
Rainbow Delay Compensation: A Multi-Agent Reinforcement Learning Framework for Mitigating Delayed Observation

Songchen Fu^{1,2,*}, **Siang Chen**^{3,*}, **Shaojing Zhao**^{1,2}, **Letian Bai**^{1,2}, **Hong Liang**^{1,2},
Ta Li^{1,2,✉}, **Yonghong Yan**^{1,2}

¹Laboratory of Speech and Intelligent Information Processing, Institute of Acoustics, CAS

²University of Chinese Academy of Sciences

³Department of Electronic Engineering, Tsinghua University
fusongchen@hccl.ioa.ac.cn, lita@hccl.ioa.ac.cn

Abstract

In real-world multi-agent systems (MASs), observation delays are ubiquitous, preventing agents from making decisions based on the environment’s true state. An individual agent’s local observation typically comprises multiple components from other agents or dynamic entities within the environment. These discrete observation components with varying delay characteristics pose significant challenges for multi-agent reinforcement learning (MARL). In this paper, we first formulate the decentralized stochastic individual delay partially observable Markov decision process (DSID-POMDP) by extending the standard Dec-POMDP. We then propose the Rainbow Delay Compensation (RDC), a MARL training framework for addressing stochastic individual delays, along with recommended implementations for its constituent modules. We implement the DSID-POMDP’s observation generation pattern using standard MARL benchmarks, including MPE and SMAC. Experiments demonstrate that baseline MARL methods suffer severe performance degradation under fixed and unfixed delays. The RDC-enhanced approach mitigates this issue, remarkably achieving ideal delay-free performance in certain delay scenarios while maintaining generalizability. Our work provides a novel perspective on multi-agent delayed observation problems and offers an effective solution framework. The source code is available at <https://github.com/linkjoker1006/RDC-pymarl>.

1 Introduction

Multi-Agent reinforcement learning (MARL) has been widely applied in various domains such as multiplayer games [28, 19], robot control [13, 14], agent communication [5, 40], and quantitative trading [37]. However, beyond inherent challenges in MARL, including non-stationarity, partial observability, credit assignment, and the curse of dimensionality [38, 12], the observation delay problem has often been overlooked. From signal transmission in biological systems [11] to communication in large-scale swarms [29], delay issues are ubiquitous in real-world scenarios and typically have detrimental effects on most systems. Due to the coupled influences of the environment, allied agents, and other agents (opponents or targets), multi-agent systems (MASs) exhibit more prevalent and complex observation delay situations than single-agent systems.

Early studies on system delay problems were primarily rooted in control theory [1, 23], where solutions relied heavily on fixed transition models—an assumption often violated in complex MASs [25].

*These authors contributed equally to this work.

The introduction of augmented state spaces [2, 32] marked a pivotal shift, enabling reinforcement learning methods to handle deterministic delays through model-based state estimation [9, 7]. While these approaches advanced single-agent systems, their extension to multi-agent settings remained superficial, typically limited to fixed delay scenarios [7, 33, 21]. Recent progress in delayed-observation Markov decision processes (DOMDPs) [34] formalized stochastic delay modeling, yet existing work concentrates overwhelmingly on single-agent domains. Multi-agent solutions [36, 35] established theoretical foundations and algorithmic innovations at the levels of communication and feedback. Yet, a critical gap remains: the fundamental challenge of stochastic partial observability in MASs remains unresolved. This oversight is particularly significant given the inherent asynchrony and network-induced uncertainties in real-world multi-agent applications.

In MARL, the evolving policies of other agents render the learning environment inherently non-stationary. Stochastic observation delays exacerbate this challenge, as agents must not only cope with non-stationarity but also account for the uncertainty introduced by varying delays. These delays also exacerbate the credit assignment problem: misaligned observations and rewards make it more challenging to associate actions with outcomes, thereby hindering effective policy optimization. Fundamentally, unfixed delays violate the Markov assumption by providing agents with inaccurate perceptions of the current state. Moreover, unfixed delays have a greater impact than fixed ones. With fixed delays, agents can adapt and implicitly predict others' observations over time, forming a kind of cognitive inertia. However, under stochastic delays, such predictions become unreliable, making it harder for actor networks to compensate. These facts all indicate that the problem of unfixed delayed observations in MARL is in urgent need of being addressed.

Previous studies have primarily focused on delay issues in single-agent systems, whereas research on MARL mainly consists of simple extensions of single-agent delay theories. However, delays in multi-agent environments are not constant, and different observation components may experience varying delays for each agent. Our work provides a deeper understanding of delayed observation in MASs and proposes a general algorithmic framework to address the associated challenges. This means practitioners can tailor the framework by selecting and integrating suitable algorithms for different scenarios, achieving optimal performance. The main contributions of this paper are as follows:

- We define the decentralized stochastic individual delay POMDP (DSID-POMDP), providing a universal mathematical model for MASs with delayed observation.
- We propose the Rainbow Delay Compensation (RDC) training framework, which mitigates the impact of delayed observation by reconstructing delay-free observation, utilizing curriculum learning, and leveraging knowledge distillation.
- Based on DSID-POMDP, we innovatively introduce two compensator operation modes (Echo and Flash) and implement two models based on Transformer and Gated Recurrent Unit (GRU) networks.
- We integrate two classic MARL algorithms, VDN [30] and QMIX [27], into the RDC framework. The proposed method is tested on two common MARL benchmarks, demonstrating significant performance improvements under fixed and unfixed delay conditions, approaching near delay-free performance levels.

2 Related Works

Recent studies have explored Deep Reinforcement Learning (DRL) approaches to address delay issues in single-agent systems. Walsh et al. [32] introduced the constant delay Markov decision process (CDMDP), which extends action sequences to incorporate fixed delays in observation and reward. However, the resulting state space expansion suffers from exponential growth, limiting the feasibility of pure state-based solutions. To overcome this, they proposed Model-Based Simulation (MBS) for discrete environments and Model Parameter Approximation (MPA) for continuous environments, pioneering model-based methods for delay-free state estimation. Firoiu et al. [9] employed environment prediction models to reduce performance degradation from fixed action delays in gaming scenarios. Bouteiller et al. [4] developed a partial trajectory resampling method to resolve credit assignment challenges in stochastic delay environments. Liotet et al. [20] implemented imitation learning to align delayed agents with expert action distributions, but only for fixed delays. Wang et al.

[34] combined state augmentation and state prediction with delay-reconciled training for separate actor-critic optimization, demonstrating significant improvements in stochastic delay scenarios.

Significant progress has also been made in addressing the challenges of delay in MARL. Chen et al. [6] developed the Delay-Aware Multi-Agent Reinforcement Learning (DAMARL) framework, which mitigates fixed observation delays through centralized training with auxiliary information. Subsequent work by Yuan et al. [36] introduced TimeNet to dynamically optimize agents' waiting time for delayed communications, thereby enhancing collaborative efficiency. For reward delay scenarios, Zhang et al. [39] proposed Delay-Adaptive Multi-Agent V-Learning (DAMAVL) with proven convergence under finite and infinite delay conditions. Practical applications have shown promise, as demonstrated by Liu et al. [21]'s successful implementation of DAMARL in cooperative adaptive cruise control (CACC) systems. While Wang et al. [33] advanced the field by predicting action effects through state prediction. Still, current approaches remain limited to fixed delay scenarios and typically overlook the asynchronicity of delayed observations. It is worth noting that research on robust MARL [15] also aims to address the challenges of non-ideal observations. Unlike the observation lag caused by delays, this line of work focuses more on inaccuracies in observations resulting from system errors or adversarial attacks.

3 Preliminaries

3.1 Decentralized Partially Observable Markov Decision Process

A decentralized partially observable Markov decision process (Dec-POMDP) is a model designed for coordination and decision-making in MAs. In this framework, the POMDP introduces an "observation" variable, enabling decision-makers to observe only a portion of the system state at each time step, building upon the original MDP. Dec-POMDP extends this concept to multi-agent scenarios by incorporating additional joint variables. It can be formally defined as a 7-tuple $(\mathcal{I}, \mathcal{S}, \mathcal{A}, \mathcal{Z}, \mathcal{P}, \mathcal{R}, \mathcal{O})$, where \mathcal{I} represents a finite set of agents. \mathcal{S} denotes the set of state systems encompassing all possible environment states. \mathcal{A} and \mathcal{Z} are the action and observation spaces for each agent, respectively, with $\mathcal{A} = \mathbf{A}_i$ and $\mathcal{Z} = \mathbf{Z}_i$. \mathcal{P} , \mathcal{R} , and \mathcal{O} are defined as $\mathcal{P}(s'|s, a)$, $\mathcal{R}(r'|s, a)$, and $\mathcal{O}(o|s)$, representing the probabilities of transitioning to state s' , receiving reward r' , and obtaining observation o after executing the joint action a in state s . This formulation captures the decentralized nature of decision-making in MAs, where agents must coordinate their actions based on partial observation of the environment.

3.2 Decentralized Stochastic Individual Delay-Partially Observable Markov Decision Process

While delayed observation MDPs represent a special case of POMDPs, we maintain a clear distinction between delayed and partial observation in this paper. In typical multi-agent environments, each agent's observation comprises three components: (1) self-state information (typically with minimal delays due to internal transmission), (2) other agents' states (obtained through perception or communication), and (3) environmental states. Since delays in observing other agents and environmental states follow similar principles, we collectively term these observation sources as "entities" for clarity. The observation delays from other entities are typically positively correlated with their relative distances. Inspired by this phenomenon, we can model the possible delay values of different entities in $agent_i$'s observation as multiple user-defined probability distributions, not just those

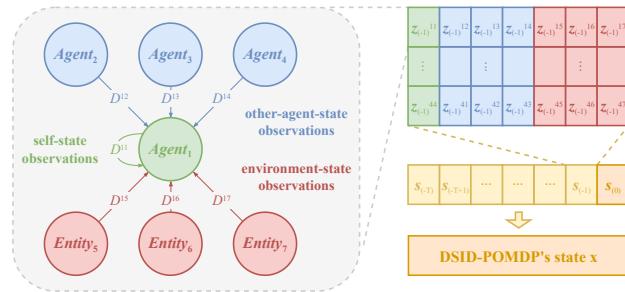


Figure 1: A simple example of extended state and delayed observation in DSID-POMDP. The left side describes the components of $agent_1$'s observation and annotates their delay value distributions. The matrix in the upper right corner shows the contents of $s_{(-1)}$ in the extended state.

related to distance. Therefore, we propose the decentralized stochastic individual delay POMDP (DSID-POMDP).

Definition 1. A DSID-POMDP = $(\mathcal{I}, \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathcal{D}, \mathcal{P}_{\mathcal{D}}, \mathcal{R}_{\mathcal{D}}, \mathcal{O}_{\mathcal{D}})$ augments a Dec-POMDP = $(\mathcal{I}, \mathcal{S}, \mathcal{A}, \mathcal{Z}, \mathcal{P}, \mathcal{R}, \mathcal{O})$, such that

1. $\mathcal{I}_{\mathcal{D}} = \mathcal{I} \cup \mathcal{J}$ where \mathcal{J} is the set of environment entities,
2. $\mathcal{X} = \mathcal{S}^{T+1}$ where T denotes the maximum possible delay value,
3. $\mathcal{A}_{\mathcal{D}} = \mathcal{A}$,
4. $\mathcal{Z}_{\mathcal{D}} = \mathcal{Z}$,
5. $\mathcal{D}^{ij} = \mathcal{D}(\text{agent}_i, \text{entity}_j | \mathbf{x})$, $i \in \mathcal{I}, j \in \mathcal{I}_{\mathcal{D}}$,
6. $\mathcal{P}_{\mathcal{D}}(\mathbf{x}' | \mathbf{x}, \mathbf{a}) = \mathcal{P}(s' | s, \mathbf{a}) \prod_{t=1}^T \delta(s'_{(-t)} - s_{(-t+1)}), s'_{(-t)} \in \mathbf{x}', s_{(-t+1)} \in \mathbf{x}$,
7. $\mathcal{R}_{\mathcal{D}}(\mathbf{x}, \mathbf{a}) = \mathcal{R}(s, \mathbf{a})$,
8. $\mathcal{O}_{\mathcal{D}}(\mathbf{z} | \mathbf{x}) = \prod_{i \in \mathcal{I}} \prod_{j \in \mathcal{I}_{\mathcal{D}}} \sum_{t=0}^T p(d^{ij} = t) \delta(z^{ij} - s^{ij}_{(-t)}) \mathcal{O}(o^{ij} = z^{ij} | s_{(-t)})$.

