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Abstract. Deep Reinforcement Learning is one of the state-of-the-art
methods for producing near-optimal system controllers. However, deep
RL algorithms train a deep neural network, that lacks transparency,
which poses challenges when the controller has to meet regulations, or
foster trust. To alleviate this, one could transfer the learned behaviour
into a model that is human-readable by design using knowledge distilla-
tion. Often this is done with a single model which mimics the original
model on average but could struggle in more dynamic situations. A key
challenge is that this simpler model should have the right balance be-
tween flexibility and complexity or right balance between balance bias
and accuracy. We propose a new model-agnostic method to divide the
state space into regions where a simplified, human-understandable model
can operate in. In this paper, we use Voronoi partitioning to find regions
where linear models can achieve similar performance to the original con-
troller. We evaluate our approach on a gridworld environment and a
classic control task. We observe that our proposed distillation to locally-
specialized linear models produces policies that are explainable and show
that the distillation matches or even slightly outperforms the black-box
policy they are distilled from.
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1 Introduction

With the evergrowing demand for complex automation across domains, the need
for advanced controllers is outweighing the available engineers that can program
them [1]. Optimal control techniques such as Model Predictive Control can opti-
mize a controller given a global model of the system is provided |2|. However, in
case no model is available or the system is highly dynamic, Deep Reinforcement
Learning (DRL) can learn an optimal controller using repetitive interactions with
the system [3]. DRL has shown state-on-the-art performance in many applica-
tions and is being increasingly integrated in the controller generation methodol-
ogy [4, 5, 6]. However, the capabilities and strength of DRL comes at the cost of
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users not understanding how the controller works. The artificial neural network
at the core of the controller is complex and gives little insight into why and
how it behaves. This raises distrust among users who should implement, test,
deploy and operate the controller. To alleviate this lack of understanding, the
field of Ezplainable Reinforcement Learning (XRL) introduced several solutions
|7]. Here, explanation generating techniques aim to answer questions such as
what is the global control strategy, why a controller behaves in a certain way,
why not another behaviour, when to expect this outcome etc. Often this involves
the creation of a surrogate model that is by design more interpretable than the
original network while retaining most of the performance. Then, using a tech-
nique called knowledge distillation, the surrogate learns post-hoc how to mimic
the original model [8]. From the myriad of human-readable classes that exist,
those based on visual or written decision boundaries are the most informative for
controller design. For example, rule-based decision trees construct a hierarchical
set of splitting nodes in the state space with a defined behaviour in the leaf
nodes. Summarizing the splits along the dimensional axis needed to reach a leaf
can be seen as an explanation when that behaviour is performed. This method
has shown to produce good tree models that can mimic network behaviour [9}
10]. However, we argue that a direct translation to any explainable surrogate
limits the types of users that could interact with it. The product life cycle of
a controller involves many stakeholders, each with different technical expertise.
The control tester is not required to have the same domain specific language
(DSL) as the control implementer. A factory worker only needs to interact via
the user interface while the operational technician needs to tweak the controller
parameters. If instead we would opt for a common language that is explainable
to every user, we would omit the use of nuances specific to the user’s DSL. Aside
communication, fixing a DSL could limit the performance of the controller if the
chosen language is unable to capture complex behaviour. With this shortcoming
in mind, we propose an intermediate step between network and explanation. By
partitioning the operational state space of the controller into regions with ar-
bitrary simple behaviour, we could provide an interpretable representation that
delivers insight for each type of user. For an initial version of this idea, we want
to find regions where linear functions can operate in with similar performance to
the original DRL network. The parameters, or weights, of these models indicate
the importance of each input variable in forming the controller output signal
while the bias term is an offset factor to this weighted sum.

