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Abstract

Recent advances in feed-forward 3D Gaussian Splatting have led to rapid improve-
ments in efficient scene reconstruction from sparse views. However, most existing
approaches construct Gaussian primitives directly aligned with the pixels in one
or more of the input images. This leads to redundancies in the representation
when input views overlap and constrains the position of the primitives to lie along
the input rays without full flexibility in 3D space. Moreover, these pixel-aligned
approaches do not naturally generalize to dynamic scenes, where effectively lever-
aging temporal information requires resolving both redundant and newly appearing
content across frames. To address these limitations, we introduce a novel Fuse-
and-Refine module that enhances existing feed-forward models by merging and
refining the primitives in a canonical 3D space. At the core of our method is an
efficient hybrid Splat-Voxel representation — from an initial set of pixel-aligned
Gaussian primitives, we aggregate local features into a coarse-to-fine voxel hierar-
chy, and then use a sparse voxel transformer to process these voxel features and
generate refined Gaussian primitives. By fusing and refining an arbitrary number
of inputs into a consistent set of primitives, our representation effectively reduces
redundancy and naturally adapts to temporal frames, enabling history-aware online
reconstruction of dynamic scenes. Trained on large-scale static scene datasets, our
model learns an effective global strategy to process around 200k primitives within
15ms and significantly enhances reconstruction quality compared to pixel-aligned
reconstruction approaches. Without additional training, our model generalizes to
video by fusing primitives across time, yielding a more temporally coherent result
compared to baseline methods with graceful handling of occluded content. Our
approach achieves state-of-the-art performance in both static and streaming scene
reconstructions while running at interactive rates (15 fps with 350ms delay) on a
single H100 GPU.

1 Introduction

Novel view synthesis from sparse views is a core problem for augmented and virtual reality (AR/VR)
applications, where practical constraints require the reconstruction to be fast and accurate for a
positive user experience. Recent feed-forward 3D Gaussian Splatting methods [[78} 4, [84] trained with
large-scale scene datasets offer efficient solutions for the sparse-view reconstruction problem. The
key idea of these approaches is to learn a large feed-forward network, typically Transformer-based,
to predict Gaussian primitives and use splatting as a fast renderer [22]].

The common approach taken by these methods is to regress per-pixel Gaussian primitives that lie
along the input camera rays. However, this leads to redundancy in the representation when input
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views have overlapping content, and can also lead to incomplete geometry with occluded content
not visible from the input views. This per-pixel representation also does not naturally generalize to
dynamic scenes, where redundant primitives between frames should be merged and new primitives
should emerge to capture newly appearing content.

To address these limitations, we introduce a novel Fuse-and-Refine module that processes and
merges Gaussian primitives in a canonical 3D space. Our approach enables more flexible primitive
placement and better density control, leading to improved reconstruction quality in static scenes. It
also greatly facilitates streaming reconstruction in dynamic scenes by avoiding error accumulation and
redundant primitives over time, while better handling temporal occlusions and disocclusions through
the use of historical information. We note that past approaches to merging primitives have relied on
heuristics [23]] that typically degrade reconstruction quality and require additional time-consuming
gradient descent optimization steps. In contrast, our learning-based solution leverages a feed-forward
Transformer trained on large-scale scene datasets combined with the structured nature of voxels as an
intermediate scaffold to efficiently fuse and refine Gaussian primitives.

We design a hybrid Splat-Voxel model that proceeds as follows: given a set of initial Gaussian
primitives from existing pixel-aligned feed-forward models, we first perform a Splat-to- Voxel Transfer
to aggregate local features from Gaussian primitives into a voxel representation, and then apply a
Transformer to generate refined Gaussian primitives from voxel features. Our voxel representation
is specifically designed to ensure both efficiency and high-quality output. We use a coarse-to-fine
voxel hierarchy to balance detail-preservation and computational overhead, operating a sparse voxel
transformer on features at the coarse resolution while refining the primitives at a high resolution.
Our Fuse-and-Refine module can merge 200K Gaussian primitives from existing feed-forward 3D
Gaussian models in just 15 ms, while delivering a PSNR improvement of around 2 dB.

We train our model exclusively on static datasets, but our model also enables history-aware streaming
reconstruction of sparse-view dynamic scenes without additional training or modifications. This is
advantageous as multiview video datasets remain limited in both size and diversity, prohibiting large-
scale training. For dynamic scenes, we first warp primitives from a past frame to the current frame,
filtering out those with large warping errors, and deposit primitives from both the past and current
frame onto our Splat-Voxel representation. The resulting refined primitives significantly improve
the temporal consistency of existing feed-forward models, while avoiding redundant primitives
and mitigating error accumulation. Our method achieves state-of-the-art performance on several
multi-view video datasets under the sparse camera setup, and can reach interactive rates (15fps with
350ms delay) under a single H100 GPU.

In summary, the main contributions of our paper are as follows:

* We introduce a novel Fuse-and-Refine module that enhances existing feed-forward 3D
Gaussian Splatting methods and extends them to history-aware streaming reconstruction in
a zero-shot manner.

» We propose a hybrid Splat-Voxel representation that combines a coarse-to-fine voxel hier-
archy with a sparse voxel Transformer, enabling effective learning of the Fuse-and-Refine
module on large-scale static scene datasets.

 Extensive experimental results demonstrate that our approach achieves state-of-the-art perfor-
mance on both static and streaming-based dynamic scene reconstruction, while maintaining
interactive runtimes.

2 Related Work

Novel View Synthesis A wide range of methods have been developed over the past decades
for novel view synthesis (NVS). A key design decision is the choice of 3D scene representation
to establish correspondences and capture structure. Popular representations include multi-plane
images [[16, 14} 13,172,166} 73 130], neural fields [41,57]], voxel grids [62} 42} |50], and point clouds [[77,
22]]. In this work, we adopt 3D Gaussian Splatting [22] as our final rendering representation due to
its ability to achieve high-quality and real-time consistent novel view synthesis.

Existing NVS methods can be broadly divided into those that optimize scene representation at test time
and those that directly predict it through a feed-forward network [68. 60} 53| 82} [13 121} 551 154} 20].
The combination of Transformers and 3D Gaussian Splatting has emerged as an efficient approach to



predict pixel-aligned Gaussian splatting in a data-driven, feed-forward manner [84, 16} 4} 83} 164, [71].
However, pixel-aligned prediction design often results in suboptimal scene reconstruction due to
limited flexibility in accurately positioning primitives in 3D space. To address this limitation, several
works have leveraged feed-forward networks operating on 3D representations, such as graph [86]],
voxel [39, 52| 5], or point cloud [7]], to process 3D Gaussian Splatting. Yet, extending these
representations to dynamic scenes remains challenging and largely unexplored. To this end, we
propose a hybrid point-voxel representation that can generalize to dynamic scenes during inference
while trained only on static scenes. Our design shares a similar spirit with voxel-based point cloud
processing networks [88} 136, 38]], which leverage voxel structures for efficient point cloud processing.
However, existing methods [31] typically rely on autonomous-driving—specific projections (e.g.,
bird’s-eye view) to handle large-scale scenes. In contrast, we construct a cost volume suitable for
general unbounded scenes and introduce a coarse-to-fine voxel hierarchy that enables global attention
at the coarsest level.

