers [3], [10], the accuracy of our method is comparable to the
most novel methods. Notwithstanding, these methods should be
compared with care because the evaluations are not the same
in different papers [14]. On one hand, the sequences used in
different studies are not the same. On the other hand, although
we attempted to re-implement the methods used in other works
[15], [27], the technical details may not be exactly the same.
To genuinely compare different segmentation approaches, eval-
uation should be performed using the same data sets for all
methods with the same evaluation metrics, and a larger-scale
study is required [11], [14].

4) Limitations and Perspectives: Our work is intended for
segmenting ultrasound sequences with different morphologies
and/or dynamics. However, there are some limitations in our
proposed method. First, although the H∞ filter is robust to sys-
tem error, it is still beneficial to the segmentation process if
the system matrices (Fk, Hk, Qk, and Rk) are precisely de-
fined. Although the contours are successfully extracted using
our method, these matrices are simply set to be I, which does
not always represent the reality. If a preliminary estimation
of the IM border positions can be obtained using edge de-
tectors, this estimation could be used to tune the system ma-
trices [31] and accordingly contribute to improvement of the
method.

Secondly, the parameters for the H∞ filter and the grayscale-
derivative constraint snake are selected empirically based on the
training set. We tune the parameters to their optimal values by a
grid search with some granularity. For example, for the threshold
Eupper

i,1 , the search is in [0.1, 0.4]Eupper
i,1 and the granularity is

0.1 Eupper
i,1 . However, the optical threshold may be between the

grids. The use of state-of-the-art methods, such as deep learning,
to determine the optimal parameters could further improve the
accuracy.

Third, our method maintains a relatively fixed shape of the
IM borders, so it might be sub-optimal if the appearance of the
IM complex varies greatly during the sequence. For example, if
there exist well-visible interfaces in the first frame that become
blurred (or even disappear) in later frames, the error of these
frames may be large. Actually, this occurs in 5 sequences from
center 4, which results in an increase in M AE of ∼0.1 pixel at
this center.

V. CONCLUSION

In this paper, we have developed an accurate approach to
segment the intima-media layer during the cardiac cycle. In our
approach, a worst-case estimation error minimization H∞ filter
is used in combination with a grayscale-derivative constraint
snake to address the noise, morphologies and dynamics of the
ultrasound sequences. Our proposed approach is evaluated using
3 synthetic models and 156 sequences from 4 medical centers,
and the results are compared with manually traced results as
well as the results of 4 other methods: snake, Kalman snake, dy-
namic programming, and level set method using the Chan-Vese
energy functional. The results adequately demonstrate the accu-
racy and robustness of our method, and its potential to segment
IM borders for clinical diagnosis. Our work is implemented in
a Matlab graphical user interface and will be publicly available
shortly.
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