Contributions: In this paper, we propose a knowledge distillation algorithm
that splits the operational state space of the controller into Voronoi cells. This
post-hoc method uses a trained DRL agent to gather experiences in the form
of state-action pairs to learn the linear models associated to these cells. The
models are continuously optimized and a periodic update is performed to decide
their decision boundaries based on their loss in following the original model. To
validate our method, we chose a continuous space gridworld and a control task.
We observe the capability our algorithm to find these linear subpolicy regions
while staying close to the performance of the original DRL policy.
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2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm for solving se-
quential decision problems [11].These are defined as a Markov Decision Process
(MDP) and formulated by tuple (S, A,PZ,,R2,,) in a control problem scheme
|12]. Here, the state space S consists of any state s; that can be observed at
t with ¢t € [0, t;mqz] while A denotes the action space with a; the action per-
formed at time t. P2, is the probability distribution for each state transition
st — siy1 when a; is performed and RY,, associates a reward signal to each
transition. Reward is a value indicating how good or bad the chosen actions are
in following a certain control objective. The MDP is subject to the Markovian
property Prob{si11 = s',7¢+1 =1 | st,a:}, where the state transition is inde-
pendent from past transitions. A policy 7; is a mapping s; — a; that decides the
chosen behaviour at each timestep. The objective of the policy is to maximize
the discounted sum of rewards R(7) = Y 77141, whereby v € [0, 1] as a discount
t

factor.

2.2 Black Box Deep Reinforcement Learning

The first RL algorithms represented their policy using tabular values and were
only applicable to discrete state and action spaces. Should the policy operate in
continuous space, a discretization of the learned values has to be applied with
sufficient resolution. How accurate the policy can represent these values is bound
by the discretization error, which reduces with table size |13]. The higher the res-
olution, the more accurate these values are learned. However, control policies for
complex systems often require a small resolution, causing an explosion of table
size and therefore system memory. A solution is to learn these values using an
artificial neural network since they are considered universal function approxima-
tors and can generalize well over unforeseen inputs |3} |14]. For visual inputs, the
state could be transformed into an embedding using convolutions before using
it as input to a regular feed forward neural network. This Deep Reinforcement
Learning (DRL) approach has proven itself quite successful in a myriad of appli-
cations, especially to control complex dynamic systems. However, transparency
of the policy is lost due to the computational complexity of a neural network.
The large amount of parameters describing the operations done at inference are
only informative on a global level in relation with the parameters of all other
layers. In addition, two sets of different parameterized networks can yield similar
behaviour rendering the semantic meaning of one parameter useless. Recently,
the field of Explainable Reinforcement Learning (XRL) has researchers inves-
tigate new methods to represent the policy in a more human-understandable
manner [7]. Introduced methods can describe network behaviour on both local
and global level. The method we present aims for a global description using
simple linear models. However, we do note that the local description of a re-
gion is only given when performing inference with a nearest neighbor algorithm.
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Fig.1: An example of a Voronoi diagram using 8 codeword points.

For a more globally informed explanation, the region should be described in a
meaningful way independent from all other regions.

2.3 Voronoi quantization

Vector quantization is a compression technique that groups similar datapoints
into regions described by a single representative codeword point ¢ € R [15].
A most common one, nearest neighbor vector quantization, defines ¢ to be the
point closest to each other point in the region. This quantizer v» — R™, the
Voronoi quantizer, maps each n-dimensional vector x € R™ onto a finite set of
codewords C = {c1, ¢, ..., ¢} C R, both from the set R of real numbers. This
mapping creates a partitioning of m disjoint Voronoi cells of the vector space
following

Ry ={zeR" ¢ (x) =c} (1)

for any i =1,2,..,m.
The mapping of a given vector x to a codeword ¢; is given by

Ry ={z:[lv —cll < llw —¢ll}, VE # 5 (2)

which implies that ¢; is the nearest neighboring codeword of z.

The main benefit of this quantization is the simple representation of the
regions which is only the list of codewords C'. The mapping from an arbitrary
point to a region Ry can efficiently be done with a nearest neighbor search over
all codewords. Often this is done using a kd-tree |[16] which has an average time
complexity of O(logn) to lookup the region-defining codeword. The intuition
behind Voronoi quantization is that a region Ry contains all states that are
similar to codeword c¢; according to a definition of distance. In a later section,
we will motivate that the capability of a subpolicy model in following the original
global model dictates the selection of these codewords.
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3 Related work

There are two approaches commonly used in XRL: those that use an inherently
interpretable formalism and those that post-hoc imitate a pre-trained policy
using state-action pairs. Our approach belongs to the second category. This latter
technique, knowledge distillation |17], has been used to transfer the behaviour
from a complex model to a simpler one. Using Soft Decision Trees, decision nodes
describe the splits needed to come to a behaviour defined in the leaf nodes [9).
The usage of linear models as an explanation was popularized by Ribeiro et al.
using their algorithm LIME [18]. With it, they can generate linear functions
for classification tasks to explain the decision of a model at a local level. In
Reinforcement Learning, LIME has been used to explain the behaviour [19] as
well as the used reward function |20].

