
Rainbow Delay Compensation: A Multi-Agent
Reinforcement Learning Framework for Mitigating

Delayed Observation

Songchen Fu1,2,∗ , Siang Chen3,∗ , Shaojing Zhao1,2, Letian Bai1,2, Hong Liang1,2,
Ta Li1,2,�, Yonghong Yan1,2

1Laboratory of Speech and Intelligent Information Processing, Institute of Acoustics, CAS
2University of Chinese Academy of Sciences

3Department of Electronic Engineering, Tsinghua University
fusongchen@hccl.ioa.ac.cn, lita@hccl.ioa.ac.cn

Abstract

In real-world multi-agent systems (MASs), observation delays are ubiquitous,
preventing agents from making decisions based on the environment’s true state.
An individual agent’s local observation typically comprises multiple components
from other agents or dynamic entities within the environment. These discrete
observation components with varying delay characteristics pose significant chal-
lenges for multi-agent reinforcement learning (MARL). In this paper, we first
formulate the decentralized stochastic individual delay partially observable Markov
decision process (DSID-POMDP) by extending the standard Dec-POMDP. We
then propose the Rainbow Delay Compensation (RDC), a MARL training frame-
work for addressing stochastic individual delays, along with recommended im-
plementations for its constituent modules. We implement the DSID-POMDP’s
observation generation pattern using standard MARL benchmarks, including
MPE and SMAC. Experiments demonstrate that baseline MARL methods suf-
fer severe performance degradation under fixed and unfixed delays. The RDC-
enhanced approach mitigates this issue, remarkably achieving ideal delay-free
performance in certain delay scenarios while maintaining generalizability. Our
work provides a novel perspective on multi-agent delayed observation problems
and offers an effective solution framework. The source code is available at
https://github.com/linkjoker1006/RDC-pymarl.

1 Introduction

Multi-Agent reinforcement learning (MARL) has been widely applied in various domains such as
multiplayer games [28, 19], robot control [13, 14], agent communication [5, 40], and quantitative
trading [37]. However, beyond inherent challenges in MARL, including non-stationarity, partial ob-
servability, credit assignment, and the curse of dimensionality [38, 12], the observation delay problem
has often been overlooked. From signal transmission in biological systems [11] to communication
in large-scale swarms [29], delay issues are ubiquitous in real-world scenarios and typically have
detrimental effects on most systems. Due to the coupled influences of the environment, allied agents,
and other agents (opponents or targets), multi-agent systems (MASs) exhibit more prevalent and
complex observation delay situations than single-agent systems.

Early studies on system delay problems were primarily rooted in control theory [1, 23], where solu-
tions relied heavily on fixed transition models—an assumption often violated in complex MASs [25].

∗These authors contributed equally to this work.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/linkjoker1006/RDC-pymarl

The introduction of augmented state spaces [2, 32] marked a pivotal shift, enabling reinforcement
learning methods to handle deterministic delays through model-based state estimation [9, 7]. While
these approaches advanced single-agent systems, their extension to multi-agent settings remained su-
perficial, typically limited to fixed delay scenarios [7, 33, 21]. Recent progress in delayed-observation
Markov decision processes (DOMDPs) [34] formalized stochastic delay modeling, yet existing work
concentrates overwhelmingly on single-agent domains. Multi-agent solutions [36, 35] established
theoretical foundations and algorithmic innovations at the levels of communication and feedback.
Yet, a critical gap remains: the fundamental challenge of stochastic partial observability in MASs
remains unresolved. This oversight is particularly significant given the inherent asynchrony and
network-induced uncertainties in real-world multi-agent applications.

In MARL, the evolving policies of other agents render the learning environment inherently non-
stationary. Stochastic observation delays exacerbate this challenge, as agents must not only cope
with non-stationarity but also account for the uncertainty introduced by varying delays. These delays
also exacerbate the credit assignment problem: misaligned observations and rewards make it more
challenging to associate actions with outcomes, thereby hindering effective policy optimization.
Fundamentally, unfixed delays violate the Markov assumption by providing agents with inaccurate
perceptions of the current state. Moreover, unfixed delays have a greater impact than fixed ones. With
fixed delays, agents can adapt and implicitly predict others’ observations over time, forming a kind of
cognitive inertia. However, under stochastic delays, such predictions become unreliable, making it
harder for actor networks to compensate. These facts all indicate that the problem of unfixed delayed
observations in MARL is in urgent need of being addressed.

Previous studies have primarily focused on delay issues in single-agent systems, whereas research
on MARL mainly consists of simple extensions of single-agent delay theories. However, delays in
multi-agent environments are not constant, and different observation components may experience
varying delays for each agent. Our work provides a deeper understanding of delayed observation
in MASs and proposes a general algorithmic framework to address the associated challenges. This
means practitioners can tailor the framework by selecting and integrating suitable algorithms for
different scenarios, achieving optimal performance. The main contributions of this paper are as
follows:

• We define the decentralized stochastic individual delay POMDP (DSID-POMDP), providing
a universal mathematical model for MASs with delayed observation.

• We propose the Rainbow Delay Compensation (RDC) training framework, which miti-
gates the impact of delayed observation by reconstructing delay-free observation, utilizing
curriculum learning, and leveraging knowledge distillation.

• Based on DSID-POMDP, we innovatively introduce two compensator operation modes
(Echo and Flash) and implement two models based on Transformer and Gated Recurrent
Unit (GRU) networks.

• We integrate two classic MARL algorithms, VDN [30] and QMIX [27], into the RDC
framework. The proposed method is tested on two common MARL benchmarks, demon-
strating significant performance improvements under fixed and unfixed delay conditions,
approaching near delay-free performance levels.

2 Related Works

Recent studies have explored Deep Reinforcement Learning (DRL) approaches to address delay
issues in single-agent systems. Walsh et al. [32] introduced the constant delay Markov decision
process (CDMDP), which extends action sequences to incorporate fixed delays in observation and
reward. However, the resulting state space expansion suffers from exponential growth, limiting the
feasibility of pure state-based solutions. To overcome this, they proposed Model-Based Simulation
(MBS) for discrete environments and Model Parameter Approximation (MPA) for continuous envi-
ronments, pioneering model-based methods for delay-free state estimation. Firoiu et al. [9] employed
environment prediction models to reduce performance degradation from fixed action delays in gaming
scenarios. Bouteiller et al. [4] developed a partial trajectory resampling method to resolve credit
assignment challenges in stochastic delay environments. Liotet et al. [20] implemented imitation
learning to align delayed agents with expert action distributions, but only for fixed delays. Wang et al.

2

[34] combined state augmentation and state prediction with delay-reconciled training for separate
actor-critic optimization, demonstrating significant improvements in stochastic delay scenarios.

Significant progress has also been made in addressing the challenges of delay in MARL. Chen et al.
[6] developed the Delay-Aware Multi-Agent Reinforcement Learning (DAMARL) framework, which
mitigates fixed observation delays through centralized training with auxiliary information. Subsequent
work by Yuan et al. [36] introduced TimeNet to dynamically optimize agents’ waiting time for delayed
communications, thereby enhancing collaborative efficiency. For reward delay scenarios, Zhang et al.
[39] proposed Delay-Adaptive Multi-Agent V-Learning (DAMAVL) with proven convergence under
finite and infinite delay conditions. Practical applications have shown promise, as demonstrated
by Liu et al. [21]’s successful implementation of DAMARL in cooperative adaptive cruise control
(CACC) systems. While Wang et al. [33] advanced the field by predicting action effects through state
prediction. Still, current approaches remain limited to fixed delay scenarios and typically overlook
the asynchronicity of delayed observations. It is worth noting that research on robust MARL [15]
also aims to address the challenges of non-ideal observations. Unlike the observation lag caused by
delays, this line of work focuses more on inaccuracies in observations resulting from system errors or
adversarial attacks.

3 Preliminaries

3.1 Decentralized Partially Observable Markov Decision Process

A decentralized partially observable Markov decision process (Dec-POMDP) is a model designed
for coordination and decision-making in MASs. In this framework, the POMDP introduces an
"observation" variable, enabling decision-makers to observe only a portion of the system state
at each time step, building upon the original MDP. Dec-POMDP extends this concept to multi-
agent scenarios by incorporating additional joint variables. It can be formally defined as a 7-tuple
(I,S,A,Z,P,R,O), where I represents a finite set of agents. S denotes the set of state systems
encompassing all possible environment states. A and Z are the action and observation spaces for each
agent, respectively, with A = Ai and Z = Zi. P , R, and O are defined as P(s′|s,a), R(r′|s,a), and
O(o|s), representing the probabilities of transitioning to state s′, receiving reward r′, and obtaining
observation o after executing the joint action a in state s. This formulation captures the decentralized
nature of decision-making in MASs, where agents must coordinate their actions based on partial
observation of the environment.

3.2 Decentralized Stochastic Individual Delay-Partially Observable Markov Decision Process

Agent2 Agent3 Agent4

Entity5 Entity6 Entity7

Agent1

other-agent-state
observations

environment-state
observations

self-state
observations D11

D12 D13 D14

D15 D16 D17
s(-T) s(-T+1) s(-1) s(0)

··
·

DSID-POMDP's state x

z(-1)11 z(-1)12 z(-1)13 z(-1)14 z(-1)15 z(-1)16 z(-1)17

z(-1)44 z(-1)41 z(-1)42 z(-1)43 z(-1)45 z(-1)46 z(-1)47

··
· ··
·

······ ···

Figure 1: A simple example of extended state and delayed
observation in DSID-POMDP. The left side describes the
components of agent1’s observation and annotates their de-
lay value distributions. The matrix in the upper right corner
shows the contents of s(−1) in the extended state.

While delayed observation MDPs rep-
resent a special case of POMDPs,
we maintain a clear distinction be-
tween delayed and partial observation
in this paper. In typical multi-agent
environments, each agent’s observa-
tion comprises three components: (1)
self-state information (typically with
minimal delays due to internal trans-
mission), (2) other agents’ states (ob-
tained through perception or com-
munication), and (3) environmental
states. Since delays in observing other
agents and environmental states fol-
low similar principles, we collectively
term these observation sources as "en-
tities" for clarity. The observation de-
lays from other entities are typically
positively correlated with their rela-
tive distances. Inspired by this phenomenon, we can model the possible delay values of different
entities in agenti’s observation as multiple user-defined probability distributions, not just those

3

related to distance. Therefore, we propose the decentralized stochastic individual delay POMDP
(DSID-POMDP).

Definition 1. A DSID-POMDP = (I,X ,A,Z,D,PD,RD,OD) augments a Dec-POMDP =
(I,S,A,Z,P,R,O), such that

1. ID = I ∪ J where J is the set of environment entities,
2. X = ST+1 where T denotes the maximum possible delay value,
3. AD = A,
4. ZD = Z ,
5. Dij = D(agenti, entityj |x), i ∈ I, j ∈ ID,
6. PD(x

′|x,a) = P(s′|s,a)
∏T

t=1 δ(s
′
(−t) − s(−t+1)), s

′
(−t) ∈ x′, s(−t+1) ∈ x,

7. RD(x,a) = R(s,a),
8. OD(z|x) =

∏
i∈I

∏
j∈ID

∑T
t=0 p(d

ij = t)δ(zij − sij(−t))O(oij = zij |s(−t)).

