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ABSTRACT

The ever-growing biomedical publications magnify the challenge of extracting
structured data from unstructured texts. This task involves two components:
biomedical entity identification (Named Entity Recognition) and their interrela-
tion determination (Relation Extraction). However, existing methods often neglect
unique features of the biomedical literature, such as ambiguous entities, nested
proper nouns, and overlapping relation triplets, and underutilize prior knowledge,
leading to an intolerable performance decline in the biomedical domain, especially
with limited annotated training data. In this paper, we propose the Biomedical
Relation-First EXtraction (Bio-RFX) model by leveraging sentence-level relation
classification before entity extraction to tackle entity ambiguity. Moreover, we
exploit structural constraints between entities and relations to guide the model’s
hypothesis space, enhancing extraction performance across different training sce-
narios. Comprehensive experimental results on multiple biomedical datasets show
that Bio-RFX achieves significant improvements on both named entity recogni-
tion and relation extraction tasks, especially under low-resource training scenar-
ios, achieving a remarkable 5.13% absolute improvement on average in NER,
and 7.20% absolute improvement on average in RE compared to baselines. The
source code and pertinent documentation are readily accessible on established
open-source repositories 1.

1 INTRODUCTION

Biomedical literature contains extensive knowledge and serves as a crucial medium for biomedical
research. With the growing amount of biomedical publications, it has become increasingly chal-
lenging to manually keep up with the latest advances in the biomedical field. Therefore, developing
methods to automatically extract structured information from unstructured biomedical texts has at-
tracted extensive research attention. Researchers are trying to obtain biomedical entities and their
relations from plain texts, namely Named Entity Recognition (NER) and Relation Extraction (RE),
as illustrated in Figure 1. These structured data can be further applied to several downstream tasks
and real-world circumstances in both academia and industry.

The keystone of entity and relation extraction hinges on proficiently modeling textual data, wherein
it involves obtaining meaningful representations of biomedical texts and designing methods to ex-
ploit these representations. Over the past few years, tremendous success has been achieved by
adapting BERT (Devlin et al., 2018) architectures to biomedical domain, including pre-training from
scratch and additional training. Nevertheless, there are still two non-trivial challenges for entity and
relation extraction in biomedical domain.

Firstly, learning effective representations is challenging in low-resource scenarios. Neural network-
based strategies depend on substantial quantities of labeled training data, a prerequisite often elusive
in the biomedical domain. This is primarily because the manual annotation of biomedical text data
can be laborious, time-consuming, and error-susceptible. Annotators are required to read and inter-
pret texts meticulously, and often reliable annotations can only be obtained from domain experts or
multiple rounds of annotations on the same data.

1https://anonymous.4open.science/r/bio-rfx-E5A9/
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Figure 1: Automatic entity and relation extraction from biomedical publications. Example A illus-
trates ambiguous entities, and Example B shows perplexing nested biomedical proper nouns.

Some research concentrates on integrating biomedical knowledge graphs (KGs), such as UMLS (Bo-
denreider, 2004), into training data to enhance adaptability across various multiple domains (Zhang
et al., 2021). Nonetheless, this approach is subject to several limitations. Entity-level KGs suffer
from rapid knowledge update, large storage space, and heavy computational costs. Concept-level
KGs, whose nodes and edges are abstract biomedical concepts, are affected by discrepancies in an-
notation standards between textual datasets and KGs. Most of the biomedical information extraction
datasets center on extracting diverse and fine-grained relations between coarse-grained biomedical
entities. However, concept-level KGs often fails to distinguish between various relations. For exam-
ple, all the relation types in datasets DrugProt (Miranda et al., 2021) and DrugVar (Peng et al., 2017)
can be categorized as the same relation type (interact-with) in UMLS, which severely undermine the
instructive prior knowledge in KGs.

Secondly, distinct features in biomedical literature require domain-specific design for model archi-
tecture, which is a less-explored but notable aspect compared with text representations. The per-
formance of general-domain models drops dramatically when adapting to biomedical contexts due
to the stylized writing and domain-specific terminology. Moreover, biomedical entities might be
ambiguous, which means the same phrases can be recognized as different named entities depending
on the current context and/or the relationship with other entities. Example A in Figure 1 is a typical
example, where beta and delta may refer to a variety of biomedical entities, and the relation binding
between them hints that they are proteins. And overlapping proper nouns can be perplexing, making
it difficult for the model to detect the ground truth entities. In Example B of Figure 1, human and
human pathogens are both valid biomedical entities, while only the latter should be extracted under
relation type exhibit. For these reasons, it becomes difficult for model architectures designed for
general domains to effectively manage distinctive features of biomedical literature.

To address the above issues, we proposed Biomedical Relation-First EXtraction (Bio-RFX) model,
wherein hypothesis space is constrained by prior knowledge. This architecture is inspired by the
observation that there exists strong and simple structural knowledge implications among relational
triplets, which cannot be ignored. For example, the relation type exhibit is most likely to exist
between a microorganism and a phenotype. Therefore, we first predict the relation type appeared
in the sentence, and then extract the relevant entities whose type satisfies such structure through a
question-answering manner. A question is generated based on the relation type, and the original
sentence is regarded as the context. All the related entities form a multi-span answer. Next we
predict the number of valid entities in the sentence and remove the false entities with text-NMS
algorithm (Hu et al., 2019). Relations between entities are generated according to the structural
constraints as the final step.