Reconstructing Dynamic Scenes Handling dynamic motions in novel view synthesis (NVS) is
challenging due to occlusions and the need for temporal consistency. Dynamic scene reconstruction
is typically addressed in multi-view setups with fixed cameras [79} 158, 74} 9, |37, 40] or monocular
settings where both the camera and scene move [44} 28| [75] 29, [69]. Most methods optimize on
the entire video sequence, relying on learned or hand-crafted priors such as optical flow [65] 34],
tracking [[11]], and depth estimation [45] 80} 49, 48] for supervision [28,[75]. Our method leverages
pretrained models for point tracking and optical flow as motion priors and operates causally and
online, using only previously received frames without requiring access to the full video.

Streaming reconstruction [9]] presents a significant challenge in dynamic scene reconstruction, aiming
to enable online novel view synthesis from potentially unbounded video streams for real-world
applications. Several methods [70, 26, 63| [17] have explored the use of historical information to
accelerate optimization, but remain computationally expensive and depend on dense multi-view
inputs. Feed-forward models are well-suited for sparse multi-view streaming scene reconstruction.
However, many of these methods can only take a single frame as input [[15} 33,51} 184, 4], ignoring
temporal information and consequently suffering from flickering and occlusion artifacts. Moreover,
the scarcity of real-world multi-view dynamic datasets hinders the ability to train feed-forward
dynamic models [51} [32]] for real-world streaming applications. By generalizing from static scene
training to dynamic video inference without requiring additional temporal data, our method enables
efficient, history-aware novel view synthesis for streaming scenarios.

3 Preliminaries: Feed-forward 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [22] 3DGS represents a scene as a set of anisotropic 3D Gaussian
primitives, each defined by its position u; € R?, opacity a; € R, quaternion rotation r; € R, scale
s; € R3, and spherical harmonic coefficients c; € R¥, where S denotes the number of coefficients
used for modeling view-dependent color. The rendered color at pixel p, denoted as C'(p), is computed
via splatting-based rasterization, where each 3D Gaussian is projected to 2D screen space and blended
using front-to-back alpha compositing:
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Here, G?P(p) denotes the 2D projection of the i-th 3D Gaussian at pixel p.

Feed-forward Reconstruction Model To predict the 3D Gaussian primitives in a feed-forward
manner from sparse-view images, we adopt the multi-view Transformer architecture from GS-
LRM [84]. Given N RGB images of resolution H x W with known camera intrinsics and extrinsics,
we extract per-pixel features by concatenating RGB values with Pliicker ray embeddings [46]. These
features are grouped into non-overlapping p X p image patches [12] and encoded using a shallow
CNN to obtain patch features of channel dimension C'. The patch features from all NV views are

then flattened into a sequence of NV x HW tokens, denoted as {X}. These tokens are processed by

a multi-view Transformer [67]] to jointly model geometric structure and appearance across views,
producing latent features {Z}:
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Figure 1: Method Overview. Our Fuse-and-Refine module takes as input Gaussian primitives
produced by existing feed-forward models, either from the current frame or warped from previous
reconstructions, and produces fused and refined primitives that improve scene reconstruction. The
input primitives are first deposited into a high-resolution voxel grid with a splat-to-voxel Transfer
strategy, which is then adaptively sparsified to construct a coarse-to-fine voxel hierarchy. A sparse
voxel transformer is applied at the coarse level to capture global context, and new primitives are
subsequently generated at the high-resolution level.

{Z} = Transformer v ({X}) 2)

Finally, a linear projection is applied to each latent token to produce an initial set of Gaussian
primitives and associated feature vectors:

{Gy,Fy,} = Linear({Z}) 3)

Here, G, represents the parameters of a 3D Gaussian primitive aligned with the k-th image patch,
which can be directly rendered using Gaussian Splatting [22], while F';, denotes an additional feature
vector used for the subsequent learning-based fusion and refinement.

4 Learning to Fuse and Refine

Given an arbitrary set of initial Gaussian primitives, for instance those from multi-view images (as in
Sec.3) or from previous time steps (as we will describe in Sec. [3)), we aim to fuse nearby primitives
and produce refined primitives that improve novel view synthesis results.

Challenges Preserving the fidelity of millions of Gaussian primitives while merging them is highly
non-trivial, with several factors contributing to the challenge. First, maintaining the original 3D
Gaussian distributions without divergence is fundamentally infeasible when combining multiple
kernels. This issue is further exacerbated in the context of sparse-view novel view synthesis, where the
fusion problem is inherently ill-posed. In addition to merging the Gaussian distribution determined
by primitive mean and covariance, other rendering attributes like color, opacity, scale, and rotation
must also be reconciled with limited supervision from sparse 2D observations. As a result, heuristic
approaches [23] often lead to degraded reconstruction quality.

Solution Instead, we propose an efficient learning-based approach that not only merges 3D prim-
itives, but also further refines them through a feed-forward Transformer. Trained on large-scale
scene data, our model learns a global strategy to fuse input primitives into a refined set of splats in
just 15 ms, significantly improving reconstruction performance. The proposed learning framework
adopts a hybrid Splat-Voxel representation, where an intermediate voxel grid serves as a structured
spatial proxy for aggregating and distributing splats. A voxel Transformer operates in latent space to
fuse information in a canonical 3D space and produce refined splats. An overview of the proposed
Fuse-and-Refine module is illustrated in Fig. [T}



4.1 Splat-to-Voxel Transfer

Starting with the predicted Gaussian primitives G, and their associated image features F, from the
multi-view Transformer (Eqn. [2), we first operate a Splat-to-Voxel Transfer procedure to convert the
point-based representation to a structured voxel representation. Implementation details, including
the choice of kernel function /C and other parameters, are provided in the supplementary material

(Sec.[A).

Splat Depositing Given a dense high-resolution voxel grid V', we deposit each Gaussian primitive
G, to the set of {M, } of nearest voxels based on the position . using a distance kernel K. That is,
for voxel V}, its weight associated with Gy, is:

Kk —x;) if i M
Wy = {Eyewwk—xw if5 € M}, @)
0

otherwise.

where x; represents the center of the j-th voxel. We choose the adjacent 8 voxels for each splat in
our implementation.