The DSID-POMDP is established under the condition that the information exposed by each entity in
the system only contains information from itself. The new element, individual delay distribution Dij ,
represents the distribution of delay values for entityj in the observation of agenti. A natural and
intuitive constraint is that the delay value dijt must satisfy the condition: dijt < min(dijt−1 + 1, T).
To incorporate delayed states, the state of the DSID-POMDP is extended to include the delay-free
state and the previous T states, that is, x = {s(−T), s(−T+1), ..., s(−1), s}. To maintain consistency
in notation, we also represent the delay-free state s as s(0). In the observation function, p(dij = t)

represents the probability that the delay value dij equals t, and sij(−t) represents the state information of
entityj from the perspective of agenti in state s(−t). Figure 1 provides a more intuitive explanation
of individual delay distributions and the observation function.

3.3 Classic MARL Algorithms

The operation of the RDC framework relies on baseline algorithms. The classification of MARL
algorithms follows a similar pattern to DRL, where they can be categorized into value-based and
policy-based methods according to their underlying principles. After comprehensively considering
algorithm performance and characteristics, we employ two value-based algorithms in our framework,
VDN [30] and QMIX [27], which demonstrate excellent performance in discrete action space tasks.
VDN extends DQN [24] in a straightforward manner by decomposing the team value function using
a linear factorization approach. During training, VDN samples batches from the replay buffer and
updates parameters by minimizing the TD error, with its loss function defined as:

Lrl(θ) = Êb[(r + γmax
u′

Qtotal(s
′,u′; θ−)−Qtotal(s,u; θ))2], (1)

where θ− represents the parameters of the target network. The target network periodically copies
(hard update) or gradually weights (soft update) the parameters θ of the evaluation network. Êb

denotes the expectation over a finite batch of samples.

Building upon VDN, QMIX uses a mixing network to aggregate the local Q-values of individual
agents into a centralized global Q-value, while satisfying the monotonicity constraint: ∂Qtotal

∂Qi
≥ 0,∀i.

This ensures consistency between the global and local Q-values. This modification endows QMIX
with a parameterized critic, whereas VDN relies solely on a simple summation operation. This
distinction serves to validate RDC’s adaptability to different RL algorithm frameworks.

4 Methods

In this section, we present the architectural details of RDC. As illustrated in Figure 2, the framework
extends conventional MARL algorithms by incorporating four key components: 1) a compensator
module, 2) a delay-reconciled critic, 3) the curriculum learning for actors, and 4) the policy knowledge
distillation. The arrows in different colors and styles represent the data flows in various stages. Blue
arrows belong to the teacher model, and red arrows belong to the student model. Solid arrows denote
the training phase, while dashed arrows represent the inference phase. The data flows involved
in the inference phase can be used during the training phase. While we describe several viable

4

Environment

Delay Filter

Compensator

Critic

Actor

Student Agent

delayed
obs

delay-free state

Compensator

Critic

Actor

delayed
obs

compensated obs

delay-free state

Teacher Agent action distribution and value evaluation

Memory Memory

compensated obs

 train
 eval teacher

 student

Figure 2: The internal structure of the DA-MARL framework.

implementations and corresponding algorithms, these do not represent an exhaustive enumeration of
possibilities within this framework. The framework maintains broad compatibility - most mainstream
actor-critic algorithms can seamlessly adapt to RDC. At the same time, other MARL approaches
can typically be accommodated by selectively removing specific framework components. The
compensator may employ any sequence prediction-capable architecture, and both the curriculum
learning and knowledge distillation mechanisms can be customized by researchers based on particular
policy networks and task requirements.

4.1 Observation Delay Occurrence and Compensation Process in Multi-agent System

0 0 0 0 0 0 0

1 1 0 0 0 1 1

2 1 0 1 0 1 2

3 2 0 1 1 2 3

3 3 3 3 3 3 3

3 2 0 1 1 2 3

3 3 1 2 2 3 3

3 3 2 3 3 3 3

env step 0

Delay Occurrence Delay Compensation

env step 1

env step 2

env step 3

cmp step 3

cmp step 2

cmp step 1

cmp step 0

3-step delay corresponds to 3-step compensation

Figure 3: A simplified example illustrating MASs’ delay
occurrence and compensation process.

Due to the mutually independent ac-
tion delays among agents in MASs,
and each agent’s actions can influence
the global state, the delay equivalence
theorem [34] cannot hold. This paper
focuses exclusively on delayed obser-
vation and assumes that agents only
transmit their own information exter-
nally—an assumption consistent with
most multi-agent environment config-
urations in the research community.
Therefore, from the viewpoint of a sin-
gle agent, information updates from
different entities are relatively inde-
pendent of each other. This principle
leads to the phenomenon where other
parts of the observation do not belong to the same time step. Figure 3 illustrates a simple example
of delayed observation. The numbers indicate the time step from which each part of the agent’s
current observation originates — smaller numbers correspond to older information. The left side
demonstrates the information updates in the observations of agenti over system clock steps 0 to 3. In
contrast, the right side shows the corresponding compensation process of observations without delay.
The observation from the second agent at step 3 still contains information from step 0, requiring the
most compensation steps for this portion.

4.2 Delay Compensator

Based on the occurrence process of observation delay, we intuitively design two modes of the delay
compensator—Flash and Echo—to reconstruct delay-free observation. Flash performs a simple
compensation using available information and directly outputs the reconstructed result. It implicitly
accounts for the issue of varying delays within observation through its internal model design. Echo,
an autoregressive model, incrementally outputs the next-step information based on known data at
each compensation step. Under the masking layer’s control, the T -th output of Echo yields the final
reconstructed observation. Figure 5 illustrates the workflows of the two compensators in parallel.
Theoretically speaking, Flash offers faster reconstruction with lower resource consumption, making
it suitable for scenarios with slight delay variations and high requirements for decision-making
speed. Echo’s operation mode fully complies with the ideal delay compensation process shown in
Figure 3, and can adapt to variable delay values and unknown delay patterns. We believe that as

5

agent policies iterate and update, the data distribution will change, potentially causing significant
performance fluctuations in the compensators. Thus, both compensators are trained synchronously
with reinforcement learning, meaning the RDC framework maintains a complete online training
process.

...
Zt-T At-T-1 Dt-T

Zt-1 At-2 Dt-1

GRU

Zt At-1 Dt

Zt-T At-T-1 Dt-T
Zt-1 At-2 Dt-1... Zt At-1 Dt

Zt
1 At-1 Dt

1

Zt
T-1 At-1 Dt

T-1 Zt
1 At-1 Dt

1

Zt
T-1 At-1 Dt

T-1

...

sequential inputs
...

fixed inputs
sequential inputs

Transformer

History inputs

Echo's outputs

Figure 4: Inputs of compensators with different
modes and networks. The figure only illustrates
the input formation of a single agenti at timestep
t, and for clarity, we omit the subscript i. The
subscript denotes the timestep in the environment
iteration, while the superscript indicates both the k-
th output of Echo and the (k+1)-th input. Inputs of
Flash exclude the yellow-highlighted components.

Sufficient and effective input data enables the
compensator to achieve better performance.
Based on the definition of DSID-POMDP, we
naturally extend the current observation into an
observation sequence that includes history ob-
servations. Furthermore, drawing on existing
augmentation methods [6, 7, 34, 33], we empiri-
cally incorporate action sequences from the past
T timesteps. Unlike previous approaches, the
delay steps in this paper are represented as a
vector whose length corresponds to the number
of other entities included in the observation. We
implement the two types of compensators using
GRU [8] and Transformer [31] networks, which
excel at processing sequential data. Figure 4
illustrates the extended observation input forms
when different model structures are employed.
Fixed inputs refer to the pre-concatenated se-
quence data fed into the model during the first
input step. In contrast, sequential inputs repre-
sent the incrementally augmented input informa-
tion during the model’s autoregressive process.
For Echo, we convert the delay value vector into
a binary (0 or 1) vector to enhance consistency between history and autoregressive inputs.

Additionally, we design a dual-head residual compensator to handle different data types in observa-
tions. We employ the cross-entropy loss function for the classification task, while utilizing the mean
squared error for the regression task. The residual output can further improve the reconstruction
accuracy of the compensator. The loss functions for the two compensators are as follows:

Lflash(ϕ) = LCE(I
T , I(ZT _GT − Z)) + LMSE(F

T ,F(ZT _GT − Z)), (2)

Lecho(ϕ) =
1

T

T∑
k=1

[
LCE(I

k, I(Zk_GT − Zk−1)) + LMSE(F
k,F(Zk_GT − Zk−1))

]
, (3)

where Ik = I(Zk − Zk−1),Fk = F(Zk − Zk−1) with I(·) and F(·) representing the extraction of
integer-type and float-type contents from the target, respectively. Z denotes the observation obtained
by agenti at time t (omitted in the formula). Zk_GT denotes the ground truth after k compensation
steps of the delayed observation. ϕ denotes the model parameters of the compensator.

4.3 Delay-reconciled Critic and Curriculum Learning Actor

Wang et al. [34] first introduced the delay-reconciled concept to address single-agent delayed obser-
vation problems. Their key insight was that feeding the critic with delay-free global states during
centralized training could mitigate the impact of delays. Since the critic’s involvement is unnecessary
during model inference, the delay-reconciled critic can seamlessly integrate with the centralized
training with decentralized execution (CTDE) paradigm.

In addition to receiving compensated observation, the actor may exhibit poor convergence when
facing complex scenarios. This occurs because the online training of the compensator also requires
time, and the compensator’s outputs during the early training stages may significantly deviate from
those observed under delay-free conditions. Empirically, the exploration phase in early reinforcement
learning training typically plays a crucial role, even though the reward values may not show noticeable
improvement during this period. However, unlike the critic, which only operates during training, the
final model must ultimately rely on realistically available observation as input. Curriculum learning
[3] provides a solution to this challenge. During the initial training phase, we provide the actor with

6

delay-free observation (i.e., the compensator’s ground truth) and gradually reduce the probability of
using delay-free observation as training progresses, until the actor relies entirely on compensated
observation. A linear annealing strategy is used in our experiments, though more sophisticated
or adaptive annealing approaches are also permissible. For less complex tasks (e.g., MPE), actor
curriculum learning is not strictly necessary.

4.4 Knowledge Distillation

Flash

Echo mask layer

Compensator

T steps

compensated
obs

de
la
ye
d

ob
s

Figure 5: Workflow of Flash and Echo.