This approach is capable of tackling specific issues in biomedical texts. For ambiguous entities, the
predicted relation information serves as a hint for entity type. For perplexing entities, the overlapping
terms are excluded by text-NMS algorithm, and thus the specificity is significantly improved.

We evaluate our method on several biomedical datasets: Bacteria Biotope (Bossy et al., 2019),
DrugProt (Miranda et al., 2021), DrugVar (Peng et al., 2017). Experiment results show that our
model improves the F1 scores by 5.28% on average for NER, and by 3.70% on average for RE task
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when using the full training set. In the low resource setting, our model can obtain micro F1 gains of
5.13% absolute improvement on average in NER, and 7.20% absolute improvement on average in
RE compared to baselines.

In summary, the main contributions of this paper include:

• We unveil an efficient biomedical relation-first extraction framework, meticulously crafted
for extracting entities and relations from biomedical literature in low-resource settings.

• We construct a relation-first model to adapt to the features of biomedical texts and innova-
tively utilize prior knowledge to constrain the hypothesis space of the model.

• Comprehensive experiment results show that our model significantly outperforms the state-
of-the-art models on multiple biomedical datasets under different settings.

• To the best of our knowledge, our work marks the inaugural endeavor in extracting both en-
tities and relations from biomedical literature under the scenarios characterized by limited
training data.

The rest of the paper is organized as follows. In Section 2, we outline the important related work. In
Section 3, we introduce our proposed approach in detail. In Section 4, we present the experimental
results. Finally, we conclude the paper in Section 5.

2 RELATED WORK

Researchers have proposed numerous methods for extracting entities and relations, most of which
belong to pipeline or joint methods.

2.1 PIPELINE METHOD

Based upon extracting sequence, pipeline approach is divided into three paradigms.

The first paradigm starts with NER to identify all the entities in a sentence and then classifies each
extracted entity pair into different relation types. To attain representations for entity and relation at
various levels, FCM (Gormley et al., 2015) uses compositional embedding with hand-crafted and
learned features, Zeng et al. (2014) employs convolutional deep neural network, PL-Marker (Ye
et al., 2021) uses a neighborhood-oriented packing strategy and a subject-oriented packing strategy,
and Fabregat et al. (2023) first trains an NER model and then transfers the weights to the triplet
model. PURE (Zhong & Chen, 2020) inserts predicted entity label marks into the input sentence
before relation extraction to integrate semantic information provided by entity types. Although these
methods are easy to implement, they suffer from ignoring either the overlapping relation triplets or
the important inner structure behind the text.

To tackle these challenges, the second paradigm is proposed. The model first detects all potential
subject entities in a sentence then recognizes object entities concerning each relation. CasRel (Wei
et al., 2019) regards relations as functions that map subjects to objects and identifies subjects and
objects in a sequence tagging manner. Multi-turn QA (Li et al., 2019) formulates entity and relation
extraction as a question-answering task, sequentially generating questions on subject entities, rela-
tions and object entities. ETL-Span (Yu et al., 2019) designs a subject extractor and a object-relation
extractor and decodes the entity spans by token classification and heuristic matching algorithm. Nev-
ertheless, in real-life circumstances, a sentence may contain a large number of entities, but relations
are often sparsely distributed. Therefore, the above methods are burdened with relation redundancy.
In the first paradigm, most entity pairs have no relation and in the second paradigm, enumerating all
relation types is unnecessary.

The third paradigm is introduced to solve this problem, which is running relation detection at a
sentence level before extracting entities. RERE (Xie et al., 2021) predicts a subset potential rela-
tions and performs a relation-specific sequence-tagging task to extract subject and object entities.
PRGC (Zheng et al., 2021) adds a global correspondence used for triplet decoding. Our method
Bio-RFX is different from their approaches in the following aspects. We utilize independent en-
coders at entity and relation extraction, which is instrumental in learning task-specific contextual
representations. Besides, instead of directly applying the relation representations, we generate a
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question query with respect to the relation type and targeted entity types. It provides a natural and
intuitive way of jointly modeling the connection between entity and relation, and allows us to exploit
the fully-fledged machine reading comprehension models. Furthermore, with a focus on domain-
specific issues, typically the nested or overlapping proper nouns and biomedical terms that is difficult
for recognition, we implemented text-NMS algorithm to improve specificity of extraction.

2.2 JOINT METHOD

Another task formulation is building joint models that simultaneously extract entities and relations.
Feature-based models (Miwa & Sasaki, 2014; Ren et al., 2017) requires expertise and experience
for feature engineering. Recent research focused on neural network-based models and has yielded
promising results. For instance, joint extraction task can be converted to a sequence tagging problem
by designing token labels that include information of entities and the relation they hold (Zheng et al.,
2017). Nevertheless, these methods failed to extract overlapping entities and relation triplets, which
are ubiquitous in real-world applications, especially in the biomedical domain.

