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Abstract

The vibrational free energy is essential to predict finite temperature material prop-
erties. Current methods employ slow, largely sequential sampling with a fixed
machine learning interatomic potential (MLIP) to satisfy the tight 1-2meV/atom
(1/40-1/20 kcal/mol) convergence requirements. Forward or back propagation of
MLIP parameters is not practically possible, meaning estimates cannot be used in
objective functions for alignment to reference data or distillation. For the broad
class of generalized linear MLIPs we show free energies can be cast as the Leg-
endre transform of a high-dimensional descriptor entropy, accurately estimated
via score matching. Our main result is a model-agnostic estimator which returns
meV/atom accurate, end-to-end free energies as a function of MLIP parameters.
Sampling is efficient and highly parallel, requiring 10x fewer force calls and 100-
1000x less walltime than a single thermodynamic integration estimate. Tensor
compression allows lightweight storage and inference is instantaneous. In for-
ward propagation, a single estimator predicts a broad ensemble high temperature
thermodynamic integration calculations for W. In back-propagation, we fine-tune
the α − γ transition temperature in an Fe model from 2000K to 1063K, a first
demonstration of MLIP alignment against known phase boundaries.

1 Introduction

A realistic material design scheme must account for thermal vibrations, essential to target basic
properties such as phase stability, heat capacity, elastic constants or thermal expansion coefficients.
In atomic simulation, the computational task is to compute the vibrational (Helmholtz) free energy
F over some set of crystalline phases at a range of temperatures and volumes. Accurate phase
prediction requires tightly converged estimates of F , to within 1-2 meV/atom, or 1/40-1/20 kcal/mol.
Machine learning interatomic potentials (MLIPs) are becoming a viable replacement to ab initio
calculation, but remain misspecified[83]. For uncertainty quantification[83, 54, 69, 14, 101], inverse
design or top-down learning[43, 88, 17, 70], schemes which allow end-to-end differentiation through
MLIP simulations are actively sought. However, estimating F requires high dimensional integration,
one of the most challenging tasks in computational science, the central difficulty in e.g. evidence
calculation[93, 16, 61] or density estimation[52]. Current schemes (figure 1, appendix A) perform
slow, largely sequential stratified sampling[48] with a single choice of best-fit MLIP parameters.
Whilst established, such estiamtes are not differentiable and as such finite temperature properties
cannot be included in objective functions for alignment against known data or model distillation.
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Figure 1: Model agnostic sampling. a) Atomic simulations choose features (descriptors) adapted to
some ab initio data. b) Current methods sample with a single choice of MLIP parameters w = w̄,
potentially using descriptors to bias proposals[87, 2, 97, 72]. c) Our approach (D-DOS) learns an
agnostic estimator which returns free energies and gradients for any w ∈ W . d) D-DOS enables
rapid forward/back propagation for UQ or inverse fine-tuning, e.g. targeting phase transitions.

1.1 Main contributions

We provide a model-agnostic free energy estimation scheme for atomic simulation, introducing the
descriptor density of states (D-DOS) Ω(D). The associated descriptor entropy S(D) is a Legendre
conjugate to F and can be accurately estimated by score-matching. We show this allows meV/atom
accurate prediction without a priori specification of model parameters, demonstrating application in
forward propagation for UQ and in back propagation to fine-tune the α − γ transition temperature
in a model of Fe, to our knowledge a first demonstration of MLIP alignment to phase boundaries.

1.2 Related Work

A range of specialized techniques to estimate F are well established, all some form of stratified
sampling[59] from an analytically tractable reference model[102, 48, 100, 103, 65] (appendix A).
Recent studies[100, 65, 21] have shown MLIPs can provide near-ab initio accurate free energy
predictions, especially when fine-tuned for specific phases[48]. We focus on the popular models[80,
90, 62, 44, 71], including message-passing neural networks[9, 76], where atomic configurations
are encoded using (possibly learned) descriptor functions ensuring outputs are symmetric under
permutation, translation and rotation. Multiple works have noted descriptors are an ideal latent space
for generative models of dynamics[84] or thermodynamic samples, using e.g. normalizing flows[87,
2, 97, 72] or variational autoencoders[5] to accelerate convergence. While perturbative approaches
allow some forward propagation for UQ[54], no methods to date allow practical back-propagation,
as gradient evaluation requires converging an expectation value- this is the computational effort of
established methods such as thermodynamic integration. We note that policy gradient algorithms
from reinforcement learning (RL) such as REINFORCE[96] have a conceptual similarity with free
energy gradients, as both can be express the gradient of a log density as an expectation. However,
in the RL setting these gradients are used in stochastic optimization, where one only requires an
unbiased estimation of the expectation, rather than a converged value, which requires much less
computational effort. To our knowledge, the approach we present here is the only method which is
able to rapidly evaluate accurate gradients over a range of parameter values simultaneously, allowing
for the inclusion of free energies in loss functions for fine-tuning / alignment purposes.

2 Methodology

2.1 Generalized linear machine learning interatomic potentials

With atomic positions X ∈ RN×3 and species S ∈ ZN in a periodic supercell C ∈ R3×3, a
general MLIP energy writes Ew(X) =

∑N
i=1 E

1
w(Di), where the descriptor vector Di(X,S) ∈ Rd

depends only on atoms in the vicinity of i (appendix A). and w is a vector of parameters. In this
paper we consider MLIPs of the generalized linear form, with parameters w ∈ RD,

Ew(X) ≡ Nw · D̂(X), D̂ ≡ 1

N

N∑
i=1

ϕ̂(Di) ∈ RD, (1)

where ϕ̂(Di) = [ϕ̂1(Di), . . . , ϕ̂D(Di)] is a D-dimensional featurization of the Di(X,S). Impor-
tantly, the vector D is independent of w and the dimension D is intensive, independent of N . A wide
variety of MLIPs can be cast into the general linear form (1). Clearly, these include the broad class of
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linear-in-descriptor models, where ϕ̂(Di) = Di ∈ Rd, including MTP[80], ACFS [12, 13], SNAP[90],
SOAP [6, 27, 28], ACE[31, 32, 62], MILADY[44, 35] and POD[71] descriptors. Linear descriptor mod-
els can reach extremely high (< 2 meV/atom) accuracy to ab initio data[21], with robust UQ[83] and
often excellent dynamical stability, essential for thermodynamic sampling[102, 48, 100, 103, 65].
Polynomial or kernel featurizations are regularly used to increase flexibility, e.g. qSNAP[79], PiP[3]
GAP[7, 30], n-body kernels [41, 42, 91, 99], kernel[100] etc. We can encompass foundational mod-
els such as MACE[9] by Taylor expanding in parameters[24] or only adjusting a subset of parame-
ters, an approach adopted when fine-tuning recent neural network models[11, 68, 10, 9, 18, 23, 8].
For example, in the MACE architecture[10], the input to the final readout layer is taken as Di, giv-
ing the featurization ϕ̂MACE(Di) = Di ⊕ f(Di) ∈ Rd+1, where f(Di) is frozen one layer neu-
ral network. Recent work has shown this allows UQ for linear models[83] to be applied[76] to
the MACE-MPA-0 foundation model[9]. Generalized linear models can distill Ew(Di) as recently
demonstrated for ACE on MACE [77]. To retain connection with w one must find features ψ̂(w) such
that

∑
i ∥ψ̂(w)⊤ϕ̂(Di)− Ew(Di)∥2, an extension which will be reported elsewhere.

2.2 Free energy and the descriptor DOS

Our primary thermodynamic property is the NVT free energy Fw(β,C, p) for vibrations around a
crystalline phase p ∈ P = {BCC, FCC, hcp, . . . }. The Gibbs free energy reads Gw(β,σ, p) ≡
minC Fw(β,C, p)− Tr(Cσ). Suppressing p and C for clarity, Fw(β) for linear MLIPs (1) writes

Fw(β) = lim
N→∞

−1

Nβ
ln

∣∣∣∣λ−3N
β

∫
e−Nβw·DΩ(D)dD

∣∣∣∣ , Ω(D) ≡
∫
R3N

δ(D̂(X)−D)dX, (2)

where λβ = ℏ
√
2πβ/m is the thermal De Broglie wavelength[39], m ≡ (

∏N
i=1 mi)

1/N and Ω(D)
the descriptor density of states (D-DOS). Access to Ω(D) would allow prediction of Fw(β) for any
value of w but there are two significant issues: 1) Ω(D) is ill-conditioned

∫
RD Ω(D)dD = V N ,

the key issue in e.g. nested sampling[94, 73] at large N, 2) D = O(100 − 1000), meaning Ω(D)
cannot be evaluated by quadrature, while Monte Carlo integration cannot give reliable gradients.

