
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNION-OF-EXPERTS: EXPERTS IN MIXTURE-OF-
EXPERTS ARE SECRETLY ROUTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) is a foundational architecture in modern large language
models (LLMs). However, a structural limitation has been overlooked: the router
is external to the experts, rendering it unaware of their internal capabilities. This
gap between routing decisions and expert capabilities limits model performance.
In this paper, we demonstrate that the activations of a small subset of “routing neu-
rons” within each routed expert’s own parameters can faithfully capture the match
between the expert’s capabilities and input tokens. Collectively, these distributed
routing neurons within each routed experts compose an implicit, capabilities-aware
“router”, where the norm of the routing neurons’ activations suggests its corre-
sponding expert’s weight. A straightforward implementation of this design requires
activating all experts to compute these routing signals, where the unselected ex-
perts’ routing neurons are abandoned. To avoid the computational waste from
activating unselected experts, we introduce another novel design: we unify the
routing neurons of all routed experts to form a virtual shared expert, replacing the
standard shared expert in MoE. In this virtual shared expert, activations are not
wasted, as they serve not only for routing but also contribute to the final outputs of
both the shared expert and partial of routed experts. We name this new MoE variant
Union-of-Experts (UoE), drawing an analogy where the routing neuron acts as each
expert’s representative, and the virtual shared expert is their union, enabling the
experts’ autonomous selection and joint statement. We pre-train language models
ranging from 1B to 3B parameters, showing that UoE consistently outperforms
strong MoE baselines with comparable efficiency.

1 INTRODUCTION

Mixture-of-Experts (MoE) has garnered increasing research interest. A number of MoE-based LLMs
have been proposed in recent works (DeepSeek-AI et al., 2025; Yang et al., 2025; OpenAI, 2025),
exhibiting strong performance across a broad spectrum of downstream tasks. In Transformer-based
MoEs, the feed-forward network (FFN) is replaced with multiple smaller expert networks, and a
router dynamically routes each input token to a subset of experts. This sparse activation mechanism
facilitates the training of trillion-parameter models with feasible computational overhead, establishing
MoE as a fundamental architecture in modern large language models (LLMs).

However, there is a gap between routing decisions and expert capabilities. Because the router is a
standalone module external to the experts, it can only infer their abilities through trial and error. When
a token is inappropriately routed, the expert has to adapt to that token, compromising its specialization.
To solve this, the “expert autonomy” concept has been proposed in AoE (Lv et al., 2025), wherein all
experts process the token and the one with the largest activation norm (indicating the best match) is
selected. While this concept improves performance, it incurs a significant computational overhead as
the number of experts grows. This inefficiency contradicts the core efficiency goals of MoE models
and thus limits the practical deployment of this concept in LLMs, especially under the trend of
expanding total expert numbers of industrial MoE models (OpenAI, 2025; Team et al., 2025).

In this paper, we propose Union-of-Experts (UoE), a new MoE architecture that adopts the principle
of expert autonomy to achieve satisfactory performance, while maintaining efficiency comparable
to traditional MoE models. Figure 1 provides a comparative overview of traditional MoE and our
proposed UoE architecture. The first key advancement of UoE is to adopt only a small partial of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Router

Expert 2Shared
Expert Expert 1 Expert 3

𝑥

z

𝑥

z

Expert 1 Expert 3Expert 2
Virtual
Shared
Expert

Softmax

z z zz

𝐿# Norm
& Softmax

Routing
Neurons

(b) Union-of-Experts(a) Mixture-of-Experts

Figure 1: A comparison of Mixture-of-Experts (MoE) and Union-of-Experts (UoE) routing mech-
anisms. In MoE, Expert 1 & 2 are selected based on highest router logits. In UoE, Expert 1 & 2
are selected as its routing neurons exhibit the largest activation norms. Gray modules are inactive;
regions with diagonal stripe denote the routing neurons within the weight matrix.

expert neurons to represent the activation degree of an entire expert, based on a surprising finding:
only a small subset of Ns ≪ D neurons within each expert weight, referred to routing neurons,
is sufficient to parameterize the routing function, where D is the dimension of the intermediate
activations. This reduces the computational overhead of AoE to a fraction of Ns/D. Our analysis
show that the selection of routing neurons can be highly flexible. By simply pre-designating the
first Ns neurons in expert’s weight matrix as routing neurons before training, their activations
spontaneously exhibit high correlation with those of the entire weight matrix. This indicates that
these neurons can effectively represent the behavior of the majority of neurons within the expert.

Nevertheless, computing the routing neurons in each expert still introduces additional overhead.
To eliminate this remaining cost, the second key advancement of UoE is to pack routing neurons
from each expert into a virtual shared expert. This approach is grounded in a key insight: the
shared expert (Dai et al., 2024) widely used in MoEs, which processes all tokens to consolidate
common capabilities implicitly scattered across individual experts. UoE explicitly implements this
common capability consolidation by reusing the already-computed routing neurons, which perform
the common routing function, to collectively form the output of this “virtual” shared expert. By
“virtual,” we mean that this is not a materialized module but a conceptual structure, describing how
the outputs of routing neurons—which remain within their original experts—are reused collectively.
Consequently, the computational cost of these neurons is reused rather than wasted. This allows
UoE to achieve computational and memory costs identical to a standard MoE architecture while
delivering superior performance.

We pre-train UoE with up to 3 billion parameters, achieving superior performance over both MoE
and AoE while keeping the inference cost on par with MoE. Additionally, we present a thorough
model analysis of UoE to underscore its advantages, such as improved load balance.