To tackle the aforementioned challenge, subsequent works introduced various enhancement mecha-
nisms via modeling input texts in a spatial rather than traditional sequential manner. TPLinker (Wang
et al., 2020) regards extraction as matrix tagging instead of sequence tagging, and links token pairs
with a handshake tagging scheme. OneRel (Shang et al., 2022) enumerates over all the token pairs
and relations, and predicts whether they belong to any factual triplets. SPN (Sui et al., 2023) formu-
lates joint entity and relation extraction as a direct set prediction problem. REBEL (Cabot & Navigli,
2021) takes a seq2seq approach, translating the triplets as a sequence of tokens to be decoded by the
model. DeepStruct (Wang et al., 2022) pretrains language models to generate triplets from texts and
performs joint entity and relation extraction in a zero-shot manner. Graph structures are also widely
applied. KECI (Lai et al., 2021) first constructs an initial span-graph from the text, then uses an
entity linker to form a biomedical knowledge graph. It uses attention mechanism to refine the initial
span graph and the knowledge graph into a refined graph for final predictions. SpanBioER (Fei
et al., 2021) is also a span-graph neural model that formulates the task as relation triplets prediction,
and builds the entity-graph by enumerating possible candidate entity spans.

However, joint models have a number of drawbacks. These spatial approaches suffer from high
computational complexity. Besides, NER and RE are distinct tasks, thus sharing representations
between entities and relations undermines performance (Zhong & Chen, 2020). In comparison, it is
much easier to divide joint extraction into several submodules and conquer each of them separately.

3 METHOD

In this section, we will present a detailed description of the proposed Bio-RFX, whose framework
is illustrated in Figure 2. The framework contains four key components: (1) Relation Classifier
predicts all the relation types that the input sentence expresses by performing a multi-label classi-
fication task. (2) Entity Span Detector extracts subject and object entities for each relation in a
sentence using a relation-specific question. (3) Entity Number Predictor predicts the number of
entities with a regression task with a question-answering approach. (4) Pruning Algorithm filters
the candidate entities by the predicted entity number.

3.1 RELATION CLASSIFICATION

For relation extraction task, we detect relations at the sentence level to alleviate relation redundancy.
In the example shown in Figure 2, for each relation type in the dataset, like activator and inhibitor,
we will detect whether the relation is expressed in the sentence respectively. It is formulated as a
multi-label classification task. Our model first constructs a contextualized representation for each
input token xi ∈ x = {x1, x2, ..., xn} using SciBERT (Beltagy et al., 2019). To be more specific, we
construct an input sequence [[CLS], x, [SEP]], feed it into the encoder and obtain the output token
representation matrix H = [h0,h1, . . . ,hn,hn+1] ∈ Rd×(n+2), where d indicates the hidden
dimension. We then use h0 ∈ Rd, to represent the semantic information of the sentence. Next, the
sentence representation is fed into |Tr| classifiers independently to determine whether the sentence
expresses relation τr, where τr ∈ Tr. For relation τr, the output of the classifier p̂r can be defined
by p̂r = σ(Wrh0 + br), where Wr, br are trainable model parameters and denote the weight and
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Figure 2: The overall framework of Bio-RFX. (1) The relation classifier predicts that there are
two relations in the sentence, Activator and Inhibitor. (2–4) Relation-specific entity extraction is
performed for each of the predicted relation type. To be more specific, (2) the entity detector extracts
all the entities that satisfy the structural constraints via a question-answering manner, and (3) the
number predictor outputs the number of spans similarly. (4) The relation triplets are generated by
excluding the overlapping perplexing entities.

bias respectively. σ is the sigmoid activation function. For each relation τr, we employ the cross
entropy loss to optimize the training process. Let pr denote the ground truth from annotated data;
pr = 1 is used to represent that relation τr has appeared in the sentence and vice versa. Therefore,
the loss function for relation classifier can be defined as:

Lrel = −
∑
x∈D

|Tr|∑
r=1

pr log p̂r. (1)

3.2 ENTITY EXTRACTION

3.2.1 ENTITY DETECTION

We formulate entity detection as span extraction from the sentence. This approach is inspired by
machine reading comprehension models that extract answer spans from the context. For the first
step, we design a question for entity detection. For NER, we generate a question q using predefined
templates with all the entity types in Te. For example, if Te = {null, chemical, gene, variant}, then
q = What are the chemicals, genes and variants in the sentence? RE is more complicated, since the
strong structural constraints between entity types and relation types should not be ignored. For RE,
the question is specific for each relation type τr appeared in the sentence. Given a relation type τr,
let Tes denote the set of allowed subject entity types, and Teo denote the set of allowed object types.
We obtain these two sets by enumerating all the possible triplets in the dataset as prior knowledge,
which is undemanding since the relation types are fine-grained while the entity types are coarse-
grained, resulting in limited size of Tes and Teo. Suppose τr = activator, then Tes = {chemical},
Teo = {gene}. The question is generated with Tes ∪ Teo, i.e. qr = What gene does the chemical
activate? Note that it is a relatively simple approach. For other prompting techniques, please refer
to Appendix A. Given the question, we regard the sentence x as context and build the input sequence
[[CLS], qr, [SEP], x, [SEP]]. Then, we compute the representation of each span s ∈ S in sentence
x. Let H = [h1,h2, . . . ,hN ] be the token representation matrix for the input sequence, where N
denotes the number of tokens in the sequence. We obtain the representation s for s using an attention
mechanism over tokens (Lee et al., 2017):

at =
exp

(
FFNNα(s

∗
t )
)

lE∑
k=lS

exp
(
FFNNα(s∗k)

) , (2)
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s = [hlS ,

lE∑
t=lS

atht,hlE ,Φ(w)], (3)

where s∗ denotes the concatenation of all the tokens in the span s; weight at denotes the normalized
attention score; lS , lE denote the start and end position for span s respectively; and Φ(w) is a
learnable width embedding for the span width w = lE − lS . Then, we compute the probability
p̂e that span s is an entity with type τe using a FFNN with GELU activation function, namely
p̂e = FFNNe(s).

