
D3: A LARGE DATASET FOR TRAINING CODE
LANGUAGE MODELS TO ACT DIFF-BY-DIFF

Ulyana Piterbarg1, Kanishk Gandhi2, Lerrel Pinto1, Noah D. Goodman2, & Rob Fergus1∗
1New York University, 2Stanford University

ABSTRACT

We introduce D3 (“Diverse Data for Diff-by-Diff Coding”), a large dataset for
training LMs to iteratively synthesize general-purpose Python source code by
generating file diffs. D3 frames code synthesis as a goal-conditioned sequen-
tial decision-making problem, where goals, states, and actions are represented by
token sequences corresponding to the description of a functionality to add, the
current contents of a file, and a file diff, respectively. The dataset contains 8 bil-
lion tokens of instruction + file-state + file-diff-sequence examples sampled from
850,000 human-written Python source files. To construct D3, we filter, augment,
and annotate source code from The Stack by sampling synthetic file-diff sequences
with a code analysis tool and labeling each sample with an LLM-generated ratio-
nale. In our experiments, we show that mid-training LMs like Llama 3.2 1b and
3b on D3 prior to supervised fine-tuning (SFT) on task-curated data improves per-
formance on synthesis & editing tasks. On benchmarks like HumanEvalSynth and
HumanEvalFix, we observe improvements in pass@1 of 3 to 6 points compared to
direct SFT. D3-trained models are particularly strong at completing partial human-
written solutions to programming problems.

Figure 1: The D3 dataset. Diff action traces are checked for syntactical correctness with a Python
analysis tool and capture a wide range of abstractions, from fine-grained additions to files like library
imports to high-level architectural changes. The procedure used to prepare D3 is not specific to
Python and can be used to create similar datasets for other languages.

1 INTRODUCTION

Achieving human-level performance in software engineering — let alone surpassing it — requires
language models (LMs) to exhibit open-ended programming capabilities, i.e, be able to efficiently
explore in program space and continuously add to or evolve the functionality and structure of a
source file. While recent advances have enabled models to generate code to solve isolated program-
ming problems from natural language instructions (Jaech et al., 2024; Dubey et al., 2024; Team
et al., 2024), LMs and LM agents still fall short of replicating the iterative and exploratory nature
of expert human software development (Jimenez et al., 2023; Yang et al., 2024; Pan et al., 2024;
Antoniades et al., 2024).

One explanation for why models struggle with iterative code refinement (Olausson et al., 2023) is
that they are predominantly trained on complete programs rather than edit data (Lozhkov et al.,

∗Contact: {up2021, fergus} @cs.nyu.edu.

1

Figure 2: (Top left) The procedure used to prepare D3. There are two phases: source file filtering,
and file-diff sequence sampling & instruction labeling. The first phase uses an instruction-tuned
LLM and a data grading rubric (Appendix A, Fig. 7), while the second uses an LLM, a code linter,
and the LintSeq algorithm for sampling file-diffs. (Top right) An instruction + file-state + file-
diff-sequence example in D3. Formatted full-text examples are in Appendix B. (Bottom) The
LintSeq algorithm for sampling synthetic file-diff traces that reflect the semantics & syntax of a
programming language.

2024b). Moreover, existing open-source datasets for coding lack: 1) scale & diversity — many
datasets are optimized for downstream success on a narrow set of Python problem-solving datasets
like MBPP and LeetCode (Wei et al., 2024), producing brittle models; 2) descriptive labels for
edits — code edits are not necessarily paired with meaningful goal annotations (Muennighoff et al.,
2023); and 3) human-like abstraction patterns, which may be helpful for iteratively exploring and
designing code.

In an effort to address these limitations, we introduce D3 (“Diverse Data for Diff-by-Diff Cod-
ing”), a dataset of 3.6 million examples of instruction-annotated code edit sequences. D3 contains
8 billion tokens of data (Table 1), prepared through a novel combination of synthetic diff genera-
tion and LLM-powered filtering & labeling over permissively-licensed source code files from The
Stack (Kocetkov et al., 2022). Our approach leverages the LintSeq algorithm to generate synthetic
diffs that reflect programming language semantics and syntax (Piterbarg et al., 2024), a pretraining
corpus filtering procedure inspired by FineMath (Lozhkov et al., 2024a), and an LLM-powered in-
struction labeling procedure (Wang et al., 2021) (see Fig. 2). The data in D3 captures a wide range
of programming patterns and abstractions, from low-level syntactic modifications to high-level ar-
chitectural changes to source files, each paired with natural language instructions that describe the
intended transformation (see Fig. 1). Qualitatively, examples in D3 cover diverse topics like unit
testing, data visualization, file I/O, image processing, and deep learning (see Fig. 3).

Breaking down code generation across sequences of edits or file-diffs has been shown to improve
the quality and diversity of LM-generated code (Piterbarg et al., 2024). This mirrors how chain-
of-thought prompting (Nye et al., 2021; Wei et al., 2021) can help language models solve certain
complex reasoning tasks through intermediate steps. In our own set of experiments, we demonstrate
each of the items below.