2 BACKGROUND AND NOTATION

2.1 MIXTURE-OF-EXPERTS (MOE)

We adopt the Gated Linear Unit (GLU) as the expert module, following mainstream MoE designs (Dai
et al., 2024; Jiang et al., 2024). The i-th expert is parameterized by three matrices: Wi

g,W
i
p ∈ Rd×D

and Wi
o ∈ RD×d, with its forward pass defined as:

Ei(x) =
(
SiLU(xW i

g)⊙ (xW i
p)
)
W i

o . (1)

An MoE FFN layer consists of N experts, with K experts selected to process an input token x.
Adopting the design from (Dai et al., 2024), we also include a shared expert Es that processes all
tokens. This shared expert captures the common capabilities, allowing the other experts to become
more specialized.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The output of an MoE FFN layer is the sum of two components: the output of a shared expert
and a weighted sum of the selected expert outputs. The weights for the latter are given by a router
parameterized by a matrix R ∈ Rd×N :

G(x) = softmax (xR) ,

FFN(x) = Es(x) +
∑

i∈TopK(G(x))

G(x)[i] · Ei(x). (2)

2.2 AUTONOMY-OF-EXPERTS (AOE)

Input x

Softmax()

SiLU

𝐖"

𝐖#

𝐖$%&'

𝐖()

Norm.

Expert 2Expert 1 Expert 3

Figure 2: The overview of an AoE model.

AoE (Lv et al., 2025) addresses the misalignment
between router decisions and experts’ actual capa-
bilities by encoding the routing function G(x) into
the expert parameters themselves. The key insight
is that the intermediate activation magnitude of an
expert indicates how well its capabilities match the
input token’s requirements.

To reduce the computational cost associated with D-
dimensional activations, W i

g is replaced with two
low-rank matrices: W i

down ∈ Rd×r and W i
up ∈

Rr×D′
. The intermediate dimension D′ is chosen

to preserve the same number of parameters as the
original MoE, and is given by:

D′ =
3Dd− dr

r + 2d
.

Each token is multiplied by all W i
down matrices, and the L2-norms of the resulting N activations

(each of dimension r) are used for expert selection. Experts with the top-K activation norms continue
forward computation, while unselected experts terminate early. The routing function G and the
forward pass for selected experts are defined as:

G(x) = softmax ([g1, g2, · · · , gn]) , where gi = ∥xW i
down∥,

Ei(x) =
(
SiLU(xW i

downW
i
up)⊙ (xW i

p)
)
W i

o .
(3)

While AoE’s autonomous expert selection leads to better downstream task performance than MoE, it
introduces computational and memory overhead. The inefficiency arises because all experts compute
activations, but only a fraction are used in the output. This waste scales with an increased N and a
decreased K. Therefore, this paper focuses on achieving autonomous selection with an efficiency
comparable to vanilla MoE, independent of N and K.

3 METHODOLOGY

3.1 MOTIVATION

To improve efficiency, AoE introduces factorization of Wg . Paradoxically, this design traps AoE in a
dilemma: it must contend with either substantial computational overhead or excessive memory access.
Consequently, factorization itself becomes the fundamental bottleneck to further efficiency-wise
advancement in AoE. Our following analysis reveals this inherent dilemma. The detailed derivation
of the results in this subsection can be found in Appendix A.

We show that, in theory, AoE introduces additional FLOPs per token, which grow linearly with the
factorization rank r compared to a vanilla MoE (with identical parameter count) as:

∆FLOPs = 2 · d · r · (N −K). (4)

Additionally, AoE incurs extra memory overhead (per token) given by:

∆Mem = max (Nr, 4K(D′ −D)) . (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

16 32 48 64 80 96 112 128 144 160 176 192
r

1.5

3.0

4.5

6.0

7.5

9.0

FL
O

Ps

1e8

FLOPs
Peak Memory

0.8

1.0

1.2

1.4

1.6

Pe
ak

 M
em

or
y

1e6FLOPs and Peak Memory

Figure 3: The efficiency dilemma introduced
by factorization: for any rank r, AoE is the-
oretically bounded by either computation or
memory.

We visualize AoE’s computational and memory
overhead as a function of r in Figure 3. The re-
sults clearly show that regardless of the value of
r, AoE is bounded by either memory or computa-
tional resources. A rank r between 48 and 80 offers
a relatively more favorable trade-off: although it
still incurs significant memory overhead, the com-
putational cost is substantially reduced. However,
for wide models with large d and D, setting r this
low leads to unstable training of AoE, rendering this
theoretically optimal range impractical.

This dilemma motivates a new realization of au-
tonomous expert selection, which for practicality
and scalability must improve efficiency by eliminat-
ing the root cause of waste rather than relying on
low-rank factorization.

3.2 ROUTING NEURONS ACCELERATE AUTONOMOUS ROUTING

Model structure Through extensive trials, we identified a promising approach that successfully
maintains autonomous expert selection based on activation norms while achieving high efficiency
without relying on factorization. As no factorization is applied, each expert in our model, namely
UoE, is parameterized identically to a vanilla MoE (Eq. 1) using standard dense weight matrices.