Splat Fusion Each voxel V; then accumulates the deposited splat attributes using opacity o as
weighting. The corresponding voxel attribute E; at voxel V} is then the normalized weighted sum of
the splat features F';; in the voxel:

1
Ei=w > wipan[FrGel, W= Y wjro ®)
T ke{M,} ke{My}

where [Fy; G| denotes the concatenation of the feature vector F, and Gaussian attributes Gy,.
The interpolation weight w;y, is computed as described in Eqn. 4] We use the notation £ € M, to
indicate that k indexes over the set of all Gaussian primitives, each associated with a weight, Gaussian
attributes, and a feature vector.

Coarse-to-fine voxel hierarchy Once the splat features are deposited onto the voxels, we construct
a coarse-to-fine voxel hierarchy. Specifically, the high-resolution voxels are downsampled by a factor
of [d, h,w] to generate a low-resolution voxel grid that serves as the coarse scene representation.
Sharing the same spatial topology, each coarse-level voxel directly corresponds to a [d, h, w] block
of fine-level voxels and can be restored by subdivision. We denote IN; as the set of d X h X w fine
voxels associated with the i-th coarse voxel. Using the previously computed voxel features E; as the
fine voxel features, we now compute coarse voxel features Ef.

We derive coarse voxel features using a shallow multi-layer perceptron (MLP) on the concatenation
of the fine features and set coarse voxel weights as the sum of the associated fine voxel weights:

EZC = MLPcoarse ([EJ | .7 € NZD ) WZ = Z Wj (6)
JEN;

Voxel Sparsification We leverage geometric cues from coarse voxel weights W ;, which encapsulate
the spatial distribution and opacity of Gaussian primitives within each voxel, to efficiently cull empty
and insignificant regions of the scene. We sort the coarse-level voxels by their voxel weights and
retain only the top 20% with the largest weights as a sparse voxel representation of the scene. This
sparsification is crucial for the downstream voxel transformer, and reduces the input token count to
fewer than 10K, which allows the voxel transformer to run in 15 ms. Note that the high-resolution
fine-level voxels are also sparsified accordingly if their corresponding coarse-level voxels are culled.

4.2 Sparse Voxel Transformer

From coarse voxel features, we treat each voxel feature as a token and reshape them to 1D vectors.
We train a transformer to process the set of coarse voxel features E°:
{O°} = Transformer,oze ({E°}) 7

The processed latent features {O°} are then replicated from the coarse voxel grids within their
corresponding fine voxel grids, producing latent features {O;} at the fine voxel resolution. A shallow



Table 1: Quantitative Comparisons Table 2: Quantitative Comparisons on the DL3DV
on the RealEstate10K Dataset. Our Dataset. We build our Voxel Transformer on GS-

method achieves state-of-the-art per- LRM [35] and present ablation studies on model design.
formance among recent feed-forward For a fair comparison, we use 12 multi-view Transformer
3D Gaussian Splatting methods. layers with our Voxel Transformer to match the size and
runtime of GS-LRM, which uses 24 layers.
Method PSNRT SSIM1 LPIPS,
pixelSplat [4] | 26.09 0.863 0.136 Method PSNR? SSIM? LPIPS] Time(ms)
MVSplat [6] 2639 0.869 0.128 GS-LRM 28.59 0.925 0.063 52.8
TranSplat [83] | 26.69 0.875 0.125 + Non-learning Fusion | 12.57 0.357 0.741 338
HiSplat [64] 27.21 0.881 0.117 + Ours (w/o Coarse-to-fine)| 20.62 0.587 0.247 48.6
OmniScene [71]]| 26.19 0.865 0.131 + Ours (w/o Sparse Voxel) | 29.69 0.926 0.060 72.0
DepthSplat [76] | 27.47 0.889 0.114 + Ours (w/ 3D CNN) 29.44 0922 0.061 82.1
GS-LRM [84] 28.10 0.892 0.114 + Ours (w/o Splat Feature) | 29.40 0.924 0.061 49.2
Ours 2847 0.907 0.078 +Ours | 30.61 0935 0.052 525

MLP subsequently generates refined Gaussian primitives by integrating the initial fine-level voxel
attributes E; with the fine-level transformer latents O ;.

G/ = MLP ;,.([0;, E;)) (8)

where G; € R! represents the predicted Gaussian primitives around the sparsified fine-level voxel
grids, with [ denoting the number of rendering parameters.

4.3 Training

We train the SplatVoxel feed-forward networks on multi-view static scene datasets [87} 35]] using a
photometric loss combining Mean Squared Error (MSE) and perceptual LPIPS [85]]:

L= Lyss(I, 1)+ Nrpws(I, 1) )]

where I denotes ground-truth target image and I the corresponding rendered target image from
the predicted Gaussian primitives, which come from either the multi-view transformer or voxel
transformer. We set A to 0.5 for the multi-view transformer and 4.0 for the voxel transformer. We
train our full-scale model for cross-dataset generalization on the DL3DV dataset [35]] with a batch
size of 128 for a total of 300K iterations using a two-stage training strategy. In the first stage, we
train the multi-view Transformer backbone for 200K iterations, followed by joint fine-tuning of both
the multi-view and voxel Transformers for an additional 100K iterations. Network architecture and
further training details are provided in the supplementary material (Sec. and Sec. B).

S Zero-shot Streaming Fusion

In this section, we demonstrate an application of the Sparse Voxel Transformer, trained solely on
static scenes, to enable zero-shot history-aware novel view streaming without requiring any training
on dynamic scenes. Please refer to the Appendix (Sec.[A.3) for full implementation details.

3D Warping Given a Gaussian primitive with an initial position y; at a previous frame t’, we
first estimate its corresponding 3D position i, at the current frame ¢ by performing triangulation on
the 2D correspondence obtained by a pre-trained 2D point tracking model [[L1]. In detail, we first
compute its 2D projection {p?, | i = 1...N} across N input views. We then run 2D point tracking
on the projected points to obtain their corresponding 2D pixel position p! in the current frame. The
3D position is subsequently recovered by finding the closest point to the /N camera rays originating
from the 2D projections pi. We adopt embedded deformation graph [611 143 23] to propagate reliable
motion estimates from a sparse set of anchor points to the entire scene. Anchor points are selected via
farthest point sampling [47]], and an embedded deformation graph is constructed by connecting each
splat to its K nearest anchor points, with blend weights computed based on spatial distances. For
efficiency, we only maintain primitives from a set of past keyframes, and the contribution of these
primitives are smoothly adjusted as older keyframes are replaced by newer ones to ensure seamless
temporal transitions.



Table 3: Quantitative Comparison Under Varying Input Views on the DL3DV Dataset. Trained
with 4 input views, our method consistently outperforms GS-LRM across different input-view settings
at inference.