1. D3 improves the performance of small LMs on synthesis & editing tasks: Mid-training
Llama 3.2 1b and 3b on D3 prior to supervised fine-tuning can improve pass@1 on single-
file coding benchmarks by 3 to 6 points (Fig. 5, Tab. 2).

2. Ablating file-diffs from D3 hurts performance: In the mid-training stage, replacing D3
file-diff sequences in favor of file re-writes – i.e., swapping diff action prediction for file-
state prediction – degrades performance on synthesis tasks (Fig. 4).

2

3. LLM-powered source code filtering produces a “seed” corpus with better validation fit
to synthesis & editing: Training Llama 3.2 1b on Python files filtered with our approach
results in improved validation loss on examples from MBPP, BigCodeBench, & SWE-
Bench compared to training on a random sample (Fig. 4).

Our work establishes that training on large-scale edit sequence data can be beneficial for improving
the programming capabilities of language models. We see D3 as a first step towards the development
of datasets for introducing human-like software development abstractions to LMs in earlier stages
of training, providing a foundation for future work on open-source, autonomous, and open-ended
programming agents. To accelerate progress in this direction, we release D3 as well as our pipeline
for data preparation.

Table 1: Comparing D3 to existing datasets for training language models on file-level code
editing and/or synthesis from instructions. Tokens reflect the Llama 3.2 tokenizer.

Dataset Name Diffs? Use-Case Source Task(s) Toks Toks/Ex

Evol-Instruct (Luo et al., 2023) ✗ post-train synthetic problem solving 28M 400
OSS-Instruct (Wei et al., 2024) ✗ post-train synthetic problem solving 37M 500
InstructCoder (Li et al., 2023) ✔ post-train synthetic code editing 29M 270
LintSeq-Instruct (Piterbarg et al., 2024) ✔ post-train synthetic problem solving 184M 412
CommitPackFT (Muennighoff et al., 2023) ✔ post-train human code editing 275M 400
D3 (ours) ✔ mid-train human + synthetic software synthesis 8.0G 2200

2 PROBLEM FORMULATION

We formalize code synthesis as a goal-directed sequential decision-making problem where an agent
generates code through a sequence of edits to satisfy a natural language specification, as illustrated
in Fig. 1. This problem can be described as a Markov Decision Process (S,G,A, T ,R), where:

• The state space S consists of states si, which each represent the contents and metadata of
a source file or a multi-file codebase at a time step i.

• The goal space G corresponds to the set of possible code synthesis goals expressed in
natural language, such that each g ∈ G corresponds to an instruction (shown as “goal
obs.” in Fig. 1, e.g., “Add DQNAgent class for interacting with and learning from the
environment”).

• The action space A consists of individual diffs (atomic edits) that can be applied to the
current file state si. As shown in the “diff action sequence” in Fig. 1, actions a ∈ A are
individual edits (e.g., adding an import statement or a class definition), each consisting of
multiple tokens, that sequentially build up code changes.

• The transition function T : S × A → S is deterministic and corresponds to applying the
diff specified by action ai to the current file state si to yield si+1.

• The reward function R : S × G × A × S → R provides feedback about whether the
modifications are moving toward satisfying the goal specification. As shown in the “test-
time” component of Fig. 1, this could involve executing the generated code.

The D3 dataset consists only of (goal, file-state)-action-sequence trajectories (s0, g, (ai)ti=0), with-
out reward annotations. These trajectories do capture successful code modifications that have been
synthetically generated and verified for syntactical correctness with a code analysis tool, but do not
include explicit reward signals.

The MDP formulation above captures several key challenges in code synthesis with language mod-
els. First, the LM must engage in long-horizon reasoning and goal understanding in order to plan
sequences of mutually coherent edits. Second, the action space of possible diffs is combinatorially
large and highly structured, necessitating efficient exploration strategies. In §3, we describe how
we construct a dataset of high-quality diff action sequences demonstrating successful code synthesis
according to this problem formulation.

3

Figure 3: Exploring the contents of D3. (Left) Histograms for two metrics computed over the full
D3 dataset: initial file state and diff sequence length in lines of code (LoC). (Right) Results of a
qualitative topic discovery analysis run on instructions from D3 with Gemini (n = 100,000) (Team
et al., 2024) (see App. D). We show the top k = 20 topics by incidence, and provide four labeled
examples. Examples in D3 are qualitatively diverse.

3 D3: DIVERSE DATA FOR DIFF-BY-DIFF CODING

Our procedure for preparing D3 is largely unsupervised. In lieu of manual labeling, it relies on three
components: a grading rubric for scoring source code for correctness, quality, & relevance to the
study of software development in Python, an LLM capable of standard source code understanding,
and the LintSeq sampling algorithm, which uses a linter to procedurally decompose source code
files into atomic edit actions or line-by-line “chunks” (see Fig. 2) (Piterbarg et al., 2024).

By combining these tools, we show that it is possible to scalably re-purpose human-written code
from the Web into instruction-labeled examples that are effective for training LMs to write and
refine general-purpose programs.