The loss function for NER during training is defined in the following equation:

Lent = −
∑
x∈D

∑
s∈Sx

|Te|∑
e=0

wepe log p̂e. (4)

For RE, the input sequence is relation-specific, thus the loss function is:

Lent = −
∑
x∈D

∑
s∈Sx

|Te|∑
e=0

|Tr|∑
r=1

τr∈Rx

wepre log p̂re. (5)

In both cases, we use we to handle the overwhelming negative entity labels, namely null entity when
e = 0, with a focus on valid entities. Specifically, we decrease the weight for null label to 0.1 in the
cross entropy loss function.

3.2.2 NUMBER PREDICTION

In order to exclude perplexing entities from the output, we implement textual non-maximum sup-
pression (text-NMS) algorithm (Hu et al., 2019), which requires us to predict the number of potential
entities in a sentence x. We formulate the regression task in a question-answering manner. In the
above example, for NER, we have q = How many chemicals, genes and variants are there in the
sentence? For RE, for each subject-object pair ⟨τes, τeo⟩ ∈ Tes × Teo, a unique question is gener-
ated. For instance, τr = activator, τes = chemical, and τeo = gene, then qr = How many chemicals
and genes are there in the sentence with relation activation? The question and the sentence are
concatenated together using [CLS] and [SEP] to form the input sequence. Similar to Section 3.1,
we obtain the representation vector h0 for the input sequence and then utilize a feed forward neu-
ral network (FFNN) with GELU activation function to acquire the predicted number k̂ of potential
entities, namely k̂ = FFNNn(h0).

We use k to denote the number of ground truth entities in a sentence. The loss function for number
prediction in NER is the mean squared loss, which can be defined as:

Lnum =
∑
x∈D

(k − k̂)2. (6)

For RE, it is slightly different concerning relations. We define kr as the number of subjects and
objects with relation τr, and duplicate entities are only counted once. The loss is defined as:

Lnum =
∑
x∈D

|Tr|∑
r=1

τr∈Rx

(kr − k̂r)
2. (7)

3.2.3 PRUNING ALGORITHM

After spans are extracted, we then adopt the text-NMS algorithm to heuristically prune redundant
and perplexing entities. Firstly, for each span s, we obtain the confidence score λ(s) = 1 − p̂e=0,
namely the probability for not being a null entity. Then the spans in S are sorted according to the
descending order of their confidence scores. A new set Ŝ is initialized as the final prediction for
spans. We select the span si that possesses the highest confidence score, put si into Ŝ, remove any
remaining span sj ∈ S that overlaps with si from S, and remove si from S as well. Text-level F1
score is used to indicate the degree of overlapping. This process is repeated until either |Ŝ| reaches
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k, i.e. the number of entities, or S becomes an empty set. A detailed illustration for the algorithm is
described in Algorithm 1 in Appendix B.

We then generate relation triplets with the spans in Ŝ. Instead of adopting a nearest-matching
method (Xie et al., 2021), we match all the possible subjects and objects to address the overlap-
ping triplets in biomedical texts. To be more specific, for relation τr, each ⟨τes, τeo⟩ ∈ Tes × Teo is
converted to a relation triplet ⟨τes, τr, τeo⟩ as the final result.

4 EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments on sentence-level NER and RE to justify the
effectiveness of the model. We first introduce the datasets in use and experimental settings. The
performance evaluation and analysis of the models are presented. Furthermore, we examine our
method in a low-resource scenario. Finally, we provide the results for ablation study to demonstrate
the effects of each submodule in the proposed framework.

4.1 DATASETS

We empirically study and evaluate related methods on three datasets: Bacteria Biotope (Bossy et al.,
2019), DrugProt (Miranda et al., 2021), DrugVar (Peng et al., 2017). For more details and prepro-
cessing methods, please refer to Appendix C.

4.2 EXPERIMENTAL SETTINGS

We outline the baselines and metrics here. For implementation details, please refer to Appendix D.

4.2.1 BASELINES

We evaluate our model by comparing with several models that are capable of both entity and
relation extraction on the same datasets, which are strong models designed for general domain
(PURE (Zhong & Chen, 2020), TPLinker-plus (Wang et al., 2020)) and for biomedical domain
(KECI (Lai et al., 2021) and SpanBioER (Fei et al., 2021)). Some of the competitive relation-first
approaches, such as PRGC (Zheng et al., 2021), use ground truth entities as input, making them
unsuitable for baseline models due to their lack of NER application.

4.2.2 EVALUATION METRIC

We use micro F1 scores for both NER and RE to evaluate models. An entity is considered matched
if the whole span and entity type match the ground truth, and a relation triplet is regarded correct if
the relation type and both subject entity and object entity are all correct.

4.3 MAIN RESULTS

Table 1: Micro F1 (%) of models on biomedical datasets. The best results are in bold.