Despite all design and optimization efforts, a discrepancy
between compensated observation and delay-free ground
truth inevitably persists. However, agents’ policies in
identical scenarios can be objectively evaluated through
quantitative metrics. When training with delayed obser-
vation, guidance from a high-performance policy model
can steer the model toward more accurate policy optimiza-
tion or value estimation, thereby accelerating convergence.
Motivated by this insight, we incorporate knowledge dis-
tillation [16] into the RDC framework. While numerous
distillation approaches exist, we experimentally identify
an effective methodology. Before training the target model
in high-delay environments, we first train a teacher model
under low-delay conditions. As anticipated, the teacher
model achieves performance closer to ideal delay-free
training than independently trained student models in high-delay scenarios. During student model
training, we feed the teacher model with compensated observation and employ it to guide both the
hidden representations and output decisions of the student actor and critic. The corresponding loss
function is formulated as:

Lkd(θs) = LCE(actiont, actions) + β1 · LMSE(Qt, Qs) + β2LMSE(θ
c
t , θ

c
s), (4)

Lrdc_rl(θs) = αLrl(θs) + (1− α)Lkd(θs), (5)

where β1 and β2 denote the weighting factors within the knowledge distillation loss function, and
α determines the relative weighting between the knowledge distillation loss and the reinforcement
learning loss.

We do not apply knowledge distillation to the compensator or load the teacher’s compensator during
student training. This design choice stems from two key considerations: First, in online learning
scenarios, the compensator’s performance should evolve alongside policy improvements, and directly
transferring the teacher’s compensator knowledge through distillation may not necessarily benefit
student policy training. Second, this approach allows for a more explicit demonstration of the effects
of pure policy guidance, which we elaborate on in the experimental section. Following a similar
principle to curriculum learning, we implement an identical annealing strategy for the knowledge
distillation process.

5 Experiments

0 1 2 3 4 5
Step 1e6

0

50

100

150

200

Re
wa

rd

TAG

0 1 2 3 4 5
Step 1e6

70

65

60

55

50

45

40

35

30

Re
wa

rd

SPREAD

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e7

50

45

40

35

30

25

20

15

10

Re
wa

rd

REFERENCE

Ours(Echo) Ours(Flash) Base Base+DR Oracle

Figure 6: Training performance on MPE.

Scenario Selection: We select two
of the most popular multi-agent re-
inforcement learning environments
for our experiments—MPE[22] and
SMAC [28]. Overall, SMAC tasks
present greater challenges than MPE
tasks due to their more complex state
and action spaces. We chose simple-
tag (TAG), simple-spread (SPREAD),
and simple-reference (REFERENCE)
in MPE and three progressively
harder scenarios on SMAC: 3s_vs_5z,
5m_vs_6m, and 6h_vs_8z. Both benchmarks are discrete environments, so we incorporated value
function factorization algorithms into the RDC framework. The reward value obtained per task in

7

MPE is the sole evaluation metric. While SMAC also provides specific reward values, the win rate is
a more critical metric since the objective is to achieve victory.

0 1 2 3 4 5 6
Step 1e6

0

20

40

60

80

100

W
in

 R
at

e
(%

)

3s_vs_5z

0 1 2 3 4 5 6
Step 1e6

0

20

40

60

80

100

W
in

 R
at

e
(%

)

5m_vs_6m

0 1 2 3 4 5 6
Step 1e6

0

20

40

60

80

100

W
in

 R
at

e
(%

)

6h_vs_8z

Ours(Echo) Ours(Flash) Base Base+C Base+DR Base+C+DR Oracle

Figure 7: Training performance on SMAC.

Experimental Scheme: We reformu-
late the delayed observation problem
in MASs using DSID-POMDP and ex-
tend it to commonly used benchmarks.
Consequently, we implement previ-
ous solutions within the RDC frame-
work, such as the delay-reconciled
critic and augmented observation in-
put, to enable more equitable compar-
isons. For baseline RL algorithms, we
select code-level optimized FT-QMIX
and FT-VDN [17] that demonstrate
significant improvements over vanilla QMIX and VDN, whose performance on discrete tasks has
been repeatedly validated [18, 10]. To simplify the presentation, the following abbreviations will be
used in the experimental results section: Oracle, Base, Echo, Flash, DR (delay-reconciled critic), H
(history input), C (curriculum learning actor), and KD (knowledge distillation). Only the Oracle is
trained using the baseline algorithm in a delay-free environment, obtaining the ideal performance
that represents the algorithm’s capability, unaffected by delays. In the main text, all presented results
are based on using FT-QMIX as the baseline algorithm and implementing the compensator with
Transformer networks.

Test Setting: For every 10,000 training steps, we conduct a test with either 64 or 32 episodes and
record model performance. After model training, we perform extensive testing under fixed and
unfixed delay conditions, running 1,280 episodes for each setting.

5.1 Training

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

50

75

100

125

150

175

200

225

250

Re
wa

rd

TAG

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

70

65

60

55

50

45

40

35

30

Re
wa

rd

SPREAD

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

45

40

35

30

25

20

15
Re

wa
rd

REFERENCE

Ours(Echo) Ours(Flash) Base Base+DR Oracle

Figure 8: Performance under fixed delay on MPE.

The training performances of FT-
QMIX under delayed observation
(Base) in Figure 6 and Figure 7 re-
veal severe performance degradation
across all six scenarios, particularly
in the 5m_vs_6m and 6h_vs_8z tasks,
where win rates approach zero. Our
ablation studies employing curricu-
lum learning (Base+C) and delay-
reconciled training (Base+DR) with-
out compensation mechanisms show
that in complex scenarios, neither cur-
riculum learning alone nor simply pro-
viding delay-free states to the critic can satisfactorily counteract the detrimental effects of delayed
observation on the learning process. These findings suggest that delayed observation has a fundamen-
tal impact on both initial convergence and overall policy optimization.

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

3s_vs_5z

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

5m_vs_6m

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

6h_vs_8z

Ours(Echo) Ours(Flash) Base Base+C Base+DR Base+DR+C Oracle

Figure 9: Performance under fixed delay on SMAC.

The RDC-enhanced models exhibit
significantly faster convergence in
most scenarios, demonstrating that
while the knowledge distillation pro-
cess requires sequential training of
teacher and student models, it incurs
minimal additional training overhead.
This efficiency advantage arises from
accelerated training in low-delay con-
ditions, where the student model re-
quires fewer than one-third of the
original training iterations. Notably,
the enhanced models achieve perfor-

8

mance that matches or slightly exceeds that of the delay-free Oracle. The marginal improvement is
attributable to additional training steps, as evidenced by Oracle’s ongoing performance gains at the
end of training in both SPREAD and REFERENCE scenarios.

5.2 Performances on different delay settings

Fixed delay testing enables more precise observation of progressive performance degradation and a
more accurate assessment of model generalization. As shown in Figure 8 and Figure 9, the Oracle
method exhibits substantial performance deterioration as delays increase. The performance drop in
the Base and Base+DR methods at delays of 0-2 reveals their inability to generalize to unseen delay
conditions during testing, despite successful convergence during training. In contrast, RDC-enhanced
models maintain superior performance across all scenarios, demonstrating particularly robust delay
adaptation in SPREAD and REFERENCE tasks where reward stability persists despite increasing
delays. The model’s generalizability on SMAC is significantly lower than on MPE, which indicates
that the impact of delay is more pronounced in complex scenarios.

3-9 6-12
Delay Range

50

75

100

125

150

175

200

225

250
Re

wa
rd

TAG

3-9 6-12
Delay Range

60

55

50

45

40

35

30

Re
wa

rd

SPREAD

3-9 6-12
Delay Range

40

35

30

25

20

15

Re
wa

rd

REFERENCE

Echo+H+DR+KD Echo+H+DR Echo+DR Flash+H+DR+KD Flash+H+DR Flash+DR Oracle

Figure 10: Performance under unfixed delay on MPE.

We evaluate model performance un-
der two unfixed delay conditions:
in-distribution (within trained delay
ranges) and half-out-of-distribution
(novel delay ranges). Unless other-
wise specified, the random delays in
this paper follow a uniform distribu-
tion within a given range. The per-
formance under different delay distri-
butions will be discussed later. As
shown in Figure 10, RDC-enhanced
models with Transformer-based com-
pensators demonstrate only marginal
performance degradation in out-of-distribution tests while maintaining near-Oracle performance
(green dashed line). Ablation studies reveal the contribution of each module: Flash+DR underper-
forms due to the limited input information, while Flash+H+DR shows significant improvement by
incorporating history observations. Echo’s autoregressive design provides richer input information,
resulting in smaller gains from historical data. Knowledge distillation using a low-delay teacher
model proves effective, though we excluded Flash+DR from this approach due to its poor baseline
performance.

3-9 6-12
Delay Range

100

125

150

175

200

225

250

275

Re
wa

rd

TAG

3-9 6-12
Delay Range

36

34

32

30

28

Re
wa

rd

SPREAD

3-9 6-12
Delay Range

20

19

18

17

16

15

14

Re
wa

rd

REFERENCE

Uniform Binomial Gaussian Poisson

Figure 11: Performance under different delay distributions.

To demonstrate that the RDC frame-
work can adapt to different delay
distributions, we evaluate the perfor-
mance of models trained under a uni-
form delay distribution when tested
on other distributions. As shown in
Figure 11, we select the binomial dis-
tribution, the normal distribution, and
the Poisson distribution as additional
evaluation options. In these tests, the
delay values are constrained to either
the range of 3–9 or 6–12. The bino-
mial distribution, which characterizes
the number of successes in n independent trials, naturally fits our delay settings after a simple shift.
Although the values generated by the Poisson distribution are also discrete, they require truncation
due to the distribution’s unbounded support. For the normal distribution, truncation is typically fol-
lowed by rounding due to its continuous nature. Considering the properties of different distributions,
we adopt the following parameter settings in our experiments: Binomial(6, 0.5) and Binomial(9,
0.5); Poisson(6) and Poisson(9); Normal(6, 2) and Normal(9, 2). The results demonstrate that the
model generalizes effectively across various delay distributions. This result is consistent with our
expectation, as the compensation process for delayed observations in the RDC framework does not
rely on any prior knowledge of the delay distribution. Since different distributions entail different
frequencies of high and low delay values, minor performance fluctuations are understandable.

9

5.3 Additional results and analysis

1 2 3 4 5 6 7 8 9 10 11 12
History Length

25

50

75

100

125

150

175

200

225

Re
wa

rd

TAG

1 2 3 4 5 6 7 8 9 10 11 12
History Length

55

50

45

40

35

30

Re
wa

rd

SPREAD

1 2 3 4 5 6 7 8 9 10 11 12
History Length

50

45

40

35

30

25

20

15

Re
wa

rd

REFERENCE

Echo(fixed delay 6) Flash(fixed delay 6) Echo(fixed delay 12) Flash(fixed delay 12)

Figure 12: Performance under different history lengths.