2 Views 4 Views 8 Views 16 Views
PSNR1 SSIM1 LPIPS| PSNR1 SSIM1 LPIPS| PSNR?T SSIM?T LPIPS) PSNR1 SSIM1 LPIPS|

GS-LRM 1899 0.810 0.135 28.59 0.925 0.063 2251 0.879 0.106 20.12 0.792 0.177
Ours 26.32 0.876 0.093 30.34 0.934 0.054 2898 0.930 0.060 26.06 0.889 0.093

Method

GS-LRM Ours

Figure 2: Static Scene Reconstruction. Qualitative comparison of our method with GS-LRM [84]]
on RealEstate10k [87]. Our method preserves high fidelity reconstructions and sharp details.

Error-aware Fusion During streaming reconstruction, we incorporate both historical Gaussian
primitives warped from keyframes and new Gaussian primitives predicted from multi-view observa-
tions at the current frame. All of the collected Gaussian primitives are deposited to voxels (Sec. 1))
and then processed by the voxel transformer (Sec.#.2), producing refined, history-aware Gaussian
primitives. To mitigate artifacts resulting from warping inaccuracies of historical primitives (e.g.
warping error, appearance variation, or new objects), we use an adaptive fusion weighting mechanism
during splat fusion based on the per-pixel error between the past and current frame splats when
rendered to the input views.

6 Experiments

In this section, we present evaluations of feed-forward novel view synthesis on both static and
dynamic scenes, along with ablation studies on our splat-voxel representation designs.

6.1 Feed-forward Novel View Synthesis

We benchmark our method on two widely used datasets, RealEstate 10K [87] and DL3DV [33]], which
cover both indoor scenes and unbounded large-scale environments.

Following the training and testing protocol of [4], our method achieves state-of-the-art performance
on RealEstate 10K, as shown in Table[I] As illustrated in Fig.[2} our method reconstructs finer details
such as thin structures (e.g., chairs) and reflections compared to the strongest baseline, GS-LRM [84].
Additional qualitative comparisons and training details are provided in the Appendix (Sec. Bfand

Sec.[D).

We then demonstrate the ability of our method to enhance existing feed-forward 3D Gaussian Splat-
ting approaches through a comparison on the DL3DV dataset [35] with GS-LRM [84]. Table ]2]
demonstrates that our method outperforms GS-LRM by approximately 2 dB in PSNR, while main-
taining a comparable number of network parameters, similar inference time, and the same training
configuration. Our method also demonstrates strong generalization capability across varying input
views. Trained with 4 input views on the DL3DV dataset, our method consistently outperforms



Table 4: Novel View Streaming Metrics. We compare reconstruction quality of our model to prior
methods on two multi-view video datasets with sparse-view input. We report the average running

time of processing a single frame on Neural3DVideo at the resolution of 320 x 240. The | best and
second-best results are highlighted for clarity.

. Neural3DVideo LongVolumetricVideo
Method Time (s) PSNRT SSIM? LPIPS[ETZ'l]:lickem PSNRT gSSIMT LPIPS) ker¢
3DGS [22] 9.8 2102 0.6234 04989 4351 1856 0.6368 04334 61.69
3DGStream [63] 3.8 1424 03542 0.6016 6.554 1697 0.4405 05040 12.44
4DGS [74] 6.0 23.16 07812 02079 2,746 1875 0.6361 03554 |6.528
GS-LRM [84] 0.04 21.80 0.8488 0.1278 5714 2549 0.8558 01377 8.463

0.07 (non-keyframe)

Ours 0.35 (keyframe)

2741 0.8863 0.1040 2.916 25.56 0.8645 0.1242 17.782

3DGS 3DGStream 4DGS Ours

Figure 3: Qualitative Comparison of Novel View Streaming. We compare against per-frame
methods (3DGS and GS-LRM) and temporal methods (4DGS and 3DGStream) on LongVolumet-
ricVideo [79] with 4 input views and Neural3DVideo [27] with 2 input views.

GS-LRM across awide range of input configurations as shown in the Table[3] These results further
highlight the strong generalization ability of our method for long-sequence, large-scale scene recon-
struction. A compairson with Gaussian Graph Network [86] is provided in the appendix Table[T3]
which state-of-the-art method for handling diverse input views.

6.2 Novel View Streaming

We conduct a cross-dataset evaluation of our method on dynamic scene reconstruction, demonstrating
its generalization capability in enhancing reconstruction quality and improving temporal coherence.
We train both GS-LRM and our model on DL3DV, and compare our method with baselines on the
novel view streaming task on two dynamic scene datasets, Neural3DVideo and LongVolumet-
ricVideo [[79]. We use 2 input views for Neural3DVideo and 4 views for Long Volumetric Video. For
quantitative evaluation of temporal coherence, we introduce a flicker metric that complements the
per-frame novel view reconstruction scores. Temporal flicker is quantified by measuring feature-space
variations over time. For predicted frames I; and ground truth I, we compute

Flicker; = | Dy — Dj |,

where D; = ||¢(I}) — ¢(I:—1)]||2 and Dy = ||p(I}) — ¢(I;_1)]||2 denote temporal feature differences
extracted from a pretrained VGG network [56]. The final flicker score is computed by averaging
Flicker; over the entire sequence. Lower values indicate smoother temporal consistency.

As presented in Tabled] our method achieves the highest per-frame novel view synthesis performance
across all three evaluation metrics on both datasets with the second-best flicker scores. In comparison
to the state-of-the-art per-frame feed-forward method GS-LRM, our approach qualitatively recon-
structs geometry and appearance with greater accuracy and finer details (Fig. [6.T) Our method reduces



Table 5: Comparison of GS-LRM with Simple 3D Warping and Fusion Strategy. Incorporating
historical information for streaming reconstruction remains challenging due to accumulated errors,
whereas our Fuse-and-Refine network learns to effectively mitigate this limitation.

Method PSNRT SSIM{ LPIPS| Flicker|
GS-LRM 21.80 0.8488 0.1278 5.714
GS-LRM + 3D Warping 2140 0.8250 0.1419  2.163

GS-LRM + 3D Warping + Fusion (Concat + Dropout) 19.52  0.7429 0.2502  3.983
GS-LRM + 3D Warping + Ours (Fuse-and-Refine) 27.41 0.8863 0.1040 2916

Reference

GT time slice GS-LRM Ours

Figure 4: Temporal Slice Comparison. We extract a horizonal line in the ground truth and generated
videos to visualize temporal stability. Applying GS-LRM independently to each frame results in
noticeable flickering, whereas our method achieves greater temporal consistency and improved
occlusion robustness through temporal fusion and refinement.

flickering through history-aware modeling, visualized with temporal slices (Fig.[d). Although 4D
Gaussian Splatting yields slightly better flicker scores, it produces significantly poorer novel views
and its costly temporal optimization is impractical for online processing of long sequences.

We further apply 2D tracking and 3D warping to GS-LRM to demonstrate that directly warping past
reconstructions introduces significant errors. As shown in Table[5] GS-LRM + 3D Warping fails to
handle new content and accumulates warping errors over time. A simple fusion baseline (Concat
+ Dropout) mitigates primitive growth by discarding 50% per frame but lacks refinement and often
removes accurate primitives.