3.1 PREPARATION PROCEDURE

An illustration of our method is provided in Fig. 2. We prepare D3 by filtering Python files from
The Stack, augmenting file contents into synthetic diff sequences, generating rationales for each diff
sequence, and converting rationales into instructions.

Filtering Code Pretraining Data Operating under computational constraints, we select a random
sample representing about 10% of the total Python source code in the de-duplicated version of The
Stack, consisting of 2 million unique files. Next, we filter this sample by prompting Llama 3.1 70b
Instruct (Dubey et al., 2024) to assign a grade to each file. In each prompt, we provide the LLM
with the full contents of a source file as well as a hand-engineered “grading rubric” that outlines a
set of four correctness and content scoring criteria. These criteria draw from the math data-filtering
prompt developed for the FineMath dataset by Lozhkov et al. (2024a), and are broadly designed to
assess relevance to the study of software development in Python. The full prompt is provided in
App. A. We truncate the contents of any file that exceeds 131,072 tokens.

Once all sampled source files have been graded, we use a simple parser to extract grades from each
LLM output. We discard all files that were assigned a score lower than 3/4. This leaves us with
900,000 unique Python programs, representing ≈ 40% of the initial file count.

Augmentation and Labeling In this phase, our goals are two-fold: (1) to resample file contents
into diff sequences; and (2) to label diff sequences with descriptive instructions. To accomplish
the first of these objectives, we use the LintSeq algorithm and the popular Python linter pylint.
As in Piterbarg et al. (2024), for each Python source file, we sample a sequence of intermediate
sub-programs that represent a possible error-free trajectory for synthesizing the full file contents
diff-by-diff. The complexity of each atomic diff action in this sequence is automatically determined
by the size of a (syntactical) connected component in the underlying program graph (see Fig. 2).

4

Unlike Piterbarg et al. (2024), we also sample four random sub-trajectories from each edit sequence,
yielding some examples that reflect program synthesis “from-scratch” and others that reflect synthe-
sis from partially written file contents. D3 reflects a 3:2 mix of these scenarios. In total, we add five
instruction + file-state + file-diff-sequence examples per selected source file to the dataset.

Finally, we conclude our preparation of D3 by generating synthetic instruction labels for each edit
sequence. Iterating over examples, we prompt Llama 3.1 70b Instruct to generate a complete but
succinct (“lazy”) rationale for the code that was added (see App. A). Then, we procedurally convert
each rationale into an instruction. We eliminate those examples for which the LLM generated an
incorrectly structured output. This labeling procedure allows us to circumvent the existing failure
modes of current LLMs on diff understanding, while still leveraging code understanding for cheap
and scalable labeling.

3.2 WHAT DOES THE DATA IN D3 LOOK LIKE?

As shown in Fig. 3, examples in D3 span all scales of syntactical structures and abstractions in
Python, from those that can be specified in just one line of code to others that requires thousands.
The average example contains 34 lines of pre-written source code, and a corresponding diff sequence
adding 150 lines of code. Distributions of both initial file state lengths and diff sequence lengths
are heavily right-skewed, with some examples having as many as 1000 lines of pre-written code.
The content of examples in D3 also spans across a diverse range of topics, such as testing and
deep learning (e.g., “Add tests for the Google Calendar API” or “Engineer a program to train an
autonomous agent with Q-learning”).

As described in §3.1, 20% of all examples reflect diff-by-diff synthesis of a full human-written
Python source file “from scratch,” i.e. starting from an empty file state. The remaining 80% of
examples in D3 reflect code refinement and demonstrate diff-by-diff synthesis trajectories between
two non-empty file states. The granularity of refinement shown in such examples spans across scales
from a single line of code to hundreds.

4 EXPERIMENTS

We study the effectiveness of D3 by conducting a series of ablation and dual-stage training experi-
ments with the Llama model series. These experiments seek to answer the following:

1. Does our filtering procedure produce a corpus that yields better fit on tasks like problem-
solving & real-world editing, compared to a random sample of programs?

2. How does ablating diff-by-diff generation from D3 affect performance? In other words,
does swapping diff actions for full file-state prediction from demonstration data affect LM
generation quality at test-time?

3. Does training language models on D3 before task-specific fine-tuning improve their perfor-
mance on single file and repository-wide coding tasks?

4.1 ABLATION STUDY: TESTING FILTERING AND DIFF-BY-DIFF GENERATION

Filtering First, to test the effectiveness of our LLM-assisted data filtering procedure, we continue
to train the pretrained model weights on corpuses of filtered vs unfiltered Python source code. Un-
filtered files are drawn from the sample of graded data (see §3.1) and randomly sampled to match
the token count of filtered code. Throughout each experiment, we estimate LM accuracy on prob-
lem solving & real-world code editing tasks by computing average loss on a dataset of prompt-
completion examples drawn from the validation set of MBPP & the test set of BigCodeBench-Hard
(not used for downstream evaluations) (Austin et al., 2021; Zhuo et al., 2024), as well as on the val-
idation set of examples from SWE-Bench (Oracle) (Yang et al., 2024). Prompt tokens are masked
out from loss computation.