Model Bacteria Biotope DrugVar DrugProt

NER RE NER RE NER RE

PURE 66.35 38.16 80.48 65.20 90.74 70.07
KECI 63.95 37.29 73.93 63.17 85.71 74.19

TPLinker-plus 69.25 37.49 79.54 63.14 91.03 70.61
SpanBioER 73.60 38.30 81.39 67.56 88.28 65.94

Bio-RFX 75.90 43.38 84.12 69.28 91.87 71.22

Table 1 shows the micro F1 scores of all the models on the three datasets. The results demonstrate
that our model improves the F1 scores by 5.28% on average for NER for all datasets, and by 3.70%
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on average for RE. On Bacteria Biotope and DrugVar, our model significantly outperforms all the
other baselines in both tasks, please refer to Appendix E for detailed significance tests. The powerful
model KECI achieves competitive performance in RE on DrugProt, but it performs poorly in NER
on the same dataset. KECI models information extraction with graphical structure, thus it is able
to generate more accurate relation triplets compared to our simple generating method. However,
its training process depends heavily on a large amount of annotated data, leading to unsatisfactory
results on smaller datasets. In contrast, on a more practical biomedical dataset with insufficient
annotated training data, the proposed method performs better than other baseline models.

We can draw several conclusions from the observations. Firstly, our method achieves superior per-
formance compared baselines for biomedical datasets, especially those with limited training data,
which indicates that individual encoder can effectively learn precise representations for biomedical
texts. In addition, in datasets that has annotation discrepancies with knowledge bases and there-
fore is challenging to conduct entity linking, strong structural constraints in biomedical domain can
indeed help achieve better performance than traditional methods that fuse KGs into the model.

4.4 LOW RESOURCE SETTING

Table 2: Micro F1 (%) of models on biomedical datasets under low resource setting. The best results
are in bold. The number in the bracket indicates the approximate size of training set.

Model DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200)

NER RE NER RE NER RE NER RE

PURE 76.88 58.37 73.55 50.01 89.48 57.14 83.43 51.53
KECI 75.03 59.35 66.94 52.86 82.26 52.46 67.18 46.58

TPLinker-plus 77.32 60.66 71.06 23.53 85.95 46.29 78.11 32.80
SpanBioER 77.56 60.12 74.13 50.00 87.13 49.25 84.78 44.00

Bio-RFX 81.23 63.90 74.90 54.01 89.67 57.58 87.43 52.03

We conduct several experiments to explore the effectiveness of our method in a low resource sce-
nario. We randomly select 10% and 4% samples from DrugProt, as well as 50% and 20% samples
from DrugVar to construct new datasets. The experiment results are shown in Table 2. Bio-RFX con-
sistently outperforms baseline methods, achieving 5.13% average improvement in NER and 7.20%
average improvement in RE across all datasets.

Compared with pipeline and joint methods, our model excels in the following aspects: (1) Number
prediction effectively improves specificity by pruning perplexing entities in biomedical domain.
Therefore, our approach performs better than models that simply adopt span extraction for entity
and relation extraction task (such as PURE). (2) Dividing complicated task into several submodules
significantly decreases the difficulty of training. Joint methods which based on intricate tagging
scheme severly suffer from scarce training data. For instance, TPLinker-plus combines information
from the whole triplet and the whole span to construct labels for span pair, resulting in 4 variants for
each relation type. Hence, the 4|Tr|-class classification task contributes to great learning difficulty
and significant performance drop under the low resource setting. On the contrary, our divide-and-
conquer philosophy is more effective because task-specific representation helps to achieve better
performance. (3) KG-enhanced joint methods are affected by overwhelming noisy prior knowledge
from KGs when training data is limited. In biomedical datasets, the definition for null entity varies
greatly, as specific entities (for example, qualitative concepts such as revealed or active) are likely to
be considered as null entity if not the primary focus of the dataset. Comprehensive KGs recognize
these entities incorrectly when training samples only account for a small portion of the total input
data. To support this argument, we find that KECI has lower precision and higher recall across
the experiments, while our model shows the opposite. Using extensive knowledge base as prior
knowledge in low resource scenario leads to overfitting to KGs, and constraining the hypothesis
space of the model is a more preferable alternative.

Additionally, the Large Language Models (LLMs) have shown promise in few-shot natural language
processing tasks. In Appendix G, we demonstrate the comparative results between Bio-RFX and
GPT-4.
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4.5 ABLATION STUDY

Table 3: Ablation study on biomedical datasets.

Model Bacteria Biotope DrugVar DrugProt

NER RE NER RE NER RE

Bio-RFX 75.90 43.38 84.12 69.28 91.87 71.22
Bio-RFX (- Structure) 75.90 20.80 84.12 36.31 91.87 27.97
Bio-RFX (- Number) 72.87 42.30 84.68 70.82 90.74 65.51

Table 4: Ablation study on biomedical datasets under low resource setting.

Model DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200)

NER RE NER RE NER RE NER RE

Bio-RFX 81.23 63.90 74.90 54.01 89.67 57.58 87.43 52.03
Bio-RFX (- Structure) 81.23 30.98 74.90 28.34 89.67 22.83 87.43 22.19
Bio-RFX (- Number) 80.40 61.86 74.13 51.85 89.43 56.94 89.35 43.24

In Table 3–4, we show the micro F1 score of our model without structural constraints for relation
triplet generation (- Structure), without entity span number prediction (- Number), and the full model
on the datasets. For Bio-RFX (- Structure), instead of enumerating each ⟨τes, τeo⟩ ∈ Tes × Teo for
relation τr to produce relation triplets, we regard each entity pair in Tev×Tev as a subject-object pair
for relation τr, where Tev indicates the set of valid and not-null entities. Since structural constraints
only influences relation triplet generation, the result for NER remains the same with the full model.
For Bio-RFX (- Number), we remove the number prediction and use the average number of entities
in a sentence as the threshold for text-NMS algorithm during inference. Without number prediction,
the micro F1 scores for NER and RE drop by 0.50% and 2.70% on average, respectively. The results
indicate the model’s performance is promoted with the presence of both structural constraints and
number prediction, of which strong structural constraints between entity types and relation types are
most helpful. It proves the ability of our model to tackle perplexing entities and take advantage of
structural constraints of relation triplets in biomedical literature.

