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ABSTRACT

Mixture-of-Experts (MoE) is a foundational architecture in modern large language
models (LLMs). However, a structural limitation has been overlooked: the router
is external to the experts, rendering it unaware of their internal capabilities. This
gap between routing decisions and expert capabilities limits model performance.
In this paper, we demonstrate that the activations of a small subset of “routing neu-
rons” within each routed expert’s own parameters can faithfully capture the match
between the expert’s capabilities and input tokens. Collectively, these distributed
routing neurons within each routed experts compose an implicit, capabilities-aware
“router”, where the norm of the routing neurons’ activations suggests its corre-
sponding expert’s weight. A straightforward implementation of this design requires
activating all experts to compute these routing signals, where the unselected ex-
perts’ routing neurons are abandoned. To avoid the computational waste from
activating unselected experts, we introduce another novel design: we unify the
routing neurons of all routed experts to form a virtual shared expert, replacing the
standard shared expert in MoE. In this virtual shared expert, activations are not
wasted, as they serve not only for routing but also contribute to the final outputs of
both the shared expert and partial of routed experts. We name this new MoE variant
Union-of-Experts (UoE), drawing an analogy where the routing neuron acts as each
expert’s representative, and the virtual shared expert is their union, enabling the
experts’ autonomous selection and joint statement. We pre-train language models
ranging from 1B to 3B parameters, showing that UoE consistently outperforms
strong MoE baselines with comparable efficiency.

1 INTRODUCTION

Mixture-of-Experts (MoE) has garnered increasing research interest. A number of MoE-based LLMs
have been proposed in recent works (DeepSeek-AI et al., 2025; Yang et al., 2025; OpenAI, 2025),
exhibiting strong performance across a broad spectrum of downstream tasks. In Transformer-based
MoEs, the feed-forward network (FFN) is replaced with multiple smaller expert networks, and a
router dynamically routes each input token to a subset of experts. This sparse activation mechanism
facilitates the training of trillion-parameter models with feasible computational overhead, establishing
MoE as a fundamental architecture in modern large language models (LLMs).

However, there is a gap between routing decisions and expert capabilities. Because the router is a
standalone module external to the experts, it can only infer their abilities through trial and error. When
a token is inappropriately routed, the expert has to adapt to that token, compromising its specialization.
To solve this, the “expert autonomy” concept has been proposed in AoE (Lv et al., 2025), wherein all
experts process the token and the one with the largest activation norm (indicating the best match) is
selected. While this concept improves performance, it incurs a significant computational overhead as
the number of experts grows. This inefficiency contradicts the core efficiency goals of MoE models
and thus limits the practical deployment of this concept in LLMs, especially under the trend of
expanding total expert numbers of industrial MoE models (OpenAI, 2025; Team et al., 2025).

In this paper, we propose Union-of-Experts (UoE), a new MoE architecture that adopts the principle
of expert autonomy to achieve satisfactory performance, while maintaining efficiency comparable
to traditional MoE models. Figure 1 provides a comparative overview of traditional MoE and our
proposed UoE architecture. The first key advancement of UoE is to adopt only a small partial of
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Figure 1: A comparison of Mixture-of-Experts (MoE) and Union-of-Experts (UoE) routing mech-
anisms. In MoE, Expert 1 & 2 are selected based on highest router logits. In UoE, Expert 1 & 2
are selected as its routing neurons exhibit the largest activation norms. Gray modules are inactive;
regions with diagonal stripe denote the routing neurons within the weight matrix.

expert neurons to represent the activation degree of an entire expert, based on a surprising finding:
only a small subset of Ns ≪ D neurons within each expert weight, referred to routing neurons,
is sufficient to parameterize the routing function, where D is the dimension of the intermediate
activations. This reduces the computational overhead of AoE to a fraction of Ns/D. Our analysis
show that the selection of routing neurons can be highly flexible. By simply pre-designating the
first Ns neurons in expert’s weight matrix as routing neurons before training, their activations
spontaneously exhibit high correlation with those of the entire weight matrix. This indicates that
these neurons can effectively represent the behavior of the majority of neurons within the expert.

Nevertheless, computing the routing neurons in each expert still introduces additional overhead.
To eliminate this remaining cost, the second key advancement of UoE is to pack routing neurons
from each expert into a virtual shared expert. This approach is grounded in a key insight: the
shared expert (Dai et al., 2024) widely used in MoEs, which processes all tokens to consolidate
common capabilities implicitly scattered across individual experts. UoE explicitly implements this
common capability consolidation by reusing the already-computed routing neurons, which perform
the common routing function, to collectively form the output of this “virtual” shared expert. By
“virtual,” we mean that this is not a materialized module but a conceptual structure, describing how
the outputs of routing neurons—which remain within their original experts—are reused collectively.
Consequently, the computational cost of these neurons is reused rather than wasted. This allows
UoE to achieve computational and memory costs identical to a standard MoE architecture while
delivering superior performance.