For the reported running time in Table ] GS-LRM and ours are tested on a single H100 card. 3DGS,
3DGStream, and 4DGS are tested on a single A100 GPU due to limitations with the H100 card.
While the efficiency of these optimization-based methods can be enhanced, they still do not achieve
a frame rate of 1 FPS. Running the pre-trained 2D tracking model at keyframes every 5 frames
increases the runtime from 0.07s to 0.35s. A detailed runtime breakdown of our method for both
static and dynamic scenes is presented in Table [6]

6.3 Ablation Studies

Ablation on Sparse Voxel Transformer. We show model ablations on DL3DV in Table 2} Naive
non-learning fusion of Gaussian attributes in each voxel significantly degrades results. The absence
of a coarse-to-fine setup limits the capacity of the output Splats, and without sparsification, we
downsampled the grid to 0.75x its original resolution to avoid exceeding memory capacity for the
voxel transformer, both leading to poorer reconstruction quality. We also experiment with using a
3D CNN to downsample and upsample the voxel grid instead of our designed coarse-to-fine voxel
hierarchy. This approach yields results approximately 1 dB worse than our final model and is
significantly slower. We also find splat features helpful, operating on splat parameters directly leads
to ~1 dB drop in PSNR.

Ablation on Temporal Components. We conducted ablation studies on the Neural3DVideo dataset
to evaluate our streaming reconstruction components, as shown in Table[7} Removing historical splats



Table 6: Inference Runtime Breakdown of Our Method for Static and Dynamic Reconstructions.
Static Scenes (256 x 256 Resolution)

Multiview Transformer Splat-to-Voxel Transfer Voxel Transformer Rendering
Time (s) 0.026 0.006 0.015 0.003

Dynamic Scenes (320 x 240 Resolution)

Multiview Transformer 2D Tracking 3D Warping Fuse-and-Refine Rendering
Time (s) 0.030 0.028 0.018 0.021 0.003

Table 7: Ablation on Temporal Components. Incor- Table 8: Comparison Between Two-stage
porating historical information and our proposed mech- and Joint training. Jointly training GS-
anisms for leveraging it are crucial for achieving consis- LRM and our method achieves better per-

tent and high-quality novel-view streaming results. formance than the sequential two-stage
Method PSNRT SSIMT LPIPS] Flicker, ~ Surategy that pre-trains GS-LRM.

w/o History 27.17 0.890 0.107 591 Method PSNRT SSIMT LPIPS|
w/o 3D Warping 27.12  0.884 0.107 6.09 GS-LRM 28.59 0.925 0.063
w/o Error-aware Fusion 26.73 0.874 0.109 3.01 Ours (Two-Stage) 30.34 0.934 0.054
Full Model 2741 0.886 0.104 292 Ours (Joint) 30.61 0.935 0.052

for fusion failed to resolve temporal flicker. Disabling 3D warping caused abrupt keyframe changes
and higher reconstruction errors. Removing error-aware fusion degraded quality due to warping
artifacts and other errors.

Ablation on Training Schemes. Our framework supports both the two-stage training strategy
described in Sec. 4.3] and joint training of the multi-view and voxel Transformers from scratch.
As shown in Table 8] the joint training scheme can achieve better performance than the two-stage
approach.

7 Conclusion

In summary, we introduce a novel Fuse-and-Refine module that can efficiently consolidate Gaussian
primitives from multiple sources into a canonical and consistent representation. It enhances existing
feed-forward models, and the design of the module naturally allows for reusing primitive information
from past frames for better temporal coherence in streaming setups. Extensive evaluations show that
our method achieves state-of-the-art performance on both static and dynamic datasets under sparse
camera setups, delivering sharper reconstructions and reduced temporal flicker compared to previous
feed-forward and optimization-based methods, all at interactive frame rates on a single GPU.

While the results of our approach are promising, it does have limitations. First, it depends on reason-
ably good initial primitives. For instance, in large-baseline setups such as the LongVolumetricVideo
dataset, even the current best feed-forward model, GS-LRM, experiences a performance drop. As
a result, our method yields limited improvements based on its input in such challenging scenarios.
A potential solution is to train on a larger-scale dataset that covers a broader range of baseline
configurations. Second, temporal artifacts still persist, particularly in regions with dynamic objects.
The observed artifacts primarily arise from our current simple 3D warping strategy. Lifting 2D
tracking into 3D from sparse views remains inherently error-prone and presents a persistent challenge
in this ongoing field. A promising future direction is to investigate approaches that avoid explicit
tracking or adopt adaptive online reconstruction strategies, potentially prioritizing regions with higher
reconstruction errors.

Acknowledgement. We would like to express our gratitude to John Flynn, Kathryn Heal, Lynn Tsai,
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly present the core contributions of the
paper: a novel feed-forward Fusion and Refinement module that enhances 3D Gaussian
Splatting for both static and streaming scene reconstruction. The paper explicitly states that
the method improves reconstruction quality, enables zero-shot generalization to dynamic
scenes, and achieves interactive runtime.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of the method is discussed in the Conclusion (Section [7)).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All theoretical results are presented with the necessary assumptions and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed implementation information, including network architecture, training
datasets, and hyperparameters, is fully provided in the supplementary materials (Section [A).

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code is not publicly available at the time of submission. However, the
datasets used in the experiments are publicly accessible, and sufficient implementation
details are provided to support reproducibility. The authors are also willing to assist with
any reproduction-related issues.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the dataset details and implementation details are included in the supple-
mental material (Section[A] and

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not include repeated training runs due to the high computational
cost. However, extensive comparisons across multiple datasets demonstrate that our model
outperforms the baselines consistently.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed training setup, including information on GPU resources, can be found
in the supplementary material (Sections [A]and [B).

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses its societal impact in Section[E]
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets that pose a high risk of
misuse, and therefore no specific safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including datasets and code, are properly
cited with their original sources and licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a new learning-based representation, but no pretrained
models or other assets are publicly released. However, the extensive implementation details
and the use of publicly available datasets make the model and results reproducible.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The research does not involve human subjects and therefore does not require
IRB approval or equivalent review.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Our framework is implemented in JAX [2] and trained on NVIDIA A100 GPUs. We use the Adam
optimizer [24] with an initial learning rate of 4e-4, applying cosine learning rate decay with linear
warmup. The warmup period is set to 5000 training steps.

A.1 Network Structure

Our network consists of a Multi-view Transformer backbone and a Sparse Voxel Transformer. The
multi-view transformer has 24 transformer layers with 1024 hidden dimensions and 16 attention
heads. The sparse voxel transformer uses 6 layers with 128 hidden dimensions and 8 attention heads.
To demonstrate the effectiveness of our representation, we use a 12-layer multi-view transformer in
Table 4, showing that it can outperform GS-LRM by 2dB in PSNR while maintaining a comparable
network capacity and similar inference time.