How does the performance of Flash
compare with that of Echo? The re-
sults show that as the delay magni-
tude increases, Flash typically demon-
strates more pronounced performance
degradation than Echo, particularly
when handling out-of-distribution de-
lays. As illustrated in Figure 12,
maintaining identical input history se-
quence lengths and training configu-
rations is essential for achieving opti-
mal performance with the Flash com-
pensator. This suggests an overfitting
compensation pattern, confirming our earlier concern about Flash. Although this limitation in gen-
eralizability and flexibility is undesirable, we must emphasize its significant advantages in training
efficiency and inference speed, which can be decisive factors in specific scenarios. In TAG scenario
with a fixed delay of 6, the compensator inference times for Echo and Flash are approximately 0.02
seconds and 0.004 seconds, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

50

75

100

125

150

175

200

225

250

Re
wa

rd

TAG

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

70

60

50

40

30

Re
wa

rd

SPREAD

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

45

40

35

30

25

20

15

Re
wa

rd

REFERENCE

Ours(Echo) Ours(Flash) Base Base+DR Oracle

Figure 13: Performance under longer training steps.

Why does our method outperform the
delay-free Oracle baseline across mul-
tiple tests? We align the number of en-
vironment steps required for training
across all algorithms. As a result, the
RDC-enhanced method, which lever-
ages knowledge distillation, obtains
additional guidance from the teacher
model within the same training hori-
zon. To validate this explanation, we
conduct an experiment on MPE where
the RDC-enhanced models remained
unchanged, while Oracle, Base, and
Base-DR are trained for an additional 10 million steps, which is the same number of steps used
to pretrain the low-delay teacher model. The results in Figure 13 confirm our hypothesis: in the
zero-delay setting, the Oracle performance surpasses that of the RDC-enhanced method, consistent
with its role as the ideal upper bound. In delayed settings, however, the non-RDC-enhanced methods
still suffer from significant performance degradation.

All experimental results are provided in Appendix D, including comprehensive ablation studies
and evaluations of different baseline algorithms and compensator network architectures. These
experimental results not only validate the compatibility of the RDC framework with algorithms beyond
the actor–critic paradigm but also highlight that the choice of baseline algorithm and compensator
architecture plays a crucial role in achieving superior performance.

6 Conclusion

In this paper, we propose the RDC framework and demonstrate the effectiveness of its constituent
modules in addressing delayed observation in MASs. The compensator, as the core component of the
framework, directly attempts to reconstruct delay-free observation. The curriculum learning actor
and delay-aware critic provide higher-quality data, while knowledge distillation from a low-delay
teacher offers policy guidance during model training. The integrated algorithm, which incorporates
these modules, achieves outstanding performance with fixed and unfixed delays comparable to those
in delay-free environments. Our future research will focus on designing more effective compensator
architectures and knowledge distillation techniques to enhance the model’s generalizability under
varying delays in complex scenarios, as well as developing theoretical frameworks with weaker
assumptions. Overall, our research not only presents a multi-agent reinforcement learning algo-
rithm capable of combating delayed observation but also provides a practical training framework,
establishing a solid foundation for future studies.

10

Acknowledgements

This research is supported by the Oriented Project Independently Deployed by the Institute of
Acoustics, Chinese Academy of Sciences (MBDX202402).

References
[1] Zvi Artstein. Linear systems with delayed controls: A reduction. IEEE Transactions on

Automatic control, 27(4):869–879, 1982.

[2] James L Bander and Chelsea C White III. Markov decision processes with noise-corrupted and
delayed state observations. Journal of the Operational Research Society, 50(6):660–668, 1999.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[4] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas.
Reinforcement learning with random delays. In International conference on learning represen-
tations, 2020.

[5] Marwa Chafii, Salmane Naoumi, Reda Alami, Ebtesam Almazrouei, Mehdi Bennis, and
Merouane Debbah. Emergent communication in multi-agent reinforcement learning for future
wireless networks. IEEE Internet of Things Magazine, 6(4):18–24, 2023.

[6] Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-
agent reinforcement learning for cooperative and competitive environments. arXiv preprint
arXiv:2005.05441, 2020.

[7] Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. Neurocomputing, 450:119–128, 2021.

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[9] Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforcement learning with
action delay. arXiv preprint arXiv:1810.07286, 2018.

[10] Songchen Fu, Shaojing Zhao, Ta Li, and Yonghong Yan. Qtypemix: Enhancing multi-agent
cooperative strategies through heterogeneous and homogeneous value decomposition. Neural
Networks, 184:107093, 2025.

[11] Marcus Gerwig, Karim Hajjar, Albena Dimitrova, Matthias Maschke, Florian P Kolb, Markus
Frings, Alfred F Thilmann, Michael Forsting, Hans Christoph Diener, and Dagmar Timmann.
Timing of conditioned eyeblink responses is impaired in cerebellar patients. Journal of Neuro-
science, 25(15):3919–3931, 2005.

[12] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial
Intelligence Review, 55(2):895–943, 2022.

[13] Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial
Intelligence, 319:103905, 2023.

[14] Shangding Gu, Dianye Huang, Muning Wen, Guang Chen, and Alois Knoll. Safe multiagent
learning with soft constrained policy optimization in real robot control. IEEE Transactions on
Industrial Informatics, 2024.

[15] Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust
multi-agent reinforcement learning with state uncertainty. arXiv preprint arXiv:2307.16212,
2023.

11

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[17] Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the
implementation tricks and monotonicity constraint in cooperative multi-agent reinforcement
learning. arXiv preprint arXiv:2102.03479, 2021.

[18] HAO Jianye, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng,
and Zhen Wang. Boosting multiagent reinforcement learning via permutation invariant and
permutation equivariant networks. In The Eleventh International Conference on Learning
Representations, 2022.

[19] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI conference
on artificial intelligence, volume 34(04), pages 4501–4510, 2020.

[20] Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement
learning by imitation. In International conference on machine learning, pages 13528–13556.
PMLR, 2022.

[21] Jiaqi Liu, Ziran Wang, Peng Hang, and Jian Sun. Delay-aware multi-agent reinforcement
learning for cooperative adaptive cruise control with model-based stability enhancement. arXiv
preprint arXiv:2404.15696, 2024.

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Neural Information Processing
Systems (NIPS), 2017.

[23] Miroslav R Matausek and AD Micic. On the modified smith predictor for controlling a process
with an integrator and long dead-time. IEEE Transactions on Automatic Control, 44(8):1603–
1606, 1999.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[25] Silviu-Iulian Niculescu. Delay effects on stability: a robust control approach, volume 269.
Springer, 2003.

[26] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

[27] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

[28] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[29] Andrew C Singer, Jill K Nelson, and Suleyman S Kozat. Signal processing for underwater
acoustic communications. IEEE Communications Magazine, 47(1):90–96, 2009.

[30] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

12

[32] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in
environments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83–105,
2009.

[33] Fanshuo Wang, Hui Zhang, and Ya Zhang. Resolving action delay: Multi-agent reinforcement
learning based on state prediction. In Chinese Intelligent Systems Conference, pages 552–563.
Springer, 2024.

[34] Wei Wang, Dongqi Han, Xufang Luo, and Dongsheng Li. Addressing signal delay in deep
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2023.

[35] Yunchang Yang, Han Zhong, Tianhao Wu, Bin Liu, Liwei Wang, and Simon S Du. A reduction-
based framework for sequential decision making with delayed feedback. Advances in Neural
Information Processing Systems, 36:46362–46389, 2023.

[36] Tingting Yuan, Hwei-Ming Chung, Jie Yuan, and Xiaoming Fu. Dacom: Learning delay-aware
communication for multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37(10), pages 11763–11771, 2023.

[37] Hengxi Zhang, Zhendong Shi, Yuanquan Hu, Wenbo Ding, Ercan E Kuruoğlu, and Xiao-Ping
Zhang. Optimizing trading strategies in quantitative markets using multi-agent reinforcement
learning. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 136–140. IEEE, 2024.

[38] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of reinforcement learning and control,
pages 321–384, 2021.

[39] Yuyang Zhang, Runyu Zhang, Yuantao Gu, and Na Li. Multi-agent reinforcement learning with
reward delays. In Learning for Dynamics and Control Conference, pages 692–704. PMLR,
2023.

[40] Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement
learning with communication. Autonomous Agents and Multi-Agent Systems, 38(1):4, 2024.

13

Technical Appendices and Supplementary Material

A Proofs

Here we prove the correctness of the state transition function and observation function expressions
defined in DSID-POMDP. First, the state x contains T history states:

x = {s, s(−1), ..., s(−T)}.

Expand the expression of the new state transition function:

PD (x′|x,a) = PD
(
s′, s′(−1), ..., s

′
(−T)|s, s(−1), ..., s(−T),a

)
.

Observing these two sequences reveals the transition process of history states s′(−t) = s(−t+1),
which can consequently be decomposed into current state transitions and history state transitions.
Due to the Markov property, the oldest state in the original state can be directly discarded.

PD (x′|x,a) = PD
(
s′, s′(−1), ..., s

′
(−T)|s, s(−1), ..., s(−T),a

)
= P(s′|s,a)

T∏
t=1

δ
(
s′(−t) − s(−t+1)

)
In other words, when the transition of the historical sequence is determined, the state transition
function of DSID-POMDP becomes identical to that of POMDP. A fundamental assumption for
the validity of the observation function is that observations from different entities are mutually
independent. While this assumption holds in most scenarios, it may not be satisfied in specific
cases, such as in single-channel communication systems where signals from different entities can
interfere. For agenti, if the observation delay value corresponding to entityj is t, it can be expressed
as zij = sij(−t). Therefore, the probability of this agent obtaining observation zij from entity entityj
is:

OD
(
zij |x

)
=

T∑
t=0

p
(
dij = t

)
δ
(
zij − sij(−t)

)
O
(
oij = zij |s(−t)

)
,

where O
(
oij = zij |s(−t)

)
denotes the probability of obtaining observation zij given state s(−t) in

the original POMDP. Due to the independence assumption, this definition can be extended to joint
observation through factorization:

OD (z|x) =
∏
i∈I

∏
j∈ID

T∑
t=0

p
(
dij = t

)
δ
(
zij − sij(−t)

)
O
(
oij = zij |s(−t)

)
.

B Scenario Introduction

simple-tag: This is a competitive predator-prey simulation where good agents must evade slower
but aggressive adversaries. The good agents are faster but incur a penalty for each collision with an
adversary, while adversaries are rewarded for successfully hitting them. The terrain includes static
obstacles that block movement. To prevent good agents from escaping indefinitely, they are penalized
for exiting the designated area based on a predefined boundary function. By default, the scenario
starts with one good agent, three adversaries, and two obstacles, creating a dynamic balance of pursuit
and evasion. In our experiments, the policy of good agents is fixed as a pre-trained model with
MADDPG [22], consistent with Papoudakis et al. [26]. The algorithm only controls the adversaries,
transforming the adversarial environment into a cooperative one.

simple-spread: In this cooperative multi-agent scenario, N agents (default: 3) must learn to cover
N landmarks efficiently while avoiding collisions. The agents are collectively rewarded based on
how well they cover all landmarks, measured by the sum of the minimum distances between each
landmark and its closest agent. Agents must minimize this global distance metric to maximize their
shared reward. To prevent reckless behavior, each agent is individually penalized for colliding with
other agents. The trade-off between global coverage and collision avoidance is adjustable via the
local_ratio parameter, enabling fine-tuned control over agent coordination strategies.