We pre-train UoE with up to 3 billion parameters, achieving superior performance over both MoE
and AoE while keeping the inference cost on par with MoE. Additionally, we present a thorough
model analysis of UoE to underscore its advantages, such as improved load balance.

2 BACKGROUND AND NOTATION

2.1 MIXTURE-OF-EXPERTS (MOE)

We adopt the Gated Linear Unit (GLU) as the expert module, following mainstream MoE designs (Dai
et al., 2024; Jiang et al., 2024). The i-th expert is parameterized by three matrices: Wi

g,W
i
p ∈ Rd×D

and Wi
o ∈ RD×d, with its forward pass defined as:

Ei(x) =
(
SiLU(xW i

g)⊙ (xW i
p)
)
W i

o . (1)

An MoE FFN layer consists of N experts, with K experts selected to process an input token x.
Adopting the design from (Dai et al., 2024), we also include a shared expert Es that processes all
tokens. This shared expert captures the common capabilities, allowing the other experts to become
more specialized.
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The output of an MoE FFN layer is the sum of two components: the output of a shared expert
and a weighted sum of the selected expert outputs. The weights for the latter are given by a router
parameterized by a matrix R ∈ Rd×N :

G(x) = softmax (xR) ,

FFN(x) = Es(x) +
∑

i∈TopK(G(x))

G(x)[i] · Ei(x). (2)

2.2 AUTONOMY-OF-EXPERTS (AOE)

Input x

Softmax(                  )

SiLU

𝐖"

𝐖#

𝐖$%&'

𝐖()

Norm.

Expert 2Expert 1 Expert 3

Figure 2: The overview of an AoE model.

AoE (Lv et al., 2025) addresses the misalignment
between router decisions and experts’ actual capa-
bilities by encoding the routing function G(x) into
the expert parameters themselves. The key insight
is that the intermediate activation magnitude of an
expert indicates how well its capabilities match the
input token’s requirements.

To reduce the computational cost associated with D-
dimensional activations, W i

g is replaced with two
low-rank matrices: W i

down ∈ Rd×r and W i
up ∈

Rr×D′
. The intermediate dimension D′ is chosen

to preserve the same number of parameters as the
original MoE, and is given by:

D′ =
3Dd− dr

r + 2d
.

Each token is multiplied by all W i
down matrices, and the L2-norms of the resulting N activations

(each of dimension r) are used for expert selection. Experts with the top-K activation norms continue
forward computation, while unselected experts terminate early. The routing function G and the
forward pass for selected experts are defined as:

G(x) = softmax ([g1, g2, · · · , gn]) , where gi = ∥xW i
down∥,

Ei(x) =
(
SiLU(xW i

downW
i
up)⊙ (xW i

p)
)
W i

o .
(3)

While AoE’s autonomous expert selection leads to better downstream task performance than MoE, it
introduces computational and memory overhead. The inefficiency arises because all experts compute
activations, but only a fraction are used in the output. This waste scales with an increased N and a
decreased K. Therefore, this paper focuses on achieving autonomous selection with an efficiency
comparable to vanilla MoE, independent of N and K.

3 METHODOLOGY

3.1 MOTIVATION

To improve efficiency, AoE introduces factorization of Wg . Paradoxically, this design traps AoE in a
dilemma: it must contend with either substantial computational overhead or excessive memory access.
Consequently, factorization itself becomes the fundamental bottleneck to further efficiency-wise
advancement in AoE. Our following analysis reveals this inherent dilemma. The detailed derivation
of the results in this subsection can be found in Appendix A.

We show that, in theory, AoE introduces additional FLOPs per token, which grow linearly with the
factorization rank r compared to a vanilla MoE (with identical parameter count) as:

∆FLOPs = 2 · d · r · (N −K). (4)

Additionally, AoE incurs extra memory overhead (per token) given by:

∆Mem = max (Nr, 4K(D′ −D)) . (5)
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Figure 3: The efficiency dilemma introduced
by factorization: for any rank r, AoE is the-
oretically bounded by either computation or
memory.

We visualize AoE’s computational and memory
overhead as a function of r in Figure 3. The re-
sults clearly show that regardless of the value of
r, AoE is bounded by either memory or computa-
tional resources. A rank r between 48 and 80 offers
a relatively more favorable trade-off: although it
still incurs significant memory overhead, the com-
putational cost is substantially reduced. However,
for wide models with large d and D, setting r this
low leads to unstable training of AoE, rendering this
theoretically optimal range impractical.

This dilemma motivates a new realization of au-
tonomous expert selection, which for practicality
and scalability must improve efficiency by eliminat-
ing the root cause of waste rather than relying on
low-rank factorization.

