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Abstract001

While multilingual language models like XLM-002
R have advanced multilingualism in NLP, they003
still perform poorly in extremely low-resource004
languages. This situation is exacerbated by the005
fact that modern LLMs such as LLaMA and006
Qwen support far fewer languages than XLM-007
R, making text generation models non-existent008
for many languages in the world. To tackle this009
challenge, we propose a novel framework for010
adapting multilingual encoders to text genera-011
tion in extremely low-resource languages. By012
reusing the weights between the encoder and013
the decoder, our framework allows the model to014
leverage the learned semantic space of the en-015
coder, enabling efficient learning and effective016
generalization in low-resource languages. Ap-017
plying this framework to four Chinese minor-018
ity languages, we present XLM-SWCM, and019
demonstrate its superior performance on var-020
ious downstream tasks even when compared021
with much larger models.022

1 Introduction023

In recent years, with the development of multi-024

lingual pretrained models such as XLM-R (Con-025

neau et al., 2020), mBART (Liu et al., 2020),026

and mT5 (Xue et al., 2021), language models027

have achieved significant progress in multilingual028

tasks, especially for high-resource languages. How-029

ever, low-resource languages like Tibetan, Uyghur,030

Kazakh, and Mongolian—spoken by millions of031

people in China—remain critically underserved.032

Among these languages, Tibetan has over 10 mil-033

lion speakers, Uyghur over 11 million, Kazakh034

approximately 3 million, and Mongolian around 7035

million, yet their representation in existing multilin-036

gual corpora is vastly inadequate. As illustrated in037

Figure 1, there is a significant disparity between the038

population sizes of these languages and the amount039

of available data in popular multilingual corpora040

such as OSCAR (Jansen et al., 2022). The situation041

Figure 1: The relationship between population size and
dataset size in OSCAR (y-axis, in MB) for various high-,
middle-, and low-resource languages.

is especially dire for Kazakh and Mongolian, with 042

virtually zero usable data, hindering their inclusion 043

in mainstream multilingual models. 044

Despite claims of multilingual support for hun- 045

dreds of languages, models like mBART and mT5 046

are not trained on Chinese minority languages. In 047

comparison, more advanced multiglingual large 048

language models such as LLaMA (Touvron et al., 049

2023) and Qwen (Yang et al., 2024) support even 050

fewer languages. 051

This gap underscores the need for targeted solu- 052

tions to address the challenges of text generation 053

in extremely low-resource languages. To tackle 054

this challenge, we propose a novel framework for 055

efficiently extending a multilingual encoder into 056

an encoder-decoder architecture. To address the 057

scarce training data in low-resource languages, we 058

introduce a weight-sharing mechanism between the 059

encoder and the decoder by interleaving weights 060

transferred from the encoder with randomly initial- 061

ized ones, allowing for efficient adaptation to text 062

generation in low-resource settings. 063

Extensive experiments on the aforementioned 064

1



Figure 2: An overview of the shared weight framework for efficiently adapting multilingual encoders to text
generation in low-resource languages.