Our work extends upon earlier work done by Lee et al. [21]. Their online TD-
AVQ algorithm was an attempt to use TD-learning in continuous environments.
Instead of improving TD-learning, we mainly want to use this idea to find linear
models instead of discrete actions, generalizing the behaviour explanation over
a wider region compared to a single discrete action. The partitioning algorithm,
based on Voronoi cells, aggregates states based on the amount of reward that
could be collected. When a certain threshold is exceeded, a new cell is created
with the codeword is introduced and the corresponding action is associated with
that region. A minimum distance threshold ensured that newly formed regions
where not too small, determining the resolution of the partitioning. Additionally,
they included a recurring step where a codeword would be removed if neighboring
cells had similar action values and therefore can be merged. Their algorithm has
been shown good performance in learning a policy for a navigation gridworld as
well as a simple mechanical gripper set up.

TD-AVQ Ours

Distillation No Yes

Focus on explainability No Yes

Using modern deep learning No Yes
Splitting criteria Accumulated reward Prediction loss

Table 1: The key differences between TD-AV(Q and our method. Whereas TD-
AVQ is an improvement on traditional TD-learning, we want to distill inter-
pretable linear policies.

4 Partitioning the state space

The main idea behind our approach is to find regions in state space S where
a model 7 of arbitrary complexity can produce behaviour that is close to the
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original policy 7. In this paper, we limit ourselves to linear models but note that
this method is model-agnostic.

In algorithm [I| we describe the main loop that in each iteration both trains
the subpolicies and manages the partitions of the state space. The loop runs
for Mepocns and performs operations on the partitions at different iteration fre-
quencies. Every ngp1i¢ iterations, the algorithm finds regions that are eligible to
be split due to their performance being insufficient on a given trajectory. Every
Nmerge iterations, each region is compared to its neighbors to check whether or
not their learned subpolicy is similar and if one of them can be removed. The
last Nfreeze iterations do not alter the partitioning but instead only optimize the
subpolicies.

The list 7 is initially comprised of only one subpolicy 7y with its parameters
set arbitrarily. The list of codewords C' has only ¢g, which is the first state s¢ that
will be observed in the first iteration. To map an observed state s; to a subpolicy
7;, a kd-tree |16] is constructed using the list of all codewords C. With the
state, inference kd-tree(C, s;) is performed to find the single nearest neighbor
codeword based on Manhattan distance. The returned index ¢ corresponds with
the index of the policy in the subpolicies list 7.

Algorithm 1 Voronoi State Partitioning

Require: Trained policy 7, environment env, empty buffer B
1: Initialize list of subpolicies & with policy 7o and sp as codeword co € C
2: for n = 0 t0 Nepocns dO

3: for ¢t =0 to tynae do > Collect experiences
4: at < m(st)
5: Perform a; in env, observe s;41
6: i =kd-tree(C, s¢) > Find nearest codeword
7: Add s; and a: to buffers 7;
8: Add sito B
9: if terminal(s;) then
10: End episode
11: end if
12: end for
13: for each 7; € 7 do > Train subpolicies with their buffers
14: train(7;)
15: end for
16: if 7 < Ntreeze then
17: for each ngp ;¢ iteration do > Split regions
18: split_regions(C,7)
19: end for
20: for each nperge iteration do > Merge regions
21: merge_regions(C, 7)
22: end for
23: end if

24: reset(B)
25: end for
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4.1 Learning subpolicies

Each iteration n, a full episode in the environment is performed with RL policy
7 to gather both state transitions s; <— s¢41 and selected actions a;. Each state
s¢ is orderly stored in buffer B for 1 iteration to be used as trajectory for the
splitting of regions. At each step, a lookup is performed to find the closest code
word with the kd-tree and both state and action are added to the buffer of the
corresponding subpolicy. After every episode, each subpolicy is trained using
a MSE loss with mini batches of their corresponding buffers. We note that we
deliberately want to overfit the models since newly seen data should be captured
by new subpolicies if needed. The last ngp;¢ iterations are used to only train
the subpolicies and not to alter the partitioning. This is done to avoid lower
performance of newly introduced subpolicies right before the final iteration is
reached.