The DSID-POMDP is established under the condition that the information exposed by each entity in the system only contains information from itself. The new element, individual delay distribution D^{ij} , represents the distribution of delay values for entity_j in the observation of agent_i . A natural and intuitive constraint is that the delay value d_t^{ij} must satisfy the condition: $d_t^{ij} < \min(d_{t-1}^{ij} + 1, T)$. To incorporate delayed states, the state of the DSID-POMDP is extended to include the delay-free state and the previous T states, that is, $\mathbf{x} = \{s_{(-T)}, s_{(-T+1)}, \dots, s_{(-1)}, s\}$. To maintain consistency in notation, we also represent the delay-free state s as $s_{(0)}$. In the observation function, $p(d^{ij} = t)$ represents the probability that the delay value d^{ij} equals t , and $s^{ij}_{(-t)}$ represents the state information of entity_j from the perspective of agent_i in state $s_{(-t)}$. Figure 1 provides a more intuitive explanation of individual delay distributions and the observation function.

3.3 Classic MARL Algorithms

The operation of the RDC framework relies on baseline algorithms. The classification of MARL algorithms follows a similar pattern to DRL, where they can be categorized into value-based and policy-based methods according to their underlying principles. After comprehensively considering algorithm performance and characteristics, we employ two value-based algorithms in our framework, VDN [30] and QMIX [27], which demonstrate excellent performance in discrete action space tasks. VDN extends DQN [24] in a straightforward manner by decomposing the team value function using a linear factorization approach. During training, VDN samples batches from the replay buffer and updates parameters by minimizing the TD error, with its loss function defined as:

$$\mathcal{L}_{\text{rl}}(\theta) = \hat{\mathbb{E}}_b[(r + \gamma \max_{\mathbf{u}'} Q_{\text{total}}(s', \mathbf{u}'; \theta^-) - Q_{\text{total}}(s, \mathbf{u}; \theta))^2], \quad (1)$$

where θ^- represents the parameters of the target network. The target network periodically copies (hard update) or gradually weights (soft update) the parameters θ of the evaluation network. $\hat{\mathbb{E}}_b$ denotes the expectation over a finite batch of samples.

Building upon VDN, QMIX uses a mixing network to aggregate the local Q-values of individual agents into a centralized global Q-value, while satisfying the monotonicity constraint: $\frac{\partial Q_{\text{total}}}{\partial Q_i} \geq 0, \forall i$. This ensures consistency between the global and local Q-values. This modification endows QMIX with a parameterized critic, whereas VDN relies solely on a simple summation operation. This distinction serves to validate RDC's adaptability to different RL algorithm frameworks.

4 Methods

In this section, we present the architectural details of RDC. As illustrated in Figure 2, the framework extends conventional MARL algorithms by incorporating four key components: 1) a compensator module, 2) a delay-reconciled critic, 3) the curriculum learning for actors, and 4) the policy knowledge distillation. The arrows in different colors and styles represent the data flows in various stages. Blue arrows belong to the teacher model, and red arrows belong to the student model. Solid arrows denote the training phase, while dashed arrows represent the inference phase. The data flows involved in the inference phase can be used during the training phase. While we describe several viable

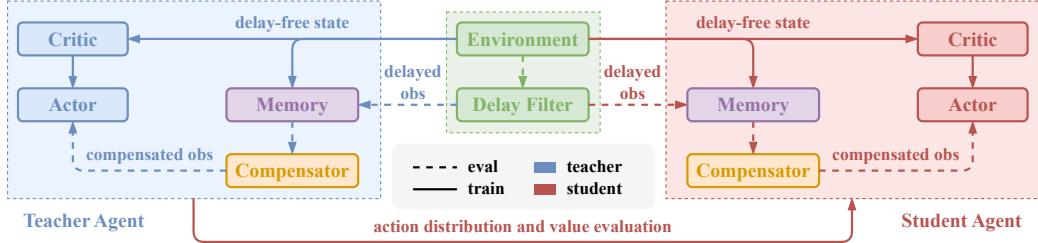


Figure 2: The internal structure of the DA-MARL framework.

implementations and corresponding algorithms, these do not represent an exhaustive enumeration of possibilities within this framework. The framework maintains broad compatibility - most mainstream actor-critic algorithms can seamlessly adapt to RDC. At the same time, other MARL approaches can typically be accommodated by selectively removing specific framework components. The compensator may employ any sequence prediction-capable architecture, and both the curriculum learning and knowledge distillation mechanisms can be customized by researchers based on particular policy networks and task requirements.

4.1 Observation Delay Occurrence and Compensation Process in Multi-agent System

Due to the mutually independent action delays among agents in MASs, and each agent’s actions can influence the global state, the delay equivalence theorem [34] cannot hold. This paper focuses exclusively on delayed observation and assumes that agents only transmit their own information externally—an assumption consistent with most multi-agent environment configurations in the research community. Therefore, from the viewpoint of a single agent, information updates from different entities are relatively independent of each other. This principle leads to the phenomenon where other parts of the observation do not belong to the same time step. Figure 3 illustrates a simple example of delayed observation. The numbers indicate the time step from which each part of the agent’s current observation originates — smaller numbers correspond to older information. The left side demonstrates the information updates in the observations of $agent_i$ over system clock steps 0 to 3. In contrast, the right side shows the corresponding compensation process of observations without delay. The observation from the second agent at step 3 still contains information from step 0, requiring the most compensation steps for this portion.

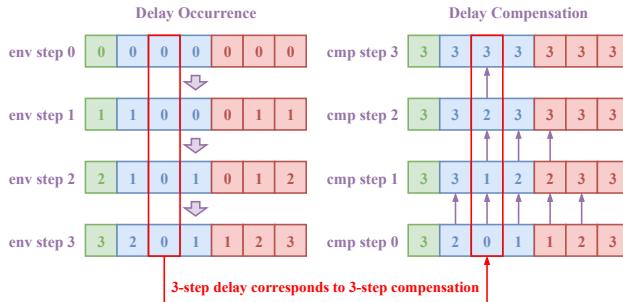


Figure 3: A simplified example illustrating MASs’ delay occurrence and compensation process.

4.2 Delay Compensator

Based on the occurrence process of observation delay, we intuitively design two modes of the delay compensator—*Flash* and *Echo*—to reconstruct delay-free observation. *Flash* performs a simple compensation using available information and directly outputs the reconstructed result. It implicitly accounts for the issue of varying delays within observation through its internal model design. *Echo*, an autoregressive model, incrementally outputs the next-step information based on known data at each compensation step. Under the masking layer’s control, the T -th output of *Echo* yields the final reconstructed observation. Figure 5 illustrates the workflows of the two compensators in parallel. Theoretically speaking, *Flash* offers faster reconstruction with lower resource consumption, making it suitable for scenarios with slight delay variations and high requirements for decision-making speed. *Echo*’s operation mode fully complies with the ideal delay compensation process shown in Figure 3, and can adapt to variable delay values and unknown delay patterns. We believe that as

agent policies iterate and update, the data distribution will change, potentially causing significant performance fluctuations in the compensators. Thus, both compensators are trained synchronously with reinforcement learning, meaning the RDC framework maintains a complete online training process.

Sufficient and effective input data enables the compensator to achieve better performance. Based on the definition of DSID-POMDP, we naturally extend the current observation into an observation sequence that includes history observations. Furthermore, drawing on existing augmentation methods [6, 7, 34, 33], we empirically incorporate action sequences from the past T timesteps. Unlike previous approaches, the delay steps in this paper are represented as a vector whose length corresponds to the number of other entities included in the observation. We implement the two types of compensators using GRU [8] and Transformer [31] networks, which excel at processing sequential data. Figure 4 illustrates the extended observation input forms when different model structures are employed. Fixed inputs refer to the pre-concatenated sequence data fed into the model during the first input step. In contrast, sequential inputs represent the incrementally augmented input information during the model’s autoregressive process. For *Echo*, we convert the delay value vector into a binary (0 or 1) vector to enhance consistency between history and autoregressive inputs.

Additionally, we design a dual-head residual compensator to handle different data types in observations. We employ the cross-entropy loss function for the classification task, while utilizing the mean squared error for the regression task. The residual output can further improve the reconstruction accuracy of the compensator. The loss functions for the two compensators are as follows:

$$\mathcal{L}_{\text{flash}}(\phi) = \mathcal{L}_{\text{CE}}(\mathbf{I}^T, \mathbf{I}(Z^{T-GT} - Z)) + \mathcal{L}_{\text{MSE}}(\mathbf{F}^T, \mathbf{F}(Z^{T-GT} - Z)), \quad (2)$$

$$\mathcal{L}_{\text{echo}}(\phi) = \frac{1}{T} \sum_{k=1}^T \left[\mathcal{L}_{\text{CE}}(\mathbf{I}^k, \mathbf{I}(Z^{k-GT} - Z^{k-1})) + \mathcal{L}_{\text{MSE}}(\mathbf{F}^k, \mathbf{F}(Z^{k-GT} - Z^{k-1})) \right], \quad (3)$$

where $\mathbf{I}^k = \mathbf{I}(Z^k - Z^{k-1})$, $\mathbf{F}^k = \mathbf{F}(Z^k - Z^{k-1})$ with $\mathbf{I}(\cdot)$ and $\mathbf{F}(\cdot)$ representing the extraction of integer-type and float-type contents from the target, respectively. Z denotes the observation obtained by $agent_i$ at time t (omitted in the formula). Z^{k-GT} denotes the ground truth after k compensation steps of the delayed observation. ϕ denotes the model parameters of the compensator.

4.3 Delay-reconciled Critic and Curriculum Learning Actor

Wang et al. [34] first introduced the delay-reconciled concept to address single-agent delayed observation problems. Their key insight was that feeding the critic with delay-free global states during centralized training could mitigate the impact of delays. Since the critic’s involvement is unnecessary during model inference, the delay-reconciled critic can seamlessly integrate with the centralized training with decentralized execution (CTDE) paradigm.

In addition to receiving compensated observation, the actor may exhibit poor convergence when facing complex scenarios. This occurs because the online training of the compensator also requires time, and the compensator’s outputs during the early training stages may significantly deviate from those observed under delay-free conditions. Empirically, the exploration phase in early reinforcement learning training typically plays a crucial role, even though the reward values may not show noticeable improvement during this period. However, unlike the critic, which only operates during training, the final model must ultimately rely on realistically available observation as input. Curriculum learning [3] provides a solution to this challenge. During the initial training phase, we provide the actor with

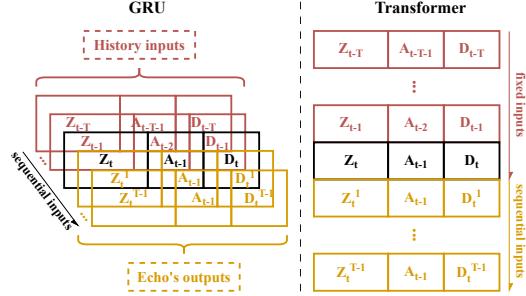


Figure 4: Inputs of compensators with different modes and networks. The figure only illustrates the input formation of a single $agent_i$ at timestep t , and for clarity, we omit the subscript i . The subscript denotes the timestep in the environment iteration, while the superscript indicates both the k -th output of *Echo* and the $(k+1)$ -th input. Inputs of *Flash* exclude the yellow-highlighted components.

delay-free observation (i.e., the compensator’s ground truth) and gradually reduce the probability of using delay-free observation as training progresses, until the actor relies entirely on compensated observation. A linear annealing strategy is used in our experiments, though more sophisticated or adaptive annealing approaches are also permissible. For less complex tasks (e.g., MPE), actor curriculum learning is not strictly necessary.