Diff-by-Diff Generation Next, we probe the effect of training LMs to synthesize source code
diff-by-diff by mid-training Llama 3.2 1b on the D3 dataset “as is,” as well as on a version of
the dataset where file-diff sequences are replaced with full file states in each example. We train

5

Figure 4: (Left) Data filtering ablation: smoothed validation loss by task while mid-training Llama
3.2 1b on The Stack, with and without the filtering procedure described in Section 3.1. Shading
indicates value ranges before smoothing. Filtering improves validation loss both on Python problem
solving and real-world library editing examples. (Right) File-diff-sequence ablation: tuned test-
time scaling on HumanEvalSynth and MBPP for Llama 3.2 1b models mid-trained on D3 with and
without file-diff-sequences. Models trained to synthesize code with diffs exhibit better best-of-n
scaling and pass@1 (Tab. 6, Tab. 7).

models on both corpuses for two epochs and with identical hyperparameters. To compare models,
we evaluate the test-time performance of intermediate checkpoints on the code synthesis benchmarks
HumanEvalSynth and MBPP (Muennighoff et al., 2023; Austin et al., 2021; Liu et al., 2023). For
each task, we test two settings: (A) synthesis “from scratch”, where models are prompted to write
a program according to an instruction starting from an empty file-state; and (B) synthesis from a
partially-written program, where models are prompted to complete a partial human solution to
each problem. Setting (B) is procedurally generated with a fixed random seed from existing test set
solutions (see App. H).

Ablation Results We provide visualizations of results in Fig. 4. As shown in Fig. 4 (left), filtering
improves accuracy on both problem solving & real-world code editing examples throughout train-
ing. This suggests that despite the potential biases introduced by our LLM-assisted data labeling
procedure, the “seed” corpus of source code that we augment and annotate to produce D3 yields a
better fit to examples of tasks of interest compared to a random sample of source files with similar
token count. The degree of improvement on real-world editing examples especially suggests that
filtering balances quality against diversity. Furthermore, as shown in Fig. 4 (right), models mid-
trained to synthesize code diff-by-diff on D3 exhibit better test-time scaling laws compared to their
full program regeneration counterparts, reinforcing the conclusions of Piterbarg et al. (2024).

4.2 DUAL-STAGE TRAINING EXPERIMENTS: MID-TRAINING AND SFT

Next, we test whether there are downstream benefits to mid-training 1b and 3b Llama models on D3
prior to supervised-finetuning (SFT) on task-curated instruction data. As described in Section 3, D3
consists of diverse & high-quality examples of general-purpose software synthesis in Python; conse-
quently, we expect task-curated SFT to be beneficial for improving the precision of D3-mid-trained
model generations on problem solving & debugging tasks in benchmarks like HumanEvalSynth and
HumanEvalFix.

To that end, we first mid-train 1b and 3b models on D3 for two complete epochs. Then, we run
a series of SFT experiments in which we tune the base and D3-mid-trained models on one of
three data variants, curated by task: synthesis/problem-solving, consisting of instruction + file-diff-
sequence examples from LintSeq-Instruct (Piterbarg et al., 2024); editing, consisting of Python file-
state + instruction + file-diff examples from CommitPackFT (Muennighoff et al., 2023); and lastly,
synthesis/problem-solving + editing, reflecting a mix of examples from both LintSeq-Instruct &
CommitPackFT (see App. E and App. F).

6

Figure 5: Task-aggregated pass@1 on single-file synthesis & debugging for base, mid-trained
(MT), and supervised fine-tuned Llama 3.2 1b and 3b models (temperature = 0.1). For a break-
down of results by benchmark, see Tab. 2 below. Base models are evaluated with the D3 prompt-
completion structure (see Fig. 2). A description of evaluation procedures and examples of formatted
prompts are provided in Appendix H.

HumanEvalSynth(+) MBPP(+) HumanEvalFix(+)

Size MT on D3? SFT? Scratch Compl. Scratch Compl. Debugging

1b ✗ ✗ 5.5 ± 1.0 0.0 ± 0.0 3.0 ± 1.0 0.0 ± 0.0 0.0 ± 0.0
1b ✔ ✗ 9.2 ± 1.0 21.0 ± 1.2 12.2 ± 1.0 11.5 ± 1.0 2.7 ± 0.7
1b ✗ ✔ 18.0 ± 1.1 3.6 ± 0.7 25.5 ± 1.1 7.7 ± 1.0 5.0 ± 0.7
1b ✔ ✔ 23.1 ± 1.1 16.1 ± 1.0 31.9 ± 1.1 15.6 ± 1.1 9.4 ± 0.9

3b ✗ ✗ 8.5 ± 1.0 0.0 ± 0.0 13.4 ± 1.0 0.0 ± 0.0 0.0 ± 0.0
3b ✔ ✗ 11.0 ± 0.9 35.7 ± 1.1 14.1 ± 0.8 21.6 ± 1.1 6.1 ± 0.8
3b ✗ ✔ 27.0 ± 1.1 5.8 ± 0.7 34.0 ± 1.2 14.2 ± 1.0 17.8 ± 1.0
3b ✔ ✔ 30.9 ± 1.1 27.1 ± 1.1 40.2 ± 1.2 19.4 ± 1.2 20.8 ± 1.0

Table 2: Full pass@1 results on single-file synthesis & debugging by benchmark at temperature
= 0.1 (“±” indicates standard error over n = 20 samples).