four Chinese minority languages demonstrate the065

convincing advantages of our proposed method,066

with both faster convergence, better generalization,067

and strong cross-lingual transfer capabilities. Our068

model, XLM-SWCM (XLM-Shared Weight for069

Chinese Minorities), outperforms an mBART base-070

line by up to 199% on text summarization, 108%071

on reading comprehension, and also bests the much072

larger MC2-LLaMA 13B (Zhang et al., 2024b) in073

cross-lingual transfer settings.074

In summary, the main contributions of this paper075

are:076

1) a weight-sharing framework for efficiently077

adapting multilingual encoders to text generation078

in low-resource languages;079

2) a model XLM-SWCM trained with this080

method for multiple Chinese minority languages;081

3) extensive experiments showcasing the supe-082

rior performance of XLM-SWCM compared with083

similar-sized baselines and much larger LLMs, con-084

firming the feasibility of our framework.085

Our code and models will be released upon pub-086

lication.087

2 Related Works088

2.1 Multilingual Corpus089

The evolution of multilingual large language mod-090

els (LLMs) has been enabled by the release of091

extensive multilingual corpora such as CC100,092

mC4, OSCAR, CulturaX, and Madlad-400 (Wen-093

zek et al., 2020; Raffel et al., 2019; Jansen et al.,094

2022; Nguyen et al., 2024; Kudugunta et al., 2023).095

While these resources cover a selection of low-096

resource languages to some extend, there remains097

a recognized gap in the representation for China’s098

minority languages, primarily due to significant099

differences in writing systems.100

China’s minority languages often use differ-101

ent writing systems from the same language fam-102

ily used elsewhere in the world. For example,103

Uyghur is primarily written in the Arabic script104

(UEY—Uyghurche Ereb Yëziqi) in China, with105

the Latin script (ULY—Uyghurche Latin Yëziqi)106

used as a supplementary form. In contrast, Uyghur 107

in Russia and Central Asia is written in the Cyril- 108

lic script (USY—Uyghurche Shilir Yëziqi). When 109

collecting data for minority languages, the afore- 110

mentioned multilingual corpora either do not dis- 111

tinguish between such different writing systems, 112

or only contain data from one system, as shown in 113

Figure 1. 114

Recently, the release of the Multilingual Cor- 115

pus of Minority Languages in China (MC2, Zhang 116

et al., 2024b) breaks the gap in the availability 117

of Chinese minority language pretraining corpora, 118

covering four underrepresented languages: Tibetan, 119

Uyghur, Kazakh, and Mongolian. This dataset is 120

used as the primary pretraining corpus in our work. 121

2.2 Development of Multilingual Language 122

Models 123

In the past few years, multilingual variants of pre- 124

trained language models have been proposed in 125

the NLP community, such as mBART (Liu et al., 126

2020) and mT5 (Xue et al., 2021), supporting 127

up to 100 languages and demonstrating power- 128

ful cross-lingual transfer capabilities. More re- 129

cently, the emergence of large language models 130

(LLMs) has revolutionized multilingual natural lan- 131

guage processing. Models like PaLM (Chowdh- 132

ery et al., 2023) and BLOOM (Scao et al., 2022) 133

have made significant strides in multilingual capa- 134

bilities, while the LLaMA family (Touvron et al., 135

2023) and its multilingual variants have democra- 136

tized access to multilingual LLMs. Some special- 137

ized models represented by XGLM and NLLB (Lin 138

et al., 2022; Costa-jussà et al., 2022) have focused 139

on expanding language coverage and improving 140

cross-lingual transfer capabilities across hundreds 141

of low-resource languages. However, few of these 142

models support Chinese minority languages. 143

2.3 NLP for Minority Languages in China 144

To enhance the accessibility of minority languages 145

in China, prior studies have primarily focused on 146

curating annotated datasets for various NLP tasks. 147

These efforts have mainly concentrated on three 148
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Figure 3: The weight initialization schemes for the Cus-
tomDecoderLayer. The colored arrows indicate the ini-
tialization of weights between the different components.

