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ABSTRACT

Reinforcement learning (RL) is the dominant paradigm for sharpening strategic
tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet
it faces a fundamental challenge of exploration-exploitation trade-off. Existing
studies stimulate exploration through the lens of policy entropy, but such mechan-
ical entropy maximization is prone to RL instability due to the multi-turn distri-
bution shifting. In this paper, we target the progressive exploration-exploitation
balance under the guidance of the agent’s own experiences without succumbing
to either entropy collapsing or runaway divergence. We propose SPEAR , a
self-imitation learning (SIL) recipe for training agentic LLMs. It extends the
vanilla SIL, where a replay buffer stores good experience for off-policy update,
by gradually steering the policy entropy across stages. Specifically, the proposed
curriculum scheduling harmonizes intrinsic reward shaping and self-imitation to
1) expedite exploration via frequent tool interactions at the beginning, and 2)
strengthen exploitation of successful tactics upon convergence towards familiarity
with the environment. We also combine bag-of-tricks of industrial RL optimiza-
tions for a strong baseline Dr.BoT to demonstrate our effectiveness. In ALFWorld
and WebShop, SPEAR increases the success rates of GRPO/GiGPO/Dr.BoT by
up to 16.1%/5.1%/8.6% and 20.7%/11.8%/13.9%, respectively. In AIME24 and
AIME25, SPEAR boosts Dr.BoT by up to 3.8% and 6.1%, respectively. Such
gains incur only 10%–25% extra theoretical complexity and negligible runtime
overhead in practice, demonstrating the plug-and-play scalability of SPEAR.

1 INTRODUCTION

Figure 1: Our SPEAR harmonizes the curriculum-scheduled self-imitation learning with intrinsic
reward shaping for progressive exploration, improving policy performance across agentic tasks.

Reinforcement Learning (RL) (Lambert et al., 2024; Guo et al., 2025; Qin et al., 2025b) has driven
the development of reasoning capabilities of Large Language Models (LLMs). Built upon the
reason-and-act (ReAct) paradigm (Yao et al., 2023), LLMs have powered various agentic appli-
cations such as simulated robot navigation (Shridhar et al., 2020; Li et al., 2024), mobile assis-
tant (Wang et al., 2024; Li et al., 2025a), web navigator (Furuta et al., 2023; He et al., 2024), deep
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searcher (Jin et al., 2025b; Li et al., 2025c; Tao et al., 2025), and GUI master (Qin et al., 2025a; Hong
et al., 2024). A fundamental challenge in applying RL to LLM agents is to manage the balance be-
tween exploration and exploitation. The LLM agent needs to exploit both pretrained knowledge
and past interactions to formalize experience that maximize rewards. At the same time, it must ex-
plore novel behaviors through tool-integrated reasoning and reflection. The interweaving between
exploration and exploitation determines the emerging agent’s competence upon convergence.

Existing studies often quantify the exploration potential through entropy (Sutton, 1988; Williams &
Peng, 1991; Cui et al., 2025b; Xue et al., 2025), where the decline of policy entropy indicates over-
confidence with insufficient exploration. In this case, a series of regularization techniques (Ziebart
et al., 2008; Schulman et al., 2017b; Haarnoja et al., 2018) have been proposed to maximize entropy
(Haarnoja et al., 2017; Zhao et al., 2019; Xin et al., 2020; Zhang et al., 2021; Seo et al., 2021; Mehr
et al., 2023; Kim & Sung, 2023; Hao et al., 2023). However, when it comes to LLM-driven agents,
entropy-based control is fragile: the accumulation of low-probability tokens from the environment
feedback induces severe distribution shifting, often leading to mode collapse (Xue et al., 2025;
Dong et al., 2025b). Agent models may experience sustained entropy growth due to uncertainty
about multi-turn interactions and training instability becomes frequent (Mai et al., 2025; Yao et al.,
2025; Wang et al., 2025b). Recent approaches attempt to mitigate this issue by cold-start supervised
fine-tuning (SFT) (Tao et al., 2025; Qin et al., 2025a; Feng et al., 2025a; Qin et al., 2025c) or
hybrid schemes that combine RL with SFT (Zhang et al., 2025a). Although these methods improve
stability, they compromise policy’s discovery of strategies beyond those present in the SFT corpus.
This limitation highlights the need for adaptive training frameworks that can dynamically schedule
LLM-driven agents to decide when to explore and when to exploit.

In this paper, we are trying to answer the following core research question: Can we schedule a
smooth transition between exploration and exploitation guided by the policy’s own experience
without going to extremes of either entropy collapsing or runaway divergence? We hypoth-
esize that the agent should maintain its policy entropy within a dynamic but controlled range that
evolves over time: 1) At the early stages, increasing entropy is beneficial for broad skill-level
exploration. The agent is expected to rapidly develop tool-use capabilities, encounter unfamiliar
observations, and engage in trial-and-errors. 2) As training advances, however, a shift toward
converging entropy is required. This enables the agent to consolidate problem-solving heuristics
and emphasize action-level exploration. The agent exploits reward signals to choose comparatively
more effective actions and adapts to changing distributions for stabilizing its evolutionary path.

Figure 2: Overview of SPEAR. First, the agent interacts with the environment for a set of trajecto-
ries, which flow through intrinsic reward shaping and advantage estimation with on-policy updates.
Second, they are selected and stored in a replay buffer, enabling off-policy updates via the proposed
self-imitation scheme. This dual integration allows the maximal utility of past experiences, thereby
expanding the effective exploration space, while simultaneously mitigating persistent uncertainty.
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To address this, we propose the Self-imitation with Progressive Exploration for Agentic
Reinforcement learning (SPEAR ), a curriculum-based RL recipe for improving the exploration-
exploitation balance with self-imitation and intrinsic reward. As shown in Figure 1, the core prin-
ciple follows the vanilla Self-Imitation Learning (SIL) (Oh et al., 2018; Ferret et al., 2020) where
an independent replay buffer is prepared to store the state-action pairs only when their returns in
the past episodes exceed the baselines. Such a replay buffer is exploited to encourage actions with
good returns and improve hard exploration based on these successful trajectories under the sparse-
reward, long-horizon agent tasks. Specifically, we introduce three modifications to SIL tailored to
the dynamics of policy entropy in agentic tasks. First, we incorporate a curriculum to integrate
both skill-level and action-level exploration by adjusting reward shaping and self-imitation across
stages. Second, we tackle the off-policy nature of the update with experiences in the buffer and
avoid advantage recomputation by advantage recalibration. Third, we regularize policy updates to
stabilize entropy and mitigate reward hacking. Finally, inspired by existing industrial bag-of-tricks,
we present a strong baseline Dr.BoT for agentic RL training. Our SPEAR brings considerable per-
formance gains to GRPO/GiGPO (Feng et al., 2025b)/Dr.BoT respectively up to 16.1%/5.1%/8.6%
on ALFWorld (Shridhar et al., 2020) and 20.7%/11.8%/13.9% on WebShop (Yao et al., 2022). It
boosts our Dr.BoT respectively up to 3.8% on AIME24 and 6.1% on AIME25 (AIME, 2025). These
gains come with around 10% ∼ 25% computation overhead in theoretical complexity, but end up
with quite comparable runtime per iteration in practice. Such compatibility and scalability enable
SPEAR a plug-and-play algorithm for training versatile agents. In summary, our contributions are:

1) We propose SPEAR, a generalization of the SIL for training LLM agents. It bypasses the costly
expert imitation and allows exploration under the guidance of one’s own rewarded experience.

2) We bring in curriculum scheduling to harmonize SIL with intrinsic reward shaping for policy
entropy management and progressive transition from skill-based to action-based exploration.

3) We propose a strong baseline, Dr.BoT, which combines established RL techniques validated in
industrial practice, confirming its effectiveness and superiority over existing baselines.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING ALGORITHMS FOR LLMS

With the advent of large-scale reasoning models (Jaech et al., 2024), Reinforcement Learn-
ing (RL) (Ouyang et al., 2022) has been adopted more broadly. Proximal Policy Optimization
(PPO) (Schulman et al., 2017b) leverages an actor–critic architecture together with the clipped sur-
rogate objective and a Kullback–Leibler (KL) divergence penalty to constrain policy update. Group
Relative Policy Optimization (GRPO) (Guo et al., 2025; Shao et al., 2024) simplifies this setup by
replacing the critic with a group-wise baseline. Building on GRPO, DAPO (Yu et al., 2025) uses
dynamic sampling and ”clip higher” to encourage exploration and stabilize training. Dr.GRPO (Liu
et al., 2025b) addresses length bias and the difficulty bias. Existing methods have greatly advanced
RL for LLMs. However, naively combining them can lead to conflicts or tight couplings among tech-
niques. To this end, we harmonize the strengths of DAPO, Dr.GRPO, and other agent studies from
research and industrial practice to establish a strong baseline, Dr.BoT, as detailed in Section 4.4.

2.2 OPTIMIZATION OF LLM AGENTS

Recent researches investigate how to endow models with better tool-use capabilities (Feng et al.,
2025a; Li et al., 2025d; Xue et al., 2025). LLMs are optimized to strengthen information seek-
ing from open web (Jin et al., 2025b; Tao et al., 2025; Gao et al., 2025). RAGEN (Wang et al.,
2025b) improves the stability of multi-turn RL through instance filtering and gradient shaping.
GiGPO (Feng et al., 2025b) augments group-level advantages with additional step-level advantage
estimates. ARPO (Dong et al., 2025b) monitors entropy dynamics during rollouts to branch trajec-
tories adaptively. In this work, we address the exploration–exploitation dilemma under multi-turn
tool-use settings. We introduce a curriculum–regulated RL regime that gradually shifts skill-based
exploration towards action-based exploration. We integrate self-imitation and intrinsic reward to
consolidate successful behaviors (Section 4.2). Our SPEAR can work with existing algorithms in a
plug-and-play manner, exhibiting a high level of compatibility and generalization.
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2.3 EXPLORATION IN REINFORCEMENT LEARNING

Curiosity-driven methods (Pathak et al., 2017; Houthooft et al., 2016) grant intrinsic rewards for pre-
diction error or novelty to actively seek unfamiliar states. Count-based algorithms (Bellemare et al.,
2016; Tang et al., 2017) introduce pseudo-counts derived from a density model to assign count-based
bonuses. Skill acquisition methods (Gregor et al., 2016; Eysenbach et al., 2018) discover distinct
options by maximizing the mutual information. Entropy-regularization methods (Haarnoja et al.,
2018; Cui et al., 2025b) maximize the expected reward and entropy of the policy. However, tradi-
tional exploration techniques can lead to divergence of agent LLMs as the multi-turn interactions
already result in the increased uncertainty on unfamiliar observations. Under such circumstance,
we propose the curriculum-guided self-imitation to leverage the agent’s own experience for balanc-
ing exploration and exploitation. It avoids handcrafted heuristic techniques in previous studies and
instead fully relies on the agent itself to reinforce successful and valid patterns.