4.2 Splitting regions

Splitting one region ¢; into two is based on the performance of subpolicy 7;
when mimicking 7 in that region (Alg. . Every ngpi¢ episodes, the gathered
episode trajectory of 7 is traversed a second time using actions from 7. For each
encountered state s; that is part of a new region ¢;, the corresponding subpolicy
with index i = kd-tree(C, s¢) is retrieved and a list of regional losses lossz, is
initialized empty.

With every state that is contained within the region, inference with both
m(s;) and 7;(s;) is performed. Loss is calculated as the mean squared error
(MSE) between action af and af* and added to lossz,.

If a state is part of a different region, losss, is reinitialized to 0. When the
mean of gathered regional losses exceeds threshold value max_loss at s; and the
distance between that state and regional codeword ¢; exceeds min_pol_distance,
a split is performed. A new subpolicy is initialized randomly and added to 7 and
s¢ becomes a new codeword c; added to C. Since this split effects all bordering
regions, the neighbours of the old region are found using Delaunay Triangulation
|22] and their buffers are reset to avoid experiences that would be under control
of the newly formed policy.

The intuition behind this approach is that a trained subpolicy is only capable
of performing behaviour of a certain complexity in a region of the state space.
If the policy performs good enough, it can handle these states. If the loss starts
increasing, it has difficulties to perform the behaviour at this moment in its
training. If however too much loss is accumulated, we could see that moment
as the first encountered most difficult region. Adding another subpolicy at that
point gives the other subpolicy a better demarcated region of state space where
it has proven itself before. The newly introduced subpolicy starts with empty
buffers and initial learning conditions.
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Algorithm 2 split_regions

1: dprev = kd-tree(C, so)

2: lossz, =0

3: for s; € B do

4: i = kd-tree(C, s¢)

5: if i # iprev then

6: lprev = 1

7. lossz, =0

8: end if

9: lossz, ¢ lossz, UMSE(7(s:), Ti(st))
10: if mean(losss;) > pol_loss,, and ||s; — ¢;|| > min_pol_disance then
11: Add s¢ to C

12: Add new 7; to 7

13: M < neighbours(7;)

14: reset_buffers(M)

15: end if

16: end for

4.3 Merging regions

When performing splits, the newly chosen codewords could be sub-optimal since
we could further train the affected subpolicies. If a split occurs in regions where
the behaviour of the original policy differs little, neighbouring subpolicies could
emerge with similar behaviour and parameters. To avoid this, every nperge it-
erations a pairwise comparison between each subpolicy and its neighbors M is
performed. As a measurement of similarity, we use the Loo norm of both sets
of subpolicy parameters. If this norm is above a certain threshold, the subpoli-
cies are different enough to be kept. If this value is below this threshold, the
merge_regions procedure merges the regions (Alg. . This removes subpol-
icy 7; and associated codeword c; from the known regions. The buffer of the
remaining subpolicy 7; is reset together with all neighboring subpolicies in M
since their decision boundaries are impacted as well.

Algorithm 3 merge_regions

1: for each 7; € 7 do

2 M < neighbours(7;)

3 for each j € M do

4 if ||7s.parameters, — 7;.parameters,|| < min_param_distance then
5: Remove 7; from 7
6: Remove ¢; from C
7 reset_buffers(M)
8 end if
9 end for
10: end for
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5 Experimental Validation

o -

(a) SimpleGoal (b) MountainCarContinuous

Fig.2: The two environments used to validate our method.