2.3 Free energy as a Legendre transform in the thermodynamic limit

We overcome the first ill-conditioning issue in Ω(D) through a conditional D-DOS (CD-DOS)

Ω(D) ≡
∫
R
Ω(D|α)Ω0(α)dα, Ω0(α) =

∫
RN×3

δ(α̂(X)− α)dX, (3)

where α̂(X) is an isosurface function satisfying
∫
R Ω0(α)dα ≡ V N , i.e. a folation of configuration

space. As detailed in appendix B, we choose α̂(X) = ln |E0(X)/N | or α̂(X,P) = ln |(∥P∥2/2m+
E0(X))/N | such that sampling reduces to generating Gaussian noise or short NVE trajectories,
giving Ω0(α) analytically or numerically. To avoid quadrature we apply Laplace’s method (appendix
D.1) in the thermodynamic limit N → ∞ to give the formally exact, integration-free expression

Fw(β) ≡ min
α,D

(w ·D − [S(D|α) + S0(α)]/β) , (4)

as derived in appendix B, where we have defined the intensive descriptor entropies

S(D|α) ≡ lim
N→∞

ln |Ω(D|α)|/N, S0(α) ≡ ln |Ω0(α)/V
N
0 |, (5)

where V0 ensures S0(α) is dimensionless, defined in appendix D. Equation (4) is our central theo-
retical result, an expression for the free energy where terms estimated via sampling do not require a
priori specification of parameters. As Ω(D|α) is normalized one can show maxD S(D|α) = 0, a
crucial point as any estimate ∇SΘ(D|α) ≃ ∇S(D|α) can then be integrated to give SΘ(D|α).

2.4 Score matching the descriptor entropy

The score matching loss[52] for ∇SΘ(D|α) reads, using ⟨. . . ⟩α for α̂(X) = α averages (see C.1)

L(Θ|α) ≡
〈
N

2
∥∇SΘ(D|α)∥2 +∇2SΘ(D|α)

〉
α

. (6)
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Table 1: Approximate cost of methods to estimate F to within the 1-2meV/atom convergence re-
quired for phase prediction. |∆F|: approx. max deviation from reference, in meV/atom, that can
be targeted at 1000 K. Calls: indication of total cost in force calls. Calls/Worker: indicates total
wall-time / strong scaling. Only D-DOS is model-agnostic, sampling once for all parameter values.

Method |∆F| Calls Calls/Worker Agnostic Differentiable

FEP[39] 10 ∼ 106 ∼ 104 No No
TI[4, 100] 150 ∼ 106 ∼ 105 No No
AS[65] 150 ∼ 108 ∼ 107 No No
D-DOS 200 ∼ 105 ∼ 102 Yes Yes

Figure 2: Propagating through D-DOS free energies. a): Accuracy of a single D-DOS estimator
against an unseen dataset of thermodynamic integration (TI) calculations for an ensemble w ∈ W
of BCC W models, up to 3000K. b) Mean (blue) and median (orange) errors across the ensemble are
below 1.5meV/atom, comparable to the TI convergence estimate (black), while the D-DOS predicted
errors (gray) are robust bounds. c)-e): Aligning Fe model to match α → γ transition. c): An initial
Fe model w = w̄ has FCC (blue) and BCC (orange) free energies that give an α → γ transition at
Tc(w̄) = 2030 K. d) Back-propagating through FBCC

w −FFCC
w in fine tuning loss gives a new set of

MLIP parameters where the transition is at the correct value of Tc(w̄ + δw) = 1063K. e) Plotting
just the FCC-BCC difference shows how small changes in F give large changes in Tc.

The factor of N emerges from application of integration by parts[52] in the derivation of (6). While
SΘ(D|α) is intensive, averages over α give rise to terms O(N−s) in L(Θ|α), whose minimization
formally requires multiscale analysis[74] to solve, (see C.1) but in practice this is not required.
We employ a lightweight tensor compression scheme[81] for SΘ(D|α), as detailed in appendix
C.1, which allows for simple error propagation, as detailed in appendix C.4. For D = O(100)
storage at fixed phase p and supercell C requires only 3 − 10 MB storage, allowing broad pre-
computation. Table 1 compares compute effort for a single traditional estimate, showing the highly
parallelized D-DOS score matching requires 10× less total effort and 100 − 1000× less wall time.
Crucially, D-DOS estimates are uniquely model agnostic across a broad parameter range w ∈ W
and differentiable, allowing simple inclusion of Fw(β) in objective functions.

3 Results

Our D-DOS estimator is built using a single MLIP w = w̄ to generate samples on isosurfaces
α̂(X) = α and a score-match a descriptor entropy model SΘ(D|α). To test the accuracy of our
estimator we generated a broad ensemble of models w ∈ W approximating W, Mo and Fe (appendix
F) for which we calculated free energies in BCC, FCC and A15 phases through thermodynamic
integration for T ∈ [300, 3000K]. In our numerical tests we built MLIPS using the popular BSO(4)
descriptor functions, first introduced in the SNAP MLIP family[90], giving simply Di = ϕ̂(Di) =
Di. Appllication over broader MLIP families similar to ACE or MACE will be presented in future
work.

3.1 Comparision against thermodynamic integration benchmarks in forward propagation

As a first test in forward propagation, figures 2a) and b) present D-DOS predictions for models
w ∈ W approximating BCC W against thermodynamic integration (TI) calculations for each po-
tential. We emphasize that the estimator only uses a harmonic reference model for sampling, with
no training on any of the TI calculations. The total sampling budget required only 0.1× cost of a
single TI calculation, with far superior strong scaling and essentially instantaneous inference. Even
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at high homogulous temperatures of 3000K, where the ensemble models show up to 200meV/atom
explicit anharmonicity from the reference MLIP w = w̄ used for sampling, a single D-DOS es-
timator retains the 1-2meV/atom accuracy required for phase prediction. The ability to efficiently
precompute and store model-agnostic thermodynamic averages holds many perspectives for error-
controlled modelling and allows simulation results to be updated a posteriori for e.g. fine-tuning.

3.2 Aligning the α → γ transition temperature in Fe

Figures 2c),d) and e) illustrate the central result of this short communication, demonstrating how
back-propagation allows for the targeting of phase transition temperatures, to our knowledge, a
unique ability of the D-DOS procedure. Targets could be calculations, prescribed from higher
level simulations to enforce consistency[22] or to experimental data in top-down training[88].
Our demonstration targets the BCC-FCC, or α → γ, transition in Fe. While known to be due
to the loss of ferromagnetic ordering[63], in this example of back-propagation we employ non-
magnetic models. D-DOS estimators for FCC and BCC phases over a range of atomic volumes
allow calculation of NPT free energy difference ∆α−γGw;Θ(β). Our regularized loss function reads
L(w) = ∥∆α−γGw;Θ(βc)∥2 + rL0(w), where 1/(kBβc) = 1063K. We find the subtle changes
in potential parameters required to reproduce the desired phase boundary, reducing the α → γ tran-
sition temperature from 2030 K to 1063 K. As the free energy gradient with temperature is only
around 0.03 meV/atom/K, the small changes of 30 meV/atom in ∆G gives a 1000 K change in Tc.

4 Limitations

In the present form the most significant limitation of our approach is specialisation to generalized
linear MLIPS, but as we discuss in 2.1 a wide range of models fall into this class. A general extension
to non-linear MLIPs would require estimating the joint density of the total per-atom descriptor vector
DN ≡

⊕
i ϕ̂(Di) ∈ RN×D, i.e. accounting for local correlations, which will be the subject of

future work. In addition, we also have only shown application to solid unary phases, but liquid
phases and multi-component systems will be the subject of a forthcoming communication. While
this will require additional conditional sampling constraints, this remains a feasible extension of the
current framework and will be persued in the near future.

5 Conclusion

This paper presents a new approach to estimate the vibrational free energy of atomic systems, an
essential component of any computational material design scheme. Rather than existing methods
which return free energy estimates for a specific value of MLIP parameters, we instead return an
estimator that can predict free energies over a broad range of model parameters. This is a significant
change in approach that not only allows for rapid forward propagation of parameter uncertainties to
finite temperature properties and pre-computation of expensive thermodynamic averages, but also
uniquely allows for inverse fine-tuning of e.g. phase boundaries through back-propagation, all long-
desired capabilities in modern computational materials science workflows.

6 Data availability

Pre-computed samples and a notebook to reproduce a simplified back-propagation result are avail-
able at www.github.com/tomswinburne/DescriptorDOS.git
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7.1 Code Availability

An open source, pip-installable implementation of the D-DOS code with LAMMPS[89] is available
at www.github.com/tomswinburne/DescriptorDOS.git
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A Thermodynamic sampling of atomic crystal models

This section reviews standard results from classical statistical mechanics for a system of N atoms
with specie s = [s1, . . . , sN ] ∈ ZN , positions X = [x1, . . . ,xN ] ∈ RN×3 and momenta P =
[p1, . . . ,pN ] ∈ RN×3. Atoms are confined to a periodic supercell C ∈ R3×3 with volume V = |C|
(the determinant), such that scaled positions lie on the unit torus, i.e. XC−1 ∈ TN×3. In anticipation
of later results where we take the limit N → ∞, we write the total energy U(X,P) as the sum of a
potential and kinetic energy, i.e.