2.4 EXPERIENCE REPLAY IN REINFORCEMENT LEARNING

Self-Imitation Learning (SIL) (Oh et al., 2018) takes advantage of past successful experience to
drive its future learning (Schaul et al., 2015; Horgan et al., 2018; Gangwani et al., 2018; Pan et al.,
2022; Saglam et al., 2023). SAIL (Ferret et al., 2020) extends SIL to off-policy, action value-
based RL methods. Tang (2020) proves that SIL’s return-based update provides a bias–variance
trade-off that speeds up learning. SILfD (Pshikhachev et al., 2022) extends SIL to leverage both
external demonstrations and the agent’s own experience. GSIL (Xiao et al., 2024) proposes an
offline alignment framework that uses self-imitation on demonstration data. While SIL benefits
long-horizon problems, its induces entropy collapsing to agent RL. To mitigate this, we harmonize
both self-imitation and intrinsic reward with curriculum scheduling for progressive exploration.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Given a task x ∼ p(X) where p(X) represents data distribution, an LLM agent parameterized by
θ interacts with the environment E until it completes the task or exceeds the max number of turns
T . It can be modeled by Markov Decision Process (MDP) where st, at, and Rt respectively denote
the state, action, and reward at time t. Given a full episode τ = {(s1,a1, R1), (s2,a2, R2), ...}, we
aim to optimize the agent policy πθ. Following previous studies (Dong et al., 2025a; Feng et al.,
2025b;a; Dong et al., 2025b), we define three distinct types of actions (see Appendix A.2).

3.2 POLICY OPTIMIZATION

We adopt the GRPO (Shao et al., 2024) which stems from PPO (Schulman et al., 2017a;b) but
replaces the model-based A (Schulman et al., 2015) with the group-based Â (Appendix A.3).

4 TRAINING AGENTIC LLMS WITH SPEAR

4.1 PRELIMINARY FINDINGS

The extension of SIL to LLM-driven agents faces entropy collapse. Figure 3 illustrates that the over-
fitting of the few available successful experience causes irreversible stagnation of exploration. In ad-
dition, we demonstrate that the inclusion of the tool-call reward is a double-edged sword (Figure 4),
where the competition between reward terms causes the oscillations to converge. To address these
challenges, we introduce SPEAR for progressive exploration with self-imitation (Algorithm 1).

4.2 SELF-IMITATION LEARNING

We resort to self-imitation to unearth past successful experience for effective action-level explo-
ration, where the agent learns novel strategies along the promising decision path instead of random
walk and bifurcation. We prevent policy entropy divergence by replaying rewarded trajectories.

4
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(a) Entropy (seq-mean-token-sum-norm). (b) Accuracy on AIME 2025.

Figure 3: Effect of our self-imitation on action-level strategy exploration (Qwen2.5-32B with code
interpreter). The vanilla experience replay technique (Oh et al., 2018) that enforces early overfitting
of the few available trajectories in the buffer causes entropy collapsing and exploration shrinkage.
At the beginning, the LLM agent struggles at tool-calling skills and fails to cultivate the transition
of distribution towards frequent tool utilization and tool-integrated reasoning. The naive replay lim-
its the transformation of reasoning paradigm. In contrast, our SPEAR introduces both curriculum-
and covariance- based regularization into self-imitation. Its curriculum schedule with an increasing
emphasis on the replay data allows easy acquisition of tool-use skills at first, and stimulates strategic
action plans later. The covariance clipping removes over-confident tokens, whose log probabili-
ties are highly associated with their advantage gains, out of optimization. Our self-imitation gives
promises to exploring novel strategies and achieves steady growth on AIME 2025.

Prioritized Experience Replay in Self-Imitation. A replay buffer is maintained to store previous
trajectories, their rewards and advantages D = {(τj , Rj , Âj)}, j = 1, 2, ..., ND where ND denotes
the buffer size. To exploit only good trajectories, we keep those with positive advantages:

J SIL
GRPO(πθ) = E{τj}

ND
j=1∼{πθold (·|x), x∼p(X)}

ND∑
j=1

J j
GRPO · 1(Âj > 0), (1)

where the indicator 1(·) equals to 1 when the condition satisfied and 0 otherwise. The past trajecto-
ries not only come from the last policy πθold but also the policies {πθold} of few steps earlier.

Advantage Recalibration for Off-Policy Estimation. We propose to recalibrate the advantage of
trajectories in the buffer to address the underlying off-policy challenge. That is to say, the observed
return of a trajectory from the past policy becomes increasingly different from the current one,
under the assumption that the policy keeps improving during iterations (Ferret et al., 2020; Luo
et al., 2021). Under this assumption, vanilla SIL computes the advantage with a pointwise max with
the per-state empirical return as a baseline, which can be seen as a proxy for the upper-envelope
projection of the value function onto empirical returns. GRPO removes the learned value baseline
by estimating the state-dependent baseline performance through its reliance on intra-group reward
averaging, but this still depends on the target policy and requires extra computation resources for
sampling. Dynamic adjustment on the baseline performance is performed to calibrate relative gains
without introducing additional computing. Specifically, we maintain a First-In-First-Out (FIFO)
buffer of intra-group baselines for the latest NDR

trajectories DR = {R̄j}DR
j=1 where NDR

denotes
the size of the baseline buffer. As training progresses, due to the high variance nature of agentic RL,
we utilize the 50-th percentile P50(DR) as a conservative but robust estimation of the policy baseline
with either upward or downward trends. To bypass the inaccurate estimation of intra-group standard
deviation, we follow (Liu et al., 2025b) to simply remove such a term in advantage computation:

Ãi
t = Ri − P50(DR). (2)

Such recalibrated advantage enjoys three benefits: 1) the baseline performance correlates with the
policy change; 2) the outdated experiences can be filtered out with both Âj > 0 and Ãj > 0; 3) the
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difficulty bias by group normalization can be mitigated. The updated off-policy SIL objective is:

J̃ SIL
GRPO(πθ) = E{τj}

ND
j=1∼{πθold (·|x), x∼p(X)}

ND∑
j=1

J̃ j
GRPO · 1(Âj > 0 & Ãj > 0), (3)

J̃ i
GRPO =

[
1

T

T∑
t=1

(min(rit(θ)Ã
i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Ãi

t)− βDi
KL(πθ||πref)

]
. (4)

Progressive Experience Utilization with Curriculum Schedule. We perform scheduling to 1)
restrict mechanical imitation of probable-yet-immature experience at an early stage, and 2) prevent
consistent uncertainty about the environment states and policy actions at later stage. We apply a
warm-up γ on the SIL term under the assumption that initially the transition of distribution towards
diverse actions outweighs the imitation of limited solution patterns (see Equation 13 and Figure 6a).

JTotal(πθ) = JGRPO(πθ) + γ · J̃ SIL
GRPO(πθ). (5)

(a) Number of tool-call turns. (b) Accuracy on AIME 2025.

Figure 4: Effect of our intrinsic reward on skill-level strategy exploration (Qwen2.5-32B with code
interpreter). The baseline does not consider tool-calling as a rewarded behavior and its number of
interaction with the environment drops quickly due to the negative feedback of bad codes. In this
case, the LLM gives up coding and degrades to text-based reasoning. The vanilla tool-call reward,
despite being effective in learning tool-call skills at first, causes competition with the outcome re-
ward later. Due to the limited context length, the excessive tool-call turns prevents submission of the
final answer and thereafter the accuracy declines immediately. We propose the curriculum schedule
as an intrinsic reward design where its strength decays over step to allow the agent to merely focus
on the accuracy with wiser actions. It prevents reward hacking for unnecessarily long interactions.

4.3 INTRINSIC REWARD SHAPING

We resort to intrinsic reward for skill-level exploration where the agent is guided by a tool-call reward
to broadly investigate tool usage. Such design not only benefits tool learning but more importantly
stimulates interactions that familiarize the agent with the environment for experience accumulation.

Reward Composition. A compound reward Ri of each trajectory τi not only considers the final
outcome but also the behaviors that are promising to achieve the goal: an outcome accuracy reward
Ri

outcome, a continuous tool-call reward Ri
tool-call, and a format reward Ri

format (see Appendix A.7).

Progressive Reward Modulation with Curriculum Schedule. We regulate the contribution of
tool call reward to: 1) accelerate the mastering of tool usage for quick distribution shifting towards
new task settings at an early stage, and 2) prevent optimization oscillation and competition at a later
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stage. Although previous studies (Qian et al., 2025; Li et al., 2023; Da et al., 2025; Xia et al., 2025;
Singh et al., 2025; Wei et al., 2025; Gou et al., 2023; Lin & Xu, 2025) experimented with various
auxiliary rewards, we show that the addition of tool-call reward is a double-edged sword. The
agent trained without the tool-call reward fails to develop tool-integrated reasoning (Figure 4) due
to negative tool response: 1) missing import of modules; 2) reference to undefined variables;
3) unexpected indentation error; and 4) forgetting to print results. The agent quickly gives
up coding to run away from errors and turns to pure textual reasoning. On the other hand, the
enforcement of tool-call reward stimulates an increasing number of interaction turns, leading to over-
long responses that cause oscillation to outcome accuracy. We alleviate the competition between
reward terms by scheduling the tool-call reward with µ (Equation 14 and Figure 6b):

Ri = Ri
outcome + µ ·Ri

tool-call +Ri
format. (6)

4.4 Dr.BoT AS A STRONG BASELINE

To provide a strong baseline, we refer to the existing studies (Liu et al., 2025c; Sun et al., 2025; Bai
et al., 2025a; Cui et al., 2025b) for diverse exploration, stable convergence, and effective training.
Our baseline, Dr.BoT, consists of bag-of-tricks modifications to the GRPO (see Appendix A.8).

Table 1: Results on ALFWorld & WebShop (%). PT & FW stand for prompting & framework.