To validate our approach, we used both a continuous space gridworld, called
SimpleGoal, as a navigation and MountainCarContinuous from the Gymnasium
library as a classic control problem |23 24]. As the original policy, we used a
standard version of TD3, a well-known DRL algorithm [25]. For SimpleGoal we
trained a TD3 agent for 500.000 steps using the standard parameters while for
MountainCar we used a pretrained one from the Stable-Baselines 3 / RL Zoo
Hugging Face repository |26} [27].

Evaluation is done by analyzing the spread of the gathered episodic returns.
To account for the stochasticity of our distillation approach we use a DRL policy
to obtain 85 distilled policies policies for SimpleGoal (i.e we apply algorithm
85 times using the same DRL policy) and 40 for MountainCarContinuous. We
evaluate each of the distilled policies for 1000 runs using random start states and
observe the episodic returns. This yields a spread of 85000 and 40000 individual
runs that we use to compare the DRL’s 1000 evaluations with. Outliers are not
shown on the boxplot but are analyzed afterwards. Since both environments have
an action space of size 2, we can visualize the produced policies for an improved
understanding how the algorithm performs the partitioning.

Training the DRL policy and subpolicies were done on a M2 MacBook Pro
with 16GB of RAM. The used deep learning library is PyTorch v2.3.1 in a Python
3.11.9 environment using Adam as the parameter optimizer |28, [29)].

5.1 Navigation task

Description In SimpleGoal (Fig. has to navigate in continuous space to-
wards a goal region while avoiding a pitfall in the middle. The task is performed
in a bounded space 1.0 x 1.0 with the goal being located at x < 0.1,y < 0.1 and
the pitfall at 0.4 < x < 0.6,0.4 < y < 0.6. The observation space is the current
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SimpleGoal-v0
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Fig. 3: Spread of performance in terms of achieved return (higher is better). The
DRL agent is evaluated on 1000 evaluations while 85 instances of our method
were evaluated on the same 1000 episodes for a total of 85000 runs. We observe
similar spread and performance in both settings.

x and y coordinate of the agent. The action, with space bound by [—1,1], is
the change in z and y for the next step and is calculated by dz = 0.lag and
dy = 0.1a;. Each timestep, a reward of r; = 10x(0old_distance—new_distance)
is returned based on the progress the agent makes in approaching the goal. An
additional reward of 10 is given if the goal is reached within the truncation time
of 50 steps. When the agent enters the pitfall, a reward of —10 is given and the
episode is terminated.

Performance The performance of our algorithm for 40 x 1000 runs is reported
in figure [3| (right part) and compared to the 1000 runs of the DRL agent (left
part). The DRL agent has returns in a range of [—10.0,22.667] with mean re-
turn 16.599 standard deviation 3.117. 24 outliers have been observed, with a
collective mean of 8.369 and standard deviation 5.539. They are spread over
range [—10.0, 10.364]. For performance on all runs, we observe an average return
of 12.657 with standard deviation 8.436. with values ranging [—11.790, 22.798].
The outliers, in total 11067, have a mean of -8.042 and a standard deviation of
1.830. They spread over a range of [—11.790, 1.192].

If we summarize the overall performance of the method, we see it can learn
the SimpleGoal environment with a slight decrease in performance. The median
over all training sessions is lower but its spread is similar to the DRL agent.
The observed outliers over all runs, often in the negative range, indicate that
the number of linear policies in decisive regions such as around the pitfall should
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(a) TD3 (b) Distilled 13 locally-linear policies.

Fig. 4: On SimpleGoal: original black-box policy learned with TD3, and the result
of its distillation to explainable locally-linear policies.

be increased or the behaviour of existing subpolicies should be more complex to
avoid negative reward being encountered.

Visualization We visualize the behaviour of each policy using a quiver plot
where each arrow originates from a state and points into the direction of move-
ment indicated by the policy (Fig. [4). The linear functions that makes up this
partitioning can be found in appendix

We notice that, globally, the plot of the subpolicies tends to follow the orig-
inal DRL one. The 13 partitions of the state space are distributed seemingly
uniformly with key regions at the goal state and around the pitfall. The bor-
ders between cells indicate a sudden difference in behaviour, something we could
observe in the DRL one as well. The general trend is a movement towards the
goal with behaviour to go around the pitfall region. However, we notice that in
several important states around the pitfall the agent fails to avoid it.