14

Table 1: Mean Environment parameters.

MPE SMAC

Parameter Value Parameter Value

time_limit 25 difficulty 7
obs_agent_id True obs_agent_id True
obs_last_action False obs_last_action True

state_last_action True
state_timestep_number False
conic_fov False

simple-reference: This scenario involves two cooperative agents navigating toward three uniquely
colored landmarks, each with a hidden target assignment. Crucially, an agent’s target landmark is
only known by the other agent, requiring real-time communication to resolve uncertainty. Both agents
act as speakers and listeners, exchanging information to infer each other’s goals while navigating.

SMAC: Unlike MPE, the objective in all SMAC scenarios is to achieve victory, with the sole approach
being the complete elimination of enemy forces. The scenario names explicitly indicate the force
compositions of both allied and enemy units—for example, 6h_vs_8z denotes six Hydralisks battling
eight Zealots. This environment emphasizes short-term coordination among agents and the effective
utilization of unit-specific advantages.

C Implementation Details

C.1 Delayed Observation Implementation

(a) (b)

Figure 14: Applications of DSID-POMDP on SMAC’s 6h_vs_8z and MPE’s simple-tag.

We develop delay filters for SMAC and MPE to simulate realistic perception and communication
delays, implementing four distinct modes: no delay (none), fixed delay (f), partially fixed delay
(pf), and unfixed delay (uf). The fixed delay mode sets a fixed delay value and applies it to all
observations. The partially unfixed delay mode uses fixed delay values but does not necessarily delay
all observation contents. The unfixed delay mode introduces randomness in both delay values and
which contents get delayed. While delay filters support different distributions or distance-based delay
calculations between entities and agents, our experiments use uniform distributions for all random
variables, without loss of generality. The delay implementation mechanism primarily maintains
history observation records for each agent and retrieves information from past observations at the
current timestep according to specific delay policies.

We classify agent observation into four categories based on their delay characteristics: movement
features (real-time updated information), enemy features (environmental entity data excluding allies),
ally features (information from allied agents), and self features (agent’s state). In practice, naming
these features is not crucial—our primary distinction lies in their delay characteristics. For example,
in SMAC’s 6h_vs_8z scenario, observations include movement capabilities (4 dimensions), 8 enemy
states (each with 6 dimensions), 5 ally statuses (each with 5 dimensions), and self-attributes (1
dimension). Our implementation delays only enemy and ally features, while maintaining real-time

15

updates for movement and self features. This reflects real-world conditions, where agents have
immediate access to their own states but experience delayed environmental perception.

The system initializes the observation history at the start of each episode and continuously records
delay-free observations. It retrieves historical data based on configured delay parameters when
generating delayed observations. For example, in MPE’s simple-tag scenario, predators may track
evaders using positions delayed by 2 timesteps, impairing pursuit efficiency. Similarly, in SMAC,
troops exhibit response lags to enemy movements. The system maintains temporal consistency
by ensuring delayed observations are always drawn from valid history states while preserving the
original environment dynamics. This implementation enables systematic investigation of various
delay patterns (fixed, unfixed, or distance-dependent) while maintaining the integrity of the underlying
multi-agent decision-making process. The modular design allows for the flexible configuration of
delay parameters without modifying the core environment logic.

Additionally, the delay filter enforces temporal consistency constraints, ensuring that information
observed at step t cannot be older than that at step t − 1. When the delay-reconciled critic is not
employed, the global state is formed by concatenating observations from all agents. By implementing
delay filters in existing simulation environments, we establish a reliable and flexible experimental
platform for investigating the impact of delayed observation on the performance of MASs.

C.2 Compensator Implementation

Z0 Ainit 0 0 0 0 0 0 0

Z2 A1 2 1 0 1 0 1 2

Z3 A2 3 2 0 1 1 2 3

Z3
1 A2 3 3 1 2 2 3 3

Z3
2 A2 3 3 2 3 3 3 3

Z1 A0 1 1 0 0 0 1 1

Z3
3

3 3 3 3 3 3 3

Z0 Ainit 0 0 0 0 0 0 0

Z2 A1 2 1 0 1 0 1 2

Z3 A2 3 2 0 1 1 2 3

Z1 A0 1 1 0 0 0 1 1

Z3
3

3 3 3 3 3 3 3

Z3 A2 3 2 0 1 1 2 3

Z3
3

3 3 3 3 3 3 3

Z3 A2 3 2 0 1 1 2 3

Z3
1 A2 3 3 1 2 2 3 3

Z3
2 A2 3 3 2 3 3 3 3

Z3
3

3 3 3 3 3 3 3

(a) (b)

(c) (d)

Figure 15: Inputs and outputs of compensators. (a): Flash without history inputs. (b): Flash with
history inputs. (c): Echo without history inputs. (d): Echo with history inputs.

We utilize a deep learning-based compensator to mitigate the effects of observation delay in MASs,
and employ GRU-based and Transformer-based architectures to predict delay-free observation from
historical data. The compensator implementation consists of input sequence construction, label
generation, and mask generation. The compensator processes input sequences constructed from past
observations and actions, with optional T-step historical context (padded when insufficient). Figure 15
follows the example from Figure 3. Both Flash+H and Echo+H models acquire additional information.
Notably, Echo’s autoregressive inference aligns closely with historical sequence processing, which
helps the model understand the relationships between delay and observation. The figure visually
represents delay value sequences as their corresponding actual environment timestep sequences. In
practical implementation, we input delay value sequences for Flash and binary (0 or 1) sequences
indicating the presence of delay for Echo.

16

Table 2: Mean Training parameters.

MPE SMAC

Parameter Value Parameter Value

t_max 5e6/1e7 t_max 6e6
test_nepisode 64 test_nepisode 32
batch_size 32 batch_size 128
epsilon_anneal_time 5e4 epsilon_anneal_time 1e5/5e6
standardise_rewards True standardise_rewards False
actor_model GRU actor_model GRU
target_update_interval 200 target_update_interval 200
mixing_embed_dim 32 mixing_embed_dim 32
hypernet_embed 64 hypernet_embed 64
actor_hidden_dim 64 actor_hidden_dim 64
td_lambda 0.6 td_lambda 0.6/0.3
rl_learning_rate 1e-3 rl_learning_rate 1e-3
compensator_model GRU/Transformer compensator_model GRU/Transformer
compensator_hidden_dim 64 compensator_hidden_dim 64
compensator_mode None/Flash/Echo compensator_mode None/Flash/Echo
compensator_learning_rate 1e-3 compensator_learning_rate 1e-3
delay_type unfixed delay_type unfixed
delay_value 6 delay_value 3
delay_scope 3 delay_scope 3
use_history True/False use_history True/False
history_length 9 history_length 6
delay_reconciled True/False delay_reconciled True/False
curriculum_start_value 0 curriculum_start_value 1/0
curriculum_end_value 0 curriculum_end_value 0
curriculum_start_step 1e6 curriculum_start_value 1e6
curriculum_end_step 3e6 curriculum_end_step 4e6
distillation_start_value 1/0 distillation_start_value 1/0
distillation_end_value 0 distillation_end_value 0
distillation_start_step 2e6/3e6 distillation_start_value 2e6
distillation_end_step 4e6/7e6 distillation_end_step 4e6

We adopt a supervised learning framework where the label generation module creates ground truth
from stored delay-free observations, using ideal delay values as reference. The mask generation
module prevents error propagation in Echo by masking previously compensated content. Our hybrid
loss function combines mean squared error (MSE) for continuous features (e.g., positions) with
weighted cross-entropy (CE) for discrete features (e.g., unit status), balancing their numerical scales.
To enhance training efficiency and stability, we implement teacher forcing - initially using real
observation as next-step input with 100% probability, gradually decreasing to 0% during training
to help the model learn to rely on its predictions. As shown in Table 3, the teacher forcing training
mode demonstrates no significant advantage compared to not using teacher forcing. Therefore, we
disable this option by default during training.

C.3 Training Details

In this section, we present the hyperparameter settings for different tasks. Table 1 and Table 2 detail
the key environmental and training parameters, respectively. While ensuring algorithm performance,
we maintained consistency in hyperparameters as much as possible. All actor networks use the GRU
architecture, while QMIX’s critic employs a two-layer hypernetwork. The GRU compensator consists
of one GRU layer and three linear layers, whereas the Transformer compensator uses only one pair
of encoder-decoder layers and supports a pure encoder structure. The replay buffer size is fixed at
5000, with batch sizes set to 32 for MPE and 128 for SMAC. During training initialization, ϵ = 1 and
linearly anneals to ϵ = 0.05. The default training step for MPE is set to 5e6. However, we observed
a second significant performance surge around 2e6 steps on REFERENCE, with performance still
maintaining an upward trend at 5e6 steps. Consequently, we extended the training steps to 1e7 to
provide sufficient convergence time for each algorithm. Accordingly, the starting and ending steps
for knowledge distillation were also increased.

We do not entirely disregard the curriculum learning option in MPE scenarios. However, early experi-
ments revealed that this technique proved ineffective for MPE, while being indispensable for SMAC.
This result demonstrates that curriculum learning actors can significantly mitigate convergence issues
caused by random seeds when handling complex tasks. In reinforcement learning, the problem of
model non-convergence due to the improper timing of performance ascent is prevalent. Careful

17

observation of convergence curves reveals that performance ascent typically does not occur during the
initial training phase in SMAC tasks. In contrast, in MPE tasks, performance improvement closely
follows the start of training. This timing difference may explain why curriculum learning actors
succeed remarkably in SMAC scenarios.

The teacher model is trained for 1e7 steps across all tasks with a delay setting of 1-3. We attempted
to directly employ the Oracle as the teacher model, where, during student model training, the Oracle
receives delay-free observation and provides immediate guidance. This approach proved unsuccessful,
likely due to the inherent discrepancy between delay-free observation and compensated observation.
Specifically, when the student model receives compensated observation, decisions based on delay-free
observation might be objectively superior but could disrupt the student model’s judgment. To address
this issue, we experiment with a low-delay teacher model, achieving exceptional performance. We
encourage other researchers to explore further variations within our framework.

D Supplementary Results

Table 3: Performance comparison with teacher forcing enabled and disabled.