Our experimental results are shown in Fig. 5, Tab. 2, and Tab. 3. In aggregate, we evaluate all models
on six tasks spanning four benchmarks, HumanEvalSynth, MBPP, HumanEvalFix, and SWE-Bench
(Oracle) (Austin et al., 2021; Muennighoff et al., 2023; Liu et al., 2023)1. For each setting and model
variant, we report scores from the best performing SFT mix only. As in §4.1, we evaluate LMs on
two variants of each synthesis/problem-solving task in order to test model ability to both synthesize
a solution to a programming problem from scratch (denoted as “Scratch” in Tab. 2), and to complete
a partially-written human solution (denoted as “Compl.”).

On single-file synthesis & editing, mid-training models on D3 prior to SFT improves pass@1 by
margins of 3 to 6 points compared to direct SFT on base models (Fig. 5, Tab. 2). Furthermore, we
observe that on the completion variants of HumanEvalSynth and MBPP tasks, fine-tuning models
mid-trained on D3 degrades performance over mid-training alone.

On the challenging repository-level code editing benchmark SWE-Bench (Oracle), we similarly find
a statistically-significant gain from mid-training on D3 before SFT. It is important to note that this
evaluation setting is somewhat out-of-distribution from both D3 and from all three of our tested
SFT dataset variants in two respects: first, models may be provided the state of more than one file
in-context; and second, many prompts span tens of thousands of tokens in length, exceeding our
mid-training and SFT context lengths (4096). Even so, mid-training on D3 improves pass@10 score
on “% Resolved” (the total proportion of solved GitHub issues in the test set) by a relative margin
of 60% and 40% for 1b and 3b Llama models, respectively. It also especially improves “% Apply”
(the fidelity of file-diffs in generations) for the 1b model, improving raw pass@10 by 6 points.

1We evaluate solutions to problems from HumanEvalSynth, MBPP, and HumanEvalFix using the expanded
& improved set of test cases from EvalPlus (Liu et al., 2023),

7

SWE-Bench (Oracle)

Size MT on D3 SFT? % Resolved (pass@10) % Apply (pass@10)

1b ✗ ✔ 1.78 ± 0.36 87.85 ± 0.70
1b ✔ ✔ 3.00 ± 0.45 93.73 ± 0.48

3b ✗ ✔ 3.43 ± 0.51 97.22 ± 0.33
3b ✔ ✔ 4.81 ± 0.56 99.62 ± 0.17

Table 3: Pass@10 results on SWE-Bench (Oracle) at temperature = 0.5 (“±” indicates standard
error over n = 16 samples). “% Resolved” denotes the percentage of GitHub issues correctly solved
by the model, while “% Apply” denotes the percentage of generated patch sequences that are non-
empty and contain only well-formed file-diffs.

In summary, the results of our dual-stage training experiments with D3 suggest that mid-training
small language models on the dataset is indeed effective for improving downstream performance
across coding tasks. D3 appears to be especially effective for improving the quality of generations
on completion-like synthesis tasks, where models must add code to partially pre-written programs.

5 RELATED WORK

Language Models for Code Generation Modern language models are pretrained on terabytes
of code. Programming benchmarks like HumanEvalSynth (Muennighoff et al., 2023) and MBPP
(Austin et al., 2021) evaluate models on their ability to solve simple “homework-like” code synthesis
problems and constitute a core part of generative LM evaluations (Dubey et al., 2024; Achiam et al.,
2023). Recently, there has also been increasing interest in training and testing LMs on more realistic
coding tasks. For example, benchmarks like HumanEvalFix (Muennighoff et al., 2023) and SWE-
Bench (Jimenez et al., 2023) evaluate generative code LMs on program- and repository-level code
editing. While these benchmarks have spurred improvement in LM capabilities, contemporary open-
source models continue to lag behind their closed-source counterparts, particularly on the hardest of
these tasks (Jimenez et al., 2023). Available open-source resources for synthesis like OSS-Instruct
(Wei et al., 2024) and Evol-Instruct (Luo et al., 2023) focus on narrow single-function generation
tasks (similar to HumanEval), while GitHub commit-derived datasets (Muennighoff et al., 2023)
lack consistent instruction labels and may fail to capture the granular abstractions used by human
engineers during software development. By open-sourcing the D3 dataset & preparation pipeline,
we hope to contribute towards addressing these data limitations.