key task categories: text classification (Qun et al.,149

2017; Sun et al., 2021a; Shi et al., 2023), ques-150

tion answering (Sun et al., 2021b), and machine151

translation (Zhang et al., 2024a). Prominent mod-152

els specifically trained for these languages include153

CINO (Yang et al., 2022), MiLMo (Deng et al.,154

2023), and TiBert (Liu et al., 2022). However,155

despite such progress, none of these models have156

released their pre-training corpora, and there is still157

a notable gap in the availability of models capable158

of text generation in these languages.159

3 Method160

3.1 Adapting Encoders to Text Generation161

3.1.1 Framework Overview162

In this section, we introduce the Shared Weights163

Framework, which leverages shared weights be-164

tween the encoder and decoder for efficiently adapt-165

ing multilingual encoders to text generation in low-166

resource languages.167

The overall pipeline is visually summarized in168

Figure 2. Starting from CINO (Yang et al., 2022),169

a continual-pretrained version of XLM-R for Chi-170

nese minority languages, we copy its weight to171

initialize the decoder layers for knowledge transfer,172

and tie some of the weights between encoder and173

dedocer to enable efficient training. This model,174

which we name XLM-SWCM, is pretrained on175

the MC2 corpus and then applied to downstream176

tasks, including both single-language finetuning177

and cross-lingual transfer.178

3.1.2 Model Architecture 179

Like the vanilla Transformer, the proposed model 180

has two main components: 181

Encoder: a pre-trained encoder-only model, 182

specifically CINO, a variant of XLM-R enhanced 183

for Chinese minority languages. 184

Decoder: a transformer decoder stack with a spe- 185

cialized weight transfer mechanism. To balance 186

the knowledge acquired during the encoder’s large- 187

scale pretraining and new knowledge required for 188

downstream generation tasks, we introduce two 189

types of decoder layers: NormalDeocderLayer and 190

CustomDecoderLayer, both maintaining the same 191

hidden dimension, intermediate size, and number 192

of attention heads as the encoder. 193

NormalDecoderLayer: A standard transformer 194

decoder layer with randomly initialized weights. 195

It follows a conventional architecture with sequen- 196

tial self-attention, cross-attention, and feed-forward 197

network. These layers enable the model to learn 198

generation-specific features from scratch, comple- 199

menting the knowledge transfered from the en- 200

coder. 201

CustomDecoderLayer: A modified transformer 202

decoder layer that inherits pre-trained weights from 203

the encoder. It features an enhanced structure with 204

two strategically positioned feed-forward networks: 205

FFN1 between self-attention and cross-attention, 206

and FFN2 following cross-attention, each with its 207

own layer normalization and residual connection, 208

as shown in Figure 3. CustomDecoderLayer inher- 209

its all its weights from the pre-trained encoder to 210

reuse learned representations. 211

3.1.3 Weight Sharing Mechanism 212

In our framework, the pre-trained encoder con- 213

sists of only self-attention and feed-forward blocks, 214

while the decoder layers require both self-attention 215

and cross-attention mechanisms for effective gen- 216

eration. Thus, special schemes are designed to 217

initialize and reuse the weights, as shown in Fig- 218

ure 3. 219

For weight initialization of CustomDecoder- 220

Layers, weights of both self-attention and cross- 221

attention in the decoder are initialized from the 222

encoder’s self-attention blocks. Similarly, weights 223

of both two FFN blocks in a decoder layer are ini- 224

tialized from the FFN block in the corresponding 225

encoder layer. This mechanism reduces the effec- 226

tive number of parameters to be learned, accelerat- 227

ing convergence and enabling effective transfer of 228
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linguistic knowledge from the pre-trained encoder229