Fixed Delay Value 0 3 6 9 12

TF DR H TAG

Echo ✓ ✓ ✓ 190.9 ± 26.0 175.8 ± 29.7 168.8 ± 23.4 161.7 ± 25.4 158.5 ± 25.9
Echo ✓ ✓ 185.9 ± 23.4 175.1 ± 30.3 176.9 ± 29.9 167.3 ± 24.0 155.5 ± 25.4

TF DR H SPREAD

Echo ✓ ✓ ✓ −34.2 ± 2.2 −34.1 ± 1.9 −34.2 ± 2.0 −35.3 ± 2.2 −35.4 ± 2.1
Echo ✓ ✓ −33.6 ± 1.7 −33.8 ± 2.2 −34.3 ± 1.5 −35.4 ± 1.9 −36.6 ± 1.7

Table 4: Fixed delay test results (rewards) of MPE with baseline algorithm FT-QMIX.

Fixed Delay Value 0 3 6 9 12

DR H KD TAG

Oracle 213.4 ± 33.5 136.2 ± 23.0 84.5 ± 16.9 70.1 ± 11.1 66.1 ± 13.3
Base 110.2 ± 17.7 135.2 ± 22.5 125.4 ± 22.8 112.6 ± 20.7 101.5 ± 19.6
Base ✓ 135.1 ± 26.7 156.9 ± 23.2 142.3 ± 22.3 120.9 ± 20.8 111.7 ± 17.5
Flash ✓ 176.6 ± 27.7 177.5 ± 34.2 150.4 ± 22.5 132.8 ± 21.6 127.8 ± 23.7
Flash ✓ ✓ 188.0 ± 26.6 180.4 ± 24.7 166.7 ± 29.0 168.5 ± 28.2 149.9 ± 26.3
Flash ✓ ✓ ✓ 213.7 ± 30.8 194.8 ± 27.5 182.5 ± 32.0 169.8 ± 23.9 150.9 ± 24.1
Echo ✓ 194.2 ± 29.0 187.6 ± 29.0 173.8 ± 22.6 160.7 ± 30.1 163.7 ± 27.5
Echo ✓ ✓ 185.9 ± 23.4 175.1 ± 30.3 176.9 ± 29.9 167.3 ± 24.0 155.5 ± 25.4
Echo ✓ ✓ 206.5 ± 34.0 197.9 ± 28.5 184.7 ± 32.4 175.6 ± 22.9 165.2 ± 28.0
Echo ✓ ✓ ✓ 209.8 ± 32.3 200.8 ± 25.1 182.9 ± 36.6 176.2 ± 24.8 160.5 ± 29.5

DR H KD SPREAD

Oracle −33.1 ± 2.0 −37.6 ± 2.2 −48.8 ± 2.0 −59.9 ± 2.9 −67.2 ± 3.2
Base −40.4 ± 2.2 −38.1 ± 1.8 −40.3 ± 2.4 −44.2 ± 2.2 −46.5 ± 2.3
Base ✓ −41.1 ± 2.4 −39.2 ± 1.8 −41.0 ± 2.5 −44.7 ± 2.0 −49.2 ± 2.9
Flash ✓ −37.7 ± 1.7 −37.8 ± 2.3 −39.3 ± 1.9 −40.1 ± 2.1 −40.0 ± 2.3
Flash ✓ ✓ −33.9 ± 1.8 −34.2 ± 2.0 −33.1 ± 1.9 −34.4 ± 1.8 −35.8 ± 1.8
Flash ✓ ✓ ✓ −31.7 ± 2.0 −32.0 ± 1.6 −32.4 ± 2.3 −33.2 ± 2.3 −35.4 ± 2.0
Echo ✓ −36.3 ± 2.2 −36.6 ± 2.3 −36.2 ± 1.9 −36.8 ± 1.7 −37.4 ± 2.2
Echo ✓ ✓ −33.6 ± 1.7 −33.8 ± 2.2 −34.3 ± 1.5 −35.4 ± 1.9 −36.6 ± 1.7
Echo ✓ ✓ −32.2 ± 1.6 −33.0 ± 2.3 −33.3 ± 1.8 −33.3 ± 2.2 −33.9 ± 1.9
Echo ✓ ✓ ✓ −31.8 ± 1.9 −32.0 ± 2.0 −32.3 ± 1.9 −33.1 ± 2.1 −33.2 ± 2.2

DR H KD REFERENCE

Oracle −17.6 ± 1.2 −22.5 ± 1.2 −31.1 ± 1.1 −38.2 ± 1.5 −43.7 ± 1.9
Base −29.5 ± 1.5 −28.6 ± 1.5 −30.3 ± 1.7 −34.3 ± 1.5 −36.8 ± 1.8
Base ✓ −28.9 ± 1.8 −26.1 ± 1.6 −27.7 ± 1.7 −30.9 ± 1.7 −34.7 ± 1.6
Flash ✓ −34.5 ± 2.1 −34.2 ± 2.0 −34.8 ± 2.1 −34.9 ± 2.3 −35.1 ± 2.2
Flash ✓ ✓ −17.1 ± 1.3 −17.4 ± 1.5 −17.3 ± 1.2 −18.0 ± 1.5 −20.0 ± 1.2
Flash ✓ ✓ ✓ −16.8 ± 1.3 −17.0 ± 1.3 −16.7 ± 1.1 −17.6 ± 1.1 −19.6 ± 1.7
Echo ✓ −19.1 ± 1.4 −18.0 ± 1.4 −19.0 ± 1.4 −19.0 ± 1.4 −19.1 ± 1.6
Echo ✓ ✓ −18.4 ± 1.2 −18.5 ± 1.5 −18.5 ± 1.1 −18.7 ± 1.4 −20.2 ± 1.4
Echo ✓ ✓ −20.6 ± 1.2 −20.9 ± 1.4 −21.3 ± 1.3 −22.2 ± 1.1 −22.2 ± 1.2
Echo ✓ ✓ ✓ −16.7 ± 1.4 −16.9 ± 1.1 −16.9 ± 1.2 −17.6 ± 1.2 −18.7 ± 1.4

18

Table 5: Unfixed delay test results (rewards) of MPE with baseline algorithm FT-QMIX.

Delay Range 3-9 6-12 3-9 6-12 3-9 6-12

DR H KD TAG SPREAD REFERENCE

Oracle 92.3 ± 15.2 74.8 ± 13.5 −45.9 ± 1.8 −56.4 ± 2.1 −28.3 ± 1.2 −36.1 ± 1.4
Base 127.0 ± 18.8 113.6 ± 19.9 −39.6 ± 2.0 −42.2 ± 2.5 −29.9 ± 1.6 −33.2 ± 2.0
Base ✓ 144.6 ± 21.1 132.4 ± 19.7 −40.5 ± 2.2 −44.0 ± 2.3 −27.4 ± 1.6 −30.4 ± 1.9
Flash ✓ 161.5 ± 29.4 151.4 ± 27.4 −38.8 ± 2.3 −39.2 ± 2.6 −34.9 ± 2.0 −35.2 ± 2.0
Flash ✓ ✓ 180.3 ± 28.3 165.4 ± 26.1 −33.7 ± 2.0 −34.5 ± 1.9 −17.1 ± 1.1 −18.2 ± 1.3
Flash ✓ ✓ ✓ 188.6 ± 31.1 166.9 ± 30.9 −32.0 ± 1.9 −33.0 ± 2.3 −17.0 ± 1.4 −17.2 ± 1.4
Echo ✓ 175.1 ± 25.0 165.5 ± 24.5 −36.7 ± 2.2 −36.9 ± 2.2 −18.6 ± 1.3 −18.9 ± 1.3
Echo ✓ ✓ 177.1 ± 21.9 166.8 ± 27.4 −34.2 ± 2.0 −35.1 ± 1.9 −18.3 ± 1.2 −18.9 ± 1.2
Echo ✓ ✓ 178.9 ± 27.0 180.0 ± 20.7 −32.1 ± 2.2 −33.2 ± 1.9 −21.4 ± 1.0 −21.6 ± 1.3
Echo ✓ ✓ ✓ 189.2 ± 22.3 178.3 ± 21.1 −31.4 ± 1.9 −32.5 ± 1.4 −17.0 ± 1.2 −17.4 ± 1.1

Table 6: Fixed delay test results of SMAC (win rates) with baseline algorithm FT-QMIX.

Fixed Delay Value 0 2 4 6 8

C DR H KD 3s_vs_5z

Oracle 99.7 ± 1.2 64.6 ± 9.3 26.6 ± 7.9 1.9 ± 2.4 0.1 ± 0.5
Base 82.9 ± 6.2 79.3 ± 8.1 84.9 ± 6.1 69.9 ± 9.1 65.0 ± 9.1
Base ✓ 97.0 ± 2.6 95.5 ± 2.9 95.1 ± 3.6 93.8 ± 4.5 88.4 ± 4.8
Base ✓ 97.0 ± 2.7 98.0 ± 2.0 92.3 ± 5.8 74.8 ± 8.3 33.0 ± 10.5
Base ✓ ✓ 92.4 ± 3.6 96.8 ± 2.8 80.6 ± 5.9 44.5 ± 8.9 4.5 ± 3.4
Flash ✓ ✓ 95.0 ± 4.3 96.6 ± 3.0 91.4 ± 5.0 78.1 ± 6.2 37.7 ± 10.2
Flash ✓ ✓ ✓ 98.8 ± 2.1 97.3 ± 2.9 93.4 ± 4.5 83.6 ± 6.5 43.5 ± 7.9
Flash ✓ ✓ ✓ 99.8 ± 0.7 99.3 ± 1.9 99.4 ± 1.2 94.9 ± 3.4 82.9 ± 5.4
Echo ✓ ✓ 96.3 ± 2.8 97.1 ± 2.7 94.6 ± 3.8 83.6 ± 6.3 24.7 ± 8.5
Echo ✓ ✓ ✓ 98.5 ± 2.2 98.8 ± 1.8 96.6 ± 2.8 84.2 ± 6.7 60.9 ± 8.0
Echo ✓ ✓ ✓ 99.8 ± 0.8 99.8 ± 0.7 99.8 ± 0.8 97.1 ± 2.7 80.0 ± 8.1

C DR H KD 5m_vs_6m

Oracle 84.8 ± 6.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Base 0.5 ± 1.1 0.4 ± 1.0 0.9 ± 1.6 0.5 ± 1.3 0.1 ± 0.5
Base ✓ 1.1 ± 1.6 2.7 ± 2.9 3.4 ± 3.5 2.3 ± 2.8 0.7 ± 1.6
Base ✓ 7.3 ± 5.1 15.9 ± 6.2 12.1 ± 5.4 0.4 ± 1.0 0.1 ± 0.5
Base ✓ ✓ 58.1 ± 9.0 80.2 ± 7.1 57.2 ± 10.8 20.5 ± 8.1 3.0 ± 2.8
Flash ✓ ✓ 83.2 ± 6.4 80.6 ± 7.4 73.7 ± 7.7 59.9 ± 9.5 36.6 ± 8.4
Flash ✓ ✓ ✓ 84.8 ± 4.4 81.9 ± 6.4 78.4 ± 6.4 43.9 ± 7.8 5.8 ± 4.3
Flash ✓ ✓ ✓ 85.5 ± 5.7 84.6 ± 6.8 82.5 ± 6.1 62.3 ± 7.7 40.1 ± 9.8
Echo ✓ ✓ 81.9 ± 7.2 78.4 ± 7.1 74.7 ± 7.3 58.4 ± 10.2 44.7 ± 8.3
Echo ✓ ✓ ✓ 73.4 ± 7.1 65.2 ± 7.9 63.1 ± 9.8 39.8 ± 7.8 23.4 ± 7.7
Echo ✓ ✓ ✓ 86.3 ± 6.5 85.2 ± 5.0 79.9 ± 7.7 65.2 ± 8.9 51.8 ± 8.6