4.4 Knowledge Distillation

Despite all design and optimization efforts, a discrepancy between compensated observation and delay-free ground truth inevitably persists. However, agents’ policies in identical scenarios can be objectively evaluated through quantitative metrics. When training with delayed observation, guidance from a high-performance policy model can steer the model toward more accurate policy optimization or value estimation, thereby accelerating convergence. Motivated by this insight, we incorporate knowledge distillation [16] into the RDC framework. While numerous distillation approaches exist, we experimentally identify an effective methodology. Before training the target model in high-delay environments, we first train a teacher model under low-delay conditions. As anticipated, the teacher model achieves performance closer to ideal delay-free training than independently trained student models in high-delay scenarios. During student model training, we feed the teacher model with compensated observation and employ it to guide both the hidden representations and output decisions of the student actor and critic. The corresponding loss function is formulated as:

$$\mathcal{L}_{kd}(\theta_s) = \mathcal{L}_{CE}(action_t, action_s) + \beta_1 \cdot \mathcal{L}_{MSE}(Q_t, Q_s) + \beta_2 \mathcal{L}_{MSE}(\theta_t^c, \theta_s^c), \quad (4)$$

$$\mathcal{L}_{rdc_rl}(\theta_s) = \alpha \mathcal{L}_{rl}(\theta_s) + (1 - \alpha) \mathcal{L}_{kd}(\theta_s), \quad (5)$$

where β_1 and β_2 denote the weighting factors within the knowledge distillation loss function, and α determines the relative weighting between the knowledge distillation loss and the reinforcement learning loss.

We do not apply knowledge distillation to the compensator or load the teacher’s compensator during student training. This design choice stems from two key considerations: First, in online learning scenarios, the compensator’s performance should evolve alongside policy improvements, and directly transferring the teacher’s compensator knowledge through distillation may not necessarily benefit student policy training. Second, this approach allows for a more explicit demonstration of the effects of pure policy guidance, which we elaborate on in the experimental section. Following a similar principle to curriculum learning, we implement an identical annealing strategy for the knowledge distillation process.

5 Experiments

Scenario Selection: We select two of the most popular multi-agent reinforcement learning environments for our experiments—MPE[22] and SMAC [28]. Overall, SMAC tasks present greater challenges than MPE tasks due to their more complex state and action spaces. We chose simple-tag (TAG), simple-spread (SPREAD), and simple-reference (REFERENCE) in MPE and three progressively harder scenarios on SMAC: 3s_vs_5z, 5m_vs_6m, and 6h_vs_8z. Both benchmarks are discrete environments, so we incorporated value function factorization algorithms into the RDC framework. The reward value obtained per task in

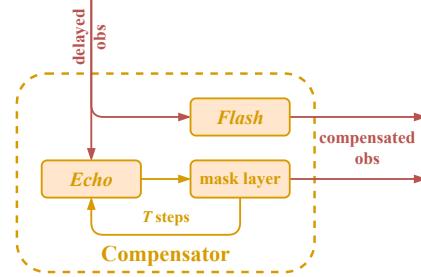


Figure 5: Workflow of *Flash* and *Echo*.

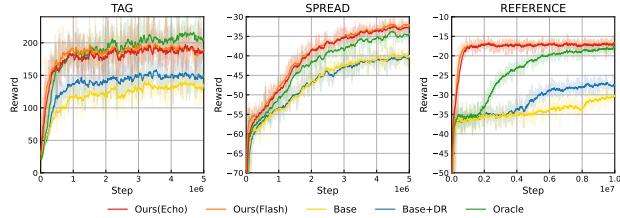


Figure 6: Training performance on MPE.

MPE is the sole evaluation metric. While SMAC also provides specific reward values, the win rate is a more critical metric since the objective is to achieve victory.

Experimental Scheme: We reformulate the delayed observation problem in MAs using DSID-POMDP and extend it to commonly used benchmarks. Consequently, we implement previous solutions within the RDC framework, such as the delay-reconciled critic and augmented observation input, to enable more equitable comparisons. For baseline RL algorithms, we select code-level optimized FT-QMIX and FT-VDN [17] that demonstrate

significant improvements over vanilla QMIX and VDN, whose performance on discrete tasks has been repeatedly validated [18, 10]. To simplify the presentation, the following abbreviations will be used in the experimental results section: Oracle, Base, Echo, Flash, DR (delay-reconciled critic), H (history input), C (curriculum learning actor), and KD (knowledge distillation). Only the Oracle is trained using the baseline algorithm in a delay-free environment, obtaining the ideal performance that represents the algorithm’s capability, unaffected by delays. In the main text, all presented results are based on using FT-QMIX as the baseline algorithm and implementing the compensator with Transformer networks.

Test Setting: For every 10,000 training steps, we conduct a test with either 64 or 32 episodes and record model performance. After model training, we perform extensive testing under fixed and unfixed delay conditions, running 1,280 episodes for each setting.

5.1 Training

The training performances of FT-QMIX under delayed observation (Base) in Figure 6 and Figure 7 reveal severe performance degradation across all six scenarios, particularly in the 5m_vs_6m and 6h_vs_8z tasks, where win rates approach zero. Our ablation studies employing curriculum learning (Base+C) and delay-reconciled training (Base+DR) without compensation mechanisms show that in complex scenarios, neither curriculum learning alone nor simply providing delay-free states to the critic can satisfactorily counteract the detrimental effects of delayed observation on the learning process. These findings suggest that delayed observation has a fundamental impact on both initial convergence and overall policy optimization.

The RDC-enhanced models exhibit significantly faster convergence in most scenarios, demonstrating that while the knowledge distillation process requires sequential training of teacher and student models, it incurs minimal additional training overhead. This efficiency advantage arises from accelerated training in low-delay conditions, where the student model requires fewer than one-third of the original training iterations. Notably, the enhanced models achieve perfor-

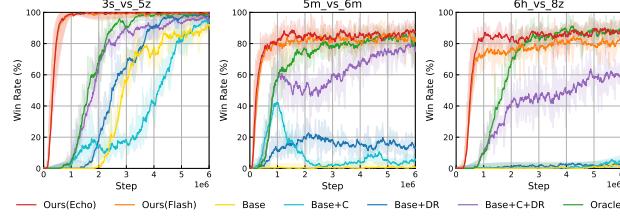


Figure 7: Training performance on SMAC.

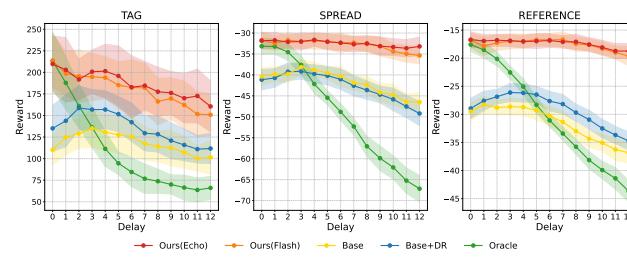


Figure 8: Performance under fixed delay on MPE.

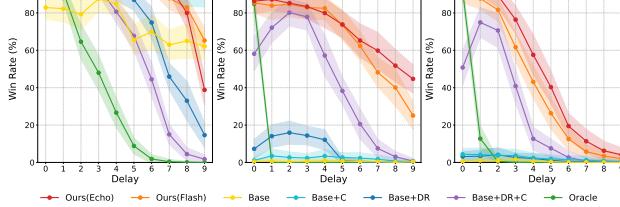


Figure 9: Performance under fixed delay on SMAC.

mance that matches or slightly exceeds that of the delay-free Oracle. The marginal improvement is attributable to additional training steps, as evidenced by Oracle’s ongoing performance gains at the end of training in both SPREAD and REFERENCE scenarios.

5.2 Performances on different delay settings

Fixed delay testing enables more precise observation of progressive performance degradation and a more accurate assessment of model generalization. As shown in Figure 8 and Figure 9, the Oracle method exhibits substantial performance deterioration as delays increase. The performance drop in the Base and Base+DR methods at delays of 0-2 reveals their inability to generalize to unseen delay conditions during testing, despite successful convergence during training. In contrast, RDC-enhanced models maintain superior performance across all scenarios, demonstrating particularly robust delay adaptation in SPREAD and REFERENCE tasks where reward stability persists despite increasing delays. The model’s generalizability on SMAC is significantly lower than on MPE, which indicates that the impact of delay is more pronounced in complex scenarios.

We evaluate model performance under two unfixed delay conditions: in-distribution (within trained delay ranges) and half-out-of-distribution (novel delay ranges). Unless otherwise specified, the random delays in this paper follow a uniform distribution within a given range. The performance under different delay distributions will be discussed later. As shown in Figure 10, RDC-enhanced models with Transformer-based compensators demonstrate only marginal performance degradation in out-of-distribution tests while maintaining near-Oracle performance (green dashed line). Ablation studies reveal the contribution of each module: Flash+DR underperforms due to the limited input information, while Flash+H+DR shows significant improvement by incorporating history observations. *Echo*’s autoregressive design provides richer input information, resulting in smaller gains from historical data. Knowledge distillation using a low-delay teacher model proves effective, though we excluded Flash+DR from this approach due to its poor baseline performance.

To demonstrate that the RDC framework can adapt to different delay distributions, we evaluate the performance of models trained under a uniform delay distribution when tested on other distributions. As shown in Figure 11, we select the binomial distribution, the normal distribution, and the Poisson distribution as additional evaluation options. In these tests, the delay values are constrained to either the range of 3-9 or 6-12. The binomial distribution, which characterizes the number of successes in n independent trials, naturally fits our delay settings after a simple shift. Although the values generated by the Poisson distribution are also discrete, they require truncation due to the distribution’s unbounded support. For the normal distribution, truncation is typically followed by rounding due to its continuous nature. Considering the properties of different distributions, we adopt the following parameter settings in our experiments: Binomial(6, 0.5) and Binomial(9, 0.5); Poisson(6) and Poisson(9); Normal(6, 2) and Normal(9, 2). The results demonstrate that the model generalizes effectively across various delay distributions. This result is consistent with our expectation, as the compensation process for delayed observations in the RDC framework does not rely on any prior knowledge of the delay distribution. Since different distributions entail different frequencies of high and low delay values, minor performance fluctuations are understandable.

Figure 10: Performance under unfixed delay on MPE.

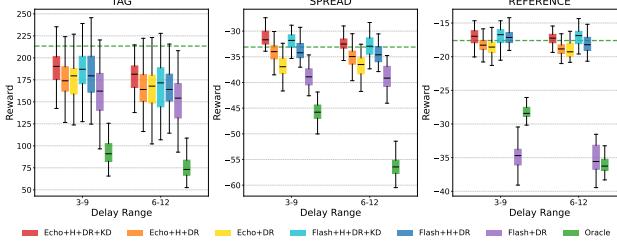


Figure 10: Performance under unfixed delay on MPE.

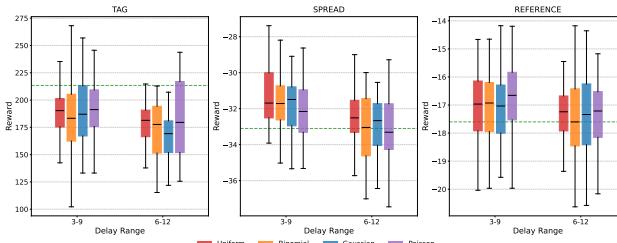


Figure 11: Performance under different delay distributions.

Figure 11 shows the performance of four models (Uniform, Binomial, Gaussian, Poisson) under different delay distributions. The results are consistent with Figure 10, demonstrating that the model generalizes effectively across various delay distributions. The performance of the models is similar across different delay distributions, with minor fluctuations in reward.

5.3 Additional results and analysis

How does the performance of *Flash* compare with that of *Echo*? The results show that as the delay magnitude increases, *Flash* typically demonstrates more pronounced performance degradation than *Echo*, particularly when handling out-of-distribution delays. As illustrated in Figure 12, maintaining identical input history sequence lengths and training configurations is essential for achieving optimal performance with the *Flash* compensator. This suggests an overfitting compensation pattern, confirming our earlier concern about *Flash*. Although this limitation in generalizability and flexibility is undesirable, we must emphasize its significant advantages in training efficiency and inference speed, which can be decisive factors in specific scenarios. In TAG scenario with a fixed delay of 6, the compensator inference times for *Echo* and *Flash* are approximately 0.02 seconds and 0.004 seconds, respectively.