Type Method ALFWorld WebShop
Pick Look Clean Heat Cool Pick2 All Score SR

Qwen2.5-1.5B-Instruct
PT I/O 5.9 5.5 3.3 9.7 4.2 0.0 4.1 23.1 5.2
FW ReAct 17.4 20.5 15.7 6.2 7.7 2.0 12.8 40.1 11.3
FW Reflexion 35.3 22.2 21.7 13.6 19.4 3.7 21.8 55.8 21.9
RL PPO 64.8 40.5 57.1 60.6 46.4 47.4 54.4 73.8 51.5
RL RLOO 88.3 52.8 71.0 62.8 66.4 56.9 69.7 73.9 52.1
RL GRPO 85.3 53.7 84.5 78.2 59.7 53.5 72.8 75.8 56.8
RL + SPEAR (ours) 93.9 80.9 96.4 87.4 88.3 79.1 88.9(+16.1%) 90.0 77.5(+20.7%)

RL Dr.BoT (GRPO) 92.2 75.8 81.0 81.8 72.8 61.9 79.1 78.7 62.9
RL + SPEAR (ours) 91.2 72.2 94.1 95.1 88.3 74.4 87.7(+8.6%) 88.4 76.8(+13.9%)

RL GiGPO w/std 94.4 67.5 94.8 94.4 79.8 76.4 86.7 83.1 65.0
RL GiGPO w/o std 96.0 76.5 91.8 91.3 71.7 79.5 86.1 83.5 67.4
RL + SPEAR (ours) 95.2 79.2 89.1 94.0 88.8 95.5 91.2(+5.1%) 90.7 79.3(+11.8%)

RL Dr.BoT (GiGPO) 98.6 91.4 93.7 93.8 85.4 78.4 90.6 84.1 68.8
RL + SPEAR (ours) 96.4 86.5 96.1 99.0 87.6 91.6 93.2(+2.6%) 90.9 81.1(+12.2%)

Qwen2.5-7B-Instruct
PT I/O 33.4 21.6 19.3 6.9 2.8 3.2 14.8 26.4 7.8
FW ReAct 48.5 35.4 34.3 13.2 18.2 17.6 31.2 46.2 19.5
FW Reflexion 62.0 41.6 44.9 30.9 36.3 23.8 42.7 58.1 28.8
RL PPO 92.3 64.0 92.5 89.5 80.3 68.8 80.4 81.4 68.7
RL RLOO 87.6 78.2 87.3 81.3 71.9 48.9 75.5 80.3 65.7
RL GRPO 90.8 66.1 89.3 74.7 72.5 64.7 77.6 79.3 66.1
RL + SPEAR (ours) 93.7 62.4 97.2 78.0 83.1 75.5 85.2(+7.6%) 92.4 84.6(+18.5%)

RL Dr.BoT (GRPO) 99.9 95.8 93.8 92.8 90.4 80.6 92.4 90.4 80.5
RL + SPEAR (ours) 98.8 97.9 97.1 88.5 89.2 87.2 93.8(+1.4%) 91.4 84.8(+4.3%)

RL GiGPO w/std 97.7 82.7 98.8 83.7 89.3 79.2 90.8 84.4 72.8
RL GiGPO w/o std 91.8 88.6 95.9 90.2 86.5 85.2 90.2 86.2 75.2
RL + SPEAR (ours) 99.9 82.4 98.0 92.8 92.6 86.6 94.1(+3.9%) 92.7 83.8(+8.6%)

RL Dr.BoT (GiGPO) 98.3 99.9 96.9 92.8 91.8 88.3 94.0 90.7 81.8
RL + SPEAR (ours) 99.9 85.1 95.6 96.4 89.9 95.1 94.7(+0.7%) 92.5 85.7(+3.9%)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Three benchmarks are used: ALFWorld (Shridhar et al., 2020), WebShop (Yao et al., 2022), and
DAPO-MATH-17K (Yu et al., 2025) (Appendix A.10). According to these benchmarks, we respec-
tively follow (Feng et al., 2025b) and (Feng et al., 2025a) to report a range of competitive baselines
(Appendix A.11). All the training settings and hyper-parameters are detailed in Appendix A.12.

5.2 PERFORMANCE

Table 1 demonstrates our effectiveness on ALFWorld and WebShop. It is compatible with
GRPO (Shao et al., 2024), GiGPO (Feng et al., 2025b), and our Dr.BoT. SPEAR brings consis-
tent gains across 1.5B and 7B models up to 20%. Such generalization benefits from the collection of
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successful trajectories, which acts as a walkthrough guide to the agent. Especially for tasks where
the success rate is fairly low at the beginning, the agent has to figure out the underlying interaction
logics and summarize action plans tailored specific to each task. The experience replay expedites
the accumulation of tactics and thereafter reduces blind trials and errors. Furthermore, our Dr.BoT
boosts GRPO and GiGPO up to 15%, showcasing the validity of mixture of tricks.

Table 2: Results (mean@30) on AIME 2024 & 2025 (%). †: Official implementation already utilizes
DAPO tricks. ‡: Official results reported by Qwen (Yang et al., 2025). PT stands for prompting.

Type Method Model Tool Context AIME24 AIME25Train Test

PT I/O Qwen2.5-32B-Instruct – – 16K 13.4 12.9
PT I/O Qwen2.5-32B-Instruct CI – 16K 29.6 23.1
RL PPO† Qwen2.5-32B-Instruct CI 16K 16K – 55.0
RL GRPO† Qwen2.5-32B-Instruct CI 16K 16K – 60.0
RL ReTool Qwen2.5-32B-Instruct CI 16K 16K 67.0 49.3
RL SimpleTIR Qwen2.5-32B-Instruct CI 12K 12K 59.9 49.2
RL ZeroTIR Qwen2.5-32B-Instruct CI 8K 8K 56.7 33.3
RL AFM Qwen2.5-32B-Instruct CI 32K 32K 66.7 59.8
RL Dr.BoT (GRPO) Qwen2.5-32B-Instruct CI 16K 16K 64.7 54.0
RL + SPEAR (ours) Qwen2.5-32B-Instruct CI 16K 16K 66.3(+1.6%) 60.1(+6.1%)

RL Dr.BoT (GRPO) Qwen2.5-32B-Instruct CI 32K 32K 67.2 55.1
RL + SPEAR (ours) Qwen2.5-32B-Instruct CI 32K 32K 71.0(+3.8%) 61.0(+5.9%)

PT I/O Qwen3-32B-Instruct – – 16K 68.5 53.5
PT I/O‡ Qwen3-32B-Instruct – – 38K 81.4 72.9
PT I/O Qwen3-32B-Instruct CI – 16K 31.1 24.4
RL Dr.BoT (GRPO) Qwen3-32B-Instruct CI 16K 16K 81.3 74.1
RL + SPEAR (ours) Qwen3-32B-Instruct CI 16K 16K 81.8(+0.5%) 78.8(+4.7%)

RL Dr.BoT (GRPO) Qwen3-32B-Instruct CI 32K 32K 82.5 77.3
RL + SPEAR (ours) Qwen3-32B-Instruct CI 32K 32K 85.6(+3.1%) 80.5(+3.2%)

Table 2 reports the performance of CI-integrated reasoning on AIME24 and AIME25. Dr.BoT indeed
outperforms recent RL baselines. The reduced context length of Qwen3 impedes complete reasoning
and answer parsing. The agent learns to exploit the CI feedback for double-check and self-reflection.
SPEAR achieves comparable performance with Qwen3 but using a much smaller token budget.
When the context is relaxed to 32K, an improvement is observed on both Qwen2.5 and Qwen3,
confirming our generalization with more interactions turns and reasoning tokens.

5.3 ABLATION STUDY

Table 3: Ablation on ALFWorld & WebShop. SI & IR stand for Self-Imitation & Intrinsic Reward.

Type Method ALFWorld WebShop
Pick Look Clean Heat Cool Pick2 All Score SR

Qwen2.5-1.5B-Instruct
RL GRPO 85.3 53.7 84.5 78.2 59.7 53.5 72.8 75.8 56.8
RL + SI 86.8 61.0 87.4 87.7 71.1 56.6 77.3(+4.5%) 85.1 74.2(+17.4%)

RL + SI + IR (SPEAR) 93.9 80.9 96.4 87.4 88.3 79.1 88.9(+16.1%) 90.0 77.5(+20.7%)

RL GiGPO w/o std 96.0 76.5 91.8 91.3 71.7 79.5 86.1 83.5 67.4
RL + SI 93.2 82.5 96.3 87.4 92.7 87.5 90.6(+4.5%) 89.4 79.0(+11.6%)

RL + SI + IR (SPEAR) 95.2 79.2 89.1 94.0 88.8 95.5 91.2(+5.1%) 90.7 79.3(+11.8%)

Qwen2.5-7B-Instruct
RL GRPO 90.8 66.1 89.3 74.7 72.5 64.7 77.6 79.3 66.1
RL + SI 93.2 82.5 96.3 87.4 92.7 87.5 90.6(+13.0%) 90.4 83.4(+17.3%)

RL + SI + IR (SPEAR) 93.7 62.4 97.2 78.0 83.1 75.5 85.2(+7.6%) 92.4 84.6(+18.5%)

RL GiGPO w/o std 91.8 88.6 95.9 90.2 86.5 85.2 90.2 86.2 75.2
RL + SI 96.1 81.9 98.4 95.3 94.5 83.9 93.6(+3.4%) 94.6 87.5(+12.3%)

RL + SI + IR (SPEAR) 99.9 82.4 98.0 92.8 92.6 86.6 94.1(+3.9%) 92.7 83.8(+8.6%)

Self-Imitation. The SIL improves baselines consistently across model scales (Table 3). Since ei-
ther 1.5B or 7B models perform poorly at the early stage (i.e., success rate < 15%), past experiences
are quite beneficial to explore promising strategies. The re-use of trajectories facilitates convergence
and prevents mechanical trials especially for small agents. Table 4 shows that AIME24 dropped a
bit by self-imitation but AIME25 still gets improved. Such fluctuation is related to the phenomenon
(Figure 4) where the imitation of samples with multiple tool calls leads to rapid increase of interac-
tion turns and thereafter causes training instability. The competition between different reward terms
affects the robust selection of good experience, ultimately degrading the effectiveness of SIL.
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Table 4: Ablation on AIME 2024 & 2025 (%). SI & IR stand for Self-Imitation & Intrinsic Reward.

Type Method Model Tool Context AIME24 AIME25Train Test

RL Dr.BoT (GRPO) Qwen2.5-32B-Instruct CI 16K 16K 64.7 54.0
RL + SI Qwen2.5-32B-Instruct CI 16K 16K 63.8(-0.9%) 56.9(+2.9%)

RL + SI + IR (SPEAR) Qwen2.5-32B-Instruct CI 16K 16K 66.3(+1.6%) 60.1(+6.1%)

RL Dr.BoT (GRPO) Qwen2.5-32B-Instruct CI 32K 32K 67.2 55.1
RL + SI Qwen2.5-32B-Instruct CI 32K 32K 66.0(-1.2%) 60.5(+5.4%)

RL + SI + IR (SPEAR) Qwen2.5-32B-Instruct CI 32K 32K 71.0(+3.8%) 61.0(+5.9%)

RL Dr.BoT (GRPO) Qwen3-32B-Instruct CI 16K 16K 81.3 74.1
RL + SI Qwen3-32B-Instruct CI 16K 16K 81.2(-0.1%) 75.8(+1.70%)

RL + SI + IR (SPEAR) Qwen3-32B-Instruct CI 16K 16K 81.8(+0.5%) 78.8(+4.70%)

RL Dr.BoT (GRPO) Qwen3-32B-Instruct CI 32K 32K 82.5 77.3
RL + SI Qwen3-32B-Instruct CI 32K 32K 81.8(-0.7%) 78.2(+0.9%)

RL + SI + IR (SPEAR) Qwen3-32B-Instruct CI 32K 32K 85.6(+3.1%) 80.5(+3.2%)

Intrinsic Reward. The rewarding of interaction turns benefit 1.5B models consistently (Table 3).
Two 7B outliers are found where the self-imitation alone brings the most performance gains. Such
exception might be related to both the task definition and the RL algorithm. One should experiment
with different combinations in practice. Table 4 shows that the intrinsic reward is indispensable
for both Qwen2.5 and 3 because it encourages transformation from text-based reasoning to tool-
integrated reasoning. It promotes frequent tool calling and such rich observation signals motivate the
agent to correct coding errors, check the validity of the answer, and reflect on alternative solutions.

5.4 GENERALIZATION ON VISION-LANGUAGE AGENTS

Table 5: Success rate (%) of
the visual agent for playing
Sokoban.