We find that only a small subset of neurons within each expert’s weight matrix is sufficient to
parameterize the routing function. We refer to these as routing neurons. Notably, the selection of
these routing neurons proves highly flexible (refer to Appendix B for more details). UoE operates
by simply pre-designating the first Ns ≪ D neurons of each expert weight matrix as routing
neurons before training. These neurons, being part of an expert’s parameters, are marked with a tilde
superscript:

W̃ i
g = W i

g [: , : Ns], W̃ i
p = W i

p[: , : Ns], W̃ i
o = W i

o [: Ns, :],

For any input x, UoE performs autonomous expert selection based on the activation intensity
(measured by L2 norm) of routing neurons. This approach is motivated by prior work (Lv et al., 2025;
Geva et al., 2021) which establishes that high activation magnitude indicates a module is well-aligned
with the input. Another fundamental premise of UoE is that the activation magnitude of the routing
neurons is highly correlated with that of their entire expert, a correlation we show in Section 4.4 is
spontaneously reinforced during training.

Formally, we define the routing function G in UoE as:
G(x) = softmax (TopK [g1, g2, · · · , gn]) , where

gi = ∥SiLU(xW̃ i
g)⊙ (xW̃ i

p)∥.
(6)

Because these routing neurons separately located in each routed expert collaboratively function as an
“autonomous routing function”, UoE, like AoE, eliminates the separate, explicit router module.

3.3 VIRTUAL SHARED EXPERT IMPROVES ACTIVATION UTILIZATION EFFICIENCY

We observe that routing neurons, activated on every token, functionally resemble a shared expert,
which processes all tokens regardless of which experts are selected or not. We therefore consolidate
them into a virtual shared expert, which replaces the conventional shared expert. This ensures the
contributions of routing neurons from unselected experts are not wasted, fundamentally resolving
the inherent computation and memory inefficiencies of AoE models. By “virtual,” we mean that
during training, these neurons are not physically restructured into a single module but remain within
their original experts; their consolidation is an abstract concept describing how their activations are
collectively reused beyond mere routing.

To be specific, the virtual shared expert consists of three virtual matrices during training:

W s
g =

(
W̃ 1

g W̃ 2
g . . . W̃N

g

)
,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SiLU

W" W#

W$

Expert 1

SiLU

W" W#

W$

Expert 2

W" W#

W$

Expert 3 (Unselected)

SiLU %& Norm
& Softmax

Input x

Virtual
Shared
Expert

Routing
Neurons

Step	1. Step	2. Step	2.

Step	3.

Figure 4: In UoE, the first Ns neurons in each parameter matrix are designated as routing neurons.
These neurons process every token, with their activations used to compute routing logits. During
training, while these neurons remain distributed across experts, they collectively function as a virtual
shared expert—their outputs contribute to the final prediction like a standard shared expert, regardless
of whether their host expert is selected. During inference, this virtual expert is materialized as a
single module. The forward pass of UoE consists of three steps: (1) computing the activations of
the routing neurons to obtain routing logits (also obtaining the output of the virtual shared expert),
(2) performing expert routing using the routing logits and activating selected routed experts, and (3)
merging the outputs of the virtual shared expert with those of the routed experts.

W s
p =

(
W̃ 1

p W̃ 2
p . . . W̃N

p

)
,

W s
o =

(
W̃ 1

o

⊤
W̃ 2

o

⊤
· · · W̃N

o

⊤
)⊤

.

We set the number of routing neurons per parameter matrix as Ns = round(D/K), matching the
parameter count of a standard shared expert. This ensures that UoE has identical memory and
computational overhead to a conventional MoE with the same N and K.

During inference, the virtual shared expert is materialized as a single module, ensuring UoE’s
checkpoint compatibility with all well-developed kernels designed for accelerating standard MoE
models. A detailed implementation for UoEś training and inference is provided in Appendix C.3.

4 EXPERIMENTS

4.1 MAIN RESULTS AND ANALYSIS

General Setup. We pre-train language models with 1B parameters to verify the effectiveness of
UoE. Our language model consists of 8 Transformer layers. For each Transformer layer, we employ
the multi-head attention mechanism with a total of 8 attention heads. We substitute all FNN layers
with MoE layers while keeping the number of expert activations consistent across all methods. The
MoE baseline is configured with a shared expert following the setup in (Dai et al., 2024). Due to the
page limit, we present more details about our architecture and implementations in Appendix C.

We pre-train our language models with 100B tokens from FineWeb datasets (Penedo et al., 2024),
and use the Llama tokenizer for tokenization. For training setups, we employ the AdamW optimizer
with (β1, β2) = (0.9.0.95), a gradient norm clipping threshold of 1, and weight decay as 0.1. We
use a learning rate of 1× 10−3 with 1000 steps linear warmup, followed by a cosine decay scheduler.

We evaluate these language models across 8 widely used benchmarks, including ARC (Clark et al.,
2018), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), SCIQ (Welbl et al., 2017), Wino-
grande (Sakaguchi et al., 2019), MNLI (Wang et al., 2018), QNLI (Wang et al., 2018) and RTE (Wang
et al., 2018). These benchmarks assess the models’ capabilities in language understanding, question
answering, and natural language inference. All evaluations are performed using the LM Evaluation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results for the validation experiments on 1B parameter language models. We compare
models with different numbers of activated experts, both with and without the auxiliary load balancing
loss. Colored entries highlight improvements over the MoE baseline, while bold text mark the best
results within each experimental setting.