Why does our method outperform the delay-free Oracle baseline across multiple tests? We align the number of environment steps required for training across all algorithms. As a result, the RDC-enhanced method, which leverages knowledge distillation, obtains additional guidance from the teacher model within the same training horizon. To validate this explanation, we conduct an experiment on MPE where the RDC-enhanced models remained unchanged, while Oracle, Base, and

Base-DR are trained for an additional 10 million steps, which is the same number of steps used to pretrain the low-delay teacher model. The results in Figure 13 confirm our hypothesis: in the zero-delay setting, the Oracle performance surpasses that of the RDC-enhanced method, consistent with its role as the ideal upper bound. In delayed settings, however, the non-RDC-enhanced methods still suffer from significant performance degradation.

All experimental results are provided in Appendix D, including comprehensive ablation studies and evaluations of different baseline algorithms and compensator network architectures. These experimental results not only validate the compatibility of the RDC framework with algorithms beyond the actor–critic paradigm but also highlight that the choice of baseline algorithm and compensator architecture plays a crucial role in achieving superior performance.

6 Conclusion

In this paper, we propose the RDC framework and demonstrate the effectiveness of its constituent modules in addressing delayed observation in MASs. The compensator, as the core component of the framework, directly attempts to reconstruct delay-free observation. The curriculum learning actor and delay-aware critic provide higher-quality data, while knowledge distillation from a low-delay teacher offers policy guidance during model training. The integrated algorithm, which incorporates these modules, achieves outstanding performance with fixed and unfixed delays comparable to those in delay-free environments. Our future research will focus on designing more effective compensator architectures and knowledge distillation techniques to enhance the model’s generalizability under varying delays in complex scenarios, as well as developing theoretical frameworks with weaker assumptions. Overall, our research not only presents a multi-agent reinforcement learning algorithm capable of combating delayed observation but also provides a practical training framework, establishing a solid foundation for future studies.

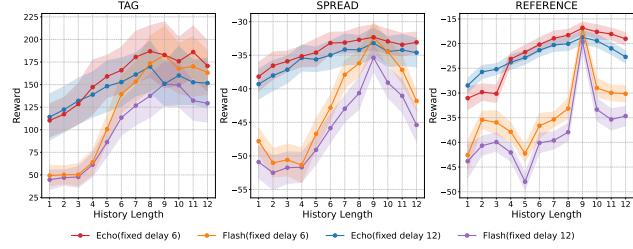


Figure 12: Performance under different history lengths.

Although this limitation in generalizability and flexibility is undesirable, we must emphasize its significant advantages in training efficiency and inference speed, which can be decisive factors in specific scenarios. In TAG scenario with a fixed delay of 6, the compensator inference times for *Echo* and *Flash* are approximately 0.02 seconds and 0.004 seconds, respectively.

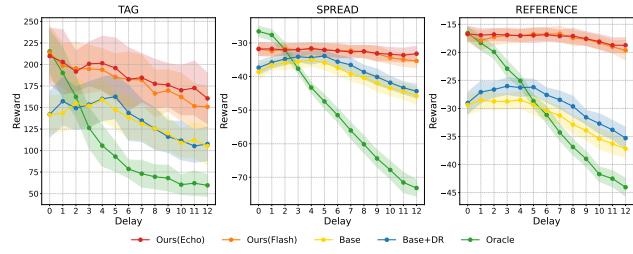


Figure 13: Performance under longer training steps.

Acknowledgements

This research is supported by the Oriented Project Independently Deployed by the Institute of Acoustics, Chinese Academy of Sciences (MBDX202402).

References

- [1] Zvi Artstein. Linear systems with delayed controls: A reduction. *IEEE Transactions on Automatic control*, 27(4):869–879, 1982.
- [2] James L Bander and Chelsea C White III. Markov decision processes with noise-corrupted and delayed state observations. *Journal of the Operational Research Society*, 50(6):660–668, 1999.
- [3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th annual international conference on machine learning*, pages 41–48, 2009.
- [4] Yann Boudeiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Reinforcement learning with random delays. In *International conference on learning representations*, 2020.
- [5] Marwa Chafii, Salmane Naoumi, Reda Alami, Ebtesam Almazrouei, Mehdi Bennis, and Merouane Debbah. Emergent communication in multi-agent reinforcement learning for future wireless networks. *IEEE Internet of Things Magazine*, 6(4):18–24, 2023.
- [6] Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-agent reinforcement learning for cooperative and competitive environments. *arXiv preprint arXiv:2005.05441*, 2020.
- [7] Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement learning for continuous control. *Neurocomputing*, 450:119–128, 2021.
- [8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.
- [9] Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with action delay. *arXiv preprint arXiv:1810.07286*, 2018.
- [10] Songchen Fu, Shaojing Zhao, Ta Li, and Yonghong Yan. Qtypemix: Enhancing multi-agent cooperative strategies through heterogeneous and homogeneous value decomposition. *Neural Networks*, 184:107093, 2025.
- [11] Marcus Gerwig, Karim Hajjar, Albena Dimitrova, Matthias Maschke, Florian P Kolb, Markus Frings, Alfred F Thilmann, Michael Forsting, Hans Christoph Diener, and Dagmar Timmann. Timing of conditioned eyeblink responses is impaired in cerebellar patients. *Journal of Neuroscience*, 25(15):3919–3931, 2005.
- [12] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. *Artificial Intelligence Review*, 55(2):895–943, 2022.
- [13] Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. *Artificial Intelligence*, 319:103905, 2023.
- [14] Shangding Gu, Dianye Huang, Muning Wen, Guang Chen, and Alois Knoll. Safe multiagent learning with soft constrained policy optimization in real robot control. *IEEE Transactions on Industrial Informatics*, 2024.
- [15] Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust multi-agent reinforcement learning with state uncertainty. *arXiv preprint arXiv:2307.16212*, 2023.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2015.

[17] Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the implementation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning. *arXiv preprint arXiv:2102.03479*, 2021.

[18] HAO Jianye, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, and Zhen Wang. Boosting multiagent reinforcement learning via permutation invariant and permutation equivariant networks. In *The Eleventh International Conference on Learning Representations*, 2022.

[19] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel reinforcement learning environment. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34(04), pages 4501–4510, 2020.

[20] Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement learning by imitation. In *International conference on machine learning*, pages 13528–13556. PMLR, 2022.

[21] Jiaqi Liu, Ziran Wang, Peng Hang, and Jian Sun. Delay-aware multi-agent reinforcement learning for cooperative adaptive cruise control with model-based stability enhancement. *arXiv preprint arXiv:2404.15696*, 2024.

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environments. *Neural Information Processing Systems (NIPS)*, 2017.

[23] Miroslav R Matausek and AD Micic. On the modified smith predictor for controlling a process with an integrator and long dead-time. *IEEE Transactions on Automatic Control*, 44(8):1603–1606, 1999.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.

[25] Silviu-Iulian Niculescu. *Delay effects on stability: a robust control approach*, volume 269. Springer, 2003.

[26] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks. *arXiv preprint arXiv:2006.07869*, 2020.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

[28] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

[29] Andrew C Singer, Jill K Nelson, and Suleyman S Kozat. Signal processing for underwater acoustic communications. *IEEE Communications Magazine*, 47(1):90–96, 2009.

[30] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent learning. *arXiv preprint arXiv:1706.05296*, 2017.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

- [32] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in environments with delayed feedback. *Autonomous Agents and Multi-Agent Systems*, 18:83–105, 2009.
- [33] Fanshuo Wang, Hui Zhang, and Ya Zhang. Resolving action delay: Multi-agent reinforcement learning based on state prediction. In *Chinese Intelligent Systems Conference*, pages 552–563. Springer, 2024.
- [34] Wei Wang, Dongqi Han, Xufang Luo, and Dongsheng Li. Addressing signal delay in deep reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2023.
- [35] Yunchang Yang, Han Zhong, Tianhao Wu, Bin Liu, Liwei Wang, and Simon S Du. A reduction-based framework for sequential decision making with delayed feedback. *Advances in Neural Information Processing Systems*, 36:46362–46389, 2023.
- [36] Tingting Yuan, Hwei-Ming Chung, Jie Yuan, and Xiaoming Fu. Dacom: Learning delay-aware communication for multi-agent reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37(10), pages 11763–11771, 2023.
- [37] Hengxi Zhang, Zhendong Shi, Yuanquan Hu, Wenbo Ding, Ercan E Kuruoğlu, and Xiao-Ping Zhang. Optimizing trading strategies in quantitative markets using multi-agent reinforcement learning. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 136–140. IEEE, 2024.
- [38] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview of theories and algorithms. *Handbook of reinforcement learning and control*, pages 321–384, 2021.
- [39] Yuyang Zhang, Runyu Zhang, Yuantao Gu, and Na Li. Multi-agent reinforcement learning with reward delays. In *Learning for Dynamics and Control Conference*, pages 692–704. PMLR, 2023.
- [40] Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learning with communication. *Autonomous Agents and Multi-Agent Systems*, 38(1):4, 2024.

Technical Appendices and Supplementary Material

A Proofs

Here we prove the correctness of the state transition function and observation function expressions defined in DSID-POMDP. First, the state \mathbf{x} contains T history states:

$$\mathbf{x} = \{s, s_{(-1)}, \dots, s_{(-T)}\}.$$

Expand the expression of the new state transition function:

$$\mathcal{P}_{\mathcal{D}}(\mathbf{x}'|\mathbf{x}, \mathbf{a}) = \mathcal{P}_{\mathcal{D}}(s', s'_{(-1)}, \dots, s'_{(-T)}|s, s_{(-1)}, \dots, s_{(-T)}, \mathbf{a}).$$

Observing these two sequences reveals the transition process of history states $s'_{(-t)} = s_{(-t+1)}$, which can consequently be decomposed into current state transitions and history state transitions. Due to the Markov property, the oldest state in the original state can be directly discarded.

$$\begin{aligned} \mathcal{P}_{\mathcal{D}}(\mathbf{x}'|\mathbf{x}, \mathbf{a}) &= \mathcal{P}_{\mathcal{D}}(s', s'_{(-1)}, \dots, s'_{(-T)}|s, s_{(-1)}, \dots, s_{(-T)}, \mathbf{a}) \\ &= \mathcal{P}(s'|\mathbf{s}, \mathbf{a}) \prod_{t=1}^T \delta(s'_{(-t)} - s_{(-t+1)}) \end{aligned}$$

In other words, when the transition of the historical sequence is determined, the state transition function of DSID-POMDP becomes identical to that of POMDP. A fundamental assumption for the validity of the observation function is that observations from different entities are mutually independent. While this assumption holds in most scenarios, it may not be satisfied in specific cases, such as in single-channel communication systems where signals from different entities can interfere. For $agent_i$, if the observation delay value corresponding to $entity_j$ is t , it can be expressed as $z^{ij} = s^{ij}_{(-t)}$. Therefore, the probability of this agent obtaining observation z^{ij} from entity $entity_j$ is:

$$\mathcal{O}_{\mathcal{D}}(z^{ij}|\mathbf{x}) = \sum_{t=0}^T p(d^{ij} = t) \delta(z^{ij} - s^{ij}_{(-t)}) \mathcal{O}(o^{ij} = z^{ij}|s_{(-t)}),$$

where $\mathcal{O}(o^{ij} = z^{ij}|s_{(-t)})$ denotes the probability of obtaining observation z^{ij} given state $s_{(-t)}$ in the original POMDP. Due to the independence assumption, this definition can be extended to joint observation through factorization:

$$\mathcal{O}_{\mathcal{D}}(\mathbf{z}|\mathbf{x}) = \prod_{i \in \mathcal{I}} \prod_{j \in \mathcal{I}_{\mathcal{D}}} \sum_{t=0}^T p(d^{ij} = t) \delta(z^{ij} - s^{ij}_{(-t)}) \mathcal{O}(o^{ij} = z^{ij}|s_{(-t)}).$$

B Scenario Introduction

simple-tag: This is a competitive predator-prey simulation where good agents must evade slower but aggressive adversaries. The good agents are faster but incur a penalty for each collision with an adversary, while adversaries are rewarded for successfully hitting them. The terrain includes static obstacles that block movement. To prevent good agents from escaping indefinitely, they are penalized for exiting the designated area based on a predefined boundary function. By default, the scenario starts with one good agent, three adversaries, and two obstacles, creating a dynamic balance of pursuit and evasion. In our experiments, the policy of good agents is fixed as a pre-trained model with MADDPG [22], consistent with Papoudakis et al. [26]. The algorithm only controls the adversaries, transforming the adversarial environment into a cooperative one.

simple-spread: In this cooperative multi-agent scenario, N agents (default: 3) must learn to cover N landmarks efficiently while avoiding collisions. The agents are collectively rewarded based on how well they cover all landmarks, measured by the sum of the minimum distances between each landmark and its closest agent. Agents must minimize this global distance metric to maximize their shared reward. To prevent reckless behavior, each agent is individually penalized for colliding with other agents. The trade-off between global coverage and collision avoidance is adjustable via the *local_ratio* parameter, enabling fine-tuned control over agent coordination strategies.

