
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE LIMITATIONS OF GENERAL PURPOSE DOMAIN
GENERALISATION METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Domain Generalisation (DG) problem setting requires a model trained on a set
of data distributions (domains) to generalise to new distributions. Despite a huge
amount of empirical study, previous DG methods fail to substantially outperform
empirical risk minimisation on rigorous DG benchmarks. Motivated by this, we
analyse the DG problem from a learning theoretic perspective and characterise in
which situations DG will succeed or fail. Specifically, we derive upper bounds
on the excess risk of ERM and lower bounds on the minimax excess risk, for
three settings with different restrictions on how the domains may differ. In the
most unconstrained setting, we show that all learning algorithms converge slowly
with respect to number of training domains, potentially explaining the lack of
algorithmic progress in this area. We also consider constrained settings including
limiting the pairwise domain distances as measured by a broad class of integral
probability metrics, and constraining all domains to have the same underlying
support. In these constrained cases, DG algorithms can converge more rapidly.
Notably, for all three settings, the we demonstrate that ERM has an optimal rate
of convergence towards the best possible model. Our analysis guides practitioners
interested in knowing when cross-domain generalisation might be reliable, and
suggests strategies for optimising the performance of ERM in each setting.

1 INTRODUCTION

Machine learning systems have shown exceptional performance on numerous tasks in computer
vision, natural language processing, and beyond. However performance drops rapidly when the
standard assumption of identically distributed training and testing data is violated. This domain-
shift phenomenon occurs widely in many applications of machine learning (Csurka, 2017; Zhou
et al., 2021; Koh et al., 2021), and often leads to disappointing results in practical machine learn-
ing deployments, since data “in the wild” is almost inevitably different from training sets. Given the
practical significance of this issue, numerous methods have been proposed that aim to improve mod-
els’ robustness to deployment under train-test domain shift by leveraging several different training
sets for the same task (Zhou et al., 2021), a problem setting known as Domain Generalisation (DG).
These span diverse approaches including specialised neural architectures, data augmentation strate-
gies, and regularisers. Nevertheless, determining the effectiveness of these methods has proven to
be difficult. A large scale experimental investigation (Gulrajani & Lopez-Paz, 2021) determined that
none of the previously proposed methods for addressing the DG problem could reliably outperform
Empirical Risk Minimisation (ERM)—the method that simply ignores all of the domain structure in
the data and trains a model as normal.

Meanwhile various theoretical analyses have tried to study the DG problem via the derivation of
generalisation bounds, attempting to provide guarantees on the worst case performance of various
learning methods in this setting. Usually these analyses make strong assumptions about either the
structure of the model or the underlying data generation process. Algorithms based on kernel meth-
ods have received some attention (Muandet et al., 2013; Blanchard et al., 2021), and the behaviour
of how well these approaches scale with the number of training examples and training domains is
well-understood. There is also substantial work on investigating generalisation in other distribution
shift settings (Mansour et al., 2009a; Kpotufe, 2017; Rosenfeld et al., 2021a). However, there is a
lack of work on exploring the theoretical properties of sensible baselines the fundamental limits of
the problem setting.
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In this paper we take a different direction to this existing body of theoretical work, and present the
first learning-theoretic study of: (i) excess risk bounds for ERM in the DG setting; and (ii) minimax
excess risk bounds that determine the fundamental limit of the best possible algorithm for a partic-
ular setting. To help characterize in what circumstances DG is likely to succeed or fail, we study
these bounds for both the most popular and challenging unconstrained DG setting, as well as two
less common simpler settings with constraints on how different the domains can be. We show that
in the most general unconstrained case, the best possible algorithm converges slowly with respect to
the number of domains; while it possible to converge more rapidly in constrained settings where we
can guarantee the domains’ similarity in terms of pairwise distances, or sharing the same support.
Nevertheless, in all cases the minimax bounds and the worst case bounds for ERM have the same
scaling behaviour, indicating surprisingly that it is not possible for any learning algorithm to do
substantially better than ERM. Moreover, we show that out-of-domain generalisation is governed
by a similar trade-off between empirical risk and complexity that governs in-domain generalisation.
Thus, new architectures or regularisers that improve practical in-domain generalisation of ERM will
also improve out-of-domain generalisation, and vice-versa. These results may go some way toward
explaining why empirical analyses (Gulrajani & Lopez-Paz, 2021) have shown that the plethora of
purpose designed methods (Zhou et al., 2021) struggle to beat ERM when carefully evaluated. Our
analysis shows that the search for an alternative learning algorithm to ERM per-se is futile. How-
ever, it does provide some specific actionable insights for improving DG by: (1) Regularising more
strongly when optimising for out-of-domain generalisation, than would be optimal for in-domain
generalisation, and (2) using prior knowledge to develop hypothesis classes that exhibit increased
domain invariance and thus move more toward the IPM-constrained variant of the problem.