3.2 ROUTING NEURONS ACCELERATE AUTONOMOUS ROUTING

Model structure Through extensive trials, we identified a promising approach that successfully
maintains autonomous expert selection based on activation norms while achieving high efficiency
without relying on factorization. As no factorization is applied, each expert in our model, namely
UoE, is parameterized identically to a vanilla MoE (Eq. 1) using standard dense weight matrices.

We find that only a small subset of neurons within each expert’s weight matrix is sufficient to
parameterize the routing function. We refer to these as routing neurons. Notably, the selection of
these routing neurons proves highly flexible (refer to Appendix B for more details). UoE operates
by simply pre-designating the first Ns ≪ D neurons of each expert weight matrix as routing
neurons before training. These neurons, being part of an expert’s parameters, are marked with a tilde
superscript:

W̃ i
g = W i

g [ : , : Ns], W̃ i
p = W i

p[ : , : Ns], W̃ i
o = W i

o [ : Ns, : ],

For any input x, UoE performs autonomous expert selection based on the activation intensity
(measured by L2 norm) of routing neurons. This approach is motivated by prior work (Lv et al., 2025;
Geva et al., 2021) which establishes that high activation magnitude indicates a module is well-aligned
with the input. Another fundamental premise of UoE is that the activation magnitude of the routing
neurons is highly correlated with that of their entire expert, a correlation we show in Section 4.4 is
spontaneously reinforced during training.

Formally, we define the routing function G in UoE as:
G(x) = softmax (TopK [g1, g2, · · · , gn]) , where

gi = ∥SiLU(xW̃ i
g)⊙ (xW̃ i

p)∥.
(6)

Because these routing neurons separately located in each routed expert collaboratively function as an
“autonomous routing function”, UoE, like AoE, eliminates the separate, explicit router module.

3.3 VIRTUAL SHARED EXPERT IMPROVES ACTIVATION UTILIZATION EFFICIENCY

We observe that routing neurons, activated on every token, functionally resemble a shared expert,
which processes all tokens regardless of which experts are selected or not. We therefore consolidate
them into a virtual shared expert, which replaces the conventional shared expert. This ensures the
contributions of routing neurons from unselected experts are not wasted, fundamentally resolving
the inherent computation and memory inefficiencies of AoE models. By “virtual,” we mean that
during training, these neurons are not physically restructured into a single module but remain within
their original experts; their consolidation is an abstract concept describing how their activations are
collectively reused beyond mere routing.

To be specific, the virtual shared expert consists of three virtual matrices during training:

W s
g =

(
W̃ 1

g W̃ 2
g . . . W̃N

g

)
,

4
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Figure 4: In UoE, the first Ns neurons in each parameter matrix are designated as routing neurons.
These neurons process every token, with their activations used to compute routing logits. During
training, while these neurons remain distributed across experts, they collectively function as a virtual
shared expert—their outputs contribute to the final prediction like a standard shared expert, regardless
of whether their host expert is selected. During inference, this virtual expert is materialized as a
single module. The forward pass of UoE consists of three steps: (1) computing the activations of
the routing neurons to obtain routing logits (also obtaining the output of the virtual shared expert),
(2) performing expert routing using the routing logits and activating selected routed experts, and (3)
merging the outputs of the virtual shared expert with those of the routed experts.

W s
p =

(
W̃ 1

p W̃ 2
p . . . W̃N

p

)
,

W s
o =

(
W̃ 1

o

⊤
W̃ 2

o

⊤
· · · W̃N

o

⊤
)⊤

.

We set the number of routing neurons per parameter matrix as Ns = round(D/K), matching the
parameter count of a standard shared expert. This ensures that UoE has identical memory and
computational overhead to a conventional MoE with the same N and K.

During inference, the virtual shared expert is materialized as a single module, ensuring UoE’s
checkpoint compatibility with all well-developed kernels designed for accelerating standard MoE
models. A detailed implementation for UoEś training and inference is provided in Appendix C.3.

4 EXPERIMENTS

4.1 MAIN RESULTS AND ANALYSIS

General Setup. We pre-train language models with 1B parameters to verify the effectiveness of
UoE. Our language model consists of 8 Transformer layers. For each Transformer layer, we employ
the multi-head attention mechanism with a total of 8 attention heads. We substitute all FNN layers
with MoE layers while keeping the number of expert activations consistent across all methods. The
MoE baseline is configured with a shared expert following the setup in (Dai et al., 2024). Due to the
page limit, we present more details about our architecture and implementations in Appendix C.

We pre-train our language models with 100B tokens from FineWeb datasets (Penedo et al., 2024),
and use the Llama tokenizer for tokenization. For training setups, we employ the AdamW optimizer
with (β1, β2) = (0.9.0.95), a gradient norm clipping threshold of 1, and weight decay as 0.1. We
use a learning rate of 1× 10−3 with 1000 steps linear warmup, followed by a cosine decay scheduler.