C DR H KD 6h_vs_8z

Oracle 92.0 ± 4.0 0.5 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Base 0.6 ± 1.2 1.0 ± 1.9 0.7 ± 1.5 0.1 ± 0.5 0.0 ± 0.0
Base ✓ 4.4 ± 3.1 3.8 ± 3.5 2.4 ± 2.6 1.4 ± 1.8 0.7 ± 1.5
Base ✓ 3.1 ± 2.5 4.1 ± 3.8 2.1 ± 2.7 0.4 ± 1.0 0.2 ± 1.0
Base ✓ ✓ 50.8 ± 9.1 70.6 ± 9.2 12.7 ± 6.1 2.7 ± 3.5 0.3 ± 0.9
Flash ✓ ✓ 77.5 ± 6.6 70.7 ± 9.0 29.7 ± 10.9 4.6 ± 3.6 0.5 ± 1.4
Flash ✓ ✓ ✓ 85.3 ± 7.1 72.1 ± 8.6 30.6 ± 7.9 5.9 ± 4.4 1.2 ± 2.4
Flash ✓ ✓ ✓ 90.6 ± 5.1 81.6 ± 6.1 43.1 ± 8.7 12.6 ± 6.1 3.4 ± 3.4
Echo ✓ ✓ 86.6 ± 7.2 82.0 ± 7.3 40.8 ± 9.6 11.2 ± 5.6 2.9 ± 3.1
Echo ✓ ✓ ✓ 86.7 ± 6.2 71.0 ± 8.2 19.1 ± 6.8 5.1 ± 4.3 0.6 ± 1.2
Echo ✓ ✓ ✓ 94.1 ± 4.1 89.3 ± 6.3 57.6 ± 10.7 19.5 ± 6.7 6.2 ± 5.1

Table 7: Unfixed delay test results (win rates) of SMAC with baseline algorithm FT-QMIX.

Delay Range 0-6 3-9 0-6 3-9 0-6 3-9

C DR H KD 3s_vs_5z

Oracle 62.2 ± 7.8 16.2 ± 6.4 0.0 ± 0.0 0.0 ± 0.0 2.9 ± 3.2 0.0 ± 0.0
Base 83.4 ± 6.5 77.5 ± 6.4 0.7 ± 1.3 0.5 ± 1.4 0.5 ± 1.2 0.4 ± 1.0
Base ✓ 95.9 ± 3.1 94.8 ± 3.7 2.1 ± 2.1 2.0 ± 2.3 5.5 ± 3.9 1.3 ± 1.7
Base ✓ 98.1 ± 1.7 84.8 ± 6.2 15.2 ± 7.6 4.1 ± 3.2 2.3 ± 2.7 0.9 ± 1.4
Base ✓ ✓ 97.0 ± 2.6 74.7 ± 7.4 79.0 ± 8.4 45.4 ± 8.5 68.6 ± 11.8 7.2 ± 5.4
Flash ✓ ✓ 96.5 ± 3.7 92.4 ± 5.4 78.5 ± 6.3 71.1 ± 7.8 67.1 ± 8.1 13.7 ± 6.6
Flash ✓ ✓ ✓ 97.2 ± 2.9 90.6 ± 4.8 83.7 ± 6.6 73.5 ± 7.8 73.8 ± 6.4 22.3 ± 8.1
Flash ✓ ✓ ✓ 99.7 ± 0.9 98.2 ± 2.6 83.0 ± 7.0 76.6 ± 7.6 80.7 ± 7.1 28.9 ± 7.6
Echo ✓ ✓ 98.9 ± 2.0 95.5 ± 3.8 80.2 ± 7.8 66.9 ± 8.6 78.8 ± 7.1 27.5 ± 9.4
Echo ✓ ✓ ✓ 98.9 ± 1.6 96.2 ± 3.3 74.5 ± 7.1 59.5 ± 8.8 79.5 ± 7.9 17.3 ± 6.8
Echo ✓ ✓ ✓ 99.8 ± 0.7 98.8 ± 1.8 84.5 ± 6.3 76.6 ± 6.8 89.3 ± 5.3 45.2 ± 10.9

19

Our experimental results are primarily presented through figures and tables, with detailed explana-
tions. We first conduct extensive experiments on MPE, followed by selective validation on SMAC.
The MPE ablation studies compare two baseline algorithms: FT-QMIX and FT-VDN. As shown in
Figure 16 and Figure 17, FT-VDN demonstrates slightly inferior performance to FT-QMIX across
fixed and unfixed delay settings, particularly on REFERENCE. Notably, the RDC-enhanced FT-VDN
maintains reasonable delay resistance despite lacking a critic network, confirming the framework’s
compatibility with non-actor-critic approaches while preserving baseline performance characteristics.
Architecture comparisons (Figure 16-19) reveal that GRU-based compensators generally underper-
form Transformer variants, except on 5m_vs_6m. For brevity, Table 4-9 omit the less competitive
FT-VDN and GRU-based results. In SMAC experiments, we employ curriculum learning for the
actor to ensure convergence, as discussed previously.

Table 8: Fixed delay test results of SMAC (rewards) with baseline algorithm FT-QMIX.

Fixed Delay Value 0 2 4 6 8

C DR H KD 3s_vs_5z

Oracle 21.0 ± 0.1 21.3 ± 0.4 19.0 ± 0.7 12.6 ± 0.6 9.6 ± 0.6
Base 21.9 ± 0.5 21.8 ± 0.4 21.5 ± 0.4 21.6 ± 0.5 21.4 ± 0.6
Base ✓ 21.6 ± 0.2 21.7 ± 0.2 21.5 ± 0.2 21.4 ± 0.2 21.8 ± 0.3
Base ✓ 21.7 ± 0.2 21.6 ± 0.2 22.1 ± 0.3 21.9 ± 0.5 17.7 ± 1.1
Base ✓ ✓ 21.4 ± 0.2 21.4 ± 0.2 21.5 ± 0.3 19.5 ± 0.7 13.5 ± 0.7
Flash ✓ ✓ 21.4 ± 0.2 21.4 ± 0.2 21.4 ± 0.3 21.4 ± 0.4 19.3 ± 0.8
Flash ✓ ✓ ✓ 21.2 ± 0.2 21.4 ± 0.1 21.5 ± 0.2 21.8 ± 0.3 19.7 ± 0.6
Flash ✓ ✓ ✓ 21.1 ± 0.1 21.1 ± 0.1 21.3 ± 0.1 21.8 ± 0.3 21.8 ± 0.3
Echo ✓ ✓ 21.2 ± 0.2 21.2 ± 0.2 21.3 ± 0.2 21.2 ± 0.3 17.9 ± 0.8
Echo ✓ ✓ ✓ 21.2 ± 0.1 21.3 ± 0.1 21.4 ± 0.2 21.7 ± 0.3 20.5 ± 0.4
Echo ✓ ✓ ✓ 21.0 ± 0.1 21.1 ± 0.1 21.2 ± 0.1 21.3 ± 0.1 21.3 ± 0.4

C DR H KD 5m_vs_6m

Oracle 18.5 ± 0.6 4.8 ± 0.1 4.0 ± 0.1 3.7 ± 0.1 3.4 ± 0.1
Base 8.5 ± 0.2 8.4 ± 0.2 8.4 ± 0.3 8.3 ± 0.3 8.0 ± 0.2
Base ✓ 8.4 ± 0.3 9.1 ± 0.4 9.2 ± 0.4 8.9 ± 0.4 8.4 ± 0.3
Base ✓ 9.3 ± 0.7 10.8 ± 0.7 10.2 ± 0.6 7.5 ± 0.3 6.5 ± 0.2
Base ✓ ✓ 18.0 ± 0.7 15.8 ± 1.1 12.0 ± 0.8 9.2 ± 0.4
Flash ✓ ✓ 18.3 ± 0.7 18.1 ± 0.8 17.4 ± 0.8 16.1 ± 0.9 13.7 ± 0.9
Flash ✓ ✓ ✓ 18.5 ± 0.4 18.1 ± 0.7 17.8 ± 0.7 14.4 ± 0.8 9.9 ± 0.5
Flash ✓ ✓ ✓ 18.6 ± 0.5 18.5 ± 0.7 18.3 ± 0.6 16.3 ± 0.7 13.9 ± 1.0
Echo ✓ ✓ 18.2 ± 0.7 17.8 ± 0.7 17.5 ± 0.7 15.8 ± 1.0 14.3 ± 0.9
Echo ✓ ✓ ✓ 17.4 ± 0.7 16.6 ± 0.8 16.3 ± 1.0 13.8 ± 0.8 11.9 ± 0.8
Echo ✓ ✓ ✓ 18.6 ± 0.7 18.6 ± 0.5 18.0 ± 0.8 16.5 ± 0.9 15.1 ± 0.9

C DR H KD 6h_vs_8z

Oracle 19.6 ± 0.2 11.1 ± 0.3 9.2 ± 0.2 8.7 ± 0.2 8.4 ± 0.2
Base 12.7 ± 0.3 12.9 ± 0.3 12.5 ± 0.2 11.9 ± 0.2 11.0 ± 0.2
Base ✓ 14.0 ± 0.3 14.0 ± 0.3 13.6 ± 0.3 13.2 ± 0.2 12.9 ± 0.3
Base ✓ 12.6 ± 0.3 12.6 ± 0.4 11.9 ± 0.3 11.0 ± 0.2 10.4 ± 0.2
Base ✓ ✓ 17.4 ± 0.6 18.5 ± 0.5 14.5 ± 0.5 12.8 ± 0.3 11.5 ± 0.3
Flash ✓ ✓ 18.9 ± 0.3 18.5 ± 0.4 16.0 ± 0.8 13.3 ± 0.4 11.9 ± 0.3
Flash ✓ ✓ ✓ 19.3 ± 0.3 18.6 ± 0.5 16.1 ± 0.5 13.6 ± 0.5 12.4 ± 0.4
Flash ✓ ✓ ✓ 19.6 ± 0.2 19.1 ± 0.3 16.9 ± 0.5 14.4 ± 0.5 13.0 ± 0.4
Echo ✓ ✓ 19.4 ± 0.3 19.2 ± 0.4 16.8 ± 0.6 14.3 ± 0.5 13.0 ± 0.4
Echo ✓ ✓ ✓ 19.4 ± 0.3 18.6 ± 0.5 15.1 ± 0.6 13.2 ± 0.4 12.0 ± 0.3
Echo ✓ ✓ ✓ 19.7 ± 0.2 19.5 ± 0.3 17.8 ± 0.5 15.3 ± 0.5 13.6 ± 0.5

Table 9: Unfixed delay test results (rewards) of SMAC with baseline algorithm FT-QMIX.