while maintaining model stability.230

A key architectural decision in our framework is231

the insertion pattern of these layers. After every X232

CustomDecoderLayers, we insert one NormalDe-233

coderLayer, so that an encoder with n layers would234

correspond to a decoder with n + ⌊n/X⌋ layers.235

The value of X significantly impacts the model’s236

generalization capabilities, and its optimal value237

varies across different model scales. Through ex-238

tensive experimentation, we find that X = 3 yields239

the best performance, and a detailed analysis of240

how this choice affects the model’s performance is241

discussed in Section 5.2.3.242

3.2 Pretraining243

3.2.1 Pretraining Tasks244

We adopte a multi-task training approach for pre-245

training. The primary task involves self-supervised246

learning using mBART’s denoising auto-encoding247

(DAE) strategy. This strategy helps with the248

model’s transition from the encoder’s word-level249

cloze tasks to sequence generation tasks by predict-250

ing the masked portions of the input sequence with251

a decoder.252

Additionally, we incorporate machine transla-253

tion as an auxiliary objective, particularly focus-254

ing on translation between Mandarin Chinese and255

various Chinese minority languages. Specifically,256

the training data includes bidirectional translation257

pairs between Mandarin Chinese and the minority258

languages. This auxiliary objective improves the259

model’s cross-lingual transfer capability, thereby260

enhancing the model’s performance in various low-261

resource language processing tasks.262

3.2.2 Training Data263

THUCNews (THU-NLP Group, 2016) is a Chinese264

news dataset, derived from historical data from the265

Sina News RSS feed between 2005 and 2011 and266

containing approximately 740,000 news articles.267

From this dataset, we extracted a subset of Simpli-268

fied Chinese news articles.269

MC2 (Zhang et al., 2024b) provides multilin-270

gual data for several Chinese minority languages,271

including Tibetan, Uyghur, Kazakh, and Mongo-272

lian. The specific data volumes are described in273

detail in Appendix A. Together with THUCNews,274

these monolingual datasets serve as training data275

for the DAE task.276

For machine translation, we leveraged Google277

Translate to create bidirectional translation pairs278

between Chinese and the minority languages (Ti- 279

betan, Uyghur, Kazakh, and Mongolian). These 280

translations were verified by native speakers to en- 281

sure accuracy. A total of 2,000 sentence pairs from 282

each language pair were selected to form the sup- 283

plementary training data. 284

Combining these three corpora, the integrated 285

dataset allows the model to effectively handle both 286

high-resource and low-resource languages, improv- 287

ing its cross-lingual transfer and multilingual capa- 288

bilities. 289

4 Experiments 290

4.1 Pretraining 291

Training Configuration The models are trained 292

for 8 epochs with a peak learning rate of 1e-4, 293

AdamW (Loshchilov and Hutter, 2019) optimizer, 294

global batch size 600, and a linear learning rate 295

scheduler with a warmup proportion of 0.1. The 296

maximum sequence length is set to 256 tokens, 297

and mixed-precision is enabled to optimize mem- 298

ory usage and training efficiency. To ensure train- 299

ing stability, the norms of gradients are clipped 300

to 1.0. The models are trained on two NVIDIA 301

A800 GPUs, each with 80GB of memory, and the 302

training process takes 92 hours. 303

Balanced Sampling Strategy To address the in- 304

herent data imbalance across different languages, 305

we implemente a balanced sampling strategy simi- 306

lar to XLM-R. The sampling probability for each 307

language is calculated as 308

pi =
qαi∑
j q

α
j

, (1) 309

where qi represents the original proportion of lan- 310

guage i in the dataset, and α (set to 0.3) is a smooth- 311

ing parameter that balances between uniform sam- 312

pling and size-proportional sampling. This ap- 313

proach ensures that low-resource languages receive 314

adequate representation in the training process 315

while maintaining the influence of larger datasets. 316

Model Adaptations We extende the model’s vo- 317

cabulary with special language tokens (<bo>, <kk>, 318

<mn>, <ug>, <zh>) to handle our target languages 319

(Tibetan, Kazakh, Mongolian, Uyghur, and Chi- 320

nese). These language identifiers are directly added 321

after the bos token <s> in the model inputs. This 322

modification ensures that the model can effec- 323

tively process and distinguish between different 324

languages during both pre-training and downstream 325
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task finetuning. The same approach is consistently326