Type Method Sokoban

Qwen2.5-VL-3B-Instruct
PT I/O 11.7
RL GRPO 67.1
RL + SPEAR (ours) 86.7(+19.6%)

RL Dr.BoT (GRPO) 76.0
RL + SPEAR (ours) 85.4(+9.4%)

RL GiGPO w/ std 76.9
RL GiGPO w/o std 81.0
RL + SPEAR (ours) 87.7(+6.7%)

RL Dr.BoT (GiGPO) 81.3
RL + SPEAR (ours) 87.9(+6.6%)

(a) Before (step 15). (b) After (step 125).

Figure 5: The agent learns to push the box.

To test whether the proposed SPEAR is still complimentary to existing GRPO-like algorithms on
training visual agents, we follow (Feng et al., 2025b) to conduct experiments on the popular visual
game Sokoban (Schrader, 2018). In this setting, the Qwen2.5-VL-3B-Instruct (Bai et al., 2025b) is
adopted as the agentic LLM to solve the puzzle game where the player must push the boxes along the
grid towards target positions without hitting the walls. It challenges the agent on spatial comprehen-
sion and long-term planning capabilities. The grid size is of 6× 6 and the visual agent receives both
the visual (RGB arrays) and textual inputs as states. As shown in Table 5, the proposed method gen-
erally improves the performance on Sokoban with either GRPO, GiGPO, and the proposed Dr.BoT
baselines. At first, the visual agent is unaware of the winning logic behind the game and wanders
around for ”aimlessly” exploration (see Figure 5). After optimization, it not only comprehends the
spatial relationship to control the box but also learns to stop moving when the task is completed.

5.5 GENERALIZATION ON SEARCH-AUGMENTED QA TASKS

To evaluate the performance of SPEAR on knowledge-intensive reasoning tasks, we conduct ex-
periments on search-augmented QA tasks, including the single-hop QA datasets (NQ (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023)) and multi-hop QA
datasets (HotpotQA (Yang et al., 2018), 2Wiki (Ho et al., 2020), MuSiQue (Trivedi et al., 2022),
and Bamboogle (Press et al., 2023)). We follow the experimental settings of SearchR1 (Jin et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Results on search-augmented QA Tasks.

Type Method Single-Hop QA Multi-Hop QA Avg.NQ TriviaQA PopQA HotpotQA 2Wiki MuSiQue Bamboogle

Qwen2.5-7B-Instruct
RL Search-R1 39.3 61.0 39.7 37.0 40.1 14.6 36.8 38.5
RL SPEAR 35.7 62.7 34.5 46.9 43.4 17.2 44.8 40.7

Qwen2.5-14B-Instruct
RL Search-R1 48.8 67.7 48.2 45.5 47.0 21.1 51.6 49.1
RL SPEAR 47.6 69.3 47.8 48.5 48.8 26.7 56.6 49.3

2025b; Gao et al., 2025) to launch the local wiki-18 retrieval service. We adopt the Hierarchical
Navigable Small World (HNSW) CPU indexing as approximation of nearest neighbor retrieval. Our
SPEAR with GRPO improves over the Search-R1 baseline on average, especially on the multi-hop
QA benchmarks. Such multi-hop QA datasets require reasoning for problem decomposition and
several turns of information seeking. In this case, our intrinsic reward that encourages multiple
tool uses for broad exploration prevents arbitrary conclusions with only one or two searches. Our
SPEAR respectively requires∼ 14.48 and∼ 14.42 calls for 7B and 14B models, respectively. Such
behavior is expected due to the stimulation of exploration at the beginning. Despite the QA tasks
are relatively short-horizon, the agent still benefits from the detailed decomposition of the complex
queries with cross-validation via step-by-step searching. Note that our retrieval service adopts the
HNSW E5 embedding for efficient training, which slightly impedes performance (Jin et al., 2025a).

5.6 MORE DISCUSSIONS

Due to the page limit, discussions on theoretical analysis on convergence A.9, hyper-
parameters A.13, qualitative analysis A.14, training cost and complexity A.15, and future research
directions A.16 are presented in the appendix. One could easily adapt SPEAR to training any
(M)LLM-driven agents robustly without binding to a specific optimization algorithm.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we target the pivotal challenge of balancing exploration and exploitation in RL training
of LLM agents. Our proposed solution, SPEAR , extends the vanilla SIL by advantage recalibra-
tion, scheduled entropy control, and intrinsic rewards. These components work in a curriculum man-
ner to prevent policy collapse and excessive uncertainty, progressively guiding the policy through
a smooth transition between exploration and exploitation. In addition, we propose a strong base-
line Dr.BoT tailored for agentic RL with existing bag-of-tricks verified from numerical industrial
practices. Empirical results across tasks and models showcase SPEAR’s superiority over existing
methods, with performance boosts and acceptable computational overhead. The effectiveness of our
SPEAR underscores the value of learning from past experiences while managing policy entropy,
offering a robust framework for training LLMs with strong reasoning and tool integration skills.

There exist two potential limitations: 1) The vague definition of good experiences under highly
complex, stochastic environments with unreliable tools. In such cases, observations can be noisy
and severely degrade the feasibility of the task. The sparse outcome reward cannot distinguish
between good and bad experiences and thereafter the relative advantages might be simply attributed
to randomness instead of the agent’s behavior. We suggest a possible solution that more fine-grained,
stepwise supervision should be enforced. For example, a step-wise process reward that evaluates the
logical consistency (Zhang et al., 2025b) of the agent’s thought and action might be helpful. 2) The
rigidity of entropy control which relies on prior-based scheduling and covariance-based clipping. In
the present study, the proposed scheduling and clipping designs might not be optimal for all kinds of
agentic tasks. A more adaptive solution lies in the policy’s self-confidence on decisions under each
observation. One might use the token-level dynamic reweighting for SIL (Wu et al., 2025) which
avoids over-concentration on certain low-probability reference tokens in the replay buffer. Similarly,
the clipping could depend on token probability instead of the bounded random sampling. We leave
the exploration mentioned above as a promising direction for improvement in the future.
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Ethics Statement. The present study conforms with the ICLR Code of Ethics. The paper does not
involve crowdsourcing nor research with human subjects.

Reproducibility Statement. All datasets used in the paper are publicly accessible (see Sec-
tion 5.1). All the codes are available at https://anonymous.4open.science/r/SPEAR_
anonymous-2104/README.md for reproduction. In addition, we provide all the details of im-
plementation in Section A.12.
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A APPENDIX

A.1 SUMMARY OF THE APPENDIX

In the appendix, we provide detailed explanations on the following.

• Descriptions about the Action Space

• Brief Introduction to the PPO and GRPO

• PseudoCode of the SPEAR

• Visualization of the Curriculum Schedule

• Definition of the Reward Function

• Descriptions about RL Bag-of-Tricks

• Theoretical Analysis on Convergence

• Descriptions of the Data and Environment

• Choice of Baselines

• Implementation Details

• Discussions and Guidelines on Hyper-parameters

• Qualitative Analysis

• Training Cost and Complexity

• Future Research Directions

A.2 DETAILED ACTION SPACE

The following contents correspond to Section 3.1 in the main text.

TextWorld Embodied Tool. The embodied actions follows ALFWorld (Shridhar et al., 2020)
where a language-driven agent interacts with the TextWorld (Côté et al., 2018). It allows the
agent to take one of the following high-level actions: goto {recep}, take {obj} from
{recep}, put {obj} in/on {recep}, open {recep}, close {recep}, toggle
{obj}{recep}, clean {obj} with {recep}, heat {obj} with {recep}, and cool
{obj} with {recep}, where {obj} and {recep} denote objects and receptacles, re-
spectively.

Web Browsing Tool. The definition of web browsing follows WebShop (Yao et al., 2022)
where only two actions are allowed: search[query] and choose[button] where query
and button respectively stand for searching query and clickable elements such as back
to search, prev/next page, {product title}, {option}, {desc/overview},
previous, and buy.

Code Interpreter Tool. The code interpreter executes the code generated by the language model
and return both the stdout and stderr. If the code runs correctly, the stdout contains the
output. On the other hand, the compiler error messages are provided for the next-round correc-
tion. We follow (Feng et al., 2025a) to deploy a SandBox (Bytedance-Seed-Foundation-Code-Team
et al., 2025) service that receives execution requests from the interpreter tool. In addition, we add
a reminder in the stdout for empty output when the LLM forgets to print computation results:
Empty stdout! You might forget to print the answer. For non-empty stderr, we also add an
instruction as hint: Errors occurred! Check your code.

A.3 DETAILED POLICY OPTIMIZATION ALGORITHMS

The following contents correspond to Section 3.2 in the main text.
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Proximal Policy Optimization (PPO). Typically, PPO optimizes the following:

J (πθ) = Ex∼p(X),a∼πθ(·|x,s)

[
R(x, s,a)− βDKL[πθ(·|x, s)||πref(·|x, s)]

]
, (7)

where R(x, s,a) =
∑T

t=1 rt(x, st,at) is the return (Sutton et al., 1998) for the trajectory and πref
is the reference policy model. The KL divergence proposed (Christiano et al., 2017) to prevent the
policy πθ from deviating greatly from the reference πref (β > 0). In consideration of the simplicity,
we follow TULU 3 (Lambert et al., 2024) to adopt RL with the verifiable reward where the rule-
based verifiers are designed to provide the outcome reward signal r instead of the reward model rθ.
In addition, we follow (Liu et al., 2025b) to drop the KL term by setting β = 0, which not only
emphasizes agent performance but also saves memory and computation during training.

Group Relative Policy Optimization (GRPO). Specifically, the policy model πθold from the pre-
vious iteration generates a group of G individual trajectories {τi}Gi=1. GRPO updates the policy πθ

by maximizing the objective below.

JGRPO(πθ) = Ex∼p(X),{τi}G
i=1∼πθold

(·|x)
1

G

G∑
i=1

J i
GRPO,

τi = {(si1,ai1, Ri
1), (s

i
2,a

i
2, R

i
2), ..., (s

i
T ,a

i
T , R

i
T )},

(8)

J i
GRPO =

1

T

T∑
t=1

min

[
rit(θ)Â

i
t, clip[rit(θ), 1− ϵ, 1 + ϵ]Âi

t

]
− βDi

KL(πθ||πref), (9)

rit =
πθ(a

i
t|x, sit)

πθold(a
i
t|x, sit)

, Âi
t =

Ri − R̄

std({Ri}Gi=1)
, R̄ = mean({Ri}Gi=1), (10)

Di
KL(πθ||πref) =

πref(a
i
t|x, sit))

πθ(ait|x, sit)
− log

πref(a
i
t|x, sit))

πθ(ait|x, sit))
− 1. (11)

A.4 PSEUDO CODE

The following contents correspond to Section 4 in the main text.

Algorithm 1 summarizes the full training procedure of the proposed SPEAR. It is noted that our
SPEAR is compatible with various baselines such as GRPO (Shao et al., 2024) and GiGPO (Feng
et al., 2025b), enjoying a high-level of generalization. Specifically, the algorithm is featured by:
1) Maintenance of a replay buffer and a baseline buffer that respectively stores the trajectories for
good experience replay and estimates the current policy’s average performance; 2) Recalibration
of the previous advantages for off-policy update; 3) Regularization against the pre-mature entropy
collapsing; 4) Shaping of the composite intrisic rewards for dominance of the outcome reward.