We evaluate these language models across 8 widely used benchmarks, including ARC (Clark et al.,
2018), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), SCIQ (Welbl et al., 2017), Wino-
grande (Sakaguchi et al., 2019), MNLI (Wang et al., 2018), QNLI (Wang et al., 2018) and RTE (Wang
et al., 2018). These benchmarks assess the models’ capabilities in language understanding, question
answering, and natural language inference. All evaluations are performed using the LM Evaluation

5
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Table 1: Results for the validation experiments on 1B parameter language models. We compare
models with different numbers of activated experts, both with and without the auxiliary load balancing
loss. Colored entries highlight improvements over the MoE baseline, while bold text mark the best
results within each experimental setting.

Model Num. Laux ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

MoE 8 ✓ 62.54 68.88 36.74 81.60 52.49 32.78 51.04 49.46 54.44

AoE 8 ✓ 64.60 69.59 36.62 83.30 51.22 34.13 50.01 48.86 54.79
UoE 8 ✓ 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
MoE 8 ✗ 62.75 68.23 36.62 81.10 51.85 33.12 49.95 50.18 54.23

AoE 8 ✗ 62.29 68.17 36.32 82.20 54.14 33.71 49.78 49.10 54.46
UoE 8 ✗ 64.56 69.10 36.86 81.50 52.09 33.02 49.91 49.46 54.56
MoE 4 ✓ 61.45 67.52 35.27 77.10 50.75 33.25 49.83 46.45 52.70

AoE 4 ✓ 61.57 68.61 36.07 82.40 52.01 33.12 49.80 50.30 54.24
UoE 4 ✓ 62.25 68.66 35.67 81.70 54.70 33.62 50.20 48.98 54.47

Harness (Gao et al., 2024). The first five tasks are evaluated zero-shot. For the remaining three tasks,
we report their average performance under 0-shot, 3-shot and 5-shot to reduce randomness.
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Figure 5: Pre-training NLL loss comparison.

Experimental Results. We present the main
results in Table 1. We pre-train 1B-parameter
language models with varying number of expert
activation, both with and without the auxiliary
load-balancing loss. UoE consistently outper-
forms both MoE and AoE models in overall
performance across all of these configurations,
which further demonstrates the effectiveness of
UoE’s model design (note that UoE is more ef-
ficient than AoE, refer to Section 4.2 for more
detailed discussions).

Notably, UoE achieves more substantial perfor-
mance improvements under a sparser expert ac-
tivation setting (activating 3 out of 64 experts),
which is a defining characteristic of modern
MoE architectures. It implies that UoE could better select effective expert combinations among larger
numbers of routed experts. Figure 5 illustrates the pre-training negative negative log-likelihood (NLL)
loss of UoE and baseline methods in this setup. UoE exhibits a lower training loss during the
pre-training phase, indicating its higher efficiency in parameter updates.

4.2 EFFICIENCY ANALYSIS OF UOE

In this section, we analyze the efficiency of UoE in comparison with the baseline methods, focusing
primarily on (1) training efficiency metrics and (2) expert loading balance.

Table 2: Achieved training TFLOPS,
Memory and Throughput.

TFLOPS Mem.(GB) TP. (K/s)

MoE 90.40 63.93 604.00
AoE 78.29 71.51 509.00
UoE 86.51 63.96 610.00

TFLOPS, Peak Memory and Throughput. We begin
by conducting a comparative analysis of UoE’s training
efficiency. Table 2 reports the training achieved TFLOPS,
peak memory usage and throughput of UoE and baseline
methods during pre-training.

We observe that UoE achieves a 19.8% improvement in
training throughput over AoE while maintaining downstream
performance that is better or competitive with AoE, and
superior to MoE. Meanwhile, UoE incurs computational
overhead that is nearly identical to MoE at inference time. Consequently, we contend that UoE is an

6
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Figure 6: Expert Loading Distribution of UoE and MoE.

efficient implementation for expert autonomy and resolve the dilemma of AoE without compromising
on effectiveness.

Load Balance of UoE. The imbalanced expert load is a critical challenge leading to the compu-
tational overhead of MoEs (Fedus et al., 2022). Prior study shows that AoE achieves better load
balancing than traditional MoE.

We compare UoE with MoE to investigate whether UoE can enhance load balancing in the absence
of an auxiliary loss. Specifically, we sample 1,000 instances from Wikitext-2 (Merity et al., 2016) as
a calibration set and examine their expert loading patterns. Figure 6 visualizes the expert loading for
our pre-trained UoE alongside MoE, where the load distribution fi for the i-th expert on a batch of T
tokens is defined as:

fi =
1

T

∑
x∈B

1 {i ∈ argtopK (G (x))} .