applied in all subsequent experiments.327

Based on the aforementioned settings, we trained328

a new seq2seq model - XLM-SWCM, utilizing329

CINO-base-v2 as the encoder, with 457 million pa-330

rameters. The detailed architectural configuration331

is provided in Appendix B.332

4.2 Downstream Tasks333

4.2.1 Experiment Setting334

To evaluate the capabilities of XLM-SWCM, we335

conduct fine-tuning experiments on three down-336

stream tasks in both low-resource and high-337

resource languages: Text Summarization, Machine338

Reading Comprehension (MRC), and Machine339

Translation. These tasks are chosen to cover di-340

verse areas of text generation in NLP.341

Single-Language Fine-tuning Due to the342

scarcity of labeled data for low-resource languages,343

we focus primarily on Tibetan for single-language344

fine-tuning, which has several publicly available345

datasets:346

- Text Summarization: For this task, we utilize347

the Ti-Sum dataset (Xiaodong, 2022) with 20,000348

pairs of titles and articles.349

- MRC: We mainly use the TibetanQA350

dataset (Sun et al., 2022) for this task, which claims351

to contain 20K examples. However, only 2K ex-352

amples are publicly available. Thus we enrich it353

by integrating 5K examples from the TibetanSFT354

Corpus1 and 3K examples translated from a Chi-355

nese MRC dataset (Cui et al., 2019a) using Google356

Translate. This approach enables us to create a com-357

prehensive dataset consisting of 10K examples.358

- Machine Translation: For Machine Transla-359

tion, we also use the TibetanSFT Corpus, which360

is cleaned to generate 50,000 parallel Chinese-361

Tibetan sentence pairs.362

Cross-lingual Transfer In addition to single-363

language fine-tuning, we also conduct cross-lingual364

transfer experiments to test XLM-SWCM’s abil-365

ity to generalize across multiple low-resource lan-366

guages. This experiment aims to assess the model’s367

performance in Tibetan, Uyghur, Mongolian, and368

Kazakh after being fine-tuned on a high-resource369

language (Simplified Chinese) and a very small370

number of samples in the target languages.371

- Text Summarization: For Mandarin Chinese,372

we use the publicly available LCSTS dataset (Hu373

1https://huggingface.co/datasets/shajiu/ParallelCorpusSFT

et al., 2015), which contains 100K samples scraped 374

from various Chinese portals. For the four minority 375

languages, approximately 3K cleaned samples per 376

language are scraped from language-specific news 377

portals, using the news titles as their summariza- 378

tion. 379

- MRC: For Chinese, we employ the CMRC 380

2018 dataset (Cui et al., 2019b), which consists of 381

10K samples. For Tibetan, we use 500 samples 382

extracted from the publicly available TibetanQA 383

dataset. For the other three minority languages 384

(Uyghur, Mongolian, Kazakh), we utilize machine 385

translation tools to translate and clean MRC data, 386

ultimately selecting 500 samples per language. 387

Baseline Models We employ two baseline mod- 388

els to ensure broad coverage and robust perfor- 389

mance in handling Chinese minority languages. 390

The first model builds upon LLaMA2-Chinese and 391

is fine-tuned on the MC2 dataset, resulting in the 392

MC2-LLaMA-13B model. The second baseline, 393

referred to as mBART-CM, is an adaptation of 394

mBART-cc25. Its vocabulary is expanded to in- 395

clude tokens specific to our minority languages, 396

followed by further pretraining on MC2. 397

Training settings Both XLM-SWCM and 398

mBART-CM are sequence-to-sequence mod- 399

els that are fine-tuned using standard training 400

configurations. Each of these models is trained 401

for 50 epochs with a batch size of 200 samples 402

to ensure comprehensive learning and optimal 403

performance. MC2-LLaMA-13B model is trained 404

using LoRA (Hu et al., 2022) with a rank of 8 for 405

3 epochs. 406

4.2.2 Experimental Results 407

As illustrated in Table 1, XLM-SWCM consistently 408

outperforms the baseline models across all three 409

tasks. Despite having fewer parameters, XLM- 410

SWCM demonstrates a substantial margin of su- 411

periority over mBART-CM and even surpasses the 412

much larger MC2-LLaMA-13B. 413

Notably, XLM-SWCM achieves an impressive 414

198.8% improvement in F1-score for Text Sum- 415

marization over mBART-CM, along with a signifi- 416

cant 107.6% F1 improvement in MRC. These 417

remarkable gains are a direct result of XLM- 418

SWCM’s efficient weight sharing framework to 419

maximize the utilization of pre-trained encoder fea- 420

tures in resource-constrained scenarios. Even under 421

equivalent seq2seq structures and identical train- 422

ing corpora, XLM-SWCM demonstrates greater 423
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Model Size Sum MRC MT

F P R F P R F P R

MC2-LLaMA-13B 13B 16.1 12.3 15.5 13.2 11.7 13.1 15.1 12.2 16.8
mBART-CM 611M 8.6 11.2 15.2 7.9 6.1 5.6 11.5 7.3 9.3

XLM-SWCM (ours) 457M 25.7 29.1 24.2 16.4 29.5 16.2 24.5 26.3 24.3

Table 1: Performance metrics of the baseline models, evaluated using three ROUGE-L sub metrics: F (F1-score), P
(precision), and R (recall). Size refers to the number of parameters in each model.