Table 1: Mean Environment parameters.

MPE		SMAC	
Parameter	Value	Parameter	Value
time_limit	25	difficulty	7
obs_agent_id	True	obs_agent_id	True
obs_last_action	False	obs_last_action	True
		state_last_action	True
		state_timestep_number	False
		conic_fov	False

simple-reference: This scenario involves two cooperative agents navigating toward three uniquely colored landmarks, each with a hidden target assignment. Crucially, an agent’s target landmark is only known by the other agent, requiring real-time communication to resolve uncertainty. Both agents act as speakers and listeners, exchanging information to infer each other’s goals while navigating.

SMAC: Unlike MPE, the objective in all SMAC scenarios is to achieve victory, with the sole approach being the complete elimination of enemy forces. The scenario names explicitly indicate the force compositions of both allied and enemy units—for example, 6h_vs_8z denotes six Hydralisks battling eight Zealots. This environment emphasizes short-term coordination among agents and the effective utilization of unit-specific advantages.

C Implementation Details

C.1 Delayed Observation Implementation



Figure 14: Applications of DSID-POMDP on SMAC’s 6h_vs_8z and MPE’s simple-tag.

We develop delay filters for SMAC and MPE to simulate realistic perception and communication delays, implementing four distinct modes: no delay (none), fixed delay (f), partially fixed delay (pf), and unfixed delay (uf). The fixed delay mode sets a fixed delay value and applies it to all observations. The partially unfixed delay mode uses fixed delay values but does not necessarily delay all observation contents. The unfixed delay mode introduces randomness in both delay values and which contents get delayed. While delay filters support different distributions or distance-based delay calculations between entities and agents, our experiments use uniform distributions for all random variables, without loss of generality. The delay implementation mechanism primarily maintains history observation records for each agent and retrieves information from past observations at the current timestep according to specific delay policies.

We classify agent observation into four categories based on their delay characteristics: movement features (real-time updated information), enemy features (environmental entity data excluding allies), ally features (information from allied agents), and self features (agent’s state). In practice, naming these features is not crucial—our primary distinction lies in their delay characteristics. For example, in SMAC’s 6h_vs_8z scenario, observations include movement capabilities (4 dimensions), 8 enemy states (each with 6 dimensions), 5 ally statuses (each with 5 dimensions), and self-attributes (1 dimension). Our implementation delays only enemy and ally features, while maintaining real-time

updates for movement and self features. This reflects real-world conditions, where agents have immediate access to their own states but experience delayed environmental perception.

The system initializes the observation history at the start of each episode and continuously records delay-free observations. It retrieves historical data based on configured delay parameters when generating delayed observations. For example, in MPE’s simple-tag scenario, predators may track evaders using positions delayed by 2 timesteps, impairing pursuit efficiency. Similarly, in SMAC, troops exhibit response lags to enemy movements. The system maintains temporal consistency by ensuring delayed observations are always drawn from valid history states while preserving the original environment dynamics. This implementation enables systematic investigation of various delay patterns (fixed, unfixed, or distance-dependent) while maintaining the integrity of the underlying multi-agent decision-making process. The modular design allows for the flexible configuration of delay parameters without modifying the core environment logic.

Additionally, the delay filter enforces temporal consistency constraints, ensuring that information observed at step t cannot be older than that at step $t - 1$. When the delay-reconciled critic is not employed, the global state is formed by concatenating observations from all agents. By implementing delay filters in existing simulation environments, we establish a reliable and flexible experimental platform for investigating the impact of delayed observation on the performance of MAs.

C.2 Compensator Implementation

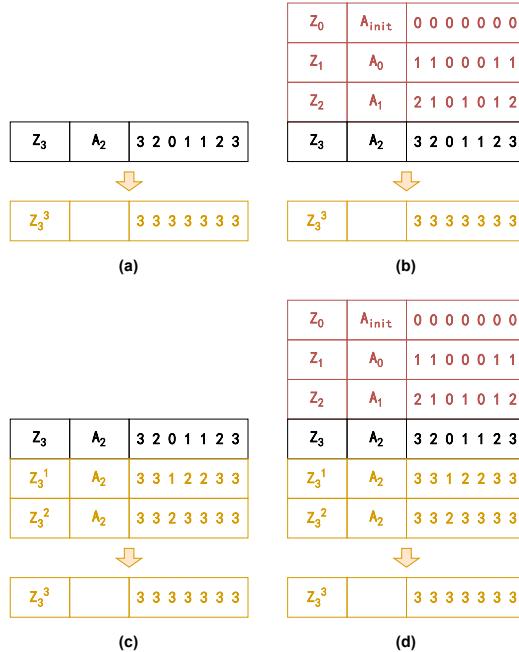


Figure 15: Inputs and outputs of compensators. (a): *Flash* without history inputs. (b): *Flash* with history inputs. (c): *Echo* without history inputs. (d): *Echo* with history inputs.

We utilize a deep learning-based compensator to mitigate the effects of observation delay in MAs, and employ GRU-based and Transformer-based architectures to predict delay-free observation from historical data. The compensator implementation consists of input sequence construction, label generation, and mask generation. The compensator processes input sequences constructed from past observations and actions, with optional T-step historical context (padded when insufficient). Figure 15 follows the example from Figure 3. Both Flash+H and Echo+H models acquire additional information. Notably, *Echo*’s autoregressive inference aligns closely with historical sequence processing, which helps the model understand the relationships between delay and observation. The figure visually represents delay value sequences as their corresponding actual environment timestep sequences. In practical implementation, we input delay value sequences for *Flash* and binary (0 or 1) sequences indicating the presence of delay for *Echo*.

Table 2: Mean Training parameters.

MPE		SMAC	
Parameter	Value	Parameter	Value
t_max	5e6/1e7	t_max	6e6
test_nepisode	64	test_nepisode	32
batch_size	32	batch_size	128
epsilon_anneal_time	5e4	epsilon_anneal_time	1e5/5e6
standardise_rewards	True	standardise_rewards	False
actor_model	GRU	actor_model	GRU
target_update_interval	200	target_update_interval	200
mixing_embed_dim	32	mixing_embed_dim	32
hypernet_embed	64	hypernet_embed	64
actor_hidden_dim	64	actor_hidden_dim	64
td_lambda	0.6	td_lambda	0.6/0.3
rl_learning_rate	1e-3	rl_learning_rate	1e-3
compensator_model	GRU/Transformer	compensator_model	GRU/Transformer
compensator_hidden_dim	64	compensator_hidden_dim	64
compensator_mode	None/Flash/Echo	compensator_mode	None/Flash/Echo
compensator_learning_rate	1e-3	compensator_learning_rate	1e-3
delay_type	unfixed	delay_type	unfixed
delay_value	6	delay_value	3
delay_scope	3	delay_scope	3
use_history	True/False	use_history	True/False
history_length	9	history_length	6
delay_reconciled	True/False	delay_reconciled	True/False
curriculum_start_value	0	curriculum_start_value	1/0
curriculum_end_value	0	curriculum_end_value	0
curriculum_start_step	1e6	curriculum_start_value	1e6
curriculum_end_step	3e6	curriculum_end_step	4e6
distillation_start_value	1/0	distillation_start_value	1/0
distillation_end_value	0	distillation_end_value	0
distillation_start_step	2e6/3e6	distillation_start_value	2e6
distillation_end_step	4e6/7e6	distillation_end_step	4e6

We adopt a supervised learning framework where the label generation module creates ground truth from stored delay-free observations, using ideal delay values as reference. The mask generation module prevents error propagation in *Echo* by masking previously compensated content. Our hybrid loss function combines mean squared error (MSE) for continuous features (e.g., positions) with weighted cross-entropy (CE) for discrete features (e.g., unit status), balancing their numerical scales. To enhance training efficiency and stability, we implement teacher forcing - initially using real observation as next-step input with 100% probability, gradually decreasing to 0% during training to help the model learn to rely on its predictions. As shown in Table 3, the teacher forcing training mode demonstrates no significant advantage compared to not using teacher forcing. Therefore, we disable this option by default during training.

C.3 Training Details

In this section, we present the hyperparameter settings for different tasks. Table 1 and Table 2 detail the key environmental and training parameters, respectively. While ensuring algorithm performance, we maintained consistency in hyperparameters as much as possible. All actor networks use the GRU architecture, while QMIX’s critic employs a two-layer hypernetwork. The GRU compensator consists of one GRU layer and three linear layers, whereas the Transformer compensator uses only one pair of encoder-decoder layers and supports a pure encoder structure. The replay buffer size is fixed at 5000, with batch sizes set to 32 for MPE and 128 for SMAC. During training initialization, $\epsilon = 1$ and linearly anneals to $\epsilon = 0.05$. The default training step for MPE is set to 5e6. However, we observed a second significant performance surge around 2e6 steps on REFERENCE, with performance still maintaining an upward trend at 5e6 steps. Consequently, we extended the training steps to 1e7 to provide sufficient convergence time for each algorithm. Accordingly, the starting and ending steps for knowledge distillation were also increased.

We do not entirely disregard the curriculum learning option in MPE scenarios. However, early experiments revealed that this technique proved ineffective for MPE, while being indispensable for SMAC. This result demonstrates that curriculum learning actors can significantly mitigate convergence issues caused by random seeds when handling complex tasks. In reinforcement learning, the problem of model non-convergence due to the improper timing of performance ascent is prevalent. Careful

observation of convergence curves reveals that performance ascent typically does not occur during the initial training phase in SMAC tasks. In contrast, in MPE tasks, performance improvement closely follows the start of training. This timing difference may explain why curriculum learning actors succeed remarkably in SMAC scenarios.

The teacher model is trained for $1e7$ steps across all tasks with a delay setting of 1-3. We attempted to directly employ the Oracle as the teacher model, where, during student model training, the Oracle receives delay-free observation and provides immediate guidance. This approach proved unsuccessful, likely due to the inherent discrepancy between delay-free observation and compensated observation. Specifically, when the student model receives compensated observation, decisions based on delay-free observation might be objectively superior but could disrupt the student model's judgment. To address this issue, we experiment with a low-delay teacher model, achieving exceptional performance. We encourage other researchers to explore further variations within our framework.

D Supplementary Results

Table 3: Performance comparison with teacher forcing enabled and disabled.

Fixed Delay Value			0	3	6	9	12
	TF	DR	H	TAG			
Echo	✓	✓	✓	190.9 ± 26.0	175.8 ± 29.7	168.8 ± 23.4	161.7 ± 25.4
Echo	✓	✓	✓	185.9 ± 23.4	175.1 ± 30.3	176.9 ± 29.9	167.3 ± 24.0
	TF	DR	H	SPREAD			
Echo	✓	✓	✓	-34.2 ± 2.2	-34.1 ± 1.9	-34.2 ± 2.0	-35.3 ± 2.2
Echo	✓	✓	✓	-33.6 ± 1.7	-33.8 ± 2.2	-34.3 ± 1.5	-35.4 ± 1.9
							-36.6 ± 1.7

Table 4: Fixed delay test results (rewards) of MPE with baseline algorithm FT-QMIX.