Except for the final layer, UoE achieves consistently better load balance, with far fewer cases of the
imbalance observed in the shallow layers of MoE. Table 3 compares layer-wise entropy of expert
selection of MoE and UoE to highlight their differences. The results shows that UoE maintains a
more balanced expert load across nearly all layers, even without an auxiliary load-balancing loss.

Table 3: Entropy of expert selection. Higher entropy indicates more balanced expert loads.

Ent1load Ent2load Ent3load Ent4load Ent5load Ent6load Ent7load Ent8load

MoE 3.45 3.23 3.29 3.14 3.57 3.76 3.66 3.42
UoE 3.70 3.62 3.71 3.71 3.88 3.84 3.66 3.31

4.3 ABLATION STUDIES

We take our pre-trained UoE with the auxiliary balancing loss, keeping 8 experts activated as the
basic setup, to evaluate the effectiveness of UoE’s various designs.

Ablation Study of the Virtual Shared Expert. We perform ablation experiments to valid its
contribution. We first highlight that the virtual shared expert is crucial in pre-trained UoE models.
For configurations 1 and 2 , we deactivate different experts in the pre-trained language model and

7
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Table 4: Analysis of model designs in UoE through ablation studies.

Configuration ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

UoE 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
1 w.o shared expert-v1 53.83 66.21 33.80 75.80 50.36 33.93 50.27 51.50 51.96
2 w.o shared expert-v2 62.42 69.48 37.16 81.90 52.09 33.76 49.86 51.74 54.80

3 w.o shared expert-v3 65.19 69.53 36.67 81.60 49.88 33.52 50.05 49.22 54.46

4 double Ns 63.72 68.28 36.58 84.20 51.30 34.11 49.97 50.66 54.85

5 xWp 63.72 70.08 36.69 82.50 51.70 32.95 50.00 50.18 54.73
6 xWg 63.97 69.21 37.25 80.70 52.09 33.62 51.06 49.58 54.69
7 SiLU(xWg) 63.51 69.48 36.76 82.40 53.35 33.73 49.58 49.22 54.75

observe its downstream performance changes. In configuration 1 , we disable the virtual shared
expert and activate only the routed experts; In configuration 2 , we always keep the virtual shared
expert active and reduce the number of activated experts to ensure a fair comparison. Given this, we
find that the shared expert exerts a significant impact on downstream performance. Configuration
1 demonstrates substantially inferior performance compared with 2 . This indicates that the shared
expert in UoE truly learns abilities compulsory that the routed experts have not captured.

We also pre-train UoE without the virtual shared expert from scratch. In configuration 3 , the routing
neurons are not reactivated and are used simply for expert routing. As shown in Table 4, the absence
of the activated shared expert once again leads to a decline in model performance.

Ablations Study on the Selection of Ns. We perform ablation studies to investigate the effect of
varying Ns, the number of routing neurons. Specifically, we double the number of routing neurons
and pre-train the model from scratch. This setting will increases an extra shared experts, while the
number of activated routed experts is reduced to keep the total count of active experts constant. We
do not explore alternative settings, as they would result in an excessive number of shared experts. Our
results show that even doubling the number of routing neurons does not improve model performance
and may even cause a slight degradation in capability.

Ablation Study of Expert Selection Strategies. By default, we use the activation intensity of the
i-th expert for routing decisions, which is formulated in Equation 6. For configurations 5 to 7 , we
attempt to use the L2 norm of other intermediate nodes within the computation graph for routing.

We pre-train these variants from scratch and present their downstream performance in Table 4,
together with the nodes used for norm calculation. The results show that these variants achieve overall
performance comparable to the default configuration (SiLU(xWg)⊙ xWp), albeit slightly lower..
Their training time is nearly identical. Overall, these results justify the use of activation intensity.

4.4 CONSISTENCY OF EXPERT SELECTION BETWEEN EXPERT AND ROUTING NEURON
ACTIVATIONS

We argue that the activation patterns of routing neurons closely reflect those of their corresponding
experts. To clarify that, we perform expert routing based on the experts’ activation intensity, rather
than the routing neurons’ in a pre-trained UoE model. To be specific, we activate the top-k experts
with the highest activation values, and directly evaluate UoE’s downstream performance without
further training. Table 5 presents the results, and only a minor performance drop is observed.

Table 5: Performance change when using experts’ activation intensity instead of routing neurons.

Model Act. ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

UoE Neurons 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
Expert 61.49 68.72 36.49 82.10 51.54 34.25 50.16 50.30 54.38
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Table 6: For 3B-paramter LLMs, UoE exhibits consistent downstream performance. Colored entries
show improvements over the MoE baseline; bold text indicates the best results.

Model ARC-E ARC-C PIQA HELLA SCIQ WINO AVG.