Training on Code Edits Many existing works study data-driven code editing with language mod-
els. Berabi et al. (2021) re-label GitHub commit data with error messages generated by a code
analysis tool, and train an encoder-decoder transformer on this data. Muennighoff et al. (2023) train
LMs on filtered GitHub commit and message pairs, while Cassano et al. (2023) use filtered commit
data to seed synthetic instruction data generation with ChatGPT/GPT-4. More recently, Piterbarg
et al. (2024) study edit sequence representations for code synthesis. They introduce an algorithm
called LintSeq that uses a code linter to refactor a dataset of programs into sequences of synthetic
diffs that reflect the syntax, structure, and semantics of their programming language (Python). Their
experiments show that fine-tuning on synthetic diffs improves test-time scaling laws for code syn-
thesis across LM parameter scales. Our dataset builds directly upon this work, using the LintSeq
algorithm for refactoring filtered, human-written source code files at pre-training scales.

Language Models for Data Labeling & Filtering Since the release of ChatGPT/GPT-4, it has
become fairly commonplace to use LLMs to generate and/or augment instruction data (Taori et al.,
2023; Chung et al., 2024; Wang et al., 2023b; Chiang et al., 2023). Such methods are closely related
to the literature on knowledge distillation and self-improvement (Hinton, 2015; Kim & Rush, 2016).
More recently, several works have also explored leveraging LMs for data filtering. Penedo et al.
(2024); Lozhkov et al. (2024a) show that prompting strong instruction-tuned models to grade Web-
text in pretraining corpora for quality and relevance can result in boosts to downstream performance
on domains like math reasoning. Relatedly, Li et al. (2024) introduce Superfiltering, showing that

8

LM-assisted filtering can result in models that outperform the labeler on the downstream task of-
interest, unlike distillation. Our procedure for preparing D3 is motivated by these works, and the
potential of LM filtering & labeling methods for producing code datasets that balance quality and
diversity with limited human labor and relatively low cost.

6 DISCUSSION

Figure 6: Towards training LMs for open-ended,
goal-directed, & autonomous software develop-
ment by leveraging D3. Future work might explore
following up D3 mid-training with RL or test-time
search over model-generated goals and/or diff action
sequences. Our data preparation pipeline could also
be used for further study of data-driven methods for
improving the exploration capabilities of code LMs
during generation, beyond D3.

We introduced D3, a novel dataset of 3.6
million instruction-annotated code edits de-
rived from 850,000 human-written Python
programs. The dataset’s construction lever-
aged three key components: a pretrained
LLM for filtering, the LintSeq algorithm
(Piterbarg et al., 2024) for synthetic edit
generation, and an instruction annotation
pipeline. This comprehensive approach has
yielded a dataset with several distinguishing
characteristics - notably its coverage of both
complete development scenarios (60%) and
partial file modifications (40%), along with
substantially larger context windows aver-
aging 2,200 tokens compared to the typical
400-500 tokens of existing datasets.

Our experimental results validate the ef-
fectiveness of training on diverse & high-
quality edit sequences generated from Human-written Python source code files. Mid-training LMs
on D3 prior to task-targeted SFT produced significant benefits across multiple tasks. These improve-
ments were particularly pronounced in refinement-style synthesis settings, where success hinges on
deep understanding of code context and development patterns. This suggests that our edit-based
approach captures fundamental aspects of software development that existing code synthesis in-
struction datasets miss.

Limitations While these results are promising, several important limitations warrant discussion.
Our current focus on Python, though practical for initial development, raises questions about gen-
eralizability to other programming languages with different syntactic structures and development
patterns. Additionally, despite our empirical results, our reliance on LLM-assisted filtering & in-
struction labeling in the creation of D3 may introduce systematic biases, coverage gaps, and goal
under-specification into the dataset.

Future Work Looking forward, we see the use of diffs as a fundamental representation opening
up compelling possibilities for open-ended software development, as well as for both in-context
(Gandhi et al., 2024) and external search (Schultz et al., 2024) in code generation, as shown in Fig. 6.
Diffs provide an ideal action space for search, and are particularly well-suited for exploring program
space incrementally. This representation allows models to decompose complex programming tasks
into atomic line-by-line actions that are guided by syntax while incorporating feedback at each
iteration – an approach that echoes agile software development practices used by human engineers
(Dybå & Dingsøyr, 2008). Future work could explore combining this diff-based representation with
RL (Gehring et al., 2024) to create more adaptive & context-aware systems.

These future directions, combined with our current results, suggest that edit-based approaches to
code generation represent a promising path toward more capable and practical code generation sys-
tems. The success of D3 demonstrates the fundamental value of modeling software development as
an iterative, goal-driven process at the data-level, rather than treating it as a single-step and purely
state-prediction-based generative task.

9

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
arXiv preprint arXiv:2410.20285, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. Tfix: Learning to fix coding
errors with a text-to-text transformer. In International Conference on Machine Learning, pp.
780–791. PMLR, 2021.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, et al. Can it edit?
evaluating the ability of large language models to follow code editing instructions. arXiv preprint
arXiv:2312.12450, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models. Journal of Machine Learning Research, 25(70):1–53, 2024. URL
http://jmlr.org/papers/v25/23-0870.html.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A systematic
review. Information and software technology, 50(9-10):833–859, 2008.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Taco Cohen, and Gabriel Synnaeve.
Rlef: Grounding code llms in execution feedback with reinforcement learning. arXiv preprint
arXiv:2410.02089, 2024.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

10

http://jmlr.org/papers/v25/23-0870.html

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Kaixin Li, Qisheng Hu, Xu Zhao, Hui Chen, Yuxi Xie, Tiedong Liu, Qizhe Xie, and Junxian
He. Instructcoder: Instruction tuning large language models for code editing. arXiv preprint
arXiv:2310.20329, 2023.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. arXiv preprint
arXiv:2402.00530, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=1qvx610Cu7.