Model Num. Laux ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

MoE 8 ✓ 62.54 68.88 36.74 81.60 52.49 32.78 51.04 49.46 54.44

AoE 8 ✓ 64.60 69.59 36.62 83.30 51.22 34.13 50.01 48.86 54.79
UoE 8 ✓ 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
MoE 8 ✗ 62.75 68.23 36.62 81.10 51.85 33.12 49.95 50.18 54.23

AoE 8 ✗ 62.29 68.17 36.32 82.20 54.14 33.71 49.78 49.10 54.46
UoE 8 ✗ 64.56 69.10 36.86 81.50 52.09 33.02 49.91 49.46 54.56
MoE 4 ✓ 61.45 67.52 35.27 77.10 50.75 33.25 49.83 46.45 52.70

AoE 4 ✓ 61.57 68.61 36.07 82.40 52.01 33.12 49.80 50.30 54.24
UoE 4 ✓ 62.25 68.66 35.67 81.70 54.70 33.62 50.20 48.98 54.47

Harness (Gao et al., 2024). The first five tasks are evaluated zero-shot. For the remaining three tasks,
we report their average performance under 0-shot, 3-shot and 5-shot to reduce randomness.

18000 19000 20000 21000 22000 23000 24000

Step

2.66

2.67

2.68

2.69

2.70

2.71

2.72

2.73

N
LL

 L
os

s

 MoE
 AoE
 UoE

Figure 5: Pre-training NLL loss comparison.

Experimental Results. We present the main
results in Table 1. We pre-train 1B-parameter
language models with varying number of expert
activation, both with and without the auxiliary
load-balancing loss. UoE consistently outper-
forms both MoE and AoE models in overall
performance across all of these configurations,
which further demonstrates the effectiveness of
UoE’s model design (note that UoE is more ef-
ficient than AoE, refer to Section 4.2 for more
detailed discussions).

Notably, UoE achieves more substantial perfor-
mance improvements under a sparser expert ac-
tivation setting (activating 3 out of 64 experts),
which is a defining characteristic of modern
MoE architectures. It implies that UoE could better select effective expert combinations among larger
numbers of routed experts. Figure 5 illustrates the pre-training negative negative log-likelihood (NLL)
loss of UoE and baseline methods in this setup. UoE exhibits a lower training loss during the
pre-training phase, indicating its higher efficiency in parameter updates.

4.2 EFFICIENCY ANALYSIS OF UOE

In this section, we analyze the efficiency of UoE in comparison with the baseline methods, focusing
primarily on (1) training efficiency metrics and (2) expert loading balance.

Table 2: Achieved training TFLOPS,
Memory and Throughput.

TFLOPS Mem.(GB) TP. (K/s)

MoE 90.40 63.93 604.00
AoE 78.29 71.51 509.00
UoE 86.51 63.96 610.00

TFLOPS, Peak Memory and Throughput. We begin
by conducting a comparative analysis of UoE’s training
efficiency. Table 2 reports the training achieved TFLOPS,
peak memory usage and throughput of UoE and baseline
methods during pre-training.

We observe that UoE achieves a 19.8% improvement in
training throughput over AoE while maintaining downstream
performance that is better or competitive with AoE, and
superior to MoE. Meanwhile, UoE incurs computational
overhead that is nearly identical to MoE at inference time. Consequently, we contend that UoE is an

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Expert Index		𝒊

La
ye
r

Co
lo
r	B
ar
	o
f	L
oa
d	
Fr
eq
ue
nc
y

(b
)		
Uo
E

(a
)		
M
oE

La
ye
r

Co
lo
r	B
ar
	o
f	L
oa
d	
Fr
eq
ue
nc
y

Expert Index		𝒊

Expert Load	Distribution 𝒇𝒊

Expert Load	Distribution 𝒇𝒊

Figure 6: Expert Loading Distribution of UoE and MoE.

efficient implementation for expert autonomy and resolve the dilemma of AoE without compromising
on effectiveness.

Load Balance of UoE. The imbalanced expert load is a critical challenge leading to the compu-
tational overhead of MoEs (Fedus et al., 2022). Prior study shows that AoE achieves better load
balancing than traditional MoE.

We compare UoE with MoE to investigate whether UoE can enhance load balancing in the absence
of an auxiliary loss. Specifically, we sample 1,000 instances from Wikitext-2 (Merity et al., 2016) as
a calibration set and examine their expert loading patterns. Figure 6 visualizes the expert loading for
our pre-trained UoE alongside MoE, where the load distribution fi for the i-th expert on a batch of T
tokens is defined as:

fi =
1

T

∑
x∈B

1 {i ∈ argtopK (G (x))} .

Except for the final layer, UoE achieves consistently better load balance, with far fewer cases of the
imbalance observed in the shallow layers of MoE. Table 3 compares layer-wise entropy of expert
selection of MoE and UoE to highlight their differences. The results shows that UoE maintains a
more balanced expert load across nearly all layers, even without an auxiliary load-balancing loss.

Table 3: Entropy of expert selection. Higher entropy indicates more balanced expert loads.

Ent1load Ent2load Ent3load Ent4load Ent5load Ent6load Ent7load Ent8load

MoE 3.45 3.23 3.29 3.14 3.57 3.76 3.66 3.42
UoE 3.70 3.62 3.71 3.71 3.88 3.84 3.66 3.31

4.3 ABLATION STUDIES

We take our pre-trained UoE with the auxiliary balancing loss, keeping 8 experts activated as the
basic setup, to evaluate the effectiveness of UoE’s various designs.

Ablation Study of the Virtual Shared Expert. We perform ablation experiments to valid its
contribution. We first highlight that the virtual shared expert is crucial in pre-trained UoE models.
For configurations 1 and 2 , we deactivate different experts in the pre-trained language model and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Analysis of model designs in UoE through ablation studies.