MoE 63.64 31.48 70.62 39.52 89.40 51.22 57.65

AoE 64.44 31.57 70.24 40.34 88.80 53.35 58.12
UoE 69.07 33.11 73.18 41.96 87.10 52.80 59.54

4.5 VALIDATION OF UOE WITH LARGER MODEL SIZE

We pre-train UoE and its competitors with a total of 3 billion parameters. We follow most of the
architectural settings from Section 4.1. For these 3B-parameter language models, each model consists
of 20 layers and 20 attention heads, with the hidden dimension expanded to 1280. The number of
experts is kept consistent with the previous setup, and 7 routed experts are activated. We adjust
training parameters accordingly to better suit the training.

At larger parameter scales, UoE consistently outperforms MoE and AoE models, with improvements
becoming increasingly pronounced as the model size grows. This highlights the potential of scaling
UoE to even greater parameter sizes to further boost its capabilities.

5 RELATED WORK

Mixture-of-Experts. The Mixture-of-Experts (MoE) paradigm was originally proposed as a modu-
lar neural network framework in which a gating function assigns inputs to specialized experts (Jacobs
et al., 1991; Jordan & Jacobs, 1994). More recently, MoE has been integrated into large-scale
Transformers to achieve trillion-parameter models with sparse computation (Lepikhin et al.; Fedus
et al., 2022). Subsequent work has focused on improving efficiency through balanced expert assign-
ment (Lewis et al., 2021) and system-level optimizations for distributed training (Hwang et al., 2023;
Gale et al., 2022). Despite these advances, sparse MoE models continue to face challenges such as
routing instability and expert redundancy. To mitigate these issues, DeepSeekMoE (Dai et al., 2024)
introduces shared experts, which provide stable coverage of common knowledge while routed experts
focus on specialization. In addition, its fine-grained expert partitioning further enhances efficiency
and encourages more diverse expert behaviors. In this work, we adopt most of the configurations
from DeepseekMoE. In contrast, our virtual shared expert is constructed from all routing neurons,
thereby functioning both as the shared expert and as the mechanism for autonomous routing.

Expert Selection Strategies. Prior work on expert selection has explored a variety of routing mech-
anisms to determine which experts to activate from a set of N candidates. Top-k routing (Lepikhin
et al.) activates a fixed number of experts per token based on router-assigned scores, while Top-p
routing dynamically selects experts until a cumulative probability threshold p is reached. Despite
these differences, most approaches rely on a centralized router to assign tokens to experts. In contrast,
Lv et al. (2025) eliminates the router entirely by allowing experts to self-activate, thereby achieving
expert selection in a fully decentralized manner. In this paper, we improve AoE’s expert autonomy by
addressing efficiency issues and replacing low-rank factorization with routing neurons.

6 CONCLUSION

In this paper, we introduce UoE, a novel MoE variant that perform expert autonomy routing. UoE
leverages only a small subset of neurons in each expert to capture the expert’s overall activation,
effectively addressing the efficiency challenges encountered in previous work. Moreover, we treat
these routing neurons collectively as a shared expert to further enhance activation utilization efficiency.
We hope that UoE can inspire the community to pursue more effective autonomy-based routing
strategies to mitigate the decoupling between routing decisions and expert capabilities.
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A DISCUSSION OF THE TRADE-OFF BETWEEN MEMORY CONSUMPTION AND
COMPUTATIONAL OVERHEAD

For simplification, we omit the cost of the router and the FLOPs of a traditional MoE layer is:

FLOPs = 3 · TK
(
2D · d

)
.

For an arbitrary AoE layer, the FLOPS it requires is:

FLOPs = 2 · TK
(
2D′ · d

)
+TK

(
2D′ · r

)
+TN

(
2 d · r

)
,

where D′ is the FFN hidden size of AoE to ensure the same number of parameters as MoE as:

D′ =
3 ·D · d− d · r

r + 2 · d
.

Compared with MoE, AoE introduces an overhead of FLOPs that is:

∆FLOPs = 2T · d · r · (N −K). (7)

B TRIALS ON SELECTING ROUTING NEURONS WITHIN EXPERTS

Motivated by our preliminary explorations, we investigate the idea of fixing a subset of neurons
as routing neurons to enable expert autonomy. In FFNs, neurons are dynamically activated based
on input. Despite that, our goal is to identify a subset of key neurons that effectively capture the
overall activation pattern. Our initial approach dynamically selects important neurons during training
and then fixes this subset during inference, allowing dominant weights in the experts’ parameters
to be located on the fly. A simple strategy uses the L2-norm to identify high-contributing neurons.
Although this incurs higher training cost than standard MoE, it remains substantially more efficient
than AoE. To further improve efficiency, we explore whether permanently fixing neurons could work.
Our experiments further confirm its feasibility.