In summary, we make the following contributions to knowledge:

• We derive upper bounds on the excess risk of ERM that show, as the quantity and variety of
training data increases, ERM is able to better approximate the optimal model in the chosen
class of models. This conclusion holds for all three of the DG settings that we consider.

• Lower bounds on the minimax excess risk are provided. By comparing these lower bounds
with the upper bounds for ERM, we demonstrate that no method can perform substantially
better than ERM in the three general purpose DG settings considered in this paper.

• Comparing the upper and minimax bounds across problem settings, we delineate some
settings where DG is likely to succeed or fail, in terms of achieving a a reasonable expected
error on held out domains after seeing a reasonable number of training domains.

• Actionable insights are given for how one can optimise the performance of ERM in each of
the DG settings via the choice of regularisation strength and ensuring the hypothesis class
is well-suited to the underlying problem.

2 RELATED WORK

The DG problem setting was first introduced and analysed by Blanchard et al. (2011), who also
provided a learning theory motivated algorithm for addressing it based on kernel methods. Since
then, several other works have also gone down the route of using statistical learning theory to derive
kernel methods with performance guarantees for DG (Muandet et al., 2013; Blanchard et al., 2021).
We note that a more general analysis of the performance of standard baselines and of fundamental
limitations of methods developed for the standard DG setting is missing. However, some work has
been undertaken for a variant where unseen domains are restricted to convex or affine combinations
of those domains seen during training Rosenfeld et al. (2021a), where it is shown that ERM is
minimax optimal. In any case, empirical evidence suggests that these limitations might be closer
than we would like. Gulrajani & Lopez-Paz (2021) compared several state of the art methods using
DomainBed, a common benchmark and hyper-parameter tuning protocol. They ultimately defend
Empirical Risk Minimization (ERM) over more sophisticated alternatives on the grounds that no
competitor consistently beats it. We also broadly defend ERM, and go a step further in claiming that
one cannot construct a general purpose DG method that substantially outperforms ERM. However,
we provide a deeper analysis into when and why ERM works, rooted in a theoretical analysis of
generalisation qualities of ERM, unlike the prior purely empirical evaluation.
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EPj P

(xi, yi)
x

Training Phase Test Phase

i ∈ {1, ...,m}

j ∈ {1, ..., n}

Figure 1: A plate diagram describing an overview of the Domain Generalisation data generation
process. The environment—a distribution over domains—is represented by E. During training, n
domains, P1 to Pn, are sampled from E. From each of these domains we sample m training points,
leading to a total of mn training points. At test time, the model will encounter an indeterminate
number of domains, so we do not index the P nodes. From each of these domains, unlabelled points
are sampled and the model is required to produce an estimate of the corresponding label.