Configuration ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

UoE 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
1 w.o shared expert-v1 53.83 66.21 33.80 75.80 50.36 33.93 50.27 51.50 51.96
2 w.o shared expert-v2 62.42 69.48 37.16 81.90 52.09 33.76 49.86 51.74 54.80

3 w.o shared expert-v3 65.19 69.53 36.67 81.60 49.88 33.52 50.05 49.22 54.46

4 double Ns 63.72 68.28 36.58 84.20 51.30 34.11 49.97 50.66 54.85

5 xWp 63.72 70.08 36.69 82.50 51.70 32.95 50.00 50.18 54.73
6 xWg 63.97 69.21 37.25 80.70 52.09 33.62 51.06 49.58 54.69
7 SiLU(xWg) 63.51 69.48 36.76 82.40 53.35 33.73 49.58 49.22 54.75

observe its downstream performance changes. In configuration 1 , we disable the virtual shared
expert and activate only the routed experts; In configuration 2 , we always keep the virtual shared
expert active and reduce the number of activated experts to ensure a fair comparison. Given this, we
find that the shared expert exerts a significant impact on downstream performance. Configuration
1 demonstrates substantially inferior performance compared with 2 . This indicates that the shared
expert in UoE truly learns abilities compulsory that the routed experts have not captured.

We also pre-train UoE without the virtual shared expert from scratch. In configuration 3 , the routing
neurons are not reactivated and are used simply for expert routing. As shown in Table 4, the absence
of the activated shared expert once again leads to a decline in model performance.

Ablations Study on the Selection of Ns. We perform ablation studies to investigate the effect of
varying Ns, the number of routing neurons. Specifically, we double the number of routing neurons
and pre-train the model from scratch. This setting will increases an extra shared experts, while the
number of activated routed experts is reduced to keep the total count of active experts constant. We
do not explore alternative settings, as they would result in an excessive number of shared experts. Our
results show that even doubling the number of routing neurons does not improve model performance
and may even cause a slight degradation in capability.

Ablation Study of Expert Selection Strategies. By default, we use the activation intensity of the
i-th expert for routing decisions, which is formulated in Equation 6. For configurations 5 to 7 , we
attempt to use the L2 norm of other intermediate nodes within the computation graph for routing.

We pre-train these variants from scratch and present their downstream performance in Table 4,
together with the nodes used for norm calculation. The results show that these variants achieve overall
performance comparable to the default configuration (SiLU(xWg)⊙ xWp), albeit slightly lower..
Their training time is nearly identical. Overall, these results justify the use of activation intensity.

4.4 CONSISTENCY OF EXPERT SELECTION BETWEEN EXPERT AND ROUTING NEURON
ACTIVATIONS

We argue that the activation patterns of routing neurons closely reflect those of their corresponding
experts. To clarify that, we perform expert routing based on the experts’ activation intensity, rather
than the routing neurons’ in a pre-trained UoE model. To be specific, we activate the top-k experts
with the highest activation values, and directly evaluate UoE’s downstream performance without
further training. Table 5 presents the results, and only a minor performance drop is observed.

Table 5: Performance change when using experts’ activation intensity instead of routing neurons.

Model Act. ARC-E PIQA HELLA SCIQ WINO MNLI QNLI RTE AVG.

UoE Neurons 63.09 69.64 37.07 82.40 52.88 33.89 50.05 51.50 55.07
Expert 61.49 68.72 36.49 82.10 51.54 34.25 50.16 50.30 54.38

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: For 3B-paramter LLMs, UoE exhibits consistent downstream performance. Colored entries
show improvements over the MoE baseline; bold text indicates the best results.

Model ARC-E ARC-C PIQA HELLA SCIQ WINO AVG.

MoE 63.64 31.48 70.62 39.52 89.40 51.22 57.65

AoE 64.44 31.57 70.24 40.34 88.80 53.35 58.12
UoE 69.07 33.11 73.18 41.96 87.10 52.80 59.54

4.5 VALIDATION OF UOE WITH LARGER MODEL SIZE

We pre-train UoE and its competitors with a total of 3 billion parameters. We follow most of the
architectural settings from Section 4.1. For these 3B-parameter language models, each model consists
of 20 layers and 20 attention heads, with the hidden dimension expanded to 1280. The number of
experts is kept consistent with the previous setup, and 7 routed experts are activated. We adjust
training parameters accordingly to better suit the training.

At larger parameter scales, UoE consistently outperforms MoE and AoE models, with improvements
becoming increasingly pronounced as the model size grows. This highlights the potential of scaling
UoE to even greater parameter sizes to further boost its capabilities.

5 RELATED WORK

Mixture-of-Experts. The Mixture-of-Experts (MoE) paradigm was originally proposed as a modu-
lar neural network framework in which a gating function assigns inputs to specialized experts (Jacobs
et al., 1991; Jordan & Jacobs, 1994). More recently, MoE has been integrated into large-scale
Transformers to achieve trillion-parameter models with sparse computation (Lepikhin et al.; Fedus
et al., 2022). Subsequent work has focused on improving efficiency through balanced expert assign-
ment (Lewis et al., 2021) and system-level optimizations for distributed training (Hwang et al., 2023;
Gale et al., 2022). Despite these advances, sparse MoE models continue to face challenges such as
routing instability and expert redundancy. To mitigate these issues, DeepSeekMoE (Dai et al., 2024)
introduces shared experts, which provide stable coverage of common knowledge while routed experts
focus on specialization. In addition, its fine-grained expert partitioning further enhances efficiency
and encourages more diverse expert behaviors. In this work, we adopt most of the configurations
from DeepseekMoE. In contrast, our virtual shared expert is constructed from all routing neurons,
thereby functioning both as the shared expert and as the mechanism for autonomous routing.