Fixed Delay Value			0	3	6	9	12
	DR	H	KD	TAG			
Oracle				213.4 ± 33.5	136.2 ± 23.0	84.5 ± 16.9	70.1 ± 11.1
Base				110.2 ± 17.7	135.2 ± 22.5	125.4 ± 22.8	112.6 ± 20.7
Base	✓			135.1 ± 26.7	156.9 ± 23.2	142.3 ± 22.3	120.9 ± 20.8
Flash	✓			176.6 ± 27.7	177.5 ± 34.2	150.4 ± 22.5	132.8 ± 21.6
Flash	✓	✓		188.0 ± 26.6	180.4 ± 24.7	166.7 ± 29.0	168.5 ± 28.2
Flash	✓	✓	✓	213.7 ± 30.8	194.8 ± 27.5	182.5 ± 32.0	169.8 ± 23.9
Echo	✓			194.2 ± 29.0	187.6 ± 29.0	173.8 ± 22.6	160.7 ± 30.1
Echo	✓	✓		185.9 ± 23.4	175.1 ± 30.3	176.9 ± 29.9	167.3 ± 24.0
Echo	✓		✓	206.5 ± 34.0	197.9 ± 28.5	184.7 ± 32.4	175.6 ± 22.9
Echo	✓	✓	✓	209.8 ± 32.3	200.8 ± 25.1	182.9 ± 36.6	176.2 ± 24.8
							160.5 ± 29.5
	DR	H	KD	SPREAD			
Oracle				-33.1 ± 2.0	-37.6 ± 2.2	-48.8 ± 2.0	-59.9 ± 2.9
Base				-40.4 ± 2.2	-38.1 ± 1.8	-40.3 ± 2.4	-44.2 ± 2.2
Base	✓			-41.1 ± 2.4	-39.2 ± 1.8	-41.0 ± 2.5	-44.7 ± 2.0
Flash	✓			-37.7 ± 1.7	-37.8 ± 2.3	-39.3 ± 1.9	-40.1 ± 2.1
Flash	✓	✓		-33.9 ± 1.8	-34.2 ± 2.0	-33.1 ± 1.9	-34.4 ± 1.8
Flash	✓	✓	✓	-31.7 ± 2.0	-32.0 ± 1.6	-32.4 ± 2.3	-33.2 ± 2.3
Echo	✓			-36.3 ± 2.2	-36.6 ± 2.3	-36.2 ± 1.9	-36.8 ± 1.7
Echo	✓	✓		-33.6 ± 1.7	-33.8 ± 2.2	-34.3 ± 1.5	-35.4 ± 1.9
Echo	✓		✓	-32.2 ± 1.6	-33.0 ± 2.3	-33.3 ± 1.8	-33.3 ± 2.2
Echo	✓	✓	✓	-31.8 ± 1.9	-32.0 ± 2.0	-32.3 ± 1.9	-33.1 ± 2.1
							-33.2 ± 2.2
	DR	H	KD	REFERENCE			
Oracle				-17.6 ± 1.2	-22.5 ± 1.2	-31.1 ± 1.1	-38.2 ± 1.5
Base				-29.5 ± 1.5	-28.6 ± 1.5	-30.3 ± 1.7	-34.3 ± 1.5
Base	✓			-28.9 ± 1.8	-26.1 ± 1.6	-27.7 ± 1.7	-30.9 ± 1.7
Flash	✓			-34.5 ± 2.1	-34.2 ± 2.0	-34.8 ± 2.1	-34.9 ± 2.3
Flash	✓	✓		-17.1 ± 1.3	-17.4 ± 1.5	-17.3 ± 1.2	-18.0 ± 1.5
Flash	✓	✓	✓	-16.8 ± 1.3	-17.0 ± 1.3	-16.7 ± 1.1	-17.6 ± 1.1
Echo	✓			-19.1 ± 1.4	-18.0 ± 1.4	-19.0 ± 1.4	-19.0 ± 1.4
Echo	✓	✓		-18.4 ± 1.2	-18.5 ± 1.5	-18.5 ± 1.1	-18.7 ± 1.4
Echo	✓		✓	-20.6 ± 1.2	-20.9 ± 1.4	-21.3 ± 1.3	-22.2 ± 1.1
Echo	✓	✓	✓	-16.7 ± 1.4	-16.9 ± 1.1	-16.9 ± 1.2	-17.6 ± 1.2
							-18.7 ± 1.4

Table 5: Unfixed delay test results (rewards) of MPE with baseline algorithm FT-QMIX.

Delay Range			3-9	6-12	3-9	6-12	3-9	6-12
DR H KD			TAG		SPREAD		REFERENCE	
Oracle			92.3 \pm 15.2	74.8 \pm 13.5	-45.9 \pm 1.8	-56.4 \pm 2.1	-28.3 \pm 1.2	-36.1 \pm 1.4
Base			127.0 \pm 18.8	113.6 \pm 19.9	-39.6 \pm 2.0	-42.2 \pm 2.5	-29.9 \pm 1.6	-33.2 \pm 2.0
Base	✓		144.6 \pm 21.1	132.4 \pm 19.7	-40.5 \pm 2.2	-44.0 \pm 2.3	-27.4 \pm 1.6	-30.4 \pm 1.9
Flash	✓		161.5 \pm 29.4	151.4 \pm 27.4	-38.8 \pm 2.3	-39.2 \pm 2.6	-34.9 \pm 2.0	-35.2 \pm 2.0
Flash	✓	✓	180.3 \pm 28.3	165.4 \pm 26.1	-33.7 \pm 2.0	-34.5 \pm 1.9	-17.1 \pm 1.1	-18.2 \pm 1.3
Flash	✓	✓	188.6 \pm 31.1	166.9 \pm 30.9	-32.0 \pm 1.9	-33.0 \pm 2.3	-17.0 \pm 1.4	-17.2 \pm 1.4
Echo	✓		175.1 \pm 25.0	165.5 \pm 24.5	-36.7 \pm 2.2	-36.9 \pm 2.2	-18.6 \pm 1.3	-18.9 \pm 1.3
Echo	✓	✓	177.1 \pm 21.9	166.8 \pm 27.4	-34.2 \pm 2.0	-35.1 \pm 1.9	-18.3 \pm 1.2	-18.9 \pm 1.2
Echo	✓	✓	178.9 \pm 27.0	180.0 \pm 20.7	-32.1 \pm 2.2	-33.2 \pm 1.9	-21.4 \pm 1.0	-21.6 \pm 1.3
Echo	✓	✓	189.2 \pm 22.3	178.3 \pm 21.1	-31.4 \pm 1.9	-32.5 \pm 1.4	-17.0 \pm 1.2	-17.4 \pm 1.1

Table 6: Fixed delay test results of SMAC (win rates) with baseline algorithm FT-QMIX.

Fixed Delay Value				0	2	4	6	8
C	DR	H	KD	3s_vs_5z				
Oracle				99.7 \pm 1.2	64.6 \pm 9.3	26.6 \pm 7.9	1.9 \pm 2.4	0.1 \pm 0.5
Base				82.9 \pm 6.2	79.3 \pm 8.1	84.9 \pm 6.1	69.9 \pm 9.1	65.0 \pm 9.1
Base	✓			97.0 \pm 2.6	95.5 \pm 2.9	95.1 \pm 3.6	93.8 \pm 4.5	88.4 \pm 4.8
Base	✓	✓		97.0 \pm 2.7	98.0 \pm 2.0	92.3 \pm 5.8	74.8 \pm 8.3	33.0 \pm 10.5
Base	✓	✓	✓	92.4 \pm 3.6	96.8 \pm 2.8	80.6 \pm 5.9	44.5 \pm 8.9	4.5 \pm 3.4
Flash	✓	✓		95.0 \pm 4.3	96.6 \pm 3.0	91.4 \pm 5.0	78.1 \pm 6.2	37.7 \pm 10.2
Flash	✓	✓	✓	98.8 \pm 2.1	97.3 \pm 2.9	93.4 \pm 4.5	83.6 \pm 6.5	43.5 \pm 7.9
Flash	✓	✓	✓	99.8 \pm 0.7	99.3 \pm 1.9	99.4 \pm 1.2	94.9 \pm 3.4	82.9 \pm 5.4
Echo	✓	✓		96.3 \pm 2.8	97.1 \pm 2.7	94.6 \pm 3.8	83.6 \pm 6.3	24.7 \pm 8.5
Echo	✓	✓	✓	98.5 \pm 2.2	98.8 \pm 1.8	96.6 \pm 2.8	84.2 \pm 6.7	60.9 \pm 8.0
Echo	✓	✓	✓	99.8 \pm 0.8	99.8 \pm 0.7	99.8 \pm 0.8	97.1 \pm 2.7	80.0 \pm 8.1
C	DR	H	KD	5m_vs_6m				
Oracle				84.8 \pm 6.7	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0
Base				0.5 \pm 1.1	0.4 \pm 1.0	0.9 \pm 1.6	0.5 \pm 1.3	0.1 \pm 0.5
Base	✓			1.1 \pm 1.6	2.7 \pm 2.9	3.4 \pm 3.5	2.3 \pm 2.8	0.7 \pm 1.6
Base	✓	✓		7.3 \pm 5.1	15.9 \pm 6.2	12.1 \pm 5.4	0.4 \pm 1.0	0.1 \pm 0.5
Base	✓	✓	✓	58.1 \pm 9.0	80.2 \pm 7.1	57.2 \pm 10.8	20.5 \pm 8.1	3.0 \pm 2.8
Flash	✓	✓		83.2 \pm 6.4	80.6 \pm 7.4	73.7 \pm 7.7	59.9 \pm 9.5	36.6 \pm 8.4
Flash	✓	✓	✓	84.8 \pm 4.4	81.9 \pm 6.4	78.4 \pm 6.4	43.9 \pm 7.8	5.8 \pm 4.3
Flash	✓	✓	✓	85.5 \pm 5.7	84.6 \pm 6.8	82.5 \pm 6.1	62.3 \pm 7.7	40.1 \pm 9.8
Echo	✓	✓		81.9 \pm 7.2	78.4 \pm 7.1	74.7 \pm 7.3	58.4 \pm 10.2	44.7 \pm 8.3
Echo	✓	✓	✓	73.4 \pm 7.1	65.2 \pm 7.9	63.1 \pm 9.8	39.8 \pm 7.8	23.4 \pm 7.7
Echo	✓	✓	✓	86.3 \pm 6.5	85.2 \pm 5.0	79.9 \pm 7.7	65.2 \pm 8.9	51.8 \pm 8.6
C	DR	H	KD	6h_vs_8z				
Oracle				92.0 \pm 4.0	0.5 \pm 1.2	0.0 \pm 0.0	0.0 \pm 0.0	0.0 \pm 0.0
Base				0.6 \pm 1.2	1.0 \pm 1.9	0.7 \pm 1.5	0.1 \pm 0.5	0.0 \pm 0.0
Base	✓			4.4 \pm 3.1	3.8 \pm 3.5	2.4 \pm 2.6	1.4 \pm 1.8	0.7 \pm 1.5
Base	✓	✓		3.1 \pm 2.5	4.1 \pm 3.8	2.1 \pm 2.7	0.4 \pm 1.0	0.2 \pm 1.0
Base	✓	✓	✓	50.8 \pm 9.1	70.6 \pm 9.2	12.7 \pm 6.1	2.7 \pm 3.5	0.3 \pm 0.9
Flash	✓	✓		77.5 \pm 6.6	70.7 \pm 9.0	29.7 \pm 10.9	4.6 \pm 3.6	0.5 \pm 1.4
Flash	✓	✓	✓	85.3 \pm 7.1	72.1 \pm 8.6	30.6 \pm 7.9	5.9 \pm 4.4	1.2 \pm 2.4
Flash	✓	✓	✓	90.6 \pm 5.1	81.6 \pm 6.1	43.1 \pm 8.7	12.6 \pm 6.1	3.4 \pm 3.4
Echo	✓	✓		86.6 \pm 7.2	82.0 \pm 7.3	40.8 \pm 9.6	11.2 \pm 5.6	2.9 \pm 3.1
Echo	✓	✓	✓	86.7 \pm 6.2	71.0 \pm 8.2	19.1 \pm 6.8	5.1 \pm 4.3	0.6 \pm 1.2
Echo	✓	✓	✓	94.1 \pm 4.1	89.3 \pm 6.3	57.6 \pm 10.7	19.5 \pm 6.7	6.2 \pm 5.1

Table 7: Unfixed delay test results (win rates) of SMAC with baseline algorithm FT-QMIX.