Compared with the vanilla GRPO-like training, the proposed method only introduced: 1) Additional
policy update iterations positively associated with the number of ND in terms of computational
complexity; 2) A replay buffer of the size ND and a baseline performance buffer of the size NDR

in
terms of space complexity.

Since we re-utilize previous trajectories without completely re-computing the rollout generation,
log-probability estimation, and the advantages, such operations are light-weight and incur minimal
computation overhead. In the present study, we empirically set ND = 2048 without meticulous
hyper-parameter tuning. For both ALFWorld, WebShop, and Sokoban, the number of trajectories per
data batch is the product of train batch size×n samples per prompt=256 and there exist around 4K
turn-level training samples under the VeRL-agent (Feng et al., 2025b) framework. For the DAPO-
MATH-17K, the number of trajectories per data batch is 2048 and there exist exactly 2048 trajectory-
level training samples under the VeRL (Sheng et al., 2024) framework. In this case, our replay buffer
reaches its full capacity around every two or three training steps on average for all experiments. For
each policy update by self-imitation, the number of iterations is comparable to that of the vanilla
policy update by GRPO under the present settings. The detailed analyses on the training cost and
complexity can also be found in Section A.15.
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Algorithm 1 Training Agentic LLMs with SPEAR

Require: Initial policy πθold , data distribution p(X), clipping bounds ϵlb, ϵub, KL penalty β (β = 0),
replay buffer D with buffer size ND, intra-group baseline buffer DR with buffer size NDR

, the
warm-up factor γ with the number of warm-up steps Twarm-up, covariance clipping bounds ωlb,
ωub, the covariance-based clipping ratio λ (λ = 0.02), the decay factor µ with the number of
decay stepsTdecay, the group size G, the maximum allowed interaction turns T .

Ensure: Updated policy πθ

1: Initialze D = ∅ and DR = ∅
2: for each training step titer do
3: Update the old policy model: θold ← θ
4: # Repeat batch sampling and rollout generation for trajectories
5: Sample data batch with each unique sample x ∼ p(X)
6: # Sample G trajectories {τi}Gi=1 for each x
7: for i = 1 to G do
8: Initialize environment states si1
9: # Sample at most T actions

10: for t = 1 to T do
11: Sample action ait ∼ πθ(·|x, sit)
12: Execute actions, receive rewards Ri

t, observe the new states sit+1
13: end for
14: Organize the trajectory τi = {(si1,ai1, Ri

1), (s
i
2,a

i
2, R

i
2), ..., (s

i
T ,a

i
T , R

i
T )}

15: end for
16: # Apply intrinsic reward shaping for advantage estimation
17: Compute the vanilla objective JGRPO(πθ) via Equation 8 with the decay-scheduled Ri via

Equation 6
18: # Maintain the replay buffer and the baseline buffer
19: DR ← DR ∪ {R̄}, R̄ = mean({Ri}Gi=1)
20: while |DR| > NDR do
21: Pop the oldest baseline DR ← DR \ {R̄0}
22: end while
23: if |D| < ND then
24: # Add trajectories into the buffer only when their advantages are positive
25: D ← D ∪ {τi|Âi > 0}
26: # Apply on-Policy update with the vanilla GRPO
27: Update policy by maximizing objective JGRPO(πθ)
28: else
29: # Recalibrate the advantage
30: Compute the newly estimated advantage Ãj for all τj ∈ D via Equation 2
31: Only keep τj with positive Ãj as D ← {τj |Ãj > 0,∀τj ∈ D}
32: # Apply regularization on self-imitation learning
33: Compute the self-imitation objective J̃ SIL-R

GRPO (πθ) via Equation 18 with covariance-based
clipping via Equation 19

34: Apply the warm-up schedule for the total objective JTotal(πθ) via Equation 5
35: # Apply both the on-policy and the off-policy update for self-imitation
36: Update policy by maximizing objective JTotal(πθ)
37: Reset the replay buffer D ← ∅
38: end if
39: end for
40: return πθ
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A.5 POLICY ENTROPY

The following contents are mentioned in Section 4.2 in the main text.

The policy entropy quantifies the confidence inherent in the actions triggered off by the LLM. Under
the context of agent tasks, we measure the average entropy of the entire trajectory τ for the policy
model via sequence-mean-token-sum in accordance with the Dr.GRPO technique (Liu et al., 2025b).
Given the training data batch DB , the entropy is defined as:

H(πθ,DB) = −EDB ,πθ
[log πθ(τ |x)] = −

1

|DB |
∑

x∈DB ,x∼p(X)

∑
(st,at)∈τ

Eat∼πθ
[log πθ(at|x, st)]

(12)

A.6 CURRICULUM SCHEDULE
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(a) Visualization of γ for the SIL term with
Twarm-up = 200. The weight of SIL loss gradually
increases from 0 to 1 in the first Twarm-up steps.
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(b) Visualization of the composite intrinsic reward
(Tdecay = 200). The tool-call reward gradually
decays from 1 to 0 in the first 200 training steps.

Figure 6: Visualization of the curriculum for progressive exploration.

Self-Imitation. The following contents are mentioned in Section 4.2 in the main text.

The schedule for strengthening SI is defined as below:

γ =

{
1
2 (1− cos(π titer

Twarm-up
)), titer ≤ Twarm-up,

1, titer > Twarm-up,
(13)

where titer and Twarm-up respectively denote the training iteration step and the total warm-up steps.

Intrinsic Reward. The following contents are mentioned in Section 4.3 in the main text.

The schedule for decaying IR is defined as below:

µ =

{
1
2 (cos(π

titer
Tdecay

) + 1), titer ≤ Tdecay,

0, titer > Tdecay,
(14)

where Tdecay denotes the number of decaying steps.

A.7 REWARD DEFINITION

The following contents correspond to Section 4.3 in the main text.

Outcome Reward A binary signal is assigned at the end of a episode according to the pre-defined
verification rules.

Ri
outcome =

{
1, τi succeeds,
−1, otherwise.

(15)
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Tool-call Reward. To incentivize multi-turn interactions, an action-based reward that is propor-
tional to the number of tool call turns is added. To avoid reward hacking where the LLM repeats
meaningless tool calling, the action reward is confined smaller than the outcome reward.

Ri
tool-call = min(1, 0.1 · ntool-call), ntool-call ≥ 0, (16)

where ntool-call denotes the number of valid tool call turns in the trajectory τi.

Format Reward. A negligible reward is assigned to the trajectory if the
model’s output contains valid wrapping format given the task descriptions (e.g.,
<think>...</think><action>...</action>).

Ri
format =

{
0.1, if ait is wrapped correctly, ∀(sit,ait, Ri

t) ∈ τi
0, otherwise.

(17)

A.8 BAG-OF-TRICKS FOR Dr.BoT

The following contents correspond to Section 4.4 in the main text.

Removal of KL Divergence. We follow (Yu et al., 2025; Liu et al., 2025b) to simply remove the
KL divergence by setting β = 0. This allows the distribution of the LLM to diverge from the initial
policy π0 for adaptation to tool-integrated reasoning under the agent tasks.

Clip-Higher. We follow (Yu et al., 2025) to raise the upper clip bound ϵub = 0.28 and keep the
lower bound ϵlb = 0.2 as default. The decoupled lower and higher clipping range leaves more space
for the increase of low-probability tokens. It relaxes the exploration of the policy which benefits
premature entropy collapsing.

Removal of Intra-group Normalization. We follow (Liu et al., 2025b) to drop the advantage
normalization term where the standard deviations lead to a difficulty bias in optimization. It has two
benefits: 1) The samples with smaller intra-group standard deviations contribute more to the policy
update and the removal of normalization allows balancing between samples of various difficulty;
2) The estimation of standard deviations are inaccurate for the off-policy advantage recalibration of
replay samples. It is challenging to measure the sampling diversity of a specific group.

Removal of Length Normalization. We follow (Liu et al., 2025b) to drop the length normaliza-
tion terms. We choose the token-level sum and sequence-level normalization as the aggregation
approach for both loss computation and the entropy monitoring.

Filtering of Over-long and Void-turn Samples. We follow (Zhuang et al., 2025; Yu et al., 2025)
to mask out the loss for rollout samples that exceed the predefined maximum response length. The
improper reward shaping for overlong samples introduces noise into training, which causes insta-
bility of training. Besides, it prevents from test-time scaling when the context length of evaluation
is longer than that of training. In addition, we mask out all the trajectories with void turns (Xue
et al., 2025), where the LLM fails to call any tools in the response. Such void turns are often accom-
panied with the occurrence of repetitive reasoning contents, wrong chat-template formatting, and
nonsensical tokens. The filtering of these void-turn samples prevents mode-collapsing where their
distribution deviate severely from the initial policy.

Filtering of Low-variance Groups. We follow (Wang et al., 2025b) to only keep groups with
high intra-group variance for each batch of training samples. The bottom 25% samples with small
intra-group reward standard deviations are removed to keep the policy update informative. High
intra-group variance indicates diverse agent behaviors and the contrast between different actions is
beneficial to exploitation.

Regularization with Covariance-based Clipping We introduce the covariance-based clip-
ping (Cui et al., 2025b) to the trajectory-level entropy control. The changes of output logits that
are highly associated with advantage gains greatly decrease the entropy. We remove tokens with
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high covariances (Cui et al., 2025b; Wang et al., 2025a) out of loss contribution for J̃ SIL-R
GRPO (πθ),

preventing aggressive changes of log probability for advantage acquisition.

J̃ SIL-R
GRPO (πθ) = E{τj}

ND
j=1∼{πθold (·|x), x∼p(X)}

ND∑
j=1

J̃ j
GRPO · 1(Âj > 0 & Ãj > 0) ·M j , (18)

M j
t =

{
0, t ∈ Ijclip,

1, t /∈ Ijclip,
(19)

Iiclip = Ind ∼ Uniform(t|ωlb ≤ Cov(log πθ(a
i
t|x, sit), Ãi

t) ≤ ωub, N
i
clip), (20)

Cov(log πθ(a
i
t|x, sit), Ãi

t) = (log πθ(a
i
t|x, sit)−

1

G

G∑
j=1

log πθ(a
j
t |x, s

j
t )) · (Ãi

t −
1

G

G∑
j=1

Ãj
t ), (21)

where the lower bound and upper bound for determining the range of high-covariance tokens are
respectively represented as ωlb and ωub. The operation Uniform(t|·, Nclip) refers to the uniform
sampling of tokens t with high covariance until a budget of Nclip tokens. The indices of the selected
tokens for loss masking are represented as Ind. It is noted that such masking introduces randomness
which benefits the convergence of RL. The detailed settings of ωlb, ωub, and Nclip are subject to both
the LLM and the task. We empirically set the rounded integers of the mean covariance in the range
of top 20% and top 0.02% respectively for ωlb and ωub, and set N i

clip = λN i with N i being the total
number of learnable tokens of τi and λ denoting the clipping ratio.

A.9 THEORETICAL JUSTIFICATION

Claim 1. The self-imitation, with a warm-up schedule coefficient γ(titer) that increases from 0 to
1 (Eq. 5), implements a constrained projection onto the distribution of good responses, ensuring
monotonic improvement of the surrogate objective.