Anton Lozhkov, Loubna Ben Allal, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Finemath:
the finest collection of mathematical content, 2024a. URL https://huggingface.co/
datasets/HuggingFaceTB/finemath.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models. arXiv preprint arXiv:2308.07124, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? arXiv preprint arXiv:2306.09896,
2023.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. arXiv preprint arXiv:2406.17557, 2024.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. Training language models on synthetic edit se-
quences improves code synthesis. arXiv preprint arXiv:2410.02749, 2024.

11

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://huggingface.co/datasets/HuggingFaceTB/finemath
https://huggingface.co/datasets/HuggingFaceTB/finemath
https://arxiv.org/abs/2501.00656

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel
Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, et al. Mastering board games by external
and internal planning with language models. arXiv preprint arXiv:2412.12119, 2024.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al. Dolma: An open corpus of
three trillion tokens for language model pretraining research. arXiv preprint arXiv:2402.00159,
2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji
Ruwase, Feng Yan, Lei Yang, and Yuxiong He. Zero++: Extremely efficient collective commu-
nication for giant model training. arXiv preprint arXiv:2306.10209, 2023a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao. Towards zero-label language learning.
arXiv preprint arXiv:2109.09193, 2021.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

12

A DATASET PREPARATION PROMPTS

Figure 7: The grading rubric we use for prompting Llama 3.1 70B Instruct to score the quality
and relevance of Python source files contents for the study of high-quality software synthesis,
used in the filtering stage of our D3 preparation procedure. The structure and design of this prompt
is inspired by work from Lozhkov et al. (2024a)on LLM-powered filtration of pretraining data for
math reasoning.

Figure 8: Prompt for generating rationales for examples of partial source file synthesis with
Llama 3.1 70B. We replace fields annotated as {program start} and {program end} above with
the contents of the source file before and after all atomic diff actions are applied, respectively.

13

Figure 9: Prompt for generating rationales for examples of full-file synthesis “from scratch”
with Llama 3.1 70B. We replace the {program} field with the final file-state.

B FULL-TEXT D3 EXAMPLES

Figure 10: Full-text version of the D3 example shown in Fig. 2. We train LMs to interleave atomic
diff actions using the use the special token <|diff|> during generation.

14

Figure 11: Full-text version of the D3 example shown in Fig. 1.

15

C MORE EXAMPLES OF INSTRUCTIONS IN D3

Figure 12: A random sample of n = 32 source code development instructions in D3.

16

D QUALITATIVE ANALYSIS OF TOPICS IN D3

Figure 13: Our prompt format for qualitatively analyzing the contents of D3 via annotation of
100,000 randomly sampled instructions from the dataset with Gemini. This prompt is effective
for producing only valid JSON outputs from the model. To make the visualization of top occurring
topics in §3, Fig. 3 (right), we parse the main topics field of each output JSON, manually group
paraphrased outputs, and sort by topic frequency.

17

E MID-TRAINING

We use Pytorch FSDP and the Dolma tokenization toolkit via the oLMo ecosystem to support all
mid-training experiments (Zhao et al., 2023; Soldaini et al., 2024; OLMo et al., 2024). We add a
new token “<|diff|>” to tokenizer vocabularies, and resize model embeddings accordingly. This
special token is used to separate individual file-diffs in example diff action trajectories, effectively
indicating a frame “reset” in diff integration (see Fig. 11, Fig. 10, and Piterbarg et al. (2024)). Mid-
training runs use two to four NVIDIA A100 or H100 GPUs.

Llama 3.2 1b & 3b
Batch Loss Reduction mean
Batch Size 256
Betas (0.9, 0.95)
Gradient Clipping 1
Flash-Attention true
Learning Rate Scheduler cosine
Max Learning Rate 1e-4
Max Sequence Length 4096
Mixed Precision BFLOAT16
Total Epochs 2
Optimizer AdamW
Warmup Steps 100
Weight Decay 0.1

Table 4: Hyperparameters for D3 mid-training experiments.

F SUPERVISED FINETUNING

For supervised fine-tuning, we train models using the Huggingface accelerate and DeepSpeed
Zero++ (Wang et al., 2023a) libraries for Pytorch. As in mid-training, we add the special
“<|diff|>” token to non-mid-trained model vocabularies, and resize embeddings accordingly prior
to supervised fine-tuning. Examples from all datasets are reformatted to match the format of exam-
ples in D3 prior to fine-tuning.