5.2 Control task

Description MountainCarContinuous is a classic control problem where a toy
car has to climb out of a sinusoidal valley towards the top of a hill. The obser-
vation space is the position of the car z € [—1.2,0.6] along the x-axis and the
velocity v € [—0.07,0.07]. The action space is continuous and its value, applied
force F, is bound by F' € [—1,1]. The goal state is located at = 0.45 on top
of the hill. The truncation length of an episode is 1000 steps. For each step, a
reward of —0.1 * F2 is returned, which penalizes the agent applying performing
large forces on the car. When the goal is reached, a reward of 100 is given and
the episode is terminated with success.
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MountainCarContinuous-v0
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Fig.5: Spread of performance in terms of achieved return (higher is better). The
DRL agent is evaluated on 1000 evaluations while 40 instances of our method
were evaluated on the same 1000 episodes for a total of 40000 runs. We observe
a larger spread in our method and a higher median performance compared to
the DRL agent.

Performance The 85 x 1000 runs of our algorithm are reported in figure [5]
(right part) and compared to the 1000 runs of the DRL agent (left part). TD3
performs over all episodes with a mean return of 93.481 and a standard deviation
of 0.075 within a range of [93.360, 93.622]. No outliers were observed. For all runs
with our method, we observe a mean of 93.534 with standard deviation of 1.345
and a range of [71.050,94.680]. 3130 outliers are spread with 73.19% of values
below the spread lowerbound of 93.313 and 26.81% above upperbound of 94.130.
Respective means are 90.116 and 94.221 with standard deviation 4.338 and 0.110.

Over all runs, we observe a higher median compared to DRL. When looking at
the mean per run of the algorithm, we observe that the partitioning consistently
produces policies with higher returns. We do note that the difference is quite
small relative to the return gained by DRL. The outliers indicate training where
the algorithm did not cover the space well enough but still manages to fulfill the
task (a positive return always indicates success).

Visualization Both the DRL policy and best subpolicies are visualized using a
hotmap over their state space (Fig. @ The x-axis indicates the position of the
car while velocity is given on the y axis. At each point, the color indicates the
amount of force applied on the car. The 32 regions of the partitioned space have
their defining codeword in a spiral-like shape that closely follows the hill of the
DRL policy at higher velocities. The region with negative force (colored blue to
purple) is much smaller with the linear functions and has a slightly higher value
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Fig.6: On MountainCar: original black-box policy learned with TD3, and the
result of its distillation to explainable locally-linear policies.

(Appendix [B.2]). We also notice that the decision boundary between negative
and positive force is more rigid compared to DRL.

6 Discussion

In this paper, we presented a new representation of a Deep Reinforcement Learn-
ing using Voronoi State Partitioning. By searching regions where a simple linear
model can perform well enough to closely follow a DRL policy, we are able to
have global insight in the behaviour of the policy. We validated the approach
on both a navigation task and a control task and observed promising, even im-
proved, results compared to the original policy.

Both validation environments have an observation space dimensionality of
2. However, for partitioning a state space with high dimensionality, the kd-tree
lookup becomes exponentially less efficient with the number of dimensions |16].
This curse of dimensionality also affects lookup accuracy since with high dimen-
sions, an observation that is equal on all dimensions but one could be considered
similar. The definition of nearest points in space doesn’t hold anymore.

The chosen hyperparameters were retrieved ad-hoc. A more rigid search for
a better learning setting would yield an improved coverage of subpolicies over
the state space.

Interpretability, and eventually explainability, of a DRL policy is our main
motivation for designing this algorithm. However, due to the way regions are
constructed by codeword points and their position in state space relative to other
points, it becomes difficult to interpret the demarcation of a region. The method
allows for the interpretation of the policy only if inference is performed on the
Voronoi cells using a kd-tree. A future version should instead define regions along
the axis of the state space, something rule-based and tree ensembles are capable
off.