Model Zh Bo Ug Mn Kk

Sum MRC Sum MRC Sum MRC Sum MRC Sum MRC

MC2-LLaMA-13B 47.1 43.5 9.5 6.1 3.5 2.4 3.7 2.2 2.6 3.9
MC2-LLaMA-13B* 47.3 44.7 13.1 11.5 11.7 10.1 9.7 10.2 2.9 4.6
mBART-CM 32.7 25.6 6.8 2.1 2.7 2.2 3.1 1.7 0.2 0.1
XLM-SWCM (ours) 33.1 23.5 17.1 11.1 12.5 11.1 13.5 7.2 5.6 6.9

Table 2: Cross-lingual Transfer performance of different models on Text Summarization (Sum) and Machine
Reading Comprehension (MRC) tasks, evaluated using ROUGE-L. The best results for each task are highlighted.
* indicates explicitly prompting MC2-LLaMA-13B with the language to be used in the response during evaluation.

efficiency and learning capacity.424

In comparison to MC2-LLaMA-13B, which ben-425

efits from richer pretraining corpora and larger-426

scale parameters, XLM-SWCM achieves a 59%427

higher F1-score in Text Summarization, a 24.1%428

F1 improvement in MRC, and a 62.3% higher429

F1-score in MT. These results underscore the ef-430

fectiveness of XLM-SWCM’s shared weight frame-431

work in resource-constrained environments, mak-432

ing it a superior choice for tasks involving Chinese433

minority languages.434

Table 2 highlights the performance of XLM-435

SWCM and baseline models in cross-lingual trans-436

fer settings. For the primary source language437

(Zh), the baseline models demonstrate better per-438

formance, which stems from their larger parame-439

ter sizes and more extensive pretraining corpora440

in Simplified Chinese. However, when it comes441

to generalization to minority languages, XLM-442

SWCM showcases exceptional adaptability, signifi-443

cantly outperforming the baseline models. mBART-444

CM, for instance, struggles to distinguish between445

languages and often defaults to outputs in the pri-446

mary language (Zh), even when language-specific447

labels are present. Similarly, MC2-LLaMA-13B448

exhibits language-related errors, though its perfor-449

mance improves when explicitly informed of the450

current language type, as seen with MC2-LLaMA-451

13B*. 452

In Text Summarization, XLM-SWCM outper- 453

forms all baselines. Specifically, XLM-SWCM 454

achieves significant improvements of 30.5%, 455

6.8%, and 39.1% for Tibetan (Bo), Uyghur 456

(Ug), and Mongolian (Mn) respectively over MC2- 457

LLaMA-13B*, the best-performing baseline. For 458

MRC, XLM-SWCM also demonstrates compet- 459

itive performance across most languages, being 460

only slightly weaker than MC2-LLaMA-13B* for 461

Tibetan and Mongolian. 462

Overall, these experiments indicate that XLM- 463

SWCM can effectively leverage the shared weight 464

mechanism to maximally reuse the semantic space 465

of the pre-trained encoder, demonstrating excellent 466

performance in Chinese minority language applica- 467

tions with limited data and parameter size. 468

5 Ablation Studies 469

In this section, we present a series of ablation exper- 470

iments aimed at evaluating the impact of key com- 471

ponents in our framework that play essential roles 472

in enhancing the model’s multilingual capabilities 473

and improving its generalization to low-resource 474

languages. We perform ablation experiments on the 475

Tibetan finetuning tasks, maintaining a consistent 476

finetuning setting with Section 4.2.1. 477
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Removing Module Sum MRC MT

None (XLM-SWCM) 25.7 16.4 24.5
MT 25.6 15.1 20.3

DAE 22.4 12.2 18.7
WS 17.1 11.7 18.2

MT + DAE 22.5 12.3 17.7
MT + WS 17.5 11.3 18.4

DAE + WS 15.2 11.9 17.1
MT + DAE + WS 15.9 10.8 16.5

Table 3: Objective ablation results, evaluated using
ROUGE-L. The experiments involve removing different
combinations of training components, such as Machine
Translation (MT), DAE (Denoising Auto-Encoding),
and Weight Sharing (WS).