Methods based on Invariant Causal Prediction (ICP) (Peters et al., 2016) have also been developed
for the DG setting, and often come with claims of guaranteed robustness in the face of distribution
shifts due to leveraging the underlying causal structure of a problem. The most popular idea in this
area is Invariant Risk Minimisation (IRM) (Arjovsky et al., 2019), and variants such as Krueger et al.
(2020), which use an objective function inspired by ICP to train a deep neural network for DG. Some
other prior work makes a similar observation to us, identifying that standard regularisation methods
can improve robustness to distribution shift, albeit through a different lens (Janzing, 2019; Sagawa
et al., 2020). However, methods based on IRM have been shown to be more fragile than expected
in the face of real distribution shifts, rather than those considered in simplified causal diagrams
(Gulrajani & Lopez-Paz, 2021; Rosenfeld et al., 2021b).

Our work also takes inspiration from other transfer learning settings. In particular, there has been a
lot of work analysing the supervised and unsupervised Domain Adaptation problems, where there
are now a number of ways to relate the performance on training data from some source domain
to new data drawn from some target domain (Mansour et al., 2009a;b; Ben-David et al., 2010;
Kpotufe, 2017; Zhang et al., 2019; Kpotufe & Martinet, 2020). The focus of these works is typically
to define some notion of distribution divergence and then develop a tractable method for estimating
this divergence, or finding a model that best exploits the insights provided by such divergences.
There have been some attempts to apply these ideas in the DG setting (e.g., Albuquerque et al.
(2020)). However, in the domain adaptation settings, there is an emphasis on finding divergences
that are capable of exploiting asymmetries in the direction of transfer (Kpotufe & Martinet, 2020).
In contrast, the standard DG formulation assumes a domain is just as likely to appear at training
time as it is at test time, so it is not clear that we should expect an asymmetric divergence to be
well-suited to DG.

3 DOMAIN GENERALISATION

Standard i.i.d. learning To begin with, we establish some notation by introducing the standard
independently and identically distributed (i.i.d.) learning setting. The risk of a model, f ∈ F , on
some distribution, P , for some loss, ℓ, is defined as

LP (f) = E
(x,y)∼P

[ℓ(f(x), y)] . (1)

Examples of useful loss functions include the zero–one loss and ramp loss,

ℓ01(ŷ, y) = 1(sign(ŷ) = y), ℓramp(ŷ, y) = max(0,min(1, 1− ŷy)). (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Note that the ramp loss is Lipschitz and upper bounds the zero–one loss. Similar to the risk, we can
define the empirical risk on an i.i.d. sample, Sm = {(xi, yi)}mi=1, from P as

L̂Sm(f) =
1

m

∑
i=1

ℓ(f(xi), yi). (3)

Throughout this paper we use Rademacher complexity R, and its empirical analogue R̂, to charac-
terise the capacity of the hypothesis class, F ,

RPm(F) = E
Sm

[R̂Sm
(F)], R̂Sm

(F) = E
σ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
, (4)

where σ is a vector Rademacher random variables, so Pr(σi = 1) = Pr(σi = −1) = 1
2 . In the case

of linear models, these Rademacher complexity can be controlled by constraints on weight norms,
while in the case of deep models they further depend on properties of the chosen network architec-
ture. For typical choices of hypothesis class, the complexity scales as O(1/

√
m). For simplicity, we

avoid introducing multi-output generalisations of Rademacher complexity and therefore focus only
on binary classification, with the sign of the model output indicating the predicted class. A typical
generalisation bound using Rademacher complexity in the i.i.d. setting has the form given in the
theorem below.
Theorem 1 (Mohri et al. (2018)). Suppose ℓ takes values in [0, 1] and Sm is contains m i.i.d.
samples from P . The worst-case difference between the population risk and empirical risk for
models selected from F is bounded, in expectation, by

E
Sm

[
sup
f∈F

LP (f)− L̂Sm
(f)

]
≤ 2RPm(ℓ ◦ F),

and with probability at least 1− δ over realisations of Sm, we have for all f ∈ F that

LP (f) ≤ L̂Sm(f) + 2R̂Sm(ℓ ◦ F) + 3

√
ln 2/δ

2m
.

where we have used ℓ ◦ F = {(x, y) 7→ ℓ(f(x), y) : f ∈ F}.

This is a variation of a classic result attributed to Bartlett & Mendelson (2002).