U(X,P) ≡ Ew(X) +K(P), (7)

where K(P) =
∑N

i=1 p
2
i /(2mi) and dependence on s is contained in the potential energy function

Ew(X) by model parameters w, the focus of this paper. To express the supercell in an intensive
form we define the supercell per atom C through C = NC, where N = Diag(Nx, Ny, Nz), such
that |N| = N and the volume per atom is given by |C|. The canonical (NVT) partition function at
T = 1/(kBβ) then writes

ZN
w (β,C) ≡ λ0(β)

−3N

∫
R3N

exp[−βEw(X)]dX, (8)

where λ0(β) = ℏ
√
2πβ/m is the thermal De Broglie wavelength[39] and mN ≡

∏N
i=1 mi. The

NVT free energy per atom is defined in the thermodynamic limit N → ∞:

Fw(β,C) ≡ lim
N→∞

−1

βN
ln |ZN

w (β,C)|. (9)

In practice, the integral over atomic configuration space in (8) is dominated by contributions from
some set of phases P = {BCC, FCC, hcp, liquid, . . . }, such that

ZN
w (β,C) =

∑
p∈P

ZN
w (β,C, p), (10)

where each term ZN
w (β,C, p), is an integral over (disjoint) partitions of configuration space, with

corresponding phase free energy Fw(β,C, p), defined as in (9). It is simple to show that as N → ∞
the NVT free energy is dominated by a single phase

p∗w(β,C) = argmin
p∈P

Fw(β,C, p), (11)

as Fw(β,C) = minp∈P Fw(β,C, p). Similarly, the NPT free energy of a phase p is obtained
by minimizing Fw(β,C, p) at under some constant external stress σ (i.e. isotropic pressure σ =
(P/3)I3), giving

Gw(β,σ, p) ≡ min
C

Fw(β,C, p)− Tr(σ⊤C), (12)

It is clear that estimation of Fw(β,C, p) for general β,C is sufficient to estimate Gw(β,σ, p),
giving the stable phase at some temperature and pressure as

p∗w(β,σ) = argmin
p∈P

Gw(β,σ, p), (13)

where the w subscript emphasizes the dependence of p∗ on the parameters of the interatomic
potential.

In this paper, we will focus on the set of crystalline phases Ps ⊂ P , whose configuration space is
defined as the set of (potentially large) vibrations around some lattice structure X0

p, p ∈ Ps.

A.1 Thermodynamic integration

Accurate calculation of phase stability requires converging per-atom free energy differences between
phases to within a few meV/atom at any given temperature and pressure to allow determination
of (13). Accurate determination of phase transitions, where free energy differences are formally
zero[102, 48, 100, 103, 65], thus requires tight convergence of any estimator. The stringent accuracy
requirement has led to the development of sampling techniques to reduce the number of samples
required for convergence [56, 39, 78]. In all cases, the starting point is some atomic energy function
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E0(X), whose corresponding phase free energy F0(β,C, p) is known either through tabulation, or
analytically if E0(X) is harmonic[56]. We can thus define ∆Ew(X) = Ew(X) − E0(X) as the
energy difference (per-atom) between the target and reference systems, with a free energy difference
∆Fw(β,C, p). Thermodynamic integration (TI) is a stratified sampling scheme over Eη(X) =
E0(X) + η∆Ew(X) for η ∈ [0, 1]. Denoting equilibrium averages by ⟨. . . ⟩η , we obtain

∆Fw(β,C, p) =

∫ 1

0

⟨∆Ew(X)⟩η dη. (14)

Sampling efficiency often requires constraint functions or resetting to prevent trajectories escaping
the metastable basin of a given phase, as discussed in section F.5. In general, the larger the value of
∆Fw, the finer the integration scheme over η and the more samples will be required for convergence
[59, 25].

A.2 Free energy perturbation

Typically used as a complement to thermodynamic integration, if the difference N∆Ew(X) is as
small as 10/β, corresponding to at most 10 meV/atom at 1000 K for solid state systems (N ≃ 100),
we can also use free energy perturbation (FEP) to estimate the free energy difference[59, 48, 20].
Using the definition of the free energy Fw(β,C) and ⟨. . . ⟩η at η = 0, it is simple to show that

∆Fw(β,C, p) = −(1/Nβ) ln⟨exp[−Nβ∆Ew(X)]⟩0.

In practice, the logarithmic expectation is expressed as a cumulant expansion[104, 59, 21] for in-
creased numerical stability, writing

∆Fw(β,C, p) = ⟨∆Ew⟩0 −
Nβ

2
⟨(δ∆Ew)2⟩0 + . . . , (15)

where δ∆Ew = ∆Ew − ⟨∆Ew⟩0, and the expansion continues, in principle, to all orders. While
(15) gives an expression for the free energy in terms of samples generated solely with a reference po-
tential, in a practical setting we require free energy differences to be very small to allow for conver-
gence. Equation (15) can be shown to be an upper bound to the estimated free energy difference[20]
and as such can be used as a convergence measure for a well-chosen reference potential. In this
setting, we typically have ∆Fw < 1 meV/atom (table 1 in the main text).

A.3 Adiabatic Switching

In addition to the above methods which employ equilibrium averages, the adiabatic switching[1, 29,
38, 65] method estimates free energy differences using the well-known Jarzynski equality [55]. The
adiabatic switching equality can be written[38]

∆Fw(β,C, p) =
1

2
[⟨W irr⟩0→1 − ⟨W irr⟩1→0], (16)

where W irr is the irreversible work along a thermodynamic path (in the above η is implied, though
it is also possible to use the temperature) and ⟨. . . ⟩0→1 indicates an ensemble average of around
10 − 30 simulations. The key quantity is the so-called ‘switching time’, i.e. the rate at which the
thermodynamic path is traversed. For solid-state free energies one typically progresses along the
path in O(10) increments of O(10− 100) ps[65], thus requiring around 107−8 force calls per tem-
perature. In this setting, we can target similar free energy differences to thermodynamic integration,
i.e. O(100) meV/atom at 1000 K. The computational costs of the above methods and the present
D-DOS approach is discussed in section F, and summarized in table 1 in the main text.
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B Conditional descriptor density of states

Our central strategy to control the V N divergence of Ω(D), is to introduce the conditional descriptor
density of states (CD-DOS)

Ω(D|α) ≡
∫
R3N

δ (α̂(X)− α)

Ω(α)
δ(D̂(X)−D)dX, (17)

where α̂(X) is the dimensionless isosurface function

α̂(X) ≡ ln |E0(X)/(NU0)| , (18)

U0 is a user-defined energy scale and E0(X) ≥ 0 is some reference potential energy. In section B.2
we detail how equation (18) can be generalized to a momentum-dependent α̂(X,P). In either case,
E0(X) is chosen such that we can calculate, numerically or analytically, the isosurface volume

Ω(α) ≡
∫
R3N

δ (α̂(X)− α) dX, (19)

which contains the exponential divergence as
∫
R Ω(α)dα = V N . The crucial advantage of the con-

ditional form is that Ω(D|α) is normalized by construction,
∫
RD Ω(D|α)dD = 1, showing that

Ω(D|α) is the probability density of D on the isosurface α̂(X) = α and allowing us to employ
density estimation techniques such as score matching[52]. The full D-DOS Ω(D) is then recovered
through integration against α, Ω(D) =

∫
R Ω(D|α)Ω(α)dα, emphasizing that our goal is to de-

compose the high-dimensional configuration space into a foliation of isosurfaces α̂(X) = α where
we expect Ω(D|α) to be tractable for density estimation. The generalization of α̂(X) to include
momentum dependence is discussed in section B.2 and general considerations for designing optimal
α̂(X) are discussed in section B.3.

B.1 The isosurface and descriptor entropies

The free energy Fw(β), equation (2), is proportional to the logarithm of the partition function
Zw(β), i.e. Fw(β) = (−1/Nβ) ln |Zw(β)|. It is thus natural to define entropies of the isosur-
face volume Ω(α) and CD-DOS Ω(D|α). We first define the intensive isosurface entropy

S0(α) ≡ lim
N→∞

1

N
ln |Ω(α)/V N

0 |. (20)

The term V0 ensures S0(α) is dimensionless; with α̂(X) we have V0 = λ3
β , while with a momentum-

dependent α̂(X,P), discussed in B.2, we have V0 = h3. It is clear that S0(α) is a measure of the
configurational entropy per atom of N independent atoms confined to the isosurface. The CD-DOS
Ω(D|α), equation (17), has a natural entropy definition, the intensive log density

S(D|α) ≡ lim
N→∞

1

N
lnΩ(D|α). (21)

The CD-DOS entropy S(D|α) measures the proportion of the isosurface phase space volume that
has a global descriptor vector D, meaning descriptor values with larger S(D|α) are more likely to
be observed under unbiased isosurface sampling. Furthermore, S(D|α) has two properties which
greatly facilitate free energy estimation: S(D|α) is intensive (N -independent) for local descrip-
tor functionsA and as Ω(D|α) is normalized, application of Laplace’s method (see C.1) fixes the
maximum of S(D|α):

lim
N→∞

1

N
ln

∣∣∣∣∫ Ω(D|α)dD
∣∣∣∣ = max

D∈RD
S(D|α) = 0. (22)

This condition is crucial, allowing us to integrate the score ∇DS(D|α) and produce free energy
estimates.