Expert Selection Strategies. Prior work on expert selection has explored a variety of routing mech-
anisms to determine which experts to activate from a set of N candidates. Top-k routing (Lepikhin
et al.) activates a fixed number of experts per token based on router-assigned scores, while Top-p
routing dynamically selects experts until a cumulative probability threshold p is reached. Despite
these differences, most approaches rely on a centralized router to assign tokens to experts. In contrast,
Lv et al. (2025) eliminates the router entirely by allowing experts to self-activate, thereby achieving
expert selection in a fully decentralized manner. In this paper, we improve AoE’s expert autonomy by
addressing efficiency issues and replacing low-rank factorization with routing neurons.

6 CONCLUSION

In this paper, we introduce UoE, a novel MoE variant that perform expert autonomy routing. UoE
leverages only a small subset of neurons in each expert to capture the expert’s overall activation,
effectively addressing the efficiency challenges encountered in previous work. Moreover, we treat
these routing neurons collectively as a shared expert to further enhance activation utilization efficiency.
We hope that UoE can inspire the community to pursue more effective autonomy-based routing
strategies to mitigate the decoupling between routing decisions and expert capabilities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on the development of a Mixture-of-Experts (MoE) model. Our study does not
involve human subjects, personally identifiable information, or sensitive data. We do not foresee any
direct ethical or societal risks arising from our methodology or experiments.

REPRODUCIBILITY STATEMENT

We have added our code to the supplementary materials, and all the data used is open-source. The
experimental setup is detailed in Section 4.1. Unless noted, all experiments use the same settings.
Overall, these practices make our results reproducible.

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts
language models, 2024. URL https://arxiv.org/abs/2401.06066.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1), January 2022. ISSN
1532-4435.

10

https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2412.19437

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts, 2022. URL https://arxiv.org/abs/2211.15841.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Hao Gu, Wei Li, Lujun Li, Qiyuan Zhu, Mark Lee, Shengjie Sun, Wei Xue, and Yike Guo. Delta
decompression for moe-based llms compression, 2025. URL https://arxiv.org/abs/
2502.17298.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong.
Tutel: Adaptive mixture-of-experts at scale, 2023. URL https://arxiv.org/abs/2206.
03382.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3:79–87, 1991. URL https://api.semanticscholar.
org/CorpusID:572361.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Comput., 6(2):181–214, March 1994. ISSN 0899-7667. doi: 10.1162/neco.1994.6.2.181.
URL https://doi.org/10.1162/neco.1994.6.2.181.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
Idreos. Torchtitan: One-stop pytorch native solution for production ready llm pre-training, 2025.
URL https://arxiv.org/abs/2410.06511.

Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu, Xingwu Sun, Zhanhui Kang, Di Wang, and Rui
Yan. Autonomy-of-experts models. arXiv preprint arXiv:2501.13074, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

11

https://arxiv.org/abs/2211.15841
https://zenodo.org/records/12608602
https://arxiv.org/abs/2502.17298
https://arxiv.org/abs/2502.17298
https://arxiv.org/abs/2206.03382
https://arxiv.org/abs/2206.03382
https://api.semanticscholar.org/CorpusID:572361
https://api.semanticscholar.org/CorpusID:572361
https://arxiv.org/abs/2401.04088
https://doi.org/10.1162/neco.1994.6.2.181
https://arxiv.org/abs/2410.06511
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao
Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu,
Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), Proceedings of the 3rd Workshop
on Noisy User-generated Text, pp. 94–106, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL https://aclanthology.
org/W17-4413/.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

12

https://arxiv.org/abs/2507.20534
https://aclanthology.org/W18-5446
https://aclanthology.org/W17-4413/
https://aclanthology.org/W17-4413/
https://arxiv.org/abs/1910.03771

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

13

https://aclanthology.org/P19-1472/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DISCUSSION OF THE TRADE-OFF BETWEEN MEMORY CONSUMPTION AND
COMPUTATIONAL OVERHEAD

For simplification, we omit the cost of the router and the FLOPs of a traditional MoE layer is:

FLOPs = 3 · TK
(
2D · d

)
.

For an arbitrary AoE layer, the FLOPS it requires is:

FLOPs = 2 · TK
(
2D′ · d

)
+TK

(
2D′ · r

)
+TN

(
2 d · r

)
,

where D′ is the FFN hidden size of AoE to ensure the same number of parameters as MoE as:

D′ =
3 ·D · d− d · r

r + 2 · d
.

Compared with MoE, AoE introduces an overhead of FLOPs that is:

∆FLOPs = 2T · d · r · (N −K). (7)

B TRIALS ON SELECTING ROUTING NEURONS WITHIN EXPERTS

Motivated by our preliminary explorations, we investigate the idea of fixing a subset of neurons
as routing neurons to enable expert autonomy. In FFNs, neurons are dynamically activated based
on input. Despite that, our goal is to identify a subset of key neurons that effectively capture the
overall activation pattern. Our initial approach dynamically selects important neurons during training
and then fixes this subset during inference, allowing dominant weights in the experts’ parameters
to be located on the fly. A simple strategy uses the L2-norm to identify high-contributing neurons.
Although this incurs higher training cost than standard MoE, it remains substantially more efficient
than AoE. To further improve efficiency, we explore whether permanently fixing neurons could work.
Our experiments further confirm its feasibility.