Each transformer layer [67] consists of a self-attention mechanism and feed-forward networks, with
all bias terms removed following GS-LRM [84]. Additionally, following LVSM [21]], we incorporate
QK-Norm [19] to stabilize training. For efficiency, we utilize the CUDNN-FlashAttention [[10]
implementation available in Jax.

The shallow multi-layer perceptrons MLP .oqrse and MLP f;,. share similar structures with the
feed-forward network in a transformer layer. It includes two linear layers with a LayerNorm [1] and
GeLU [18]] activation function,and an additional residual connection.

A.2 Hybrid Splat-Voxel Representation

Our SplatVoxel model is inspired by Lagrangian-Eulerian representations in physical simulation where
we combine the Gaussian splats (Lagrangian representation) and voxels (Eulerian representation) to
assist warping and fusion of history information.

We use the official splatting-based rasterizer from 3D Gaussian Splatting [22] to render images from
predicted Gaussian primitives. To ensure a fair comparison with GS-LRM on RealEstate 10K[87], we
set the spherical harmonics degree to O for Table[0] For models trained on the DL3DV dataset [35],
the degree is set to 1 to enhance view-dependent effects.

Our voxel grid is aligned with the one target camera, and is in the normalized device space (NDC),
where the z-axis is linear in disparity. This space is helpful in presenting unbounded, in-the-wild
scenes. The full fine volume size is set to [64, H, W], where the H, W corresponds to the rendered
image height and width. The coarse volume size is set to [32, H//8, W/ /8], meaning each coarse-
level volume is subdivided into [2, 8, 8] fine-level volumes. The cost volume can also be constructed
from any meaningful reference view, such as the average of the input cameras, to produce 3D
Gaussian Splatting (3DGS) for free-viewpoint novel view synthesis. Moreover, the application of
our sparse voxel transformer is not limited to cost volumes. It naturally generalizes to other voxel
structures, such as octrees, making it applicable to broader scenarios like SLAM.

We initialize the voxels by depositing the Gaussian primitives to the volume with a 3D distance-based
kernels used in Material Point Method [59]:

oo = 16 (2) (1) ;).

where x = (z,y, z) is the offset from the voxel center to the Gaussian primitive center, and h
is the grid size used to normalize the offset vector to the range [—1,1]. The function K (z) is a
one-dimensional cubic kernel function given by:

K(z) = Z@laf — 627 + 1) an

Rather than directly generating new attributes, we design the voxel transformer to predict residuals
that are added to the initial Gaussian rendering attributes on voxels. Specifically, given the input
fine-level voxel attributes obtained through the Splat Fusion procedure E; which comprise the fused
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Figure 5: History-aware Streaming System. Our method can generalize to dynamic scenes during
inference while trained only on static scenes. The hybrid Splat-Voxel model first extracts input image
features using a multi-view transformer, which outputs pixel-aligned Gaussian splats for each input
image with associated features. The splat features are then deposited onto a coarse-to-fine voxel grid
using the decoded position, and a secondary sparse voxel transformer processes the grid features to
output final Gaussian parameters. To merge history, we compute the triangulated scene flow from
the input views and perform keypoint guided deformations. These deformed splats can be treated
identically to the input-aligned splats, and be similarly deposited into voxel grid to merge the previous
state with the current state.

splat feature F'; and rendering parameters G throught the Splat Fusion procedure, the transformer
obtain the final splat rendering parameters G;. in Eqn. 7 as:

AGj = MLszne([ojvEJD

(12)
G' =G, + AG;.

A.3 History-aware Streaming Reconstruction

Triangulation For solving the close closest point to the /N camera rays originating from the 2D
projections p;, which can be formulated as the following least-squares optimization problem:

— ] . . . P 2
X, A\j = arg Ii’li\n; [l(o; + A\id;) — x|| (13)

where o; and d; denote the origin and direction of the i-th camera ray, respectively, and ); is a scalar
representing the depth along the ray. This least-squares problems can be converted into solving an

linear equation as
<Z Yi(ls — didZT)) x=> 7i(ls—d;d])o; (14)

where I3 denotes the three-dimensional identity matrix, and +; is a visibility mask that indicates
whether the projected 2D point is visible throughout the motion occuring in that view. The visibility
mask is obtained through a combination of 2D tracking occlusion checks and a depth-based visi-
bility verification, which involves comparing the rendered depth from Gaussian primitives with the
projection depth to determine whether the point is visible in front of the surface.

We use TAPIR [11]] as our 2D tracking backbone, which takes query points and video frames as input
and produces 2D tracking positions throughout the video with the corresponding occlusion mask,
indicating whether a tracked point is visible in a given frame. In addition to the occlusion mask
obtained from 2D tracking, the visibility mask -y; used in Eqn. [I4]for triangulation also depends on
depth-based visibility. Depth-based visibility is determined by comparing the projected depth of a
given splat with the depth map obtained by rendering all splats to a given view. If the projected depth
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Figure 6: (Top) Per-frame reconstruction methods, which produce an independent scene reconstruc-
tion at each time step, are prone to flickering artifacts. (Bottom) In constrast, our history-aware novel
view streaming model merges previous and current frame information, allowing us to better model
occluded regions and improve temporal stability. Our method achieve state-of-the-art visual quality
and temporal consistency, and runs in interactive rate (15 fps with a 350ms delay*) on two view
inputs of resolution 320 x 240.

is smaller, the splat is considered unoccluded. This process utilizes alpha blending of splat depths
to derive rendered depths from 3D Gaussian Splatting, a widely adopted technique that has been
demonstrated to be effective [8]).

Embedded Deformation Graph Assuming motion continuity between neighboring frames, we
first estimate optical flow between each keyframe and its subsequent frame using RAFT [63]] to
identify regions of significant movement. We select regions within the input views where the optical
flow norm exceeds a threshold of 0.2 pixels as areas of significant motion. Each splat is then projected
onto the input views to determine whether its projected position falls within these significant motion
regions and remains unoccluded based on the depth-based visibility verification aforementioned. If a
splat exhibits significant motion in more than half of the views, it is prioritized for sampling as an
anchor splat. During experiments, we found that uniformly sampling 512 points from the prioritized
splats using the Farthest Point Sampling method [47] is sufficient for effectively handling moving
Gaussians in the keyframes.