B.2 Forms of the isosurface function

As discussed above, free energy estimation will require access to S0(α) and a means to generate
samples on the isosurface α̂(X) = α. For harmonic reference potentials S0(α) is given analytically;
the isosurface function writes

α̂(X) ≡ ln
∣∣[X−X0]

⊤H[X−X0]/(2NU0)
∣∣ , (23)

14



where the Hessian H has 3N -3 positive eigenmodes and X0 is the lattice structure. Sampling
α̂(X) = α reduces to generating random unit vectors in R3N−3, while the isosurface entropy (20)
reads

S0(α) ≡ S0 + 3α/2, V0 = λ3
0(β). (24)

The constant S0 is given by S0 = 3/2+3/2 ln |2βU0/3|−βF0(β), where F0(β) is the familiar free
energy per-atom of harmonic atomic systems (see D). We can generalize (18) to arbitrary E0(X)

with the kinetic energy K(P) =
∑N

i=1 p
2
i /(2mi) such that

α̂(X,P) ≡ ln |[K(P) + E0(X)]/(NU0)| . (25)

Isosurface sampling then reduces to running microcanonical (NVE) dynamics, in close connection
with Hamiltonian Monte Carlo[15, 60]. The NVT free energy F0(β) of the reference system can
be expressed as F0(β) = U0(β) − S0(αβ)/β, where U0(β) is the internal energy per atom and
αβ ≡ ln |U0(β)/U0| (see D). With (25) the isosurface entropy (20) is then the difference between
the reference free and internal energies:

S0(α) = βα [U0(βα)−F0(βα)] , V0(α) = h3, (26)

where βα is defined through U0(βα) ≡ U0 exp(α), which will have a unique solution when U0(βα)
is monotonic. In practice, U0(β) and F0(β) are estimated via thermodynamic sampling (see A) over
a range of β, interpolating with α ≡ ln |U0(β)/U0| to estimate S0(α). The final modification is to
augment the descriptor vector D, concatenating an intensive kinetic energy DK = K(P)/N (see
D)

D → D ⊕DK , w → w ⊕ 1, (27)
meaning w ·D now returns the total energy rather than the potential energy. Sampling schemes can
thus use α̂(X) with a harmonic reference potential, where S0(α) is given analytically, or α̂(X,P)
with any reference potential, where S0(α) determined via thermodynamic sampling. All theoretical
results below can use either S0(α); use of both are demonstrated for solid phases in section ??. A
forthcoming study will apply the momentum-dependent formalism to liquids and melting transitions.

B.3 Criteria for optimal isosurface functions

Estimation of Fw(β) via (4) relies on our ability to accurately approximate S(D|α) by some score-
matched estimator SΘ(D|α). Strong curvature of S(D|α) in D and α is crucial for the statistical
efficiency of score matching and applicability of Laplace’s method. A poor choice of isosurface
function α̂ will give weaker curvature, as distributions will vary less between isosurfaces, thus am-
plifying the consequences of any sampling error. A learnable α̂ϕ(X) or α̂ϕ(X,P) should tune
parameters ϕ to maximize curvatures in SΘ;ϕ(D|α), a direction we leave for future work.

B.4 Free energy evaluation with Laplace’s method

Laplace’s method, or steepest descents[98], is a common technique for evaluating the limits of
integrals (see D). With the definition of S(D|α), equation (21), we use Laplace’s method to evaluate
a conditional free energy Fw(β|α), defined on α̂(X) = α:

Fw(β|α) ≡ lim
N→∞

−1

Nβ
ln

∣∣∣∣∫
RD

e−Nβw·DΩ(D|α)dD
∣∣∣∣ ,

= min
D∈RD

(w ·D − S(D|α)/β) . (28)

It is clear that −βFw(β|α) is both the Legendre–Fenchel [37] conjugate of the entropy S(D|α) and
has a close connection to the cumulant expansion in free energy perturbation [21] a point we discuss
further in section B.6 and A. We thus obtain a final free energy expression, again using Laplace’s
method

Fw(β) ≡ lim
N→∞

−1

Nβ
ln

∫
R
eN [S0(α)−βFw(β|α)]dα,

= min
α∈R

(Fw(β|α)− S0(α)/β) ,

= min
α,D

(w ·D − [S(D|α) + S0(α)]/β) . (29)
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Equation (29) is our main result, an integration-free expression for the NVT free energy for gener-
alized linear MLIPs (1). The minimization over α and D requires

∇DS(D|α) = βw, ∂αFw(β|α) = ∂αS0(α) (30)

which emphasizes the Legendre duality between βw and D. In A we show use of a harmonic
reference energy (23) gives S0(α) = S0+3α/2, meaning ∂αS0(α) = 3/2. We also recover familiar
results for harmonic models, setting w ·D = E0(X); in this case (30) reduces to the equipartition
relation β⟨E0⟩ = 3/2.

B.5 Gradients of the free energy

The gradient of Fw with respect to w allows the inclusion of finite temperature properties in objec-
tive functions for inverse design, a unique feature we explore below. With minimizing values α∗

β,w,
D∗

β,w,α∗ , the w-gradient is simply

∇wFw(β) = D∗
β,w,α∗ ∈ RD. (31)

The internal energy Uw(β) is also a simple expression involving the minimizing vector D∗
β,w,α∗ ;

with α̂(X), equation (23), we have Uw(β) = 3/(2β) + w · D∗
β,w,α∗ . With the momentum-

dependent isosurface α̂(X,P), equation (25), we have Uw(β) = w · D∗
β,w,α∗ . Evaluation of

higher order gradients requires implicit derivatives[17, 64], e.g. ∂αD∗
β,w,α∗ ∈ RD, ∂βα∗ ∈ R

or ∂w[D∗
β,w,α∗ ]⊤ ∈ RD×D. Further exploration of finite temperature properties such as thermal

expansion will be the focus of future work.

B.6 Connection to free energy perturbation

The conditional free energy Fw(β|α) can be given by a cumulant expansion, using ⟨. . . ⟩α for iso-
surface averages

Fw(β|α) = ⟨w ·D⟩α +
Nβ

2
⟨(w · δD)2⟩α + . . . (32)

where δD = D − ⟨D⟩. The factor of N to ensures intensivity of the covariance (see E). Free
energy perturbation (FEP)[104, 59, 21, 82] also expresses the free energy difference as a cumulant
expansion over canonical averages with E0(X). As discussed in B.2, as N → ∞ canonical sampling
at β is equivalent to isosurface sampling at α = αβ , where the relation between β and αβ depends
on the form of the isosurface function α̂(X) or α̂(X,P), e.g. (23) or (25). The FEP estimate is thus
equivalent to a D-DOS estimate where we fix α = αβ , instead of minimizing over α as in equation
(29). When the free energy difference is very small, i.e. the target is very similar to the reference,
α̂ = αβ may be a good approximate minimization. However, in the general case it is clear the
D-DOS estimate can strongly differ from FEP estimates. This is evidenced later in Figures ?? b)
and ??c), where the minimizing α value at constant β varies strongly with w, even at relatively low
homologous temperatures (1000 K in W, around 1/4 of the melting temperature), while FEP would
predict α to be constant with β.
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C Numerical implementation of score-matching sampling

C.1 Derivation of the score matching loss

Our starting point is the definition of the score matching loss, the Fisher divergence[52]

L(Θ|α) ≡ N

2
⟨∥∇SΘ(D|α)−∇S(D|α)∥2⟩α − L0 (33)

=
N

2
⟨∥∇SΘ(D|α)∥2⟩α −N⟨∇S(D|α) · ∇SΘ(D|α)⟩α, (34)

where L0 is a Θ-independent constant and we set L(Θ|α) to be O(N) by convention. As isosurface
averages α̂(X) = α can clearly be written an integral over the D-DOS Ω(D|α) = exp[NS(D|α)],
we use integration by parts to write

L(Θ|α) ≡ N

2
⟨∥∇SΘ(D|α)∥2⟩α −N

∫
∇S(D|α) · ∇SΘ(D|α) exp[NS(D|α)]dD, (35)

≡ N

2
⟨∥∇SΘ(D|α)∥2⟩α + ⟨∇ · ∇SΘ(D|α)⟩α, (36)

as given in the main text.