C IMPLEMENTATION DETAILS OF UOE

C.1 HYPER-PARAMETERS OF MODEL ARCHITECTURE

Table 7 presents details on the architecture hyper-parameters used throughout our experiments.

C.2 TRAINING SETUP DETAILS FOR UOE

We provide additional details on our efficient training of UoE. The training
pipeline is built upon TorchTitan framework (Liang et al., 2025), uses PyTorch’s

Table 7: Hyper-parameters of model architecture.

Hyper-Parameters 1B 3B
hidden size 1024 1280
MoE layers 8 20

FFN hidden size 512 512
attention heads 8 8
key-value heads 20 20
routed experts 64 64

vocab size 128,256 128,256

RoPE theta 500,000 500,000

scaled dot product attention for attention,
and adopts the MegaBlocks (Gale et al., 2022)
MLP for MoE layer implementation.

C.3 IMPLEMENTATION
DETAILS OF THE VIRTUAL SHARED EXPERT

Figure 10 presents a naive PyTorch implementa-
tion of UoE’s training and inference. The slight
difference lies in repacking the routing neurons,
originally distributed across different experts,
into a layout conforming to the MoE shared ex-
pert. This prevents non-contiguous parameter
access at inference time and improves UoE’s
compatibility with practical MoE deployments,
such as Expert Parallelism. More details can be
found in our code repository.
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D TOWARD A MECHANISTIC UNDERSTANDING OF ROUTING NEURONS

In this section, we aim to provide a theoretical explanation for how routing neurons can reflect an
expert’s activation. Specifically, an expert’s activation is jointly determined by how the input x
activates with both Wg and Wp. Without loss of generality, we take xWg as the running example in
the discussion below. Following Lv et al. (2025), we measure the activation intensity of the input
token x at Wg via the L2-Norm of xWg , which can be formulated as:

L2-Norm (xWg) =
√
xWgW⊤

g x⊤.

Given the singular value decomposition of Wg , we can expand this equation into:

L2-Norm (xWg) =
√
xUgΣg

2U⊤
g x⊤, where Wg = Ug Σg V

⊤
g .

Similarly, the activation intensity of input token x at W̃g is given by:

L2-Norm
(
xW̃g

)
=

√
xUrΣr

2U⊤
r x⊤, where W̃g = Ur Σr V

⊤
r .

As the expert weights of MoE models are intrinsically low-rank (Lv et al., 2025; Gu et al., 2025),
the L2-Norm(xWg) is dominated by a small portion of the singular vectors with the largest singular
values. Considering that, we compute and plot the similarity between Ur and the principal singular
vectors of Wg across all experts in UoE with 1B parameters.1

Figure 7 visualizes the results, where Si,j
g of the j-th expert at layer i is defined as:

Si,j
g = L2-Norm (< Ur,Ug[0] >) ,

we also visualize the similarity between the router weights Ri,j in the MoE baseline and the principal
singular vectors for comparison. Si,j

r is denoted as:

Si,j
r =<

Ri,j

||Ri,j ||
, Ug[0] > ,

where Ri,j is the i-th row of the router weights at layer j.

(a
)	
M
oE

(b
)	
U
oE

Figure 7: Heatmap visualization of Si,j
g and Si,j

r across experts and layers.

1We use Ug[0] to denote the principal singular vector with the largest singular value.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

As shown in Figure 7, the principal singular vector of these routing neurons exhibits a noticeable
similarity to that of the expert weight matrices, whereas no similar phenomenon was observed in
MoE. We argue that this behavior arises from the specialized training dynamics of expert autonomy.
This alignment serves as the underlying mechanism that enables them to represent expert activations.

A similar pattern also emerges in Wp, and we provide the corresponding visualization in Figure 8.
(a
)	
M
oE

(b
)	
U
oE

Figure 8: Heatmap visualization of Si,j
p and Si,j

r across experts and layers.

E EFFICIENCY ANALYSIS FOR UOE AT INFERENCE TIME

To evaluate the inference performance of UoE, we build a generation pipeline on top of HuggingFace’s
GenerationMixin (Wolf et al., 2020). We conduct a breakdown analysis of UoE’s inference efficiency,
benchmarking the peak memory occupation and end-to-end generation throughput. We use 256
random tokens as input and conduct experiments across different generation lengths and batch-size
configurations.

Table 8 presents the results; we can conclude that the computation overhead of UoE is nearly identical
to that of MoE. More implementation details can be found in Section C.3.

Table 8: Throughput and peak memory usage comparisons.