From i.i.d. to DG learning In the Domain Generalisation setting we are interested in two layer
hierarchical data generating processes, where the top level distribution is denoted by E. One can
sample domain distributions from E, and subsequently sample data points from each domain distri-
bution. The most common way to formulate the DG problem setting assumes that one has access to
training data from n domain distributions sampled i.i.d. from E. For ease of exposition we assume
that we sample m data points from each domain, but we note that similar versions of our results still
hold in the case where a different number of data points are available for each domain. The task
is then to build a model that can still perform well when applied to data drawn from novel domain
distributions sampled from E at test time. The DG data generation process is summarised by the
plate diagram in Figure 1. Just as the risk is the central quantity of interest in the i.i.d. setting, in the
DG setting we are concerned with the transfer risk,

LE(f) = E
P∼E

[LP (f)], (5)

and the corresponding empirical risk is given by

L̂Smn
(f) =

1

n

n∑
j=1

L̂Sj
m
(f), (6)

where Sj
m is the training data sampled from Pj and Smn = ∪n

j=1S
j
m is a set containing all the train-

ing data. One of our objectives is proving generalisation bounds along the same lines as Theorem 1.
To do this, we extend the idea of Rademacher complexity to be defined for two-level distributions,
E,

REn(F) = E
P1:n

E
σ

sup
f∈F

1

n

n∑
j=1

σj E
x∼Pj

[f(x)]

 . (7)
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Two models that feature prominently in our analysis include the Empirical Risk Minimiser within
the class of models, F ,

f̂ = argmin
f∈F

L̂Smn
(f), (8)

and the optimal model in F ,
f∗ = argmin

f∈F
LE(f). (9)

The difference in risk between a model built using some learning algorithm (e.g., ERM) and the
optimal model, f∗, is referred to as the excess risk. Central to our analysis is the minimax excess
risk for learning algorithms, A, that map from training sets to elements of F . In the i.i.d. setting this
is given by

M(F ,P,m) = inf
A

sup
P∈P

{
E
Sm

[LP (A(Sm))]− LP (f
∗)

}
, (10)

where P is the set of all i.i.d. distributions over the cartesian product of a feature space and label
space, X × Y . This definition can be straightforwardly extended to the DG setting by considering
a set of distributions other than P . For the remainder of this paper we consider various subsets of
E , the set of all possible distributions that follow the two layer structure encountered in DG. With
some abuse of notation, we will denote the minimax excess risk for selecting models from F for
distributions in E using m training examples from each of n domains by M(F , E ,mn).

The minimax excess risk is a lower bound on the best possible excess risk of any algorithm when
applied to the hardest problem in E . It can be thought of in a game-theoretic way: one player con-
structs an algorithm to minimise the excess risk; meanwhile, the other player selects a pathological
distribution for this algorithm to maximise the excess risk. It provides an indication of how quickly
the best possible learning algorithm is able to find the optimal model as a function of the amount
of training data (and number of training domains) available. One could argue that E contains many
DG problems that are not likely to be of interest in the real world, and that one of the uninteresting
problems could be the maxmimiser in the minimax excess risk. In the remainder of the paper we
consider three different restricted subsets of E that correspond to popular intuitions discussed in
the transfer learning literature: the general case; problems with bounded pairwise distance between
domains; and problems where the marginals for each domain have bounded density ratios.

4 WHEN IS DG FEASIBLE?

We derive upper bounds on the excess risk of ERM in each setting, and lower bounds on the minimax
excess risk for each setting. By looking at the bounds in each setting, and the gap between them, we
aim to understand the relative difficulty of each scenario in terms of number of domains required for
learning, and whether one can improve on the baseline ERM algorithm.

4.1 THE GENERAL SETTING

This is the setting most commonly considered in the literature. In this setting the DG problem can
be any E ∈ E , a hierarchical distribution with a structure as described in Figure 1.