C.2 Analysis in the limit N → ∞

Whilst the descriptor entropy S(D|α) is intensive, as shown above, averages of S(D|α) or gradients
over α will in general give rise to terms inversely proportional to N . To correctly infer the solution
in the limit N → ∞, we make the multiscale hierarchy[74]

L(Θ|α) =
∑
s

N1−sLs(Θ|α) (37)

To solve this hierarchy we can in principle define a multiscale solution Θ(S) such that

∇L(Θ(S)|α) = 0+O(N−S). (38)

We can find a solution Θ(S) in a recursive fashion, first minimizing L0(Θ|α) to give Θ(0), then
minimizing L1(Θ|α) under the constraint ∇L0(Θ|α) = 0 to give Θ(1), and so on. However, we
only consider models where L(Θ|α) is linear in Θ, meaning the loss gradient can be decomposed
as ∑

s

N1−s [AsΘ− bs] = 0. (39)

Respecting the multi-scale hierarchy then equates to ensuring Θ(S+1) −Θ(S) is in the null space of
all As, s ≤ S. Whilst we investigated solving each term in this hierarchy independently, in practice
this had negligable improvement over simply minmizing the score matching loss as the linear solve
will naturally ensure the solution respects the multi-scale hierarchy to a within numerical tolerance.

C.3 Low-rank compressed score models

We require a low-rank model to efficiently estimate and store any score model, which should
also allow efficient minimization for free energy estimation via (29). We use a common tensor
compression approach[81] to produce a low-rank model for estimation of higher order moments.

Using ⟨. . . ⟩α to denote isosurface averages, we first estimate the isosurface mean µ̂α = ⟨D⟩α and
intensive covariance Σ̂α = N⟨δDδD⊤⟩α, where δD = D − µα, a symmetric matrix which has
D orthonormal eigenvectors vα,l, l ∈ [1, D]. Our low-rank score model uses F scalar functions
f(x) = [f1(x), . . . , fF (x)] ∈ RF , with derivatives ∂nf(x) = [∂nf1(x), . . . , ∂

nfF (x)] ∈ RF . We
define the D feature vectors of rank F :

fl(D|α) ≡ f([D − µα] · vα,l) ∈ RF , l ∈ [1, D]. (40)
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In practice, we use polynomial features of typical order F = 3 − 7; we note that quadratic models
(F = 2) are insufficient to capture the anharmonic behavior of the D-DOS shown below. The
conditional entropy model then reads, with Θl(α) ∈ RF ,

SΘ(D|α) ≡ Θ0(α) +

D∑
l=1

fl(D|α) ·Θl(α). (41)

The conditional descriptor score then reads

∇SΘ(D|α) =
∑
l

(∂fl(D|α) ·Θl(α))vα,l ∈ RF , (42)

giving a score matching loss that is quadratic in Θl(α); by the orthonormality of the vα,l, minimiza-
tion reduces to solving the D linear equations of rank F :

N⟨∂fl(D|α)[∂fl(D|α)]⊤⟩αΘl(α) = −⟨∂2fl(D|α)⟩α. (43)

Solution of (43) for each α fixes Θl(α), while the constant Θ0(α) ∈ R is determined by equation
(22), i.e. ensures maxD SΘ(D|α) = 0. For some model w, the conditional free energy (28) then
reads

Fw;Θ(β|α) ≡ min
D

(w ·D − SΘ(D|α)/β) , (44)

which is achieved when ∇DSΘ(D|α) = βw. We can then interpolate Fw;Θ(β|α) the sampled
range of α values to give a final free energy estimate of

Fw;Θ(β) ≡ min
α

(Fw;Θ(β|α)− S0(α)/β) , (45)

which is achieved when ∂αS0(α) = β∂αFw;Θ(β|α). The final minimizing values of the descriptor
vector D∗ allows evaluation of the gradient ∂wFw;Θ(β) = D∗, equation (31). Equation (45) is the
central result of this paper, a closed-form expression for the vibrational free energy of linear MLIPs
(1).

C.4 Error analysis and correction of score matched estimates

To estimate errors on the free energy Fw;Θ(β), we can use standard error estimates to determine the
uncertainty on the isosurface meanµα and covariance eigenvectors vα,l to produce errors δfl(D) on
feature vectors (40). In addition, epistemic uncertainties on expectations in the score matching loss
(43) will give uncertainties δΘl(α) on model coefficients Θl(α), which can be estimated by either
subsampling the simulation data to produce an ensemble of model coefficients or extracting poste-
rior uncertainties from Bayesian regression schemes[93]. Propagating these combined uncertainties
provides a robust and efficient estimate of sampling errors, as shown in the numerical experiments.

C.5 D-DOS score matching sampling campaign

As detailed in section C.1, when using the harmonic isosurface function (23), our score matching
sampling campaign reduces to sampling descriptor distributions on isosurfaces α̂(X) = α defined
by the Hessian H of some reference potential E0(X). For momentum-dependent isosurface
functions (25) we instead record samples from an ensemble of short NVE runs, which we explore
in section ??. We tested the harmonic isosurface function (23) using one Hessian H = Hx per
phase for x = W, Mo, Fe. Each Hessian was calculated using the appropriate lattice structure and
the reference (loss minimizing) potential parameters w = w̄x described in the previous section.
With a given isosurface function α̂(X), we generated O(103) independent samples on α̂(X) = α
for a range of α values at constant volume. It is simple to distribute sampling across multiple
processors, as the harmonic isosurface samples are trivially independent (see D). This enables a
significant reduction in the wall-clock time for sampling over trajectory-based methods such as
thermodynamic integration.
Our open-source implementation uses LAMMPS[89] to evaluate SNAP[90] descriptors; as a rough
guide, with N = O(102) atoms, the sampling campaign used to produce the results below required
around O(10) seconds per α value on O(102) CPU cores. A converged score model built from
O(10) α-values was thus achieved in under 5 minutes at each volume V and Hessian choice H.
Use of momentum-dependent isosurfaces α̂(X,P) requires a single free energy estimate, which
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could be either from a separate D-DOS estimation or ‘traditional‘ sampling methods. In addition,
to allowing for NVE sample decorrelation gives a factor 10 greater sampling effort, i.e. comparable
with the effort for a single fixed model sampling. Computational demands quoted are when using
α̂(X); future work will investigate schemes to further accelerate momentum-dependent α̂(X,P).

The final score model requires minimal storage, being only the O(100) scalars contained in the
vector Θα, equation (41), over a range of α values at constant V , H. It is therefore possible to
efficiently store many score models to investigate the influence of the reference model on free
energy predictions. For example, figure ?? demonstrates how a D-DOS employing an isosurface
function α̂(X) using H from w̄Mo ∈ WMo can accurately predict free energies from the W
ensemble, w ∈ WW.

Table 1 provides a rough guide to the computational cost of existing methods, as reported in recent
works[100, 65, 21], alongside the D-DOS sampling scheme detailed above. As can be seen, D-
DOS is at least an order of magnitude more efficient than TI and up to two orders of magnitude
more efficient than AS, even before considering the massive reduction in wall-clock time due to
parallelization. We again emphasize that in addition to the modest computational requirements of D-
DOS, sampling is model-agnostic, only performed for a given choice of descriptor hyperparameters,
system volume and function α̂(X) used for isosurface construction. This is the key innovation of the
D-DOS approach, allowing rapid forward propagation for uncertainty quantification and, uniquely,
back-propagation for inverse design goals.
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D Derivation of Legendre transform expression for the free energy

D.1 Summary of Laplace’s method

Laplace’s method, also known as the steepest descents method, is a well-known identity allowing
the evaluation of an integral of an exponentiated function multiplied by a large number. We provide
a brief summary of the method here, and we refer the reader to e.g. [98] for further information.
The method applies to a function f(x), x ∈ Rn which is twice differentiable. We partition the
domain Rn = ∪L

l=1Rl into regions Rl each with a single maximum x∗
l , where the negative Hessian

matrix Hl = −∇x∇⊤
x f|Rl

∈ Rn×n of Nf(x) has O(n) positive eigenvalues λp ≥ 0, no negative
eigenvalues, and all entries of Hl (and thus all λp) are independent of N . In the limit N → ∞ the
integral in Rl is dominated by the maximum x∗

l . Proof of Laplace’s method uses Taylor expansions
of f(x) around x∗

l to provide upper and lower bounds, which in the limit N → ∞ both converge to
the same Gaussian integral, giving

lim
N→∞

∫
Rn

exp[Nf(x)]dx =

L∑
l=1

exp[Nf(x∗
l )]√

(2πN)n|Hl|
. (46)

In the case of constant n as N → ∞ it is simple to show that the limiting form of the log integral is

lim
N→∞

1

N
ln

∫
Rn

exp[Nf(x)]dx = max
l

f(x∗
l ). (47)

where we use the fact that

lim
N→∞

1

N
ln
√
(2πN)n|Hl| = lim

N→∞

1

2N

(
n ln |2πN |+

n∑
p=1

lnλp

)
= 0. (48)

as limN→∞ n/N = 0 and limN→∞(1/N) ln |N | = 0. When the argument of the function has
dimension which scales with N , i.e. n = rN , r > 0, (r = 3 for Hessians), the above simplification
does not hold. In general, the integral will depend on higher order gradients to correctly take the
limit. Note that the above is distinct from the common use of Laplace’s method to approximate the
partition function integral

∫
R3N exp[−βE(X)]dX; although the dimension of X is extensive, in this

case Laplace’s method is used in the low temperature limit β → ∞, rather than N → ∞.