At last, we emphasize the model-agnostic nature of the algorithm. Every
class of model with learnable parameters could be used to stand in for regional



14 Deproost et al.

behaviour. In a later iteration of this approach, we would investigate more con-
troller like schemes such as PID controllers.
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Hyperparameters
Hyperparameter SimpleGoal-v0 MountainCarContinuous-v0
Nepochs 5000 2000
nsplit 20 50
Nmerge 100 100
Nreeze 1000 400
Nreset 500 500
min_param_distance 0.5 0.3
min_pol_distance 0.3 0.04
max_pol_loss 0.0001 0.00001
one_split False False

Table 2: Used hyperparameters for each environment
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B Best linear policies
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B.1 SimpleGoal
Codeword Ax Ay

[0.891, 0.628] —0.148z — 0.021y — 0.055 —0.420x 4 0.231y — 1.095
[0.826, 0.460] —0.347z 4 0.305y — 0.212 —1.087x — 1.370y — 0.319
[0.407, 0.150] 3.175y — 1.000 —4.127y — 0.710
[0.181, 0.326] —4.588z 4 0.045y — 0.620 3.134x — 0.082y — 0.978
[0.425, 0.568] —1.267x 4 0.966y — 0.056 —0.281x — 0.967y — 0.702
[0.292, 0.765] —1.657z — 0.271y + 0.147 0.433z — 0.602y — 0.484
[0.154, 0.051] —5.328z 4 5.256y + 0.191 —2.583x — 4.501y — 0.461
[0.545, 0.817] —0.1242z — 0.035y — 0.964 0.082z — 1.027y 4 0.226
[0.842, 0.153] —0.628z + 0.406y — 0.385 —0.536z — 0.010y + 0.663
[0.034, 0.496] —0.649x — 0.652y — 0.076 0.706x — 0.6946y — 0.463
[0.583, 0.303] —0.290z — 0.470y — 0.855 0.103z — 3.580y + 0.991
[0.824, 0.969] 0.266x — 0.424y — 0.684 —0.598x — 0.256y — 0.420
[0.195, 0.970] 0.327x — 0.246y + 0.349 0.620x — 0.077y — 0.882

Table 3: All codewords and subpolicies, rounded to 4 digits.
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B.2 MountainCar

Codeword F
-0.592, 0.000] —0.375z + 3.004v — 1.205
-0.463, 0.000] 1.6642 + 2.371v — 0.211
-0.510, 0.040]
-0.568, 0.038]
[-0.575, -0.024] 0.8357x + 0.7049v — 0.514
[-0.154, 0.045]
[-0.655, -0.014] —0.007x + 0.840v — 0.992

.424, 0.041]
-0.298, 0.042]

.256, 0.042]

135, 0.043]
-0.018, 0.041]

711, -0.020] 0.867x 4+ 0.415v — 0.374
1, -0.015] 1.1252 + 0.788v — 0.440
.854, -0.003]
60, 0.043]
88, -0.018]
.815, -0.012]
78, 0.016]
47, 0.044]
[0.030, 0.039]
[-0.752, -0.011] 0.871z — 0.737v + 0.018
[-0.604, 0.030]
[-0.194, 0.038]
[0.054, 0.033]
[-0.412, 0.000] 1.0258z + 0.073v — 0.464
[-0.601, -0.024] 0.7532x + 1.528v — 0.514
[-0.701, 0.030]
[-0.651, 0.033]
[-0.759, 0.018]
[-0.534, -0.020] 0.668z + 0.130v — 0.641
[-0.465, 0.039]

Table 4: All codewords and subpolicies, rounded to 4 digits. The colors of the
functions represents the ones in figure @
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C Validation spread metrics

C.1 SimpleGoal

Metric DRL Ours
Min -10.0 -11.790
Max 22.667 22.798
Mean 16.599 12.657
Std 3.117 8.436
Q1 14.542 12.298

Median/Q2 16.956 15.382
Q3 18.687 17.646
IQR 4.145 5.348

Coverage 97.6% 86.17%

Table 5: Spread of returns for experiments on SimpleGoal.

C.2 MountainCar

Metric DRL Ours
Min 93.360 71.050
Max 93.622 94.680
Mean 93.481 93.534
Std 0.075 1.345
Q1 93.403 93.403

Median/Q2 93.476 93.476
Q3 93.548 93.548
IQR 0.145 0.145

Coverage 100% 92.18%

Table 6: Spread of returns for experiments on MountainCar.
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