Delay Range			0-6	3-9	0-6	3-9	0-6	3-9
C	DR	H	KD	3s_vs_5z				
Oracle				62.2 \pm 7.8	16.2 \pm 6.4	0.0 \pm 0.0	0.0 \pm 0.0	2.9 \pm 3.2
Base				83.4 \pm 6.5	77.5 \pm 6.4	0.7 \pm 1.3	0.5 \pm 1.4	0.5 \pm 1.2
Base	✓			95.9 \pm 3.1	94.8 \pm 3.7	2.1 \pm 2.1	2.0 \pm 2.3	5.5 \pm 3.9
Base	✓	✓		98.1 \pm 1.7	84.8 \pm 6.2	15.2 \pm 7.6	4.1 \pm 3.2	2.3 \pm 2.7
Base	✓	✓	✓	97.0 \pm 2.6	74.7 \pm 7.4	79.0 \pm 8.4	45.4 \pm 8.5	68.6 \pm 11.8
Flash	✓	✓		96.5 \pm 3.7	92.4 \pm 5.4	78.5 \pm 6.3	71.1 \pm 7.8	67.1 \pm 8.1
Flash	✓	✓	✓	97.2 \pm 2.9	90.6 \pm 4.8	83.7 \pm 6.6	73.5 \pm 7.8	73.8 \pm 6.4
Flash	✓	✓	✓	99.7 \pm 0.9	98.2 \pm 2.6	83.0 \pm 7.0	76.6 \pm 7.6	80.7 \pm 7.1
Echo	✓	✓		98.9 \pm 2.0	95.5 \pm 3.8	80.2 \pm 7.8	66.9 \pm 8.6	78.8 \pm 7.1
Echo	✓	✓	✓	98.9 \pm 1.6	96.2 \pm 3.3	74.5 \pm 7.1	59.5 \pm 8.8	79.5 \pm 7.9
Echo	✓	✓	✓	99.8 \pm 0.7	98.8 \pm 1.8	84.5 \pm 6.3	76.6 \pm 6.8	89.3 \pm 5.3
								45.2 \pm 10.9

Our experimental results are primarily presented through figures and tables, with detailed explanations. We first conduct extensive experiments on MPE, followed by selective validation on SMAC. The MPE ablation studies compare two baseline algorithms: FT-QMIX and FT-VDN. As shown in Figure 16 and Figure 17, FT-VDN demonstrates slightly inferior performance to FT-QMIX across fixed and unfixed delay settings, particularly on REFERENCE. Notably, the RDC-enhanced FT-VDN maintains reasonable delay resistance despite lacking a critic network, confirming the framework’s compatibility with non-actor-critic approaches while preserving baseline performance characteristics. Architecture comparisons (Figure 16-19) reveal that GRU-based compensators generally underperform Transformer variants, except on 5m_vs_6m. For brevity, Table 4-9 omit the less competitive FT-VDN and GRU-based results. In SMAC experiments, we employ curriculum learning for the actor to ensure convergence, as discussed previously.

Table 8: Fixed delay test results of SMAC (rewards) with baseline algorithm FT-QMIX.

Fixed Delay Value				0	2	4	6	8
C	DR	H	KD	3s_vs_5z				
Oracle				21.0 ± 0.1	21.3 ± 0.4	19.0 ± 0.7	12.6 ± 0.6	9.6 ± 0.6
Base				21.9 ± 0.5	21.8 ± 0.4	21.5 ± 0.4	21.6 ± 0.5	21.4 ± 0.6
Base	✓			21.6 ± 0.2	21.7 ± 0.2	21.5 ± 0.2	21.4 ± 0.2	21.8 ± 0.3
Base		✓		21.7 ± 0.2	21.6 ± 0.2	22.1 ± 0.3	21.9 ± 0.5	17.7 ± 1.1
Base	✓	✓		21.4 ± 0.2	21.4 ± 0.2	21.5 ± 0.3	19.5 ± 0.7	13.5 ± 0.7
Flash	✓	✓		21.4 ± 0.2	21.4 ± 0.2	21.4 ± 0.3	21.4 ± 0.4	19.3 ± 0.8
Flash	✓	✓	✓	21.2 ± 0.2	21.4 ± 0.1	21.5 ± 0.2	21.8 ± 0.3	19.7 ± 0.6
Flash	✓	✓	✓	21.1 ± 0.1	21.1 ± 0.1	21.3 ± 0.1	21.8 ± 0.3	21.8 ± 0.3
Echo	✓	✓		21.2 ± 0.2	21.2 ± 0.2	21.3 ± 0.2	21.2 ± 0.3	17.9 ± 0.8
Echo	✓	✓	✓	21.2 ± 0.1	21.3 ± 0.1	21.4 ± 0.2	21.7 ± 0.3	20.5 ± 0.4
Echo	✓	✓	✓	21.0 ± 0.1	21.1 ± 0.1	21.2 ± 0.1	21.3 ± 0.1	21.3 ± 0.4
C	DR	H	KD	5m_vs_6m				
Oracle				18.5 ± 0.6	4.8 ± 0.1	4.0 ± 0.1	3.7 ± 0.1	3.4 ± 0.1
Base				8.5 ± 0.2	8.4 ± 0.2	8.4 ± 0.3	8.3 ± 0.3	8.0 ± 0.2
Base	✓			8.4 ± 0.3	9.1 ± 0.4	9.2 ± 0.4	8.9 ± 0.4	8.4 ± 0.3
Base		✓		9.3 ± 0.7	10.8 ± 0.7	10.2 ± 0.6	7.5 ± 0.3	6.5 ± 0.2
Base	✓	✓		18.0 ± 0.7	15.8 ± 1.1	12.0 ± 0.8	9.2 ± 0.4	
Flash	✓	✓		18.3 ± 0.7	18.1 ± 0.8	17.4 ± 0.8	16.1 ± 0.9	13.7 ± 0.9
Flash	✓	✓	✓	18.5 ± 0.4	18.1 ± 0.7	17.8 ± 0.7	14.4 ± 0.8	9.9 ± 0.5
Flash	✓	✓	✓	18.6 ± 0.5	18.5 ± 0.7	18.3 ± 0.6	16.3 ± 0.7	13.9 ± 1.0
Echo	✓	✓		18.2 ± 0.7	17.8 ± 0.7	17.5 ± 0.7	15.8 ± 1.0	14.3 ± 0.9
Echo	✓	✓	✓	17.4 ± 0.7	16.6 ± 0.8	16.3 ± 1.0	13.8 ± 0.8	11.9 ± 0.8
Echo	✓	✓	✓	18.6 ± 0.7	18.6 ± 0.5	18.0 ± 0.8	16.5 ± 0.9	15.1 ± 0.9
C	DR	H	KD	6h_vs_8z				
Oracle				19.6 ± 0.2	11.1 ± 0.3	9.2 ± 0.2	8.7 ± 0.2	8.4 ± 0.2
Base				12.7 ± 0.3	12.9 ± 0.3	12.5 ± 0.2	11.9 ± 0.2	11.0 ± 0.2
Base	✓			14.0 ± 0.3	14.0 ± 0.3	13.6 ± 0.3	13.2 ± 0.2	12.9 ± 0.3
Base		✓		12.6 ± 0.3	12.6 ± 0.4	11.9 ± 0.3	11.0 ± 0.2	10.4 ± 0.2
Base	✓	✓		17.4 ± 0.6	18.5 ± 0.5	14.5 ± 0.5	12.8 ± 0.3	11.5 ± 0.3
Flash	✓	✓		18.9 ± 0.3	18.5 ± 0.4	16.0 ± 0.8	13.3 ± 0.4	11.9 ± 0.3
Flash	✓	✓	✓	19.3 ± 0.3	18.6 ± 0.5	16.1 ± 0.5	13.6 ± 0.5	12.4 ± 0.4
Flash	✓	✓	✓	19.6 ± 0.2	19.1 ± 0.3	16.9 ± 0.5	14.4 ± 0.5	13.0 ± 0.4
Echo	✓	✓		19.4 ± 0.3	19.2 ± 0.4	16.8 ± 0.6	14.3 ± 0.5	13.0 ± 0.4
Echo	✓	✓	✓	19.4 ± 0.3	18.6 ± 0.5	15.1 ± 0.6	13.2 ± 0.4	12.0 ± 0.3
Echo	✓	✓	✓	19.7 ± 0.2	19.5 ± 0.3	17.8 ± 0.5	15.3 ± 0.5	13.6 ± 0.5

Table 9: Unfixed delay test results (rewards) of SMAC with baseline algorithm FT-QMIX.

Delay Range				0-6	3-9	0-6	3-9	0-6	3-9
C	DR	H	KD	3s_vs_5z		5m_vs_6m		6h_vs_8z	
Oracle				21.5 ± 0.4	17.2 ± 0.8	5.5 ± 0.2	3.4 ± 0.1	11.9 ± 0.4	9.0 ± 0.2
Base				21.8 ± 0.4	21.4 ± 0.5	8.5 ± 0.2	8.3 ± 0.3	12.9 ± 0.3	12.4 ± 0.3
Base	✓			21.5 ± 0.2	21.5 ± 0.2	9.0 ± 0.3	9.0 ± 0.3	14.2 ± 0.3	13.4 ± 0.2
Base		✓		21.7 ± 0.2	22.1 ± 0.4	10.7 ± 0.9	9.1 ± 0.4	12.3 ± 0.3	11.4 ± 0.2
Base	✓	✓		21.5 ± 0.2	21.3 ± 0.4	17.9 ± 0.8	14.6 ± 0.8	18.5 ± 0.6	13.7 ± 0.5
Flash	✓	✓		21.4 ± 0.2	21.7 ± 0.2	17.8 ± 0.7	17.2 ± 0.8	18.4 ± 0.5	14.6 ± 0.6
Flash	✓	✓	✓	21.3 ± 0.1	21.6 ± 0.2	18.4 ± 0.6	17.3 ± 0.8	18.7 ± 0.4	15.3 ± 0.6
Flash	✓	✓	✓	21.1 ± 0.1	21.5 ± 0.2	18.4 ± 0.7	17.7 ± 0.7	19.1 ± 0.3	15.9 ± 0.5
Echo	✓	✓		21.2 ± 0.1	21.3 ± 0.2	18.0 ± 0.8	16.7 ± 0.9	19.0 ± 0.4	15.8 ± 0.7
Echo	✓	✓	✓	21.3 ± 0.1	21.6 ± 0.2	17.5 ± 0.7	16.0 ± 0.9	19.0 ± 0.5	14.8 ± 0.6
Echo	✓	✓	✓	21.0 ± 0.0	21.2 ± 0.1	18.5 ± 0.6	17.7 ± 0.7	19.5 ± 0.3	17.2 ± 0.6

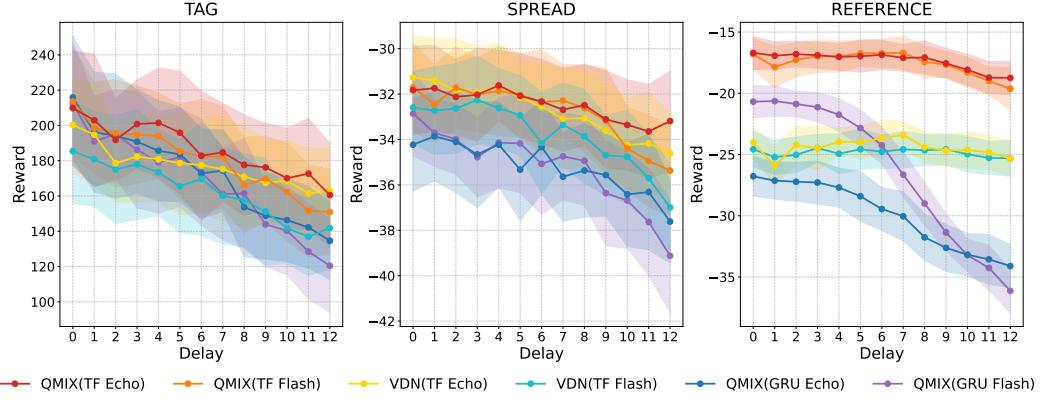


Figure 16: Performance comparison of RDC-enhanced algorithms with different baseline methods and compensator network architectures under fixed delay settings on MPE.