Theorem 1 (Surrogate Objective Improvement Bound). Let πθtiter
be the policy at iteration titer,

γ(titer) ∈ [0, 1] the warm-up coefficient, and r(a) =
πθtiter+1

(a)

πθtiter
(a) the importance weight ratio with

its clipped surrogate r̃(a) = clip(r(a), 1 − ϵ, 1 + ϵ). We define the good experiences for group
sample j as Ij = 1(Âj > 0 & Ãj > 0), where Âj and Ãj are the estimated and baseline-corrected
advantages. Under the assumptions that: (1) the policy change is bounded by the clipping range,
and (2) the advantage estimates are unbiased, the surrogate objective improvement satisfies:

J (πθtiter+1
)− J (πθtiter

) ≥ Ea∼πθtiter

[
r̃(a) ·Aπθtiter

(a)
]

︸ ︷︷ ︸
GRPO improvement

+γ(titer) · Ej∼D [Ij · log r(aj)]︸ ︷︷ ︸
SIL improvement

−ϵRmax,

(22)
where Rmax is the maximum per-token reward, and J denotes the surrogate objective function.

Proof 1. Consider the combined objective (Eq. 5), we can decompose the total improvement by
linearity:

∆Jtotal = J (πθtiter+1
)− J (πθtiter

) = ∆JGRPO + γ(titer) ·∆J̃ SIL-R
GRPO . (23)

The GRPO component has a lower bound from the clipped surrogate theorem (Schulman et al.,
2017b):

∆JGRPO ≥ Ea∼πθtiter

[
r̃(a) ·Aπθtiter

(a)
]
− ϵRmax. (24)

For the self-imitation term, under the assumption of small policy changes (∥θt+1 − θt∥ bounded),
we approximate the finite difference via gradient integration:

∇θJ̃ GRPO
SIL = Ej∼D

[
Ij ·
∇θπθ(aj)

πθ(aj)

]
. (25)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Using the mean value theorem and assuming smoothness of the objective, we integrate from θtiter to
θtiter+1:

∆J̃ GRPO
SIL ≈ Ej∼D

[
Ij · log

πθtiter+1(aj)

πθtiter
(aj)

]
= Ej∼D [Ij · log r(aj)] . (26)

The coefficient γ(titer) scales the SIL contribution gradually. Combining terms yields the final
bound:

∆Jtotal ≥ Ea∼πθtiter

[
r̃(a) ·Aπθtiter

(a)
]
+ γ(titer) · Ej∼D [Ij · log r(aj)]− ϵRmax. (27)

Under trust region constraints, improvements in the surrogate objective J translate to improvements
in expected return J (Schulman et al., 2017b).

Claim 2. The choice of median (P50) as the baseline estimator is grounded in robust statistics and
variance minimization in agentic RL with heavy-tailed return distributions.

Theorem 2 (Robustness to Outliers). Let R = {R1, R2, ..., Rn} be a set of returns in baseline
buffer DR. The median P50 minimizes the expected absolute deviation and has a bounded influence
function, making it robust to outliers compared to the mean.

Proof 2. For any estimator b, the loss minimization objectives are:

• Mean: argmin
b

∑n
i=1(Ri − b)2 =⇒ b = 1

n

∑
i Ri

• Median: argmin
b

∑n
i=1 |Ri − b| =⇒ b = P50(R)

The influence functions characterize robustness (Huber, 2011):

• Mean: IF(R;mean) = R− E[R] (unbounded)

• Median: IF(R;median) = sgn(R−P50)
2f(P50)

(bounded when f(P50) > 0)

Thus, the median is robust to outliers while the mean is sensitive. This property extends to advantage
estimation since advantages are linear functions of returns.

Claim 3. The P50 achieves a balance between robustness and informativeness. Comparatively,
the P25 and P75 percentiles are either overly conservative or aggressive during advantage-based
replay filtering.

Theorem 3 (Minimax Risk). For the class P of symmetric unimodal distributions, the median
minimizes the minimax risk for absolute error loss among translation-equivariant estimators:

inf
b̂
sup
p∈P

E[|b̂− µ(p)|] = sup
p∈P

E[|P50(X)− µ(p)|] (28)

Proof 3. This is a standard result in robust statistics (Law, 1986; Huber, 2011). For symmetric uni-
modal distributions, the median is minimax for absolute deviation loss among translation-equivariant
estimators.

Claim 4. The dual filtering mechanism using both historical advantage Âj and recalibrated ad-
vantage Ãj ensures robust policy updates and leads to better convergence properties.

Theorem 4 (Dual Filtering). The combined condition Âj > 0 and Ãj > 0 in the SIL objective
reduces the variance of gradient estimates and promotes stable policy improvement.
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Proof 4. The dual filtering mechanism provides two benefits:

1. Variance Reduction: By filtering trajectories that were both historically good (Âj > 0) and re-
main valuable under the current policy (Ãj > 0), we focus on a higher-quality subset of experiences.
This reduces the effective sample size but increases the signal-to-noise ratio, potentially lowering
gradient variance.

2. Stability: The exponential decay in the probability of reusing old trajectories (Eq. 39) prevents
over-reliance on outdated experiences. Under appropriate importance weighting and assuming the
advantages are estimated correctly, the policy improvement follows the standard off-policy policy
gradient theorem (Degris et al., 2012).

The combined filtering ensures that policy updates are based on relevant, high-quality experiences,
promoting monotonic improvement under trust region constraints.

A.10 DETAILED DATASETS AND ENVIRONMENTS

The following contents correspond to Section 5.1 in the main text.

ALFWorld is an interactive environment created to evaluate how well LLM agents can handle multi-
step decision-making tasks. In each scenario, the agent is given a textual goal and must achieve it
by engaging in multiple rounds of interaction with the environment. The platform offers 4,639 task
examples spanning six typical household activity categories: Pick & Place (Pick), Examine in Light
(Look), Clean & Place (Clean), Heat & Place (Heat), Cool & Place (Cool), and Pick Two & Place
(Pick2).

WebShop, on the other hand, is a sophisticated web-based platform aimed at assessing LLM agents
in authentic online shopping situations. Agents are required to interact with a simulated HTML
shopping site to search for products, browse items, and purchase an appropriate product. WebShop
supports a broad and varied action space, featuring more than 1.1 million products and 12K user
instructions.

DAPO-MATH-17K is a rigorously engineered, competition-grade benchmark designed to stress-
test large-scale RL on LLM agents. The agent must develop multi-step mathematical reasoning,
perform strategic tool-calling for code verification, and reflect on feedback from the sandbox before
submitting its final answer. It contains 17K manually-curated prompts sourced from olympiad-level
problems, each transformed so that every ground-truth label is an integer—eliminating symbolic-
parsing noise and yielding a clean, deterministic reward signal.

For ALFWorld, we report the average success rate for each subtask as well as the overall results.
For WebShop, we report the average score and the success rate (SR).

A.11 DETAILED BASELINES

The following contents correspond to Section 5.1 in the main text.

ALFWorld and WebShop. We compare with baselines such as prompting-based method (i.e.,
direct I/O) for the proprietary models GPT-4o (Achiam et al., 2023) and Gemini (Team et al., 2023),
framework-based method such ReAct (Yao et al., 2023) and Reflexion (Shinn et al., 2023), RL
methods including PPO (Schulman et al., 2017b), RLOO (Kool et al., 2019; Ahmadian et al., 2024),
GRPO (Shao et al., 2024; Guo et al., 2025), GiGPO (Feng et al., 2025b), and our proposed strong
baseline Dr.BoT.

DAPO-MATH-17K. We compare with baselines including domain-specific experts (e.g.,
Qwen2.5-Math (Yang et al., 2024)), existing reasoning models (e.g., Sky-T1 (Team, 2025a),
o1 (Jaech et al., 2024), DeepSeek-distilled Qwen 32B (Guo et al., 2025), QwQ (Team, 2025b), and
s1 (Muennighoff et al., 2025)), and the tool-integrated RL counterparts (e.g., ReTool (Feng et al.,
2025a), SimpleTIR (Xue et al., 2025), ZeroTIR (Mai et al., 2025), and AFM (Li et al., 2025b)).
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A.12 IMPLEMENTATION DETAILS

The following contents correspond to Section 5.1 in the main text.

For ALFWorld and WebShop, we follow (Feng et al., 2025b) to use Qwen2.5-1.5B-Instruct and
Qwen2.5-7B-Instruct (Yang et al., 2024) as our base models. For DAPO-MATH-17K, we fol-
low (Feng et al., 2025a) to use Qwen2.5-32B-Instruct (Yang et al., 2024) for fair comparison. In
addition, we use the latest Qwen3-32B-Instruct (Yang et al., 2025) for generalization studies.

The implementation of the present study is based on VeRL (Sheng et al., 2024) and its extension
VeRL-Agent (Feng et al., 2025b). We use the vLLM (Kwon et al., 2023) as the inference engine
during online rollout generation.

Table 7: Descriptions of the hyper-parameters for training and inference.

Config Explanation

train batch size The batch size for training
val data size The batch size for validation
ppo mini batch size The mini batch size for actor update iterations
ppo max token len per gpu The maximum number of tokens on each GPU for training
ppo micro batch size per gpu The micro batch size on each GPU for training
log prob max token len per gpu The maximum number of tokens on each GPU for log-probability
log prob micro batch size per gpu The micro batch size on each GPU for log-probability
use dynamic bsz Whether to use dynamic batch size for load balance
ulysses sequence parallel size The sequence parallel size for training efficiency
tensor model parallel size The tensor parallel size of model deployment for rollout generation
temperature The temperature for decoding in LLM generation
top p The top-p for decoding in LLM generation
n samples per prompt The number of generated samples per prompt
actor learning rate The learning rate of the actor
max epochs The maximum number of epochs
num steps The number of steps
Twarm-up The number of steps
Tdecay The number of steps
use kl in reward Whether to use the KL term in reward
kl coef The coefficient for the KL divergence term
use kl loss Whether to use the KL loss
β The coefficient of the KL loss (i.e., kl loss coef)
max prompt length The maximum length of input prompt
max response length The maximum length of output generation
multi turn max turns The maximum number of tool-call turns
ϵlb The lower bound of the policy ratio clipping (i.e., clip ratio low)
ϵub The upper bound of the policy ratio clipping (i.e., clip ratio high)
ND The replay buffer size for self-imitation learning
NDR The baseline buffer size for storing the intra-group average performance
C The lower bound of the value for dual-clip PPO/GRPO (i.e., clip ratio c)
ωlb The lower bound of the covariance-based clipping
ωub The upper bound of the covariance-based clipping
λ The ratio of the covariance-based clipping
rollout filter type The type of filtering based on intra-group variance
rollout filter ratio The ratio of filtered group
loss agg mode The aggregation technique for loss
norm adv by std in grpo Whether to drop the advantage normalization
training strategy The strategy of training (e.g., FSDP, megatron)

A.12.1 HYPER-PARAMETERS

We present the details of the hyper-parameter settings in the present study. Table 7 provides the
definitions of the hyper-parameters used in the present study. We follow (Sheng et al., 2024) to
keep most of the default empirical settings unchanged for comparability. For the covariance-based
clipping, we follow (Cui et al., 2025b) to set the clipping bounds ωlb, ωub respectively as the mean
value of the top 0.02% and top 2% covariance. It is noted that the token-level covariance differs from
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Table 8: Hyper-parameters of ALFWorld, WebShop, DAPO-MATH, Sokoban, and SearchR1.