D.2 Isosurface for a harmonic solid

D.2.1 Sampling

For solid systems we use a harmonic reference potential energy E0(X) and isosurface function
α̂(X)

E0(X) ≡ [X−X0]
⊤H[X−X0]

2
, α̂(X) ≡ ln

∣∣∣∣∣ Ê0(X)

NU0

∣∣∣∣∣ . (49)

We assume that H has 3N ′ = 3N − 3 positive eigenvalues νl > 0, l > 3 with normalized
eigenvectors vl. We can thus define normal mode coordinates X̃l ≡ vl ·X/

√
νl, l > 3. In addition,

we have 3 zero modes νl = 0, l = 1, 2, 3 with eigenvectors selecting the center of mass x̄ multiplied
by

√
N , i.e. X̃l ≡

√
N x̄l, l = 1, 2, 3, which meaning we can always ensure normal modes have

zero net displacement, i.e. enforce vl · 1 = 0, l > 3.

In normal mode coordinates, the energy writes

E0(X) =
1

2

l=3N∑
l=4

νl∥vl ·X∥2 =
1

2N

l=3N∑
l=4

X̃2
l =

R̃2

2
. (50)

Sampling the isosurface α̂(X) = α is clearly equivalent to sampling E0(X) = NU0 exp(α),
which in normal mode coordinates amounts to sampling the surface of a hypersphere with radius
R̃ =

√
2NU0 exp(α/2).
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With a unit vector u = [u1, . . . ,u3N ′ ] ∈ R3N ′
on the 3N ′ dimensional hypersphere, isosurface

samples can then be produced through

Xα[u] ≡ X0+

3N ′∑
l=1

√
2NU0 exp(α)

νl
ulvl, ⇒ E0 (Xα[u]) = NU0 exp(α)

3N ′∑
l=1

u2l = NU0 exp(α).

(51)
Importantly, the sampling procedure can be trivially parallelized as we can generate independent
samples {u} on each parallel worker, providing each worker with a unique seed for pseudo-random
number generation.

D.2.2 Isosurface volume and isosurface entropy

For harmonic isosurface functions α̂(X), we can express the isosurface volume (19) in normal mode
coordinates using standard expressions for change of variables:

Ω(α) =

∫
R3N

δ(α̂(X)− α)dX (52)

=
V∏3N

l=4

√
νl

∫
R3N′

δ

(
ln

∣∣∣∣∣
3N∑
l=4

X̃2
l /(2N)

∣∣∣∣∣− α

)
3N∏
l=4

dX̃l. (53)

Converting to spherical coordinates we find, using the expression for the surface area of a unit
sphere in 3N ′ dimensions as S3N ′ = 2π3N ′/2/Γ(3N ′/2), then again changing variables with dR̃ =√
NU0/2 exp(α/2)dα, we find that

Ω(α) =
2V π3N ′/2

Γ(3N ′/2)

∫
R+

δ
(
ln
∣∣∣R̃2/(2N)

∣∣∣− α
)
R̃3N ′−1dR̃ (54)

=
V
√
U

3N ′

0∏3N
l=4

√
νl

√
2πN

3N ′

Γ(3N ′/2)
exp(3Nα/2). (55)

We thus see that the isosurface volume for harmonic solids has the general form

Ω(α) = Ω0 exp(3Nα/2), Ω0 =
V
√
U

3N ′

0∏3N
l=4

√
νl

√
2πN

3N ′

Γ(3N ′/2)
, (56)

giving an isosurface entropy

S0(α) ≡ lim
N→∞

1

N
ln |Ω(α)/λ3N

0 (β)| = S0 + 3α/2, S0 = ln |λ3
0(β)|+ (1/N) ln |Ω0|. (57)

While we can simplify the expression for the lnΩ0 using Stirling’s approximation we shall see this
is not required.

D.2.3 Isosurface entropy and connection to harmonic free energy

Using standard Gaussian integrals, the partition function of a harmonic system reads, with λ0(β) =

h
√
β/(2πm),

Z0(β) =
1

λ3N
0 (β)

∫
R3N

exp[−βE0(X)]dX =
V

λ3N
0 (β)

3N∏
l=4

1√
2πβνl

, (58)

giving a free energy in the limit N → ∞

F0(β) ≡ lim
N→∞

−1

Nβ
ln |Z0(β)| =

1

Nβ

3N∑
l=4

ln
∣∣∣βℏ√νl/m

∣∣∣ . (59)
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We can also write F0(β) using the isosurface entropy defined in equation (57) and applying
Laplace’s method, i.e.

βF0(β) = lim
N→∞

−1

N
ln

∣∣∣∣ 1

λ3N
0 (β)

∫
R
Ω(α) exp(−NβU0e

α)dα

∣∣∣∣ (60)

= lim
N→∞

−1

N
ln

∣∣∣∣eNS0

∫
R
exp(3Nα/2−NβU0e

α)dα

∣∣∣∣ , (61)

= min
α

U0e
α − 3α/2− S0, (62)

= U0e
α − 3α/2− S0

∣∣∣
α=− ln |2βU0/3|

, (63)

= 3/2− S0 + 3/2 ln |2βU0/3|, (64)
⇒ S0 = 3/2 + 3/2 ln |2βU0/3| − βF0(β) (65)

which allows us to express the constant S0 purely in terms of the harmonic free energy.

D.3 Momentum-dependent isosurface

Estimating the free energy of e.g. liquid or highly anharmonic phases typically requires more com-
plex reference potential energy models than the harmonic form used above. While we leave a com-
prehensive numerical study for future work, the following details how the CD-DOS treatment can
be generalized to a momentum dependent isosurface

α̂(X,P) ≡ ln

∣∣∣∣∣K̂(P) + Ê0(X)

NU0

∣∣∣∣∣ . (66)

using a kinetic energy function K̂(P) =
∑3N

i=1 p
2
i /(2mi). Isosurface sampling then corresponds to

microcanonical (NVE) dynamics with any reference potential, where the per-atom internal energy
satisfies U = U0 exp(α). Such a generalization has close analogies with Hamiltonian Monte Carlo
methods[15], which can use generalized kinetic energies[60]. The isosurface volume of α̂(X,P) =
α is defined as

Ω(α) ≡
∫
R3N×R3N

δ (α̂(X,P)− α) dXdP. (67)

and we evaluate the entropy below. In this case, we treat DK = K̂(P)/N as an additional intensive
descriptor to give an extended conditional descriptor density of states

Ω(D ⊕DK |α) ≡N

∫
R3N×R3N

δ(K̂(P)−DK)δ (α̂(X,P)− α)

Ω(α)

× δ

(
D − (1/N)

N∑
i=1

ϕ̂(Di(X))

)
dXdP, (68)

By the same manipulations as for the momentum-independent case, this extended conditional de-
scriptor density of states is normalized:∫

RD×R+

Ω(D ⊕DK |α)dDdDK = 1. (69)

However, as samples are not independent, the efficacy will depend on the decorrelation time[59]
of microcanonical trajectories. A full study of how such momentum-dependent isosurfaces can be
used to estimate the descriptor density of states Ω(D) and thus the free energy of liquid phases and
melting temperatures will be the focus of future work.

D.3.1 Isosurface entropy

The isosurface entropy S0(α) cannot be evaluated analytically and instead requires free energy es-
timation schemes such as thermodynamic integration, discussed in A. To see how this emerges, we
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use the definition of the isosurface entropy (20) to write the free energy as

βF0(β) = lim
N→∞

−1

N
ln

∣∣∣∣ 1

h3N

∫
R
Ω(α) exp(−Nβ exp(α))dα

∣∣∣∣ , (70)

= lim
N→∞

−1

N
ln

∣∣∣∣∫
R
exp(NS0(α)−Nβ exp(α))dα

∣∣∣∣ , (71)

= min
α

βU0 exp(α)− S0(α). (72)

It is clear that this minimum is satisfied when ∂αS0(α) = βU0 exp(α), and at the minimum
U0 exp(α) is clearly the internal energy U0(β). We can therefore define βα through the condition
U0(βα) ≡ U0 exp(α) and thus write

βαF0(βα) = βαU0(βα)− S0(α). (73)

With a tabulation of the intensive per-atom free energy F0(β) and total internal energy U0(β) over
a range of temperatures 1/β, the isosurface entropy reads

S0(α) ≡ β[U0(βα)−F0(βα)], U0(βα) ≡ U0 exp(α). (74)

The value of βα is uniquely defined when U0(β) is monotonic with β.
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E Intensivity of the descriptor entropy

This appendix provides a proof that the descriptor entropy S(D|α) is intensive.