Configuration TP. (token/s) / Mem. (GB)

Model BS 256 1024 4096

MoE 1 35.71 (2.15) 35.84 (2.15) 35.81 (2.15)
UoE 35.84 (2.15) 35.98 (2.15) 35.89 (2.15)

MoE 4 141.99 (2.21) 141.38 (2.21) 141.37 (2.21)
UoE 140.83 (2.21) 141.00 (2.21) 141.46 (2.21)

MoE 16 561.82 (2.48) 560.93 (2.48) 559.97 ( 2.48)
UoE 549.91 (2.47) 551.39 (2.47) 551.93 (2.47)
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F VIRTUAL SHARED EXPERT IN UOE IS ALSO A COMMON-KNOWLEDGE
CONSOLIDATOR

Given that the routing neurons are always activated in UoE’s forward pass, we reuse the intermediate
hidden states and introduce the virtual shared expert. In this section, we show that this design not
only improves activation reuse and reduces overhead, but also facilitates knowledge sharing.

Geva et al. (2021) interpret transformer FFN layers as key-value memories, with knowledge or
abilities stored in the “value” vector (i.e., Wo in Gated Linear Unit). Following this intuition, we
perform PCA to project each row of Wo from all experts into a 2D space. We visualize the projected
expert weights in UoE and observe that the routing neurons concentrate primarily along the leading
principal component, with notably large projections onto this direction. This hints that the virtual
shared expert may encode knowledge broadly shared by all experts.

Figure 9 depicts the resulting layer-0 projection of Wo in our 1B-parameter pretrained UoE. The
projections from other layers exhibit similar patterns.
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0.4

0.2

0.0

0.2

0.4

Pr
in

ci
pa

l C
om

po
ne

nt
 2

 (
PC

2)

2D PCA Visualization of Wo Weight in Shared and Routed Experts

Experts
Experts 1-16
Experts 17-32
Experts 33-48
Experts 49-64

Figure 9: The Principal Component Analyis (PCA) projections of the experts output matrices weights
in pre-trained UoE onto the first two principal components (PC1 and PC2), highlighting the routing
neurons weights in bold purple. As seen in the plot, these weights project heavily onto the dominant
principal components of the full expert Wo matrix. This supports the idea that the virtual shared
expert captures knowledge common to all experts.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper employed an LLM solely to refine our manually written draft, including improving word
choice, grammar correctness, and sentence fluency.
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1 class MoE(nn.Module):
2 def __init__(self, args):
3 super().__init__(args)
4 self.experts = ParallelMLP(args)
5 self.shared_expert = MLP(args)
6

7 def forward(self, x): # x: [seqlen * bs, hidden_size]
8 return self.moe_forward(x) if self.training else self.moe_infer(x)
9

10 def moe_forward(self, x):
11 indices = torch.arange(self.N[:, None]) * self.d + \
12 torch.arange(self.N_s)[None, :].view(-1)
13

14 wg_ = self.experts.wg[indices]
15 wp_ = self.experts.wp[indices]
16 wo_ = self.experts.wg[indices]
17

18 expert_acts = F.silu(torch.mm(x, wg_.T)) * torch.mm(x, wp_.T)
19 out = torch.mm(expert_acts, wo_)
20

21 expert_acts = expert_acts.view(-1, self.num_experts, self.N_s)
22 logits = torch.norm(expert_acts, p=2, dim=-1)
23 expert_weights, top_experts = torch.topk(logits, k=self.K, dim=-1)
24 expert_weights = expert_weights.softmax(-1, dtype=torch.float32)
25

26 return out + self.experts(x, expert_weights, top_experts)
27

28

29 @torch.no_grad()
30 def moe_infer(self, x):
31 # repacking the routing neurons into a virutal shared expert
32 if not self.initialized:
33 self.create_virutal_shared_expert_weights()
34 self.initialized = True
35

36 expert_acts = F.silu(self.shared_expert.wg(x)) * self.shared_expert.wp(x)
37 out = self.shared_expert.wo(expert_acts)
38

39 expert_acts = expert_acts.view(-1, self.N, self.N_s)
40 logits = torch.norm(expert_acts, p=2, dim=-1)
41 expert_weights, top_experts = torch.topk(logits, k=self.K, dim=-1)
42 expert_weights = expert_weights.softmax(-1, dtype=torch.float32)
43

44 return out + self.experts(x, expert_weights, top_experts)
45

46 def create_virutal_shared_expert_weights(self):
47 self.shared_expert.wg.weight.copy_(
48 self.experts.wg.weight.view(
49 self.N, self.d , self.D
50 )[:, :self.N_s, :].reshape(self.d, self.D)
51 )
52 self.shared_expert.wp.weight.copy_(
53 self.experts.wp.weight.view(
54 self.N, self.d , self.D
55 )[:, :self.N_s, :].reshape(self.d, self.D)
56 )
57 self.shared_expert.wo.weight.copy_(
58 self.experts.wo.weight.view(
59 self.N, self.d , self.D
60 )[:, :self.N_s, :].reshape(self.d, self.D)
61 )

Figure 10: Pseudo code for UoE implementation in PyTorch.
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