5.1 Objective Ablation478

We first focus on three critical aspects of the model:479

DAE pretraining, machine translation, and weight480

initialization by removing each and combinations481

of them. The results are shown in Table 3. Remov-482

ing any of the three components is detreimental to483

performance, specifically:484

- Machine Translation (MT): Removing machine485

translation has a relatively small impact on per-486

formance across tasks, as shown by both individ-487

ual removal (maintaining 25.6 in Sum) and com-488

bined removals (MT+DAE vs DAE showing simi-489

lar scores);490

- Denoising Auto-Encoding (DAE): The removal491

of DAE pretraining causes considerable perfor-492

mance drops across all three downstream tasks, and493

its impact becomes more pronounced in combined494

removals (DAE+WS), indicating its fundamental495

importance in establishing the model’s basic text496

generation capabilities.497

- Weight Sharing (WS): The removal of weight498

sharing demonstrates the most significant impact499

among all modules, showing the largest perfor-500

mance drops in individual removal and maintaining501

this substantial negative effect across all combined502

removal scenarios, establishing it as the most cru-503

cial component for the model’s effectiveness in504

low-resource settings.505

In short, while all three components contribute506

positively to the model’s performance, weight shar-507

ing emerges as the most critical component. This508

finding highlights the importance of weight sharing509

as a key architectural choice for multilingual mod-510

els, especially in resource-constrained scenarios. 511

5.2 Structure Ablation 512

We also perform experiments to evaluate the impact 513

of different structural components in our proposed 514

framework. These experiments aim to understand 515

how the initialization of decoder weights and the in- 516

sertion of normal layers affect model performance. 517

5.2.1 Impact of Weight Initialization 518

Firstly, we train a baseline model called Cino- 519

Transformer. Unlike XLM-SWCM, the decoder 520

of this model is randomly initialized, and also 521

matches the number of encoder layers. The model 522

is pretrained using the same DAE and MT tasks as 523

XLM-SWCM but without weight sharing, and then 524

finetuned on downstream tasks in the same setting 525

as XLM-SWCM. 526

Model Sum MRC MT

Cino-Transformer 18.9 13.5 18.7
XLM-SWCM (ours) 25.7 16.4 24.5

Table 4: Performance metrics of the Ablation of Weight
Initialization, evaluated using the ROUGE-L metric.

Model Sum MRC MT

BASE-A 13.7 10.3 15.7
BASE-B 16.3 14.1 21.1

XLM-SWCM (ours) 25.7 16.4 24.5

Table 5: Performance metrics of the Ablation of Normal
Layers, evaluated using the ROUGE-L metric. BASE-A
has fewer layers and does not include any normal layers,
while BASE-B maintains the same number of layers
as XLM-SWCM but uses weight duplication instead of
normal layers.

The results in Table 4 demonstrate the effective- 527

ness of our weight initialization scheme. By trans- 528

ferring weights from the encoder to the decoder, 529

XLM-SWCM can be efficiently adapted to text gen- 530

eration with limited training data, outperforming 531

Cino-Transformer on all tasks. 532

5.2.2 Impact of Randomly Initialized Layers 533

Secondly, we explore the impact of inserting nor- 534

mal layers among the custom layers in the decoder. 535

To assess the effectiveness of this modification, we 536

use two baseline models for comparison: 537
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- Baseline A (XLM-SWCM without normal538