To warp splats from the previous frame, we first compute deformations on the anchor splats using
triangulation, and then propagate the motion to all primitives through Linear Blend Skinning (LBS).
For each Gaussian, we employ a K-nearest neighbors approach with k£ = 4 to identify the closest
anchor splats. The position displacement dp € R? is then determined by blending the deformations
of the selected anchor points, denoted as t; € R3.

k
op = Z wit;
i=1

exp(—||dil|*/o?)
Sk exp(—|d;]12/o?)’

where d; represents the Euclidean distance between the Gaussian primitive and the ¢-th anchor point,
while o controls the smoothness of the weighting function, set to the mean distance between anchor
points and the querying splats. To ensure that static splats remain unaffected, we set displacement

s)

P =
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Table 9: Reproduced GS-LRM Performance. Our reproduced GS-LRM achieves improved LPIPS
and SSIM scores with a slight decrease in PSNR on the RealEstate10K dataset compared to the
officially reported numbers. We also include comparisons with other feed-forward novel view
synthesis methods in this table.

Method PSNR1 SSIM?T LPIPS |
pixelNeRF [82] 20.43 0.589 0.550
GPNR [60]] 24.11 0.793 0.255
Du et al. [13]] 24.78 0.820 0.213
GS-LRM (Official) [184] 28.10 0.892 0.114
GS-LRM (Reproduced) 27.78 0.902 0.082

GS-LRM (Reproduced) + Ours  28.47 0.907 0.078

Table 10: Inference Time on RealEstate10K. We compare the inference time of our method with
other feed-forward Gaussian Splatting approaches. All runtimes are measured on an NVIDIA A100
GPU. The slight runtime overhead of our method relative to GS-LRM can be mitigated by reducing
the number of multi-view transformer layers. As reported in Table 2] our method improves PSNR by
over 2 dB while maintaining comparable model size and inference time.

Method PSNR1 SSIMT LPIPS] Inference Time(s)
pixelSplat [4] 26.09 0.863 0.136 0.104
MVSplat [6] 26.39 0.869 0.128 0.044
GS-LRM [84]  28.10 0.892 0.114 0.041
Ours 28.47 0.907 0.078 0.067

op to be zero if the distance to the anchors is greater than \d, where d is the mean distance between
anchor points and ) is a hyperparameter controlling the motion graph’s extent. In practice we set A
between 0.2 to 0.5 depending on the scene.

For efficiency, we only maintain primitives from a set of past keyframes, and the contribution of these
primitives are smoothly adjusted as older keyframes are replaced by newer ones to ensure seamless
temporal transitions. Due to time constraints from querying the 2D tracking model, in practice we
use two keyframes placed 5 frames apart, each lasting for 10 frames.

Error-aware Streaming Fusion To further mitigate artifacts resulting from warping inaccuracies
of historical primitives (e.g. warping error, appearance variation, or new objects), we use an adaptive
fusion weighting mechanism during splat fusion based on the per-pixel error between the past and
current frame splats when rendered to the input views. In more detail, each historical splat is projected
onto the input views to assess whether it produces a higher rendering error and appears in front of
the rendered depth of the current frame splats. If a historical splat results in increased error in more
than half of the input views, we set its fusion weight to zero to suppress unreliable contributions.
Concurrently, current frame splats predicted from the multi-view transformer that increase rendering
error are assigned zero weight. To enhance temporal continuity, we retain 50% of the voxel attributes
from the past keyframe in static areas. Static areas are identified during the Splat-to-voxel transfer
process, where historical splats undergoing deformation mark their neighboring voxels as regions of
motion.

Fig.[5]shows the system implementation of our history-aware streaming reconstruction. The streaming
fusion and refinement process enables our model to significantly reduce temporal flickering and
improve reconstruction quality, as demonstrated in Fig. [6]

B Dataset

B.1 Static Scene Datasets

RealEstatel10K [87] For the RealEstate10K dataset, we set the training and testing resolution to
256 x 256. Both GS-LRM and our model are trained for 100K iterations. Specifically, we first train
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Table 11: Quantitative Comparison with 4DGS and GS-LRM. Evaluation across all sequences

in LongVolumetricVideo [79]] and Neural3DVideo [27)]. The best and second-best results are
highlighted.

4DGS GS-LRM Ours
Dataset Sequence PSNR 1 SSIM 1 LPIPS | Flicker | PSNR 1 SSIM 1 LPIPS | Flicker | PSNR 1 SSIM 1 LPIPS | Flicker |
Corgi 17.25 0.530 0.423 817 2624 0.882 0.118 995 2648 0.885 0.109 8.76
LongVolCap
Bike 2026 0.742 0288 | 4.89 2474 0830 0.158 697 24.64 0844 0.140 6.80

coffee_martini 1929  0.676  0.268 1.83  20.86 0.801 0.149 721 2310 0.832 0.126 2.33
cut_roasted_beef 2541 0.851 0.167 317 2195 0.855 0.134 551 29.15  0.909 0.096 3.26

Neural3DV Sflame_steak 26.54 0.854 0.159 324 2204 0866 0.121 556 12910 0.903 0.100 331
cook_spinach 2441 0.794  0.198 349 2193 0.872 0.119 578 2926 0906 0.103 342
flame_salmon_1 1992 0.709 0250 218 21.70 0.827 0.126 565 2470 0.860 0.102 2.52

sear_steak 2342 0.804 0.206 252 2223 0.869 0.122 492 29.14 0907 0.098 2.64

Table 12: Method Comparison. Unlike existing baselines, our framework uniquely supports the
three key requirements of the novel view streaming task targeted in this paper: fast reconstruction
with interactive rate , sparse view inputs, and history awareness. In particular, our streaming approach
only uses past frames, in constrast to DeformableGS [81] and DeformableNerf [44]] that optimize
over all* frames. The history-awareness in our model mitigates temporal flickering and occlusion
artifacts, and is also able to support unlimited sequence lengths.

Method Interactive Speed Sparse-view Input History Awareness
NeRF [41]]

InstantNGP [42]

3DGS [22]

DeformableGS [81] VAR
DeformableNerf [44]] v Ve
PixelSplat (4 v o
GS-LRM [84] v v

Quark [[15]] v v

Ours v v v

our multi-view transformer backbone for 80K iterations, followed by 20K iterations of joint training
with the voxel decoder. Each training batch consists of two input views and six target views with a
baseline of one unit length between the input views, following the training setup of GS-LRM. For
evaluation, we use the same input and target indices as PixelSplat and GS-LRM.

DL3DV [35] For the DL3DV dataset, we set the training and testing resolution to 384 x 216. For
training, we randomly select one image in the scene as the target, and randomly select four of the
nearest eight cameras to the target as inputs. We scale the scene such that the cameras fit within a
unit cube. For evaluation, we use every eighth image as the target set, and for each target we use
the nearest four cameras not in the target set as inputs. We average metrics per scene, and then
average over all scenes. In our experiments on the DL3DV test set (Table [2), both our model and
GS-LRM are trained using 8 GPUs, with a batch size of 2 per GPU, for a total of 200K iterations. Our
method supports both joint training of the multi-view Transformer and voxel decoder from scratch,
and a two-stage training scheme. As shown in Table[8] joint training from scratch outperforms the
two-stage approach, where the multi-view Transformer is first trained for 100K iterations, followed by
another 100K iterations of joint training with the voxel decoder. Figure [7]illustrates that after training
the multi-view Transformer used in GS-LRM, our proposed sparse voxel Transformer converges to
significantly improved results with only a small number of additional training steps.