By the locality of the descriptor energy Ew =
∑

i E
1
w(Di), any two per-atom feature vectors

Di,Dj will be independent when the corresponding atoms are spatially separated, i.e. |rij | → ∞.
As a result, the per-atom feature vector Di will have nonzero correlation with only a finite number
Nc ≪ N of other per-atom feature vectors, indexed by some set Ni ⊂ {1, . . . , N}, which has strong
implications for the global vector ND =

∑N
i=1 Di. In particular, it is clear that any cumulant[26] of

ND will be extensive, scaling linearly with N as N → ∞. The first cumulant is the mean N⟨D⟩α,
where ⟨D⟩α is clearly intensive. Defining δDi ≡ Di − ⟨D⟩α and thus δD, the covariance of ND
writes

N2⟨δD ⊗ δD⟩α =

N∑
i=1

∑
l∈Ni

⟨δDi ⊗ δDl⟩α = NΣα ∈ RD×D, (75)

where Σα is an average over each atom i of the sum of Nc covariance matrices between i and
neighbors l ∈ Ni, which is manifestly intensive. The third order cumulant writes

N3⟨δD ⊗ δD ⊗ δD⟩α =

N∑
i=1

∑
l∈Ni

∑
m∈Nl

Nc∑
m=0

⟨δDi ⊗ δDl ⊗ δDm⟩α = NΞα ∈ RD×D×D. (76)

where Ξα is an average over each atom i of the Nc(Nc + 1)/2 third-order correlations between i
and neighbors l ∈ Ni and m ∈ Nl. As before, this is manifestly intensive, and we can continue
this procedure to arbitrarily high orders. We can therefore define an intensive cumulant generating
function [26] of Ω(D|α) in the form

J(v|α) ≡ 1

N
ln

∣∣∣∣∫
RD

eNv·DΩ(D|α)dD
∣∣∣∣ (77)

= µα · v +
1

2
v⊤Σαv +

1

6
v⊤Ξα : v ⊗ v + . . . , (78)

where v ∈ RD and J(v|α) are clearly intensive, meaning that we have the identity∫
RD

exp (Nv ·D)Ω (D|α) dD = exp (NJ(v|α)) . (79)

As the cumulants of Ω(D|α) are finite, we know that Ω(D|α) has a global maximum at finite D.
As a result, we define the descriptor entropy as the (negative) Legendre-Fenchel transform of the
cumulant generating function:

S(D|α) ≡ min
v

J(v|α)− v ·D ≡ lim
N→∞

1

N
ln |Ω(D|α)|, (80)

which is clearly both intensive and convex in D. Equation 80 is closely related to Gärtner-Ellis
theorem from large deviation theory[40, 36], which generalizes Crámer’s theorem from i.i.d. ob-
servations to asymptotically independent observations, and shows the rate function is the Legendre-
Fenchel transform of the cumulant generating function. We can thus identify the conditional entropy
S(D|α) as the negative rate function. We have thus established that S(D|α) is intensive, as it is the
sum of two manifestly intensive terms. As discussed in the main text, the conditional free energy
Fw(β|α) can be expressed in terms of the cumulant generating function, with v = −βw; however,
as we detail, we instead use score matching to estimate higher order moments.
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F Numerical implementation of the D-DOS scheme

In this section, we describe in detail how the D-DOS sampling scheme is implemented, and how
a broad ensemble of free energy estimates was produced using thermodynamic sampling in order
to provide stringent tests of D-DOS free energy estimates. We describe the low-rank linear MLIPs
employed (F.2), the production of DFT training data (F.3) the production of reference free energy
estimates via thermodynamic integration (14) and details of the D-DOS score matching campaign.
We focus on MLIPs that approximate the BCC, A15 and FCC phases of tungsten (W), molybdenum
(Mo) and iron (Fe)[45].

F.1 Ab initio database design for MLIP training

We have performed an iterative construction of the database. The final aim is to have a potential that
satisfies the following requirements: (i) it should reproduce the ab initio elastic constants at 0 K;
(ii) it must provide a reasonable thermal expansion from 0 K to the melting temperature; and (iii) it
should mimic the thermodynamics of BCC and A15 phase from 0 K to the melting temperature.

The DFT calculations were performed using VASP [57]. We have used a PAW pseudopotential [58]:
we have used PPs with sp core states and 12 valence electrons in the 4s24p64d55s1 states. The
cut-off energy for plane-waves is 500 eV. In order to sample reciprocal space, we used Monkhorst-
Pack [67] method to build a constant k-points density ρk = 1/(24a0)

3 for all the computed config-
urations, which translates in 6 × 6 × 6 k-points for the 128-atom cell of BCC Mo. Methfessel and
Paxton [66] smearing algorithm with σ = 0.3 eV is used. We have used GGA exchange correlation
in PBE [75].

Firstly, we generated a minimal ab initio database, DB1, designed to build the initial version of
the potentials. These potentials were then used to generate additional configurations similar to the
defects we intend to simulate. The configurations were then computed using DFT without structural
relaxation and reintegrated into the more complete database, DB2. We reiterate the procedure from
DB2 to DB3. All generated configurations are collected in Table 2. In the following, we detail each
component of the database. In the end, the different databases are ruled by the following inclusion
relations: DB1 ⊂ DB2 ⊂ DB3.

The Cxx class contains configurations involving iso-volumic deformations, from which the values
of the bulk modulus B and the anisotropic elastic constants C11, C12, and C44 can be easily ex-
tracted. This class provides reliable information for the BCC elastic constants of the MLP. We have
used 39 deformations. To minimize numerical round-off errors, the ab initio energy calculations
are performed in (4a0)

3 cubic supercells (128 atoms). The ϵ_bulk class corresponds to random
deformation at a constant volume of the cubic cell of 2 atoms of BCC. We impose a deformation ϵ0
to which we add a random tensor δϵ defined by δϵij∼εN (0, 1). ε is the amplitude of random noise
and N (0, 1) is a standardized Gaussian distribution. In the end, we apply the following deformation
tensor to the configuration : ϵ = ϵ0 + 1

2

(
ϵ+ ϵ⊤

)
, We apply uniformly distributed deformations

between −5% and 5% with a random parameter ε = 0.01. In the end, we generate 1000 random
deformed configurations.

The noised_ classes are designed to mimic molecular dynamics simulations at a given temperature
and avoid the computational expense of ab initio molecular dynamics. This is achieved by adding
carefully thermal noise to the relaxed 0 K configurations of bulk, mono-, di-, and tri-vacancies.

The class NEB_ corresponds to standard Nudged Elastic Band [51] pathways computed in DFT for
the first nearest-neighbor migration of mono-, di- and tri-vacancies. The convergence criterion is
defined as the maximum force being less than 10−2 eV/Å . Once the first version of the potentials
was fitted from DB1, the MLP potentials were used to generate finite-temperature pathways from
the 0 K trajectories. These configurations are included in the PAFI_ class. The finite temperature
configurations are sampled from the PAFI [85] hyperplanes near the saddle point at a given temper-
ature.

The class heated_cell corresponds to NPT molecular dynamics simulations at zero pressure, con-
ducted from 300 K to 5000 K for a simulation cell containing perfect bulk BCC and A15, mono-,
di-, and tri-vacancies. The heating ramp is applied at a rate of 5 K/ps. From the molecular dynam-
ics performed with the MLP derived from DB1, configurations were selected between 3000 K and
5000 K (if the potential was stable, see main text discussion). For DB3, we randomly chose 388
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configurations distributed between 1000 K and 4000 K to help stabilize the BCC-to-liquid as well
as A15-to-liquid transitions.

DB1 Temperature in K Total

0 875 1750 2625 3500 MDr

Cxx 13 0 0 0 0 0 13

ϵ_bulk 1000 0 0 0 0 0 1000

noised_bulk 1 10 10 10 10 0 41

noised_V1 10 10 10 10 10 0 50

noised_V2 30 30 30 30 30 0 150

NEB_V1,2,3 21 0 0 0 0 0 21

Total DB1 1075 50 50 50 50 0 1275

DB2

DB1 1075 50 50 50 50 0 1275

PAFI_V1,2,3 0 11 11 11 8 0 41

heated_cell 9 9

Total DB2 1075 61 61 61 58 9 1325

DB3

DB2 1075 61 61 61 58 9 1325

heated_cell 388 388

Total DB3 1075 61 61 61 58 397 1722

Table 2: An iterative list of atomic configurations for the minimal databases DB1,2,3. Cxx denotes the
deformations used to obtain accurate elastic constants. The cubic cell of the BCC lattice is subjected
to various non-zero strains, ϵ, for the class ϵ_bulk. The noised_ configurations, designed to mimic
the MD of bulk, mono- and di-vacancies in various configurations are denoted by V1 and V2. NEB
and PAFI_ represents sampling from 0 K to finite temperature for the vacancy jump, employing
the NEB [51, 50] and PAFI methods [85, 86],respectively. MDr denotes the molecular dynamics
trajectories for heating the system from 300 K to 5000 K, which provide the class heated_cell.
Further details about all the classes can be found in the text.