Config ALFWorld WebShop DAPO-MATH Sokoban SearchR1

train batch size 32 32 128 32 128
val data size 128
ppo mini batch size 1024 256 32 64 32
ppo max token len per gpu – – 18432 – –
ppo micro batch size per gpu 8 4 – 8 –
log prob max token len per gpu – – 73728 – 73728
log prob micro batch size per gpu 8 4 – 8 –
use dynamic bsz False False True False True
ulysses sequence parallel size – – 8 – 8
tensor model parallel size 2 2 4 2 4
temperature 0.4 0.4 1.0 0.4 1.0
top p 1 1 0.6 1 0.6
n samples per prompt 8 8 16 8 16
actor learning rate 1e-6
max epochs 200 350 1 200 20
num steps – – 300 – 300
Twarm-up 100 200 300 100 300
Tdecay 200
use kl in reward False
kl coef 0
use kl loss False
β 0
max prompt length 2048 4096 2048 1024 2048
max response length 512 1024 16384/30000 1024 30000
multi turn max turns 50 15 8/15 15 32
ϵlb 0.2
ϵub 0.28
ND 2048
NDR 10240
C 10
ωlb 2 2 1 2 1
ωub 60 60 40 60 40
λ 0.02
rollout filter type std.
rollout filter ratio 0.75
loss agg mode seq-mean-token-sum-norm
norm adv by std in grpo False
training strategy FSDP
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task to task. Therefore, we perform statistics analysis on the covariance between action probability
and the advantage with the initial model at the first training step to determine the clipping bounds.

All the settings of their values can be found in Table 8. Without loss of generalizability, we do not
perform meticulous fine-tuning of the hyper-parameters. One would expect better performance with
grid search for the optimal hyper-parameters.

A.12.2 COMPUTING RESOURCES

All experiments are performed on workstations with 380 CPU cores, 2.2TB memory, and 8 GPUs of
96GB memory. For both 1.5B/7B LLMs and 3B VLMs, the training is performed on four worksta-
tions with 32 GPUs in total. For the 32B models, the training is performed on sixteen workstations
with 128 GPUs in total.

For ALFWorld, Webshop, and Sokoban, it takes less than 60 hours for optimization of 1.5B and 7B
models. While for the DAPO-MATH-17K, it takes around a week for training the 32B models.

A.13 DISCUSSIONS ON HYPER-PARAMETERS

The following contents are mentioned in Section 5.6 in the main text.

(a) Replay Buffer Size ND . (b) Baseline Buffer Size NDR . (c) Clipping Ratio λ.

(d) Warm-up Steps Twarm-up. (e) Decay Steps Tdecay.

Figure 7: Effect of hyper-parameters of Dr.BoT (GRPO) with SPEAR on WebShop (Qwen2.5-7B-
Instruct).

A.13.1 EFFECT OF HYPER-PARAMETERS

We investigate the following key hyper-parameters (see Figure 7) of Dr.BoT (GRPO) with SPEAR
on WebShop (Qwen2.5-7B-Instruct) while keeping the value of others fixed (see Table 8).

Replay Buffer Size ND. As the buffer size increases, the performance first improves due to the
improved diversity and impact of the collected trajectories in the buffer. However, when the buffer
continues to expand, trajectories in the buffer might come from earlier training batches and thereafter
causes more severe degree of off-policy. The self-imitation of excessively outdated experiences
becomes detrimental to the update of current policy. In addition, the large replay buffer takes more
iterations to refill and thereafter the policy update frequency from self-imitation is lower than that of
a smaller buffer, further diminishing its intervention in agent exploration.
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Baseline Buffer Size NDR
. When NDR

= 0, the original advantages are used without recalibra-
tion and filtering (see Equation 3). It shows that the direct imitation of these experiences can be
suboptimal where certain trajectories are outdated for the current policy. By timely adjusting the
advantages and removing inappropriate experiences (Ãj ≤ 0), we reduce the inaccurate estimation
for off-policy update. It is noted that using advantage rather than reward in the baseline buffer helps
mitigate learning bias, as it allows for contributions from samples with negative rewards as long as
there is variance within a group. The removal of the standard deviation of outcome rewards is crucial
for reducing difficulty bias. Furthermore, our double-positive advantage gate for replay filtering is
essential for off-policy learning. We also find that NDR

should not be set too large as such 50-th
percentile reward deviates from the latest ones, decreasing the effectiveness of recalibration.

Covariance-based Clipping Ratio λ. The clipping ratio can be viewed as the degree of regulariza-
tion for policy entropy, where a larger ratio causes more tokens to be ignored during policy update.
In this case, the contribution of self-imitation gets weakened. A modest range of clipping ratio (e.g.,
0.0002 ∼ 0.02) not only suffices the entropy management but also allows proper exploitation of the
collected experiences.

Warm-up Step Twarm-up. A smaller warm-up step implies earlier self-imitation of the premature,
suboptimal experiences during RL. Especially when the distribution of the task and environment
differs greatly from the pre-trained knowledge, the overfitting of the initial trajectories hinders ex-
ploration of low-probable solutions and leads to action-level local optima. Intuitively, Twarm-up can
be first set the same as the total number of training steps and then adjusted according to the task and
the model for the improved performance.

Decay Step Tdecay. A smaller decay step reduces the stimulation from the intrinsic reward for
acquisition of tool-use skills. If the LLM already excels at interacting with the environment (e.g.,
use of tools and comprehension of observations), Tdecay can be set close to 0. A large Tdecay is not
encouraged as the interference with the outcome reward causes inconsistent policy optimization for
convergence.

A.13.2 GUIDELINES ON HYPER-PARAMETERS TUNING

In this section, we provide guidelines on the choice of these hyper-parameters for practical usage.
It is noted that most of the hyper-parameters share the same value settings across benchmarks of
various domains and tasks. One would expect performance gains without meticulous fine-tuning.

Replay Buffer Size ND. It should not be set too large to avoid severe off-policy deviation. A
modest size of 2K ∼ 4K proportional to the training batch size of 128 and group size of 16 (128×
16) is expected to work well for frequent refilling and policy update. In other word, ND cam be set
as 2x/4x of train batch size× n samples per prompt.

Baseline Buffer Size NDR
. An appropriate setting between 2K and 10K prevents outdated and

untimely estimation of current policy baseline performance. In other word, NDR
can be set as 1x/4x

of ND.

Covariance-based Clipping Ratio λ. The percentage of clipped tokens should be controlled be-
tween 0.02% and 2%. A smaller percentage would reduce the effect of anti-overfitting while a larger
percentage slows down the policy exploitation of experiences.

Warm-up Step Twarm-up. The self-imitation should be scheduled to reach its maximum after 200
steps. For difficult tasks, it should be increased to allow exploration of diverse trajectories without
convergence to local sub-optimum. One could first try Twarm-up = num steps.

Decay Step Tdecay. A decay step between 100 and 200 would be sufficient. If the tool is hard to
master (e.g., complex slot-filling), the decay step should be increased to allow more stimulation of
tool-calling behaviors. One could first try Tdecay = num steps.
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A.14 QUALITATIVE ANALYSIS

The following contents are mentioned in Section 5.6 in the main text.

(a) Before RL training. (b) After RL training.

(c) The evolution of efficient coding from the purpose of computation to verification (best viewed magnified).

Figure 8: Development of the agent’s coding skills.

A.14.1 TOOL-INTEGRATED REASONING

Skill Development. We follow (Feng et al., 2025a) to analyze the coding capabilities of the
agent before and after RL by classifying the purpose of the code snippets. Specifically, we em-
ploy Hunyuan-Large (Sun et al., 2024) to interpret reasoning contexts before each tool-calling and
judge the intention of the codes passed into the code interpreter on DAPO-MATH-17K dataset. The
external LLM first performs intent classification with open-ended categories in a free-form manner.
Then, we manually deduplicate these categories and only keep the top 20 frequent ones: calculation,
computation, solution finding, problem-solving, geometric problem-solving, verification, geometric
calculation, solution verification, modular calculation, probability calculation, geometric analy-
sis, analysis, optimization, intersection finding, solution search, function analysis, configuration
validation, data computation, game analysis, data processing, game strategy analysis, solution ex-
ploration, data analysis, list validation. We further use the LLM to classify each code snippet into
at most three categories. The agreement between the LLM and manual classification is above 90%
on 50 randomly chosen samples. The code purposes with their frequency over twice are kept and
illustrated in Figure 8. We find that the after RL, the agent becomes proficient in writing codes for
solution finding, problem-solving, and solution verification, which is quite advanced compared with
the basic calculation and computation before RL. Our case study shows that after training, the agent
learns to master matrix computation with numpy for higher efficiency, confirming the improvement
of coding skills.

Action Refinement. As shown in Figure 9, the agent initially aims at finding the target product
that satisfies all the constraints simply by searching. However, such continuous choice of the action
search is trapped by the unqualified retrieval results. The attributes of product such as color
and size should be determined only at the product page. After RL, the agent jumps out of the
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Figure 9: The advancement of strategy from the search query perfectionism to goal-oriented active
progression (best viewed magnified).
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perfectionism for the search queries and tries to break the task step by step. It learns to choose the
action wisely for persistent focus on the task.

A.14.2 CONTEXT BUDGET

Table 9: The number of tool call turns and response length of SPEAR on Qwen2.5-32B and Qwen3-
32B under 16K and 32K context budgets, respectively.

Model # Turns@16K Responses Len@16K # Turns@32K Responses Len@32K

Qwen2.5-32B 7.18 4855.48 7.13 7502.59
Qwen3-32B 3.23 10522.38 4.43 12371.95

In this section, we provide more analysis on the differences of reasoning behaviors between 16K
and 32K token contexts. Table 9 shows that for Qwen2.5 models, the number of tool call turns does
not increase abruptly from 16K to 32K. Two reasons are possible: 1) The tool call reward (Eq. 16)
allows a maximum of 1 score which corresponds to 10 tool calls. More tool calls (¿10) will not
be rewarded. 2) The intrinsic reward design is targeted at stimulating exploration at the beginning
and the dominance of outcome reward is guaranteed via scheduling. The mechanical increase of
tool use for reward hacking will be penalized to promote reasoning for accuracy. For Qwen3-32B,
the number of tool calls increases a bit but still falls behind that of Qwen2.5-32B. This is because
the Qwen3 series are reasoning models and tend to develop sophisticated solution patterns via pure
text. In this case, the agent mainly uses the tool to double-check its previous textual reasoning and
computation. The context budget from 16K to 32K allows 2K more response tokens and accordingly
follows one or two more rounds of tool calls for verification.