Llama 3.2 1b & 3b
Batch Loss Reduction sum
Batch Size 512
Flash-Attention true
Gradient Clipping 1
Learning Rate Scheduler linear
Max Learning Rate 1e-4
Max Sequence Length 4096
Mixed Precision BFLOAT16
Total Epochs 2
Optimizer AdamW
Warmup Ratio 0.01
Weight Decay 0.01

Table 5: Hyperparameters for task-targeted supervised fine-tuning.

18

G MORE ON OUR ABLATION STUDY)

G.1 COMPUTING SEED CORPUS VALIDATION LOSS

Figure 14: An example of the prompt-completion formatting that we use to compute the vali-
dation fit induced by source code corpuses before and after the application of our LLM-assisted
filtering procedure. Examples are fully formatted Python-executable code, with instructions pro-
vided as multi-line comments (bolded text). As indicated in §4.1, prompt tokens are masked from
validation loss computation.

G.2 SYNTHESIS BENCHMARK SCORES OF DIFF-ACTION VS. FILE-STATE LMS
MID-TRAINED ON D3

In Tab. 6 and Tab. 7, we report the numerical scores of diff-sequence vs file-state LMs (Llama
3.2 1b) mid-trained on D3 on HumanEvalSynth and MBPP, respectively. These scores reflect the
intermediate mid-training checkpoint with the best test-time scaling curve (i.e. highest best-of-n
scores vs. generated tokens across n) on the validation set of MBPP2. The full test-time scaling
curves for these checkpoints are plotted in Fig. 4 (right). We use multiple sampling temperatures,
t ∈ {0, 0.1, 0.2, 0.5}, to evaluate models.

Scratch Completion

Size Diffs? Pass@1 Pass@16 Pass@1 Pass@16

1b ✗ 5.63 ± 0.41 14.98 ± 0.56 15.22 ± 0.51 37.94 ± 0.64
1b ✔ 6.71 ± 0.73 17.54 ± 0.57 17.01 ± 0.52 40.33 ± 0.65

Table 6: Scores on HumanEvalSynth(+) (“±” shows standard error over n = 20 samples).

Scratch Completion

Size Diffs? Pass@1 Pass@16 Pass@1 Pass@16

1b ✗ 4.64 ± 0.20 30.04 ± 0.39 9.29 ± 0.48 28.62 ± 0.70
1b ✔ 10.32 ± 1.57 33.68 ± 0.41 10.23 ± 0.48 33.95 ± 0.71

Table 7: Scores on MBPP(+) (“±” shows standard error over n = 20 samples).

2Note that Fig. 5 and Tab. 2 instead reflect the pass@1 benchmark scores of the last D3-mid-trained Llama
3.2 1b checkpoint.

19

H BENCHMARK EVALUATIONS

We evaluate models on coding benchmarks using instruction-style prompts and no special stop se-
quences during sampling (i.e. EOS-token termination only).

H.1 COMPLETION-STYLE SYNTHESIS EVALUATIONS

As described in §4.1 and shown below in Fig. ??, our benchmark evaluations test LMs on two
tasks, synthesis from an empty file (“from scratch”) and from a partial human-written solution. Our
procedure for preparing the latter task is simple. For each example in a benchmark test set, we:
(1) remove a random subset of lines from the body of the provided human-written solution; and (2)
check that the resultant code is syntactically correct with the Python code analysis tool pylint,
re-sampling until this is the case. Preparation of this task is conducted once for each benchmark, so
that all models are evaluated on exactly the same set of partial completions.

Examples whose solutions contain a single line of code in the function body are omitted. Further-
more, if the solution to a programming problem contains a docstring, we include this docstring in
the partial solution provided to the LM.

H.2 EXAMPLES OF CODE SYNTHESIS PROMPTS

Figure 15: Example formatted prompts used for from-scratch (left) and completion-style (right)
synthesis evaluations on the HumanEvalSynth and MBPP benchmarks throughout this paper. We
use identical prompt-completion formatting in all training and evaluation experiments, including
mid-training on D3 as well supervised fine-tuning on all task-curated datasets (§4.2). The examples
presented in the figure above reflect a problem from the MBPP test set. Note that for from-scratch-
style evaluations, we format MBPP instructions to match the formatting of those in HumanEval-
Synth.

20

H.3 EXAMPLE CODE EDITING PROMPT

21

	Introduction
	Problem Formulation
	D3: Diverse Data for Diff-by-Diff Coding
	Preparation Procedure
	What does the data in D3 look like?

	Experiments
	Ablation Study: Testing filtering and diff-by-diff generation
	Dual-Stage Training Experiments: mid-training and SFT

	Related Work
	Discussion
	Dataset Preparation Prompts
	Full-Text D3 Examples
	More Examples of Instructions in D3
	Qualitative Analysis of Topics in D3
	Mid-Training
	Supervised Finetuning
	More on our Ablation Study)
	Computing Seed Corpus Validation Loss
	Synthesis Benchmark Scores of Diff-Action vs. File-State LMs Mid-Trained on D3

	Benchmark Evaluations
	Completion-Style Synthesis Evaluations
	Examples of Code Synthesis Prompts
	Example Code Editing Prompt