F.2 Choice of linear MLIP

We build a linear MLIP using the bispectral BSO(4) descriptor functions, first introduced in the
SNAP MLIP family[90]. While a quadratic featurization is often used[44, 49] we employ the original
linear model, i.e. Di = ϕ̂(Di) = Di ∈ Rd. For unary systems we have H = 4 hyperparameters
h, the cutoff radius rc, the number of bispectrum components D and two additional weights in the
representation of the atomic density. We refer the reader to the original publications for further
details[90]. To test the transferability of the sampling scheme under different reference models
E0(X), we fix h to be the same for all potentials, regardless of the specie in training data, using
a cutoff radius of rc = 4.7Å and D = 55 bispectrum components. While we consider models
approximating Mo and W (see section F.3), which have similar equilibrium volumes, we note
that the bispectrum descriptor is invariant[90] under a homogeneous rescaling of both the atomic
configuration and the cutoff radius, i.e. the CD-DOS is invariant for fixed V/r3c .

We expect the numerical results of this section to hold directly if we replace the bispectrum descrip-
tor with other "low-dimensional" (d = D = O(100)) descriptors such as POD[71] or hybrid descrip-
tors in MILADY[46, 35]. For models such as MTP[80] or ACE[62], where d = O(103), the features
or score model (or both) will accept some rank reduction, e.g. a linear projection Di(Di) = PDi,
where P ∈ RD×d, with D = O(100). The POD scheme applies rank-reduction to the radial part
of the descriptor, following [47]. Many other rank-reduction schemes have been proposed in recent
years, including linear embedding[27, 95] or tensor sketching [28].
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Figure 3: Producing ensemble of potential parameters for testing D-DOS in forward propagation.
a) A generalized linear MLIP form is chosen to approximate ab initio databases, here of Mo and W.
b) Misspecification-aware Bayesian regression[83] returns a parameter posterior which is broad for
simple MLIPs and diverse databases. c) The posterior is sampled to produce an ensemble of stable
model parameters w ∈ WW and w ∈ WMo used for testing.

F.3 Training data for Fe, W and Mo

The majority of the database configurations for Fe and W are those published in [44]. The W
database originates from the defect- and dislocation-oriented database in [44], which was modi-
fied and updated with molecular dynamics instances in [100] to improve its suitability for finite-
temperature calculations and thermoelasticity of W. Finally, for this study, using the MLIP developed
in [100], we prepared multiple samples of W in the A15 phase or liquid within the NPT ensemble,
covering temperatures from 100 K to 5000 K. Each system contained 216 atoms. We selected 96
snapshots, which were then recomputed using the same DFT parameterization as in [44, 100]. The
Mo database was specifically designed for this study to ensure a well-represented configuration of
Mo at high temperatures in the BCC and A15 phases. The detailed components of the database, as
well as the ab initio details, are described in the Appendix F.1.

F.4 Ensemble of potential parameters for testing in forward-propagation

From the DFT training databases for x = W,Mo,Fe (F.3), we generate a broad range of parameter
values w ∈ Wx for SNAP MLIPs (F.2) using a recently introduced [83] Bayesian linear regression
scheme. The scheme is designed to produce robust parameter uncertainties for misspecified surro-
gate models of low-noise calculations, which is precisely the regime encountered when fitting linear
MLIPs to DFT data.

Taking training data for x = W or Mo, the method produces a posterior distribution π(w) (Figure
3a-b), with strong guarantees that posterior predictions bound the true DFT result, irrespective of
how each training point is weighted. As the SNAP form has a relatively small number (O(100))
of adjustable parameters it is strongly misspecified (large model-form error) to the diverse training
database and thus the posterior distribution gives a broad range of parameter values.

Each training point was weighted using a procedure described elsewhere [44, 100]. While we also
explored randomly varying weights associated with defects and other disordered structures, in all
cases we maintained consistently high weights for structures corresponding to small deformations
of the cubic unit cell in the BCC, FCC, or A15 phases. This procedure ensures that the resulting
potential ensemble yields lattice parameters within a range of 10−4 Å and elastic constants that
follow a narrow distribution centered around the target DFT average values.

We construct our ensemble Wx, x = W,Mo,Fe by applying CUR sparsification [33, 34] to a
large set of posterior samples to extract O(100) parameter vectors which show sufficient dynamical
stability to allow for convergence when performing thermodynamic integration at high temperature
(Figure 3c). We also identify a ‘reference’ value w̄x, being a stable parameter choice that has the
optimal error to training data, i.e. the best overall interatomic potential choice. For each parameter
w we have computed the free energy FL

w(β), as is detailed in the section F.5.

F.5 Free energies from thermodynamic integration

With a given choice of MLIP parameters w, we employ a recently introduced thermodynamic in-
tegration method[19, 100] to calculate the corresponding NVT phase free energies FL

w(β), equa-
tion (9). The thermodynamic scheme first calculates the Hessian matrix Hw for a given parameter
choice, to give a harmonic free energy prediction and to parametrize a ’representative’ harmonic
reference. Rather than the sequential integration over η as described by equation (14), the employed
scheme instead uses a Bayesian reformulation to sample all η ∈ [0, 1] values simultaneously, which
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significantly accelerates convergence[19]. In addition, a ‘blocking’ constraint is used to prevent
trajectories escaping the metastable basin of any crystalline phase. We refer the reader to[100] for
further details.

Even with these blocking constraints, in many cases phases had poor metastability at high tem-
peratures, in particular the A15 phase, which was rectified by adding more high temperature A15
configurations to training data and restricting the range of potential parameters. These dynamical
instabilities reflect general trends observed in long molecular dynamics trajectories, where high-
dimensional MLIPs are prone to failure over long time simulations[53, 92].

While there is currently no general solution to the MLIP stability problem, even for the relatively
low-dimensional (D = O(100)) descriptors used in this study, it can be mitigated by enriching
the training database[100]. In contrast, our score matching procedure only requires stability of the
Hessian matrix H used for the harmonic reference potential E0(X), a much weaker condition than
dynamical stability. The observed accuracy, detailed below, strongly suggests our sampling scheme
may be able to predict phase free energies for a much broader range of parameter space than those
that can be efficiently sampled via traditional methods. A full exploration of this ability is one of the
many future directions we discuss in the conclusions in the main text.

The final sampling campaign to generate reference free energies for comparison against D-DOS
estimates required around O(104) CPU hours, or O(105) force calls per model, with blocking
analysis[59, 4] applied to estimate the standard error in each free energy estimate. We emphasize
that the scheme described in this section represents the state-of-the-art in free energy estimation for
MLIPs. Nevertheless, for any given choice of model parameters, free energy estimation requires at
least O(106) CPU hours, irrespective of available resources, which significantly complicates uncer-
tainty quantification via forward propagation and completely precludes including finite temperature
properties during model training via back-propagation. The model-agnostic D-DOS scheme detailed
introduced in this paper provides a first general solution for MLIPs that can be cast into the general
linear form used here.

F.6 Systematic error correction for D-DOS free energy estimates

We find the estimated D-DOS errors to be excellent predictors of the observed errors. In addition,
both predicted and observed errors are typically very low, around 1-2 meV/atom, rising to 10
meV/atom if the reference model is poorly chosen or the system is particularly anharmonic.
These errors were largely corrected via a momentum-dependent isosurface bringing observed and
predicted errors back within the stringent 1-2 meV/atom threshold.

However, if tightly converged (<1meV/atom) estimates of the free energy are desired for a given
parameter choice w, the close connection between the D-DOS conditional free energy Fw(β|α) and
free energy perturbation (FEP), discussed in the main text, offers a systematic correction scheme.
Any predicted value of Fw;Θ(β|α) from our score matching estimate can be updated through
short isosurface sampling runs, recording the difference between observed cumulants of w · D
and those predicted by Sw;Θ(D|α)), conducted over a small range of α to account for updated
moments changing the minimum solution ∂αS0(α) = β∂αFw(β|α). Following established FEP
techniques[48, 21] this procedure can then be extended to include ab initio data. However, given
the accuracy of our D-DOS estimations we focus on exploring the unique abilities of the D-DOS
scheme in forward and back parameter propagation, leaving a study of this correction scheme to
future work.
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