C IMPLEMENTATION DETAILS OF UOE

C.1 HYPER-PARAMETERS OF MODEL ARCHITECTURE

Table 7 presents details on the architecture hyper-parameters used throughout our experiments.

C.2 TRAINING SETUP DETAILS FOR UOE

We provide additional details on our efficient training of UoE. The training
pipeline is built upon TorchTitan framework (Liang et al., 2025), uses PyTorch’s

Table 7: Hyper-parameters of model architecture.

Hyper-Parameters 1B 3B
hidden size 1024 1280
MoE layers 8 20

FFN hidden size 512 512
attention heads 8 8
key-value heads 20 20
routed experts 64 64

vocab size 128,256 128,256

RoPE theta 500,000 500,000

scaled dot product attention for attention,
and adopts the MegaBlocks (Gale et al., 2022)
MLP for MoE layer implementation.

C.3 IMPLEMENTATION
DETAILS OF THE VIRTUAL SHARED EXPERT

Figure 10 presents a naive PyTorch implementa-
tion of UoE’s training and inference. The slight
difference lies in repacking the routing neurons,
originally distributed across different experts,
into a layout conforming to the MoE shared ex-
pert. This prevents non-contiguous parameter
access at inference time and improves UoE’s
compatibility with practical MoE deployments,
such as Expert Parallelism. More details can be
found in our code repository.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D TOWARD A MECHANISTIC UNDERSTANDING OF ROUTING NEURONS

In this section, we aim to provide a theoretical explanation for how routing neurons can reflect an
expert’s activation. Specifically, an expert’s activation is jointly determined by how the input x
activates with both Wg and Wp. Without loss of generality, we take xWg as the running example in
the discussion below. Following Lv et al. (2025), we measure the activation intensity of the input
token x at Wg via the L2-Norm of xWg , which can be formulated as:

L2-Norm (xWg) =
√
xWgW⊤

g x⊤.

Given the singular value decomposition of Wg , we can expand this equation into:

L2-Norm (xWg) =
√
xUgΣg

2U⊤
g x⊤, where Wg = Ug Σg V

⊤
g .

Similarly, the activation intensity of input token x at W̃g is given by:

L2-Norm
(
xW̃g

)
=

√
xUrΣr

2U⊤
r x⊤, where W̃g = Ur Σr V

⊤
r .

As the expert weights of MoE models are intrinsically low-rank (Lv et al., 2025; Gu et al., 2025),
the L2-Norm(xWg) is dominated by a small portion of the singular vectors with the largest singular
values. Considering that, we compute and plot the similarity between Ur and the principal singular
vectors of Wg across all experts in UoE with 1B parameters.1

Figure 7 visualizes the results, where Si,j
g of the j-th expert at layer i is defined as:

Si,j
g = L2-Norm (< Ur,Ug[0] >) ,

we also visualize the similarity between the router weights Ri,j in the MoE baseline and the principal
singular vectors for comparison. Si,j

r is denoted as:

Si,j
r =<

Ri,j

||Ri,j ||
, Ug[0] > ,

where Ri,j is the i-th row of the router weights at layer j.

(a
)	
M
oE

(b
)	
U
oE

Figure 7: Heatmap visualization of Si,j
g and Si,j

r across experts and layers.

1We use Ug[0] to denote the principal singular vector with the largest singular value.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

As shown in Figure 7, the principal singular vector of these routing neurons exhibits a noticeable
similarity to that of the expert weight matrices, whereas no similar phenomenon was observed in
MoE. We argue that this behavior arises from the specialized training dynamics of expert autonomy.
This alignment serves as the underlying mechanism that enables them to represent expert activations.

A similar pattern also emerges in Wp, and we provide the corresponding visualization in Figure 8.
(a
)	
M
oE

(b
)	
U
oE

Figure 8: Heatmap visualization of Si,j
p and Si,j

r across experts and layers.

E EFFICIENCY ANALYSIS FOR UOE AT INFERENCE TIME

To evaluate the inference performance of UoE, we build a generation pipeline on top of HuggingFace’s
GenerationMixin (Wolf et al., 2020). We conduct a breakdown analysis of UoE’s inference efficiency,
benchmarking the peak memory occupation and end-to-end generation throughput. We use 256
random tokens as input and conduct experiments across different generation lengths and batch-size
configurations.

Table 8 presents the results; we can conclude that the computation overhead of UoE is nearly identical
to that of MoE. More implementation details can be found in Section C.3.

Table 8: Throughput and peak memory usage comparisons.

Configuration TP. (token/s) / Mem. (GB)

Model BS 256 1024 4096

MoE 1 35.71 (2.15) 35.84 (2.15) 35.81 (2.15)
UoE 35.84 (2.15) 35.98 (2.15) 35.89 (2.15)

MoE 4 141.99 (2.21) 141.38 (2.21) 141.37 (2.21)
UoE 140.83 (2.21) 141.00 (2.21) 141.46 (2.21)

MoE 16 561.82 (2.48) 560.93 (2.48) 559.97 (2.48)
UoE 549.91 (2.47) 551.39 (2.47) 551.93 (2.47)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F VIRTUAL SHARED EXPERT IN UOE IS ALSO A COMMON-KNOWLEDGE
CONSOLIDATOR

Given that the routing neurons are always activated in UoE’s forward pass, we reuse the intermediate
hidden states and introduce the virtual shared expert. In this section, we show that this design not
only improves activation reuse and reduces overhead, but also facilitates knowledge sharing.