layers): This model is identical to XLM-SWCM539

but without any normal layers inserted into the540

custom layer architecture. The absence of normal541

layers leads to a reduced total number of layers in542

the decoder.543

- Baseline B (Weight duplication model): In-544

stead of inserting normal layers, this model simply545

copies the weights of the preceding layer to main-546

tain consistency in the number of model parameters.547

This results in identical weights across consecutive548

layers, allowing us to isolate the impact of inserting549

randomly initialized normal layers.550

The results in Table 5 demonstrate the significant551

impact of inserting normal layers into the decoder.552

BASE-A, which has fewer layers, performs the553

worst across all tasks. BASE-B, which maintain554

the same number of layers as XLM-SWCM but555

lacks randomly initialized weights, shows some556

improvement but still underperforms.557

Overall, these findings indicate that randomly558

initialized normal layers is also crucial for adapting559

encoders to text generation.560

5.2.3 Impact of Insertion Frequency of561

Normal Layers562

Thirdly, we thoroughly investigate the impact of563

insertion frequency of normal layers in the decoder,564

and how this interacts with varying dataset sizes.565

This experiment is designed along two dimensions:566

- Insertion Frequency of Normal Layers: we567

explore values of X where a normal layer is in-568

serted after every X custom layers, with X ranging569

from 1 to 6. All these models are pretrained in the570

same setting as XLM-SWCM.571

- Effect of Finetuning Dataset Size: we evalu-572

ate the model’s performance on datasets of varying573

sizes, including 10K, 20K, and 50K samples. As574

the existing Ti-SUM dataset only has 20K samples,575

we supplement it by crawling and cleaning 30K ad-576

ditional news articles from various major Chinese577

websites. This dimension allows us to examine the578

interaction between the amount of available data579

and the frequency of normal layers.580

The results are plotted in Figure 4:581

- For the small dataset (10k), larger X results in582

better performance, as smaller decoders generalize583

more effectively when data is limited. In contrast,584

smaller X (i.e. larger decoders) leads to overfitting.585

- For the medium dataset (20k), performance586

peaks at X = 3. This indicates that a moderate587

decoder size strikes a balance between capacity and588

Figure 4: ROUGE-L scores on Tibetan summarization
for different X-values (insertion frequency of normal
layers). The three lines correspond to different dataset
sizes.

data availability. 589

- For the large dataset (50k), smaller X achieve 590

the highest F1-scores, as the larger decoder capac- 591

ity enables the model to fully exploit the larger 592

dataset. 593

Overall, these results demonstrate the flexibility 594

of our framework, where the insertion frequency 595

of normal layers can be adjusted based on the task- 596

specific dataset size. Larger X (fewer layers) is 597

better suited for small datasets, while smaller X 598

(more layers) performs best on larger datasets. 599

6 Conclusion 600

In this work, we proposed a novel pretraining 601

framework tailored for low-resource languages, 602

with a particular focus on Chinese minority lan- 603

guages. Our framework leverages a shared weight 604

mechanism between the encoder and decoder, 605

which allows for the efficient adaptation of mul- 606

tilingual encoders to generation tasks without the 607

need to start from scratch. Experimental results 608

demonstrate that our model XLM-SWCM signifi- 609

cantly outperforms traditional baselines on various 610

text generation tasks for Tibetan, Uyghur, Kazakh, 611

and Mongolian, which have long been underserved 612

in NLP research. Our approach opens up new pos- 613

sibilities for developing robust models for these 614

extremely low-resource languages, and also pro- 615

vides a promising method for the integration of 616

resources across similar languages. 617
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7 Limitations618

Due to the availability of pretrained language mod-619

els for Chinese minority languages and high-quality620

corpora, our study focused on only four minority621

languages. Our single-language finetuning experi-622

ments are further constrained to Tibetan given the623

lack of relevant datasets, limiting the scope of our624

exploration.625

Thus, we hope that future work will put more626

focus on the development of high-quality datasets627

in these minority languages and beyond, enabling628

a more thorough exploration of underrepresented629

languages in the LLM era.630
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A Dataset Details913

For pretraining of XLM-SWCM and other baseline914

models, we used a combination of Simplified Chi-915

nese data from THUCNews and minority languages916

from MC2. The breakdown of their distribution is917

given in Table 6.918

Language Data Size Number of
Samples

Tibetan 2.2 GB 184,045
Uyghur 736 MB 90,441
Kazakh 937 MB 57,827

Mongolian 970 MB 171,847
Simplified
Chinese

2.1 GB 836,075

Table 6: Statistics of our pretraining dataset.

B Training Details919

In addition to the settings presented in the main920

paper, here we detail other parameters used during921

pre-training XLM-SWCM for complete reproduc-922

tion:923

Hardware and Software Configuration924

925 - Hardware: NVIDIA Tesla A800 GPU, 80 GB926

RAM * 2, Intel i7 CPU.927

- Software: Ubuntu 20.04, CUDA 11.7, Py-928

Torch 2.3929

Training Configurations930

931 - Total Training Samples: 1,340,235932

- Local Batch Size: 75933

- Gradient Accumulation Steps: 4934

- Global Batch Size: 600935

- Epochs: 8936

- Total Training Steps: 17,864937

- Optimizer: AdamW with β1 = 0.9, β2 =938

0.999939

- Learning Rate: 1e-4940

- Warm-up: Linear warm-up for the first epoch,941

gradually increasing the learning rate from 1e-5 to942

1e-4.943

- Scheduled Sampling: In the first epoch,944

teacher forcing is applied to guide the model. Sub-945

sequently, the teacher forcing ratio is gradually946

decreased in a linear fashion, transitioning to sched-947

uled sampling (Bengio et al., 2015).948
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