For cross-dataset evaluation on dynamic scene datasets, we train both GS-LRM and our model on
DL3DV using a batch size of 128, for a total of 300K iterations. The training follows a two-stage
process: we first train the multi-view transformer backbone for 200K iterations, then jointly train the
voxel decoder for 100K iterations.
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Table 13: Comparison with Gaussian Graph Figure 7: Comparison of Multi-View and Voxel Trans-
Network (GGN) [86]. Both models are trained formers. Validation curves on the DL3DV dataset show
on RealEstate10K (2-view training, 4-view test-  that our 3D Sparse Voxel Transformer converges faster and

ing). achieves significantly better final performance when initial-

ized with a pre-trained 2D Multi-View Transformer, com-

Method PSNR1 SSIMt LPIPS| pared to training with the alone.

Our method also supports joint training of the Multi-View

GGN[86] 2476  0.784  0.172 and Voxel Transformers, leading to further performance im-
Ours 2879 0914  0.081 provements as shown in Table|8]

Validation PSNR Curves

Table 14: Extension to DepthSplat. Our - 2D Multi-view Transformer

method can be seamlessly integrated into other 307{=* 30 Sparse Yoxe) Tensformer WW——"“F
feed-forward 3D Gaussian Splatting frameworks M
to enhance their performance. Both models are 21

trained on a small subset of DL3DV (2-view
training, 4-view testing).

Method PSNR{ SSIM?T LPIPS|
DepthSplat [76] 16.57 0.4108 0.4272
DepthSplat + Ours 17.66 0.4426 0.4019 5 !

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
Training Step (K)

B.2 Dynamic Scene Datasets

For evaluation, we use two input views with a small-baseline setup and across six sequences from
Neural3DVideo, and four input views with a large-baseline setup and 1,500 frames for each of the
two sequences from LongVolumetricVideo.

Neural3DVideo [27] We use six sequences from the dataset for evaluation, each containing 290
frames. The center target camera is selected as the evaluation view, while the two second-closest
cameras on either side are used as input cameras. We use resolution 320 x 240 downsampling from
their original resolution.

LongVolumetricVideo [79] For evaluation, we use the Corgi and Bike sequences and select a
4-input-camera setup that covers one target view. We failed to find enough baseline coverage for
other sequences in LongVolCap using only 4 input cameras. For both the Corgi and Bike sequences,
we use 1500 frames for evaluation. We use resolution 384 x 216 for Corgi and 256 x 256 for the
Bike sequences, downsampling from their original resolution.

C Baselines

3DGS We use the original 3D Gaussian Splatting implementation [22]], and reduce the number
of training iterations from original 30,000 to 1,000 for Neural3DVideo and 1,500 for LongVolu-
metricVideo. This modification not only accelerates training but also significantly enhances novel
view synthesis results (e.g. around 4 PSNR improvement). Given the sparsity of the input data, this
adjustment is crucial for preventing overfitting. All other parameters are kept consistent with the
original implementation.

3DGStream We use the open-source 3DGStream [63]] implementation to process the multi-view
videos. We first use the original 3DGS to optimize on the first frame for 1,500 iterations, warm up
the NTC cache, and then optimize on the next frame using the previous 3DGS for 150 iterations,
following the original implementation.

4DGS We use the open-source 4DGS [74] implementation to process the multi-view videos.
Following their implementation, we first optimize the first frame for 3,000 iterations, and then
optimize on the full multi-view video sequence for 14,000 iterations.
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GS-LRM Ours

Figure 8: Reconstruction Close-ups on Dynamic Scenes. We show zoomed-in novel view recon-
structions of GS-LRM and our model on dynamic scene datasets. Our model better handles occlusion
boundaries with sharper detail.

GS-LRM We enhance GS-LRM'’s speed by replacing the CNN deconvolution with an MLP
unpatchify layer as proposed in [21]], and implementing it in JAX. We maintain the same network
parameters and training loss weights as in the original paper. Additionally, we use the LPIPS loss
employed in our model, achieving improved LPIPS and SSIM scores, with a slight decrease in
PSNR, as detailed in Table[T0] We adopt the same color modeling approach as the official paper for
RealEstate 10K, setting the spherical harmonics degree to 0. For the GS-LRM baseline trained on
DL3DYV, we set the degree to 1 to ensure a fair comparison with our method. Additionally, we found
that this modification enhances GS-LRM’s performance on DL3DV.

D Additional Results

Novel View Streaming Table[T1] presents detailed metrics for our results alongside the two best-
performing baselines, 4DGS and GS-LRM, evaluated across all eight sequences. We show close-ups
of the reconstruction in Fig. [§]comparing ours with GS-LRM.

Feed-forward Novel View Synthesis We also provide additional examples comparing GS-LRM
with our method on both DL3DV and RealEstate10K, as shown in Fig.[9]and Fig.

We also compare our method with Gaussian Graph Network (GGN) [86] on the RealEstate10K
dataset, following its experimental configuration. Both models are trained with 2 input views and
evaluated with 4 input views to assess generalization across varying input configurations. As shown
in Table[T3] our method significantly outperforms this state-of-the-art Gaussian fusion approach.

We further validate the generalization capability of the proposed Fuse-and-Refine module by inte-
grating it into DepthSplat [76]. We retrain the publicly available DepthSplat implementation on the
DL3DV dataset at a reduced resolution of 128 x192. The training subset includes 1,000 scenes with
2 input views, and evaluation is performed on 10 test scenes with 4 input views. Table[T4]shows that
incorporating our module leads to a performance gain over the original DepthSplat, demonstrating
the adaptability of our approach.
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GS-LRM - GT

Figure 9: DL3DV Static Scene Reconstruction. Additional qualitative examples of GS-LRM and
our method trained on DL3DV.

Figure 10: Rel0K Static scene reconstruction. Additional qualitative examples of GS-LRM trained
on RealEstate10k [87]].
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E Societal Impact

In this section, we reflect on the broader societal implications of our work. Our method facilitates
fast and high-quality 3D reconstruction from sparse views, significantly lowering the barrier for
creating digital assets from real-world scenes or objects. This has potential benefits across domains
such as digital content creation, robotics, autonomous navigation, cultural heritage preservation, and
immersive applications in AR/VR. Additionally, it supports real-time streaming use cases, toward
fully immersive experiences.

However, like many 3D/4D reconstruction methods, our approach could be misused to create detailed
models of people, places, or objects without consent, raising concerns about privacy, identity theft,
and misleading content. While our work is intended for positive and legitimate use, we acknowledge
the ethical responsibilities involved and urge users to apply this technique responsibly.
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