Geva et al. (2021) interpret transformer FFN layers as key-value memories, with knowledge or
abilities stored in the “value” vector (i.e., Wo in Gated Linear Unit). Following this intuition, we
perform PCA to project each row of Wo from all experts into a 2D space. We visualize the projected
expert weights in UoE and observe that the routing neurons concentrate primarily along the leading
principal component, with notably large projections onto this direction. This hints that the virtual
shared expert may encode knowledge broadly shared by all experts.

Figure 9 depicts the resulting layer-0 projection of Wo in our 1B-parameter pretrained UoE. The
projections from other layers exhibit similar patterns.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

Principal Component 1 (PC1)

0.4

0.2

0.0

0.2

0.4

Pr
in

ci
pa

l C
om

po
ne

nt
 2

 (
PC

2)

2D PCA Visualization of Wo Weight in Shared and Routed Experts

Experts
Experts 1-16
Experts 17-32
Experts 33-48
Experts 49-64

Figure 9: The Principal Component Analyis (PCA) projections of the experts output matrices weights
in pre-trained UoE onto the first two principal components (PC1 and PC2), highlighting the routing
neurons weights in bold purple. As seen in the plot, these weights project heavily onto the dominant
principal components of the full expert Wo matrix. This supports the idea that the virtual shared
expert captures knowledge common to all experts.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper employed an LLM solely to refine our manually written draft, including improving word
choice, grammar correctness, and sentence fluency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 class MoE(nn.Module):
2 def __init__(self, args):
3 super().__init__(args)
4 self.experts = ParallelMLP(args)
5 self.shared_expert = MLP(args)
6

7 def forward(self, x): # x: [seqlen * bs, hidden_size]
8 return self.moe_forward(x) if self.training else self.moe_infer(x)
9

10 def moe_forward(self, x):
11 indices = torch.arange(self.N[:, None]) * self.d + \
12 torch.arange(self.N_s)[None, :].view(-1)
13

14 wg_ = self.experts.wg[indices]
15 wp_ = self.experts.wp[indices]
16 wo_ = self.experts.wg[indices]
17

18 expert_acts = F.silu(torch.mm(x, wg_.T)) * torch.mm(x, wp_.T)
19 out = torch.mm(expert_acts, wo_)
20

21 expert_acts = expert_acts.view(-1, self.num_experts, self.N_s)
22 logits = torch.norm(expert_acts, p=2, dim=-1)
23 expert_weights, top_experts = torch.topk(logits, k=self.K, dim=-1)
24 expert_weights = expert_weights.softmax(-1, dtype=torch.float32)
25

26 return out + self.experts(x, expert_weights, top_experts)
27

28

29 @torch.no_grad()
30 def moe_infer(self, x):
31 # repacking the routing neurons into a virutal shared expert
32 if not self.initialized:
33 self.create_virutal_shared_expert_weights()
34 self.initialized = True
35

36 expert_acts = F.silu(self.shared_expert.wg(x)) * self.shared_expert.wp(x)
37 out = self.shared_expert.wo(expert_acts)
38

39 expert_acts = expert_acts.view(-1, self.N, self.N_s)
40 logits = torch.norm(expert_acts, p=2, dim=-1)
41 expert_weights, top_experts = torch.topk(logits, k=self.K, dim=-1)
42 expert_weights = expert_weights.softmax(-1, dtype=torch.float32)
43

44 return out + self.experts(x, expert_weights, top_experts)
45

46 def create_virutal_shared_expert_weights(self):
47 self.shared_expert.wg.weight.copy_(
48 self.experts.wg.weight.view(
49 self.N, self.d , self.D
50)[:, :self.N_s, :].reshape(self.d, self.D)
51)
52 self.shared_expert.wp.weight.copy_(
53 self.experts.wp.weight.view(
54 self.N, self.d , self.D
55)[:, :self.N_s, :].reshape(self.d, self.D)
56)
57 self.shared_expert.wo.weight.copy_(
58 self.experts.wo.weight.view(
59 self.N, self.d , self.D
60)[:, :self.N_s, :].reshape(self.d, self.D)
61)

Figure 10: Pseudo code for UoE implementation in PyTorch.

18

	Introduction
	Background and Notation
	Mixture-of-Experts (MoE)
	Autonomy-of-Experts (AoE)

	Methodology
	Motivation
	Routing neurons accelerate autonomous routing
	Virtual shared expert improves activation utilization efficiency

	Experiments
	Main Results and Analysis
	Efficiency Analysis of UoE
	Ablation Studies
	Consistency of Expert Selection between Expert and Routing Neuron Activations
	Validation of UoE with Larger Model Size

	Related Work
	Conclusion
	Discussion of the Trade-off between Memory Consumption and Computational Overhead
	Trials on Selecting Routing Neurons within Experts
	Implementation Details of UoE
	Hyper-parameters of Model Architecture
	Training setup details for UoE
	Implementation Details of the Virtual Shared Expert

	Toward a Mechanistic Understanding of Routing Neurons
	Efficiency Analysis for UoE At Inference Time
	Virtual Shared Expert in UoE is also a Common-Knowledge Consolidator
	The Use of Large Language Models (LLMs)