Delay Range 0-6 3-9 0-6 3-9 0-6 3-9

C DR H KD 3s_vs_5z 5m_vs_6m 6h_vs_8z

Oracle 21.5 ± 0.4 17.2 ± 0.8 5.5 ± 0.2 3.4 ± 0.1 11.9 ± 0.4 9.0 ± 0.2
Base 21.8 ± 0.4 21.4 ± 0.5 8.5 ± 0.2 8.3 ± 0.3 12.9 ± 0.3 12.4 ± 0.3
Base ✓ 21.5 ± 0.2 21.5 ± 0.2 9.0 ± 0.3 9.0 ± 0.3 14.2 ± 0.3 13.4 ± 0.2
Base ✓ 21.7 ± 0.2 22.1 ± 0.4 10.7 ± 0.9 9.1 ± 0.4 12.3 ± 0.3 11.4 ± 0.2
Base ✓ ✓ 21.5 ± 0.2 21.3 ± 0.4 17.9 ± 0.8 14.6 ± 0.8 18.5 ± 0.6 13.7 ± 0.5
Flash ✓ ✓ 21.4 ± 0.2 21.7 ± 0.2 17.8 ± 0.7 17.2 ± 0.8 18.4 ± 0.5 14.6 ± 0.6
Flash ✓ ✓ ✓ 21.3 ± 0.1 21.6 ± 0.2 18.4 ± 0.6 17.3 ± 0.8 18.7 ± 0.4 15.3 ± 0.6
Flash ✓ ✓ ✓ 21.1 ± 0.1 21.5 ± 0.2 18.4 ± 0.7 17.7 ± 0.7 19.1 ± 0.3 15.9 ± 0.5
Echo ✓ ✓ 21.2 ± 0.1 21.3 ± 0.2 18.0 ± 0.8 16.7 ± 0.9 19.0 ± 0.4 15.8 ± 0.7
Echo ✓ ✓ ✓ 21.3 ± 0.1 21.6 ± 0.2 17.5 ± 0.7 16.0 ± 0.9 19.0 ± 0.5 14.8 ± 0.6
Echo ✓ ✓ ✓ 21.0 ± 0.0 21.2 ± 0.1 18.5 ± 0.6 17.7 ± 0.7 19.5 ± 0.3 17.2 ± 0.6

20

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

100

120

140

160

180

200

220

240

Re
wa

rd

TAG

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

42

40

38

36

34

32

30

Re
wa

rd

SPREAD

0 1 2 3 4 5 6 7 8 9 10 11 12
Delay

35

30

25

20

15

Re
wa

rd

REFERENCE

QMIX(TF Echo) QMIX(TF Flash) VDN(TF Echo) VDN(TF Flash) QMIX(GRU Echo) QMIX(GRU Flash)

Figure 16: Performance comparison of RDC-enhanced algorithms with different baseline methods
and compensator network architectures under fixed delay settings on MPE.

3-9 6-12
Delay Range

100

120

140

160

180

200

220

240

Re
wa

rd

TAG

3-9 6-12
Delay Range

42

40

38

36

34

32

30

28

Re
wa

rd

SPREAD

3-9 6-12
Delay Range

35

30

25

20

15

Re
wa

rd

REFERENCE

QMIX(TF Echo) QMIX(TF Flash) VDN(TF Echo) VDN(TF Flash) QMIX(GRU Echo) QMIX(GRU Flash)

Figure 17: Performance comparison of RDC-enhanced algorithms with different baseline methods
and compensator network architectures under unfixed delay settings on MPE.

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

3s_vs_5z

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

5m_vs_6m

0 1 2 3 4 5 6 7 8 9
Delay

0

20

40

60

80

100

W
in

 R
at

e
(%

)

6h_vs_8z

QMIX(TF Echo) QMIX(TF Flash) QMIX(GRU Echo) QMIX(GRU Flash)

Figure 18: Performance comparison of RDC-enhanced algorithms with different compensator network
architectures under fixed delay settings on SMAC.

21

0-6 3-9
Delay Range

0

20

40

60

80

100

W
in

 R
at

e
(%

)

3s_vs_5z

0-6 3-9
Delay Range

0

20

40

60

80

100

W
in

 R
at

e
(%

)

5m_vs_6m

0-6 3-9
Delay Range

0

20

40

60

80

100

W
in

 R
at

e
(%

)

6h_vs_8z

QMIX(TF Echo) QMIX(TF Flash) QMIX(GRU Echo) QMIX(GRU Flash)

Figure 19: Performance comparison of RDC-enhanced algorithms with different compensator network
architectures under unfixed delay settings on SMAC.

0 1 2 3 4 5
Step 1e6

0.00

0.02

0.04

0.06

0.08

0.10

Va
lu

e

TAG

0 1 2 3 4 5
Step 1e6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Va
lu

e

SPREAD

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e7

0.00

0.02

0.04

0.06

0.08

0.10

Va
lu

e

REFERENCE

Echo+H+DR+KD Echo+H+DR Echo+DR Flash+H+DR+KD Flash+H+DR Flash+DR Base

Figure 20: Observation loss curves on MPE with the baseline algorithm FT-QMIX and Transformer
compensators.

0 1 2 3 4 5 6
Step 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

×10 2 3s_vs_5z

0 1 2 3 4 5 6
Step 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu

e

×10 2 5m_vs_6m

0 1 2 3 4 5 6
Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

×10 2 6h_vs_8z

Echo+H+DR+KD Echo+C+H+DR Echo+C+DR Flash+H+DR+KD Flash+C+H+DR Flash+C+DR

Figure 21: Observation loss curves on SMAC with the baseline algorithm FT-QMIX and Transformer
compensators.

22

Figure 20 and Figure 21 illustrate the variation of compensator loss values with increasing training
steps in partial experiments. In SMAC, the observation errors of Base consistently range between 0.1
and 0.2. To distinguish the performance of other algorithms clearly, we omitted the results of Base.
The compensator provides substantial improvement in observation accuracy. Flash achieves signifi-
cantly lower compensation errors when utilizing history inputs. On REFERENCE and 5m_vs_6m
scenarios, Echo exhibits substantially higher compensation errors than Flash, a conclusion similarly
reflected in non-fixed delay test results. Notably, algorithms employing knowledge distillation achieve
superior performance without significant improvement in the compensator, suggesting that addressing
delayed observation problems requires simultaneous consideration of both observation compensation
and policy formation.

Our experiments are conducted on servers with NVIDIA A30 GPUs (approximately 24GB VRAM).
The CPU model is generally unimportant as long as it supports more than eight threads - we
use both Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz and Intel(R) Xeon(R) Gold 6338 CPU @
2.00GHz. For the baseline algorithm FT-QMIX with RDC enhancement implemented via Transformer
compensator, Echo requires an average of 23.8 and 58.3 hours for training on MPE and SMAC,
respectively, while Flash needs 10.8 and 34.5 hours correspondingly. These time measurements
include the teacher model’s training duration.

E Limitations and Impacts

This paper first theoretically defines DSID-POMDP and proposes the RDC training framework based
on the formation process of delayed observation within it. We then discuss the limitations of the
proposed method in terms of theory, experimental results, and computational overhead.

• A crucial assumption underlying DSID-POMDP is that each entity in the system only
exposes its own state to others. This means that every observation from other entities
received by agenti contains independent and unique information. This assumption fails in
environments where agents can relay information through hopping, because when entityj’s
information is delayed or missing, entityk might carry its information. While DSID-
POMDP could be extended to accommodate such scenarios, we maintain that this would
not represent the optimal approach for defining this class of problems.

• On the experimental front, both Echo and Flash demonstrated poor generalizability on
SMAC. As the delay value increased, the win rate declined rapidly. We believe this does
not imply that agents inherently cannot achieve victory under such delayed conditions. The
current compensator only processes information from the agent’s own perspective and does
not account for the influence of other agents on the environment. Better compensator designs
and training techniques should effectively mitigate this issue.

• The increase in resource overhead with the growing number of agents is a common challenge
faced by MARL algorithms. In our experiments, we adopt the practice of having different
agents share a single neural network, a setup that is widely used under the CTDE framework.
Therefore, although each agent has its own policy network and compensator in terms
of structure, the network parameters of all the networks are actually the same during
computation. The input to an agent is essentially the observation data, and as the number
of agents and entities in the environment increases, the dimensionality of the input will
inevitably increase. We believe that this linear increase in dimensionality is acceptable
to some extent. When the increase in observation dimensionality significantly impacts
the model’s inference speed, additional feature extractors may be needed to compress
the information. In conclusion, the increase in the number of agents and entities in the
environment will not result in a corresponding increase in the number of networks, but rather
an increase in the dimensionality of observations.

Despite the limitations above, this paper presents a novel perspective on delayed observation in
multi-agent systems and provides a MARL-based solution. Researchers can utilize the RDC training
framework in conjunction with baseline algorithms to address application problems across various
domains, resulting in a positive societal impact. Our work carries no negative societal implications.

23

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both abstract and introduction demonstrate the contributions and scope of the
paper accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 3, Section 5, and Section 6, we briefly discuss the limitations of
the current work and the assumptions of the proposed theory. Appendix E provides a more
comprehensive explanation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24

Answer: [Yes]
Justification: We provide a complete proof of the correctness of the defined DSID-POMDP
in Appendix A, and explicitly state the full set of assumptions following the definition.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our code is developed based on the widely-used community project pymarl.
Section 5 and Appendix C detail all hyperparameter settings and environmental configu-
rations that may affect the experimental results. Additionally, we provide implementation
specifics of delayed observations in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymous link to our code in the abstract and have uploaded a
compressed file as supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5 and Appendix C, we provide detailed descriptions of the experi-
mental setup and hyperparameter configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experimental results in this paper include error bars or 95% confidence
intervals. To improve visual clarity and conciseness, we apply smoothing to some curves in
the figures without compromising the accuracy of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computational resources required for the
experiments in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of the proposed work in the abstract, conclusion,
and Appendix E.

Guidelines:

27

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers of codes and benchmarks.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

28

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide details of new assets in the appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

29

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Preliminaries
	Decentralized Partially Observable Markov Decision Process
	Decentralized Stochastic Individual Delay-Partially Observable Markov Decision Process
	Classic MARL Algorithms

	Methods
	Observation Delay Occurrence and Compensation Process in Multi-agent System
	Delay Compensator
	Delay-reconciled Critic and Curriculum Learning Actor
	Knowledge Distillation

	Experiments
	Training
	Performances on different delay settings
	Additional results and analysis

	Conclusion
	Proofs
	Scenario Introduction
	Implementation Details
	Delayed Observation Implementation
	Compensator Implementation
	Training Details

	Supplementary Results
	Limitations and Impacts