4.6 CASE STUDY

To assess the model’s comprehension of ambiguous biomedical entities, we study several typical
cases. The results are presented in Appendix F.

5 CONCLUSION AND FUTURE WORK

This paper introduces Bio-RFX, a novel biomedical entity and relation extraction method, using
structural constraints for relation triplets to constrain the hypothesis space. The model can address
ambiguous entities and relation redundancy using a relation-first extraction approach, and uses a
heuristic pruning algorithm to recognize complex overlapping entity spans more precisely. It over-
comes annotated training data limitations, and significantly improves entity and relation extraction
performance. Extensive experimental results on multiple real-world biomedical datasets with abun-
dant and limited training data show that our method significantly outperforms the state-of-the-art
methods on NER and RE. For future work, we will explore the following research directions: (1)
We will expand the capability of the proposed method via incorporating other knowledge repre-
sentation methods besides structural constraints obtained by statistic features. (2) We will explore
more effective ways to generate questions or hints for relation-specific tasks, so as to make better
use of the rich semantic information provided in pre-trained encoders. (3) We will address the er-
ror propagation issue for pipeline training, which may lead to a discrepancy between training and
testing.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676, 2019.

Olivier Bodenreider. The unified medical language system (umls): integrating biomedical terminol-
ogy. Nucleic acids research, 32(suppl 1):D267–D270, 2004.
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A.1 TERM DEFINITIONS

We enrich the question with definitions of types of entities and relations to provide the model with
semantic information in the biomedical domain. For instance, the relation-specific question What
gene does the chemical activate? is followed by the definition of activator obtained from the Free
Medical Dictionary2, i.e., An activator is a substance that makes another substance active or reac-
tive, induces a chemical reaction, or combines with an enzyme to increase its catalytic activity. The
results are shown in Table 5 and Table 6, i.e. Bio-RFX (+definition). It can be observed that the
Micro F1 scores for NER and RE decrease. We believe the contextualized knowledge representation
during the pre-training process is sufficient, and the rigid definitions merely introduce noise to data
distribution.

Table 5: Micro F1 (%) of models on biomedical datasets.

Model Bacteria Biotope DrugVar DrugProt

NER RE NER RE NER RE

Bio-RFX 75.90 43.38 84.12 69.28 91.87 71.22
Bio-RFX (+definition) 75.14 44.65 83.86 69.70 90.79 56.79

Table 6: Micro F1 (%) of models on biomedical datasets under low resource setting. The number in
the bracket indicates the approximate size of the training set.

Model DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200)

NER RE NER RE NER RE NER RE

Bio-RFX 81.23 63.90 74.90 54.01 89.67 57.58 87.43 52.03
Bio-RFX (+definition) 79.90 63.22 71.19 48.68 88.67 52.50 89.35 56.73

A.2 UMLS MARKERS

External biomedical knowledge is also considered when designing prompts. We use UMLS
Metamap, a handy toolkit based on a biomedical knowledge graph, to match the biomedical terms
in the text and insert unique markers both before and after the terms. Take the following sentence as
an example.

Some clinical evidences suggested that pindolol can be effective at producing a shortened time to
onset of antidepressant activity.

In this sentence, pindolol is recognized by Metamap as a pharmacologic substance. When type-
specific markers are used, the result is:

Some clinical evidences suggested that <DRUG> pindolol </DRUG> can be
effective at producing a shortened time to onset of antidepressant activity.

The type of the entity can also be masked, i.e.,

Some clinical evidences suggested that <ENTITY> pindolol </ENTITY> can
be effective at producing a shortened time to onset of antidepressant activity.

On the DrugProt dataset, we observed a 3.02% and 6.45% decrease in micro F1 scores for NER
and RE, respectively. Several reasons may contribute to this experience results. To begin with, the
entity types in Metamap and the entity types in the datasets are quite different, posing a challenge
for entity linking. Another reason is that the matching method is mainly based on the syntax tree
and searching, thus the matching accuracy is not satisfactory. In the following example, the term

2https://medical-dictionary.thefreedictionary.com/
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‘of’ is erroneously identified as a gene (OF (TAF1 wt Allele)) due to its ambiguous nature, which
subsequently hampers the overall performance. Moreover, Metamap extracts all the entities without
being conscious of the relation type expressed in the sentence, misleading our entity model.

... <CHEMICAL> isoprenaline </CHEMICAL> - induced maximal relax-
ation ( E ( max ) ) <GENE> of </GENE> <CHEMICAL> methacholine
</CHEMICAL> - contracted preparations in a concentration dependent fash-
ion ...

B TEXTUAL NMS ALGORITHM

A detailed description for the algorithm is presented in Algorithm 1.