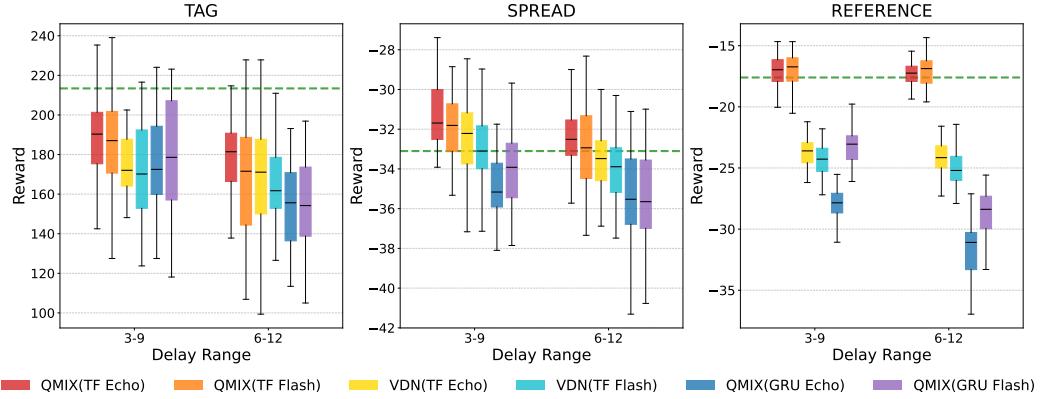


Figure 17: Performance comparison of RDC-enhanced algorithms with different baseline methods and compensator network architectures under unfixed delay settings on MPE.

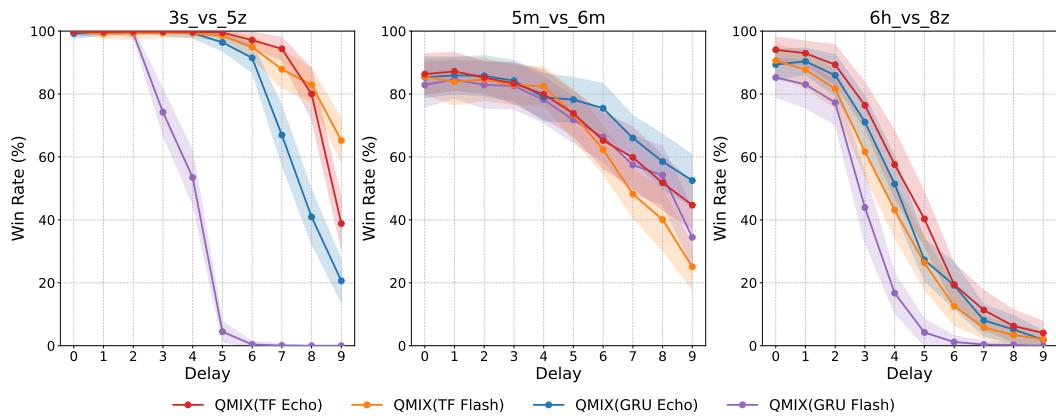


Figure 18: Performance comparison of RDC-enhanced algorithms with different compensator network architectures under fixed delay settings on SMAC.

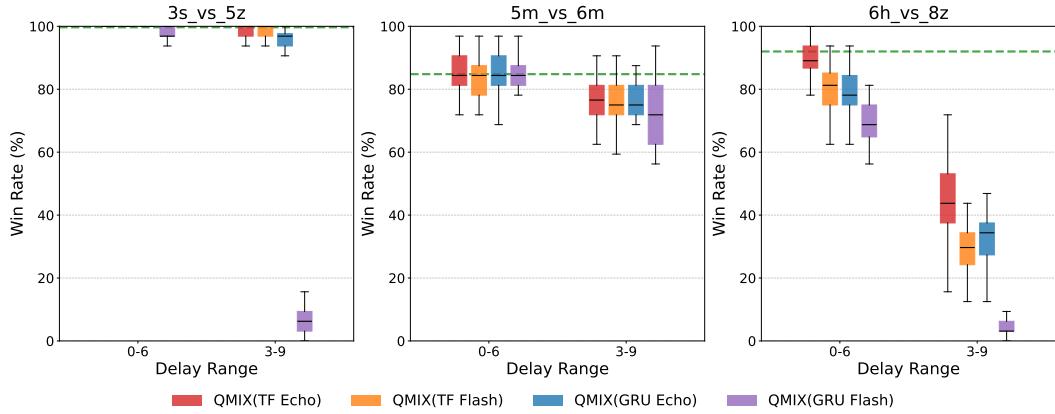


Figure 19: Performance comparison of RDC-enhanced algorithms with different compensator network architectures under unfixed delay settings on SMAC.

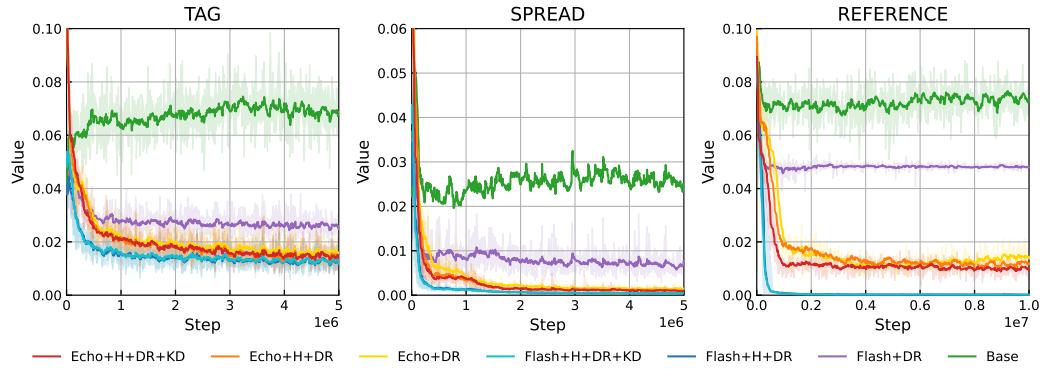


Figure 20: Observation loss curves on MPE with the baseline algorithm FT-QMIX and Transformer compensators.

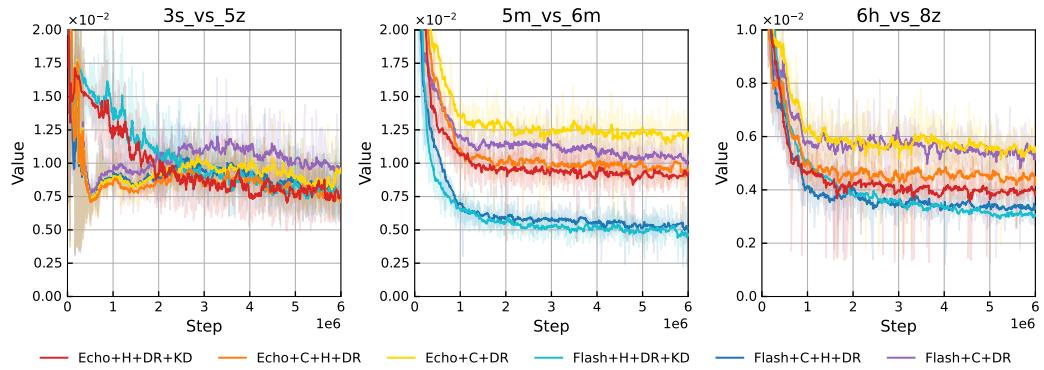


Figure 21: Observation loss curves on SMAC with the baseline algorithm FT-QMIX and Transformer compensators.

Figure 20 and Figure 21 illustrate the variation of compensator loss values with increasing training steps in partial experiments. In SMAC, the observation errors of Base consistently range between 0.1 and 0.2. To distinguish the performance of other algorithms clearly, we omitted the results of Base. The compensator provides substantial improvement in observation accuracy. *Flash* achieves significantly lower compensation errors when utilizing history inputs. On REFERENCE and 5m_vs_6m scenarios, *Echo* exhibits substantially higher compensation errors than *Flash*, a conclusion similarly reflected in non-fixed delay test results. Notably, algorithms employing knowledge distillation achieve superior performance without significant improvement in the compensator, suggesting that addressing delayed observation problems requires simultaneous consideration of both observation compensation and policy formation.

Our experiments are conducted on servers with NVIDIA A30 GPUs (approximately 24GB VRAM). The CPU model is generally unimportant as long as it supports more than eight threads - we use both Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz and Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz. For the baseline algorithm FT-QMIX with RDC enhancement implemented via Transformer compensator, *Echo* requires an average of 23.8 and 58.3 hours for training on MPE and SMAC, respectively, while *Flash* needs 10.8 and 34.5 hours correspondingly. These time measurements include the teacher model’s training duration.

E Limitations and Impacts

This paper first theoretically defines DSID-POMDP and proposes the RDC training framework based on the formation process of delayed observation within it. We then discuss the limitations of the proposed method in terms of theory, experimental results, and computational overhead.

- A crucial assumption underlying DSID-POMDP is that each entity in the system only exposes its own state to others. This means that every observation from other entities received by $agent_i$ contains independent and unique information. This assumption fails in environments where agents can relay information through hopping, because when $entity_j$ ’s information is delayed or missing, $entity_k$ might carry its information. While DSID-POMDP could be extended to accommodate such scenarios, we maintain that this would not represent the optimal approach for defining this class of problems.
- On the experimental front, both Echo and Flash demonstrated poor generalizability on SMAC. As the delay value increased, the win rate declined rapidly. We believe this does not imply that agents inherently cannot achieve victory under such delayed conditions. The current compensator only processes information from the agent’s own perspective and does not account for the influence of other agents on the environment. Better compensator designs and training techniques should effectively mitigate this issue.
- The increase in resource overhead with the growing number of agents is a common challenge faced by MARL algorithms. In our experiments, we adopt the practice of having different agents share a single neural network, a setup that is widely used under the CTDE framework. Therefore, although each agent has its own policy network and compensator in terms of structure, the network parameters of all the networks are actually the same during computation. The input to an agent is essentially the observation data, and as the number of agents and entities in the environment increases, the dimensionality of the input will inevitably increase. We believe that this linear increase in dimensionality is acceptable to some extent. When the increase in observation dimensionality significantly impacts the model’s inference speed, additional feature extractors may be needed to compress the information. In conclusion, the increase in the number of agents and entities in the environment will not result in a corresponding increase in the number of networks, but rather an increase in the dimensionality of observations.

Despite the limitations above, this paper presents a novel perspective on delayed observation in multi-agent systems and provides a MARL-based solution. Researchers can utilize the RDC training framework in conjunction with baseline algorithms to address application problems across various domains, resulting in a positive societal impact. Our work carries no negative societal implications.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: Both abstract and introduction demonstrate the contributions and scope of the paper accurately.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: In Section 3, Section 5, and Section 6, we briefly discuss the limitations of the current work and the assumptions of the proposed theory. Appendix E provides a more comprehensive explanation.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: We provide a complete proof of the correctness of the defined DSID-POMDP in Appendix A, and explicitly state the full set of assumptions following the definition.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: Our code is developed based on the widely-used community project pymarl. Section 5 and Appendix C detail all hyperparameter settings and environmental configurations that may affect the experimental results. Additionally, we provide implementation specifics of delayed observations in Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide an anonymous link to our code in the abstract and have uploaded a compressed file as supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In Section 5 and Appendix C, we provide detailed descriptions of the experimental setup and hyperparameter configurations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results in this paper include error bars or 95% confidence intervals. To improve visual clarity and conciseness, we apply smoothing to some curves in the figures without compromising the accuracy of the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: We provide information about the computational resources required for the experiments in Appendix D.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: **[Yes]**

Justification: The research conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: **[Yes]**

Justification: We discuss the societal impacts of the proposed work in the abstract, conclusion, and Appendix E.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the original papers of codes and benchmarks.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: We provide details of new assets in the appendix.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#)

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [\[NA\]](#)

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.