Examples on the reasoning patterns of Qwen2.5 and Qwen3 under 16K and 32K contexts are re-
spectively provided in Figures 10 11 12. We randomly choose one sample from the AIME 24
benchmark. It shows that for both Qwen2.5 and Qwen3 models, the number of tool calls does not
increase drastically, which is consistent with the Table 9. We believe the AIME benchmarks are
of reasoning-heavy tasks which challenge the agent the most its complex reasoning capabilities. In
this case, our SPEAR balances the tool call frequency and the final outcome by: 1) stimulating ex-
ploration at an early stage with a bounded tool call reward (maximum of 1), and 2) guaranteeing
dominance of the outcome reward via scheduled adjustment. Such design prevents the agent from
hacking reward simply by frequent tool calling. Instead, the agent learns to reason deeply in text,
and uses the tool observation as feedback to cross-validate its previous deduction and computation.
The increased context budget allows longer thinking and reflection process, leading to performance
gains.

A.14.3 ADDITIONAL ENTROPY MEASUREMENTS

Figure 13 illustrates the variance of entropy of the proposed Dr.BoT with and without SPEAR. We
can observe that:

1) For most tasks and model scales, the policy entropy of the vanilla Dr.BoT does not converge. This
is in line with our findings in Figure 3 where the consistent uncertainty about the environments and
actions causes policy entropy divergence.

2) Due to the curriculum scheduling of self-imitation, the policy entropy maintains a steady trend
across stages. The SPEAR allows sufficient exploration at the beginning and gradually strengthens
imitation of self-generated promising experience. Therefore, the entropy varies smoothly during
training.

3) Due to the curriculum scheduling of tool call reward, the interaction with the environments is en-
couraged and therefore the policy entropy of SPEAR can even surpass the baseline (e.g., ALFWorld
1.5B and WebShop 1.5B). However, such exploration about the environment does not necessarily
correlate with entropy variation. We believe the distributional gap between task domains and the pre-
trained knowledge of LLMs plays a critical role. For larger models (7B), its internal parameterized
knowledge is richer to handle the observation states properly.
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Figure 10: The qualitative results of Qwen2.5 reasoning between 16K and 32K contexts.
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Figure 11: The qualitative results of Qwen3 reasoning between 16K and 32K context (first part).
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Figure 12: The qualitative results of Qwen3 reasoning between 16K and 32K context (second part).
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(a) ALFWorld 1.5B Dr.BoT (GRPO). (b) ALFWorld 1.5B Dr.BoT (GiGPO).

(c) ALFWorld 7B Dr.BoT (GRPO). (d) ALFWorld 7B Dr.BoT (GiGPO).

(e) WebShop 1.5B Dr.BoT (GRPO). (f) WebShop 1.5B Dr.BoT (GiGPO).

(g) WebShop 7B Dr.BoT (GRPO). (h) WebShop 7B Dr.BoT (GiGPO).

Figure 13: Entropy (seq-mean-token-sum-norm) across tasks, algorithms, and model scales.
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A.15 TRAINING COST AND COMPLEXITY

The following contents are mentioned in Section 5.6 in the main text.

Table 10: Comparison on the complexity of the vanilla GRPO and the proposed SPEAR. PG,
FW, BP, RB, and Adv respectively stand for the policy gradient loss computation, forward, back-
propagation, replay buffer, and advantage. Out of simplicity, we use theO(M) to denote the forward
FLOPs which is positively associated with the model size and the input length. O(P ) denotes the
BP operations proportional to the number of LLM parameters. We use nSIL to refer to the equivalent
number of off-policy update (by SIL) per on-policy update. After filtering by Âj > 0 & Ãj > 0
(Equation 3), the number of samples in SIL is represented as K,K ≤ ND.

Training
Stage

Computation
of GRPO
(vanilla)

Additional
Computation
by SPEAR

Description

On-policy Rollout 2GTO(M) – FW & sampling w/ πθold .
RB Update – O(GT ) Copy operation (negligible).
On-policy PG GTO(M) – FW w/ πθ (w/o KL πθref ).
On-policy BP O(P ) – BP w/ πθ .
RB Filtering – O(ND) Look-up operation (negligible).
Adv Recalibration – O(ND)+O(NDR) Additive operation (negligible).

Replay PG – nSILKTO(M)
+ nSILO(KT )

FW w/ πθ , token-wise
clip&min (negligible).

Replay BP – nSILO(P ) BP w/ πθ .

In Total 3GTO(M) +O(P ) nSIL(KTO(M) +O(P )) Dominance by FW & BP

(a) ALFWorld. (b) WebShop. (c) DAPO-MATH-17K.

Figure 14: The averaged policy training time (s) per step with and without the proposed SPEAR.

We compare the computational complexity of our SPEAR with the vanilla GRPO algorithm in
Table 10. Most of the computation comes from the forward and back-propagation of the filtered
samples in the replay buffer. The memory operations such as the update and filtering of the buffer
are light-weight and can be simply ignored. Given the current experimental settings (see Table 8),
we observe that nSIL ≈ 0.5 for ALFWorld and WebShop, and nSIL ≈ 0.33 for DAPO-MATH-17K.
In this case, our SPEAR additionally introduces around 10% ∼ 25% computation overhead with
K ≤ G. Such computation complexity is acceptable in practice as the time of each training iteration
is dominated by that of on-policy rollout generation.

Figure 14 shows the runtime per iteration step with and without the proposed SPEAR across differ-
ent tasks and model scales. the total optimization procedure (including the rollout generation, ad-
vantage computation, log-probability inference, reward computation, and the actor update) is quite
similar on average for ALFWorld, WebShop, and their SPEAR counterparts. For ALFWorld and
WebShop, the 1.5B models exhibit larger variance than 7B models in training time. We believe
such variance is associated with findings of the previous study (Havrilla et al., 2024) that the size of
LLMs matters to the exploration diversity. Smaller LLMs are less diverse in exploring strategies due
to their shallower reasoning nature, and are therefore prone to suboptimal policies with relatively
increased stochasticity in training dynamics. For DAPO-MATH-17K, an increase around 5% and
26% is observed respectively on Qwen2.5 and Qwen3 models. Since the time per step is dominated
by the rollout generation and actor update, we believe such increase in time is caused by the longer
reasoning traces, more tool call interactions, and the additional iterations from the replay buffer.
Such encouraged exploration by SPEAR is exaggerated on the reasoning model Qwen3 and leads
to longer training time.
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It is noted that the proposed SPEAR does not increase GPU memory usage. The introduction of
the experience replay buffer is equivalent to increasing the training batch size per step. Due to the
current sequential implementation that uses gradient accumulation with a fixed mini training batch
size, we can achieve policy optimization on batches of any size without OOM issues.

A.16 FUTURE WORK

A.16.1 DYNAMIC SCHEDULING

In the future, one of the promising research direction is to model and adjust the scheduling param-
eters dynamically. It is noted that there exists no clear-cut line between exploitation and explo-
ration during training (Snoek et al., 2012; Wang et al., 2018). The exploitation and exploration are
intertwined and optimized together, which is often context-dependent (Bellemare et al., 2016) or
guided by the policy itself (Pathak et al., 2017). Therefore, the scheduling should be progressive
and smooth. We believe three kinds of techniques can be utilized for guiding the exploration:

Entropy as the medium. Following ARPO (Dong et al., 2025b), we could schedule the self-
imitation and intrinsic reward with monitoring of the entropy itself. It is direct and intuitive, and
it allows flexible and frequent adjustments. However, the modeling of the relationship between
policy entropy and scheduling itself is often task-dependent and parameter-involved, introducing
additional computation. In addition, the entropy is prone to noise where outliers of certain tokens
might interfere with the scheduling negatively.

Performance as the medium. One could also adjust the scheduling by the performance-related
metrics (Agrawal & Goyal, 2012) such as the task completion rate and the number of tool-calls.
The association between exploration and success rate can be utilized. Furthermore, the number of
tool-calls often indicates the degree of exploration with the environment. Nevertheless, the metrics
might be deceptive as an early stop of exploration stimulation could lead to suboptimal convergence.

Curiosity or Self-confidence as the medium. One could intensify the exploration when the policy
exhibits uncertainty (Pathak et al., 2017; Ladosz et al., 2022) about its actions or confusion about the
transition of environment states. The policy’s familiarity of the environment and its action reflects
the exploration status. But it often requires parameterized learning of the curiosity or confidence via
quantification of the inconsistency between the expected state transition and the real one.

A.16.2 STEPWISE CREDIT ASSIGNMENT

In a extremely noisy tool ecosystem, the discrimination between good and bad experience is rather
challenging merely with the outcome reward (Deng et al., 2025; Zeng et al., 2025). Under such
circumstance, a process reward model (PRM) would be beneficial to provide fine-grained, stepwise
supervision. However, it remains prohibitive to conduct manual evaluation and preference annota-
tion for training online PRMs. Very recent studies highlight a few potential directions:

The usage of meta-reward via LLM-as-a-Judge. Instead of training a process reward from
scratch, one could directly use an off-the-shelf LLM to assess each step not from the accuracy
but from the aspect of meta-reasoning (Zhang et al., 2025b) behaviors (e.g., planning, exploration,
and reflection).

The employment of implicit PRMs. One could derive an implicit PRM (Cui et al., 2025a) by
reparameterization of the outcome reward as a sum of log-likelihood ratios of two LLMs over steps.
Therefore, the step-wise reward can be approximated as the differences between two adjacent steps
(agent actions) (Liu et al., 2025a)

The introduction of world models. The noise from real-world tool ecosystem might be inevitable
and therefore it is reasonable to perform a model-based sim2real RL (Moerland et al., 2023). One
could prepare an internal world model to deliver reliable state transition (Gu et al., 2024) for tool-
based interaction, which help the agentic LLMs develop strategies via RL. Then, the trained LLM
further adapts to real environment after a few more steps of training to gain robustness against noise.
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A.17 THE USE OF LARGE LANGUAGE MODELS

In the present study, we use the LLMs for the polishing of the manuscript writing and the discussions
for analysis.

40


	Introduction
	Related Work
	Reinforcement Learning Algorithms for LLMs
	Optimization of LLM Agents
	Exploration in Reinforcement Learning
	Experience Replay in Reinforcement Learning

	Preliminaries
	Problem Definition
	Policy Optimization

	Training Agentic LLMs with SPEAR[scale=0.15]figures/spear-logo.png
	bluePreliminary Findings
	Self-Imitation Learning
	Intrinsic Reward Shaping
	Dr.BoT as A Strong Baseline

	Experiments
	Experimental Setup
	Performance
	Ablation Study
	Generalization on Vision-Language Agents
	 blueGeneralization on Search-augmented QA Tasks
	blueMore Discussions

	Conclusions and Limitations
	Appendix
	blueSummary of the Appendix
	Detailed Action Space
	Detailed Policy Optimization Algorithms
	Pseudo Code
	Policy Entropy
	Curriculum Schedule
	Reward Definition
	Bag-of-Tricks for Dr.BoT
	Theoretical Justification
	Detailed Datasets and Environments
	Detailed Baselines
	Implementation Details
	Hyper-parameters
	Computing Resources

	Discussions on Hyper-parameters
	Effect of Hyper-parameters
	Guidelines on Hyper-parameters Tuning

	Qualitative Analysis
	blueTool-integrated Reasoning
	Context Budget
	blueAdditional Entropy Measurements

	Training Cost and Complexity
	Future Work
	Dynamic Scheduling
	Stepwise Credit Assignment

	The Use of Large Language Models