Algorithm 1 Textual Non-Maximum Suppression
Require: spans S, span number threshold k;
Ensure: pruned spans Ŝ;

Sort S in descending order of span scores;
Ŝ = {};
while S ̸= {} and |Ŝ| < k do

for si in S do
Ŝ = Ŝ ∪ {si};
S = S − {si};
for sj in S do

if F1(si, sj) > 0 then
S = S − {sj};

end if
end for

end for
end while

C DATASETS AND PREPROCESSING

We will briefly review all the datasets below and state the preprocessing methods we have applied.
The statistics of the datasets are listed in Table 7.

1. Bacteria Biotope is a part of the BioNLP Open Shared Tasks3. We knuckle down to the
entity and relation extraction subtask which aims to recognizing mentions of microorgan-
isms and microbial biotopes and phenotypes in scientific and textbook text, and extracting
relations between them. Manually annotated data is provided in the dataset. The original
dataset is designed for document-level information extraction, which is beyond the scope
of this paper. Thus we split the texts into sentences with Punkt (Kiss & Strunk, 2006)
sentence tokenizer and ignore all the cross-sentence relation triplets. The test set is not
publicly available, so we present the experiment results on the validation set hereafter for
fair comparison.

2. DrugVar is a subset of N-ARY dataset proposed in Peng et al. (2017) and mainly focuses
on extracting fine-grained interactions between drugs and variants. The dataset was con-
structed by first obtaining biomedical literature from PubMed Central4 and then identifying
entities and relations with distant supervision from Gene Drug Knowledge Database (Dien-
stmann et al., 2015) and Clinical Interpretations of Variants In Cancer5 knowledge bases. It
is also designed for document-level information extraction, so we adopt the aforementioned
method for sentence segmentation during preprocessing.

3http://2019.bionlp-ost.org
4http://www.ncbi.nlm.nih.gov/pmc/
5http://civic.genome.wustl.edu/
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3. DrugProt is a track in BioCreative VII and focuses on extracting a variety of important
associations between drugs and genes/proteins to understand gene regulatory and pharma-
cological mechanisms. The data is collected from PubMed abstracts and then manually
labeled by domain experts. We also perform sentence segmentation during preprocessing.
We as well merge some of the relation types so that all the refined relation labels are at the
same level in the relation concept hierarchy.

Table 7: Statistics of datasets

Datasets #Ent Type #Rel Type #Train #Valid

Bacteria Biotope 6 3 284 153
DrugVar 3 4 929 267
DrugProt 3 6 6,273 1,377

D IMPLEMENTATION DETAILS

For fair comparison, all the models use scibert-scivocab-cased (Beltagy et al., 2019) as pre-trained
Transformer encoder. We consider spans with up to L = 8 words, which covers 97.89% of the entities
on average in the datasets. We train our models with Adam (Kingma & Ba, 2014) optimizer of a
linear scheduler with a warmup ratio of 0.1. We train the relation, entity and count model for 100
epochs, and a learning rate of 1e-5 and a batch size of 8. We use gold relations and entity numbers to
train the entity model and the predicted relations and numbers during inference. To be more specific,
for each relation, if the probability obtained by the relation classifier is above the relation specific
threshold, then the sentence will be classified as positive, which means the sentence is expressing
this relation. Otherwise, it will be classified as negative. The relation-specific threshold can be
optimized via maximizing the classification F1 score on the validation set.

E SIGNIFICANCE TESTS

We designed a statistical analysis and performed experiments, which we address as follows.

Table 8: Significance tests on DrugVar.

Run Bio-RFX PURE KECI TPLinker-plus SpanBioER

NER RE NER RE NER RE NER RE NER RE

1 82.55 68.65 80.24 63.40 74.28 63.34 79.54 63.14 82.18 69.39
2 82.73 69.37 81.18 66.42 74.25 63.40 80.13 61.61 81.90 68.39
3 83.06 71.57 80.52 65.53 74.98 60.00 78.88 61.60 81.75 68.01
4 83.85 70.45 80.58 64.90 74.30 63.00 78.76 61.16 81.44 67.48
5 83.63 70.30 80.42 66.03 74.96 65.08 82.03 67.33 81.84 67.76

t − − 8.13 8.78 33.76 5.99 5.40 5.52 3.76 2.39
p − − 0.0006 0.0005 0.0000 0.0020 0.0028 0.0026 0.0099 0.0375

1. We choose 5 seeds randomly.
2. We train Bio-RFX and all the baseline models with each seed and record the corresponding

performances.
3. We perform one-tailed paired t-tests between Bio-RFX and each baseline model with sig-

nificance level α = 0.05 on the results. For each baseline model:
(a) We compute the difference in performance between Bio-RFX and the baseline model

so that we obtain 5 difference measures di (i = 1, 2, . . . , 5).
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(b) We compute the t statistic under the null hypothesis that Bio-RFX and the compared
baseline have equal performance:

t =
d̄− 0

s/
√
5
=

√
5d̄√

1
4

∑5
i=1(di − d̄)2

,

where d̄ and s are the sample mean and standard deviation of the difference measures,
respectively.

(c) We compute the p-value and compare it to the significance level α = 0.05. If the
p-value is smaller than 0.05 or the t statistic is bigger than 2.132, we reject the null
hypothesis.

The t statistics and p-values between Bio-RFX and the baseline models are shown in Table 8, 9 and
10. We can observe that all the p-values are below α = 0.05 (and all the t statistics are above 2.132),
rejecting the null hypothesis and demonstrating that Bio-RFX significantly outperforms the all the
baselines under general setting, and most of the baselines when training resources are limited.

Table 9: Significance tests on Bacteria Biotope.

Run Bio-RFX PURE KECI TPLinker-plus SpanBioER

NER RE NER RE NER RE NER RE NER RE

1 75.94 45.83 66.59 36.47 66.20 36.36 69.25 37.49 74.78 44.68
2 76.65 42.55 66.59 36.18 62.02 32.14 69.73 44.58 74.94 42.32
3 75.84 43.77 65.80 37.99 63.83 31.03 69.15 41.55 75.18 41.90
4 76.25 46.19 66.04 36.75 59.57 38.71 70.88 38.35 75.65 43.42
5 76.29 45.39 67.38 37.24 68.15 34.48 66.77 40.33 74.64 42.92

t − − 38.84 10.37 7.86 11.81 10.38 2.23 4.92 3.69
p − − 0.0000 0.0002 0.0007 0.0001 0.0002 0.0448 0.0040 0.0105

Table 10: Significance tests on DrugProt(200).

Run Bio-RFX PURE KECI TPLinker-plus SpanBioER

NER RE NER RE NER RE NER RE NER RE

1 88.12 55.63 83.90 55.74 71.05 38.58 78.11 32.80 82.24 41.31
2 88.55 53.97 83.40 51.41 68.57 38.43 79.79 26.52 81.87 39.65
3 88.97 57.04 84.29 52.89 72.76 38.59 84.70 25.00 82.17 42.92
4 88.93 55.59 84.13 54.62 74.64 35.58 82.75 26.29 82.03 42.06
5 90.49 58.78 84.09 58.23 71.07 44.17 82.68 30.23 82.38 42.01

t − − 13.69 2.11 16.61 17.61 7.37 18.62 19.22 26.16
p − − 0.0001 0.0512 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000

F CASE STUDY

Figure 3 illustrates cases of ambiguous entities in DrugProt dataset. In case A, Abeta is a chemical
in the form of a peptide, as well as processed from the Amyloid precursor protein. In case B,
angiotensin II is both a medication used to increase blood pressure, and a type of protein. Since
DrugProt focuses on extracting drug-gene/protein interactions, both of them are considered to be
proteins in the context. With the structural constraints, our model is able to correctly predict the
ground truth labels.
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Case A

As a consequence, phenserine reduces beta-amyloid peptide

(Abeta) formation in vitro and in vivo.

Biomedical Perspective:

Abeta: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: Abeta: PROTEIN / GENE

Case B

Torasemide inhibits angiotensin II-induced vasoconstriction

and intracellular calcium increase in the aorta of spontaneously

hypertensive rats.

Biomedical Perspective:

angiotensin II: PROTEIN / GENE, CHEMICAL / DRUG

Prediction: angiotensin II: PROTEIN / GENE

Figure 3: Case study for ambiguous biomedical entities.

G POTENTIAL OF LLMS

With the rapid development of Large Language Models (LLMs), it is necessary to discuss the po-
tential of LLMs for our task. We choose GPT-4 (OpenAI, 2023) to jointly conduct NER and RE on
biomedical texts.

To inform GPT-4 about its role and our task, we first send a system message, i.e. You are stepping
into the role of an expert assistant specialized in biomedicine. Your primary task is to accurately
extract entities and relations from biomedical texts and respond to users’ queries with clear, concise,
and precise answers.

After the system message, we give several examples. Each example contains a question section and
an answer section. A question section consists of 4 parts:

1. The biomedical text where we extract entities and relations.
2. The entity and relation types specified by the dataset.
3. The structural constraints between the entity and relation types.
4. A question guiding GPT-4 to provide the answer.

An answer section consists of 2 parts:

1. The entities detected from the text. To facilitate entity extraction, we inform GPT-4 to
generate highly structurized answers, e.g. <BCRP|GENE> represents an entity BCRP of
type GENE. In practice, we perform Chain of Thought (Wei et al., 2022) prompting to
enhance accuracy.

2. The relation triplets extracted from the text. Similar to en-
tity detection, GPT-4 intends to generate structurized answers, e.g.
<Menthol|CHEMICAL|TRPM8|GENE|activator> represents an activator re-
lation, whose subject and object are Menthol and TRPM8.

Finally, we form a question section based on the biomedical text and send it to GPT-4. We perform
regular expression matching on the response message to retrieve the answers. The evaluation metrics
are consistent with the previous sections, i.e. an entity is considered matched if the whole span and
entity type match the ground truth, and a relation triplet is regarded correct if the relation type and
both subject entity and object entity are all correct.

Table 11: Micro F1 (%) of GPT-4 and Bio-RFX on biomedical datasets.

Model Bacteria Biotope DrugVar (500) DrugVar (200) DrugProt (500) DrugProt (200)

NER RE NER RE NER RE NER RE NER RE

GPT-4 53.76 29.07 61.86 12.62 61.97 6.94 67.29 26.25 69.80 32.26
Bio-RFX 75.90 43.38 81.23 63.90 74.90 54.01 89.67 57.58 87.43 52.03

Results are shown in table 11. For DrugVar and DrugProt, the results of GPT-4 are approximately
the same as their subsets, since the given examples are the same. Compared to Bio-RFX, GPT-4
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underperforms severely in all experimental settings, indicating that although LLMs have numerous
emergent abilities, biomedical RE remains a difficult problem for LLMs. The source code is publicly
available at https://anonymous.4open.science/r/bio-re-gpt-F0A9/.
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