4.1.1 THE EXCESS RISK OF ERM

To begin with, we provide a uniform convergence result for the generalisation error of methods de-
veloped for this setting. This theorem is used in the course of proving an upper bound on the excess
risk of ERM, but is also interesting in its own right, as it applies to all DG algorithms developed for
the general setting.
Theorem 2. Assume ℓ takes values in [0, 1]. For a hypothesis class, F , and any E ∈ E , we have
that

E
Smn

[
sup
f∈F

LE(f)− L̂Smn(f)

]
≤ 2 E

P1:n

[
RPm

1:n
(ℓ ◦ F)

]
+ 2REn(ℓ ◦ F).

Moreover, we have with confidence at least 1− δ over the realisations of Smn, for all f ∈ F , that

LE(f) ≤ L̂Smn
(f) + 2R̂Smn

(ℓ ◦ F) +
2

m

m∑
i=1

R̂Si
n
(ℓ ◦ F) + 5

√
ln 3/δ

2mn
,

5
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where we denote by Si
n the set containing the the ith example from each Sj

m.

The proof can be found in Appendix B.

Discussion Theorem 2 tells us that the expected gap between the transfer risk and empirical risk is
bounded by two Rademacher complexity terms. The second part of the result provides an observable
version of this bound that holds with high probability and has the same scaling behaviour, but is
slightly looser due to the additional sampling error term. For typical hypothesis classes, the first
term controls how much the model could have overfit to the specific points sampled in the training
set and will scale as O(1/

√
mn). The second term controls how much the model could have overfit

to the domains included in the training set, and will scale as O(1/
√
n). Mirroring conventional

generalisation in standard i.i.d. learning, a very simple model may minimise the Rademacher terms
while producing high empirical risk and vice-versa. Thus, good generalisation critically depends on
a carefully chosen empirical risk versus model complexity trade-off.

We next bound the excess risk between the ERM solution, f̂ , and the best possible model, f∗, within
the function class F .

Theorem 3. Under the same conditions as Theorem 2, the excess risk of ERM is bounded as

E
Smn

[LE(f̂)]− LE(f
∗) ≤ 2 E

P1:n

[
RPm

1:n
(ℓ ◦ F)

]
+ 2REn(ℓ ◦ F).

The proof can be found in Appendix C

Discussion Theorem 3 tells us that the gap between ERM and the best possible predictor in the
function class depends on the same complexity terms observed in Theorem 2. This implies that, for
any typical hypothesis class, ERM will find a near-optimal model if given sufficient data. In partic-
ular, the rate of convergences towards the optimal model will be O(1/

√
mn + 1/

√
n), indicating

that it is not only the total volume of training data that is important, but also the number of training
domains.

4.1.2 A LOWER BOUND ON THE MINIMAX EXCESS RISK

We now turn to the problem of computing lower bounds on the minimax excess risk for general DG
problems. We have already provided an upper bound on the excess risk for using ERM to select
a model from F which holds for all problems in E . The goal of deriving the lower bound on the
minimax risk, given below, is to determine how much room there is to improve upon ERM.

Theorem 4. Let F be a class of models producing predictions in {−1, 1} and let ℓ be the zero–one
loss. We have that the minimax excess risk for problems in E is bounded from below by

M(F , E ,mn) ≥
supS2mn

R̂S2mn
(F) + supS2n

R̂S2n
(F)

4
−

supSmn
R̂Smn

(F) + supSn
R̂Sn

(F)

8
.

The proof is in Appendix D.

Discussion The results in Theorems 3 and 4 tell us that the gap between f∗ and a model trained by
the best possible learning algorithm can be lower bounded by the same types of complexity terms
used in the upper bound for ERM. For hypothesis classes of interest in machine learning we can say
that the minimax excess risk scales as

Ω

(
1√
mn

+
1√
n

)
− Ω

(
1√
mn

+
1√
n

)
= Ω

(
1√
mn

+
1√
n

)
. (11)

Moreover, this best-case behaviour matches the worst-case scaling behaviour of ERM. As such, we
can conclude that ERM already has the optimal scaling behaviour for general DG problems. This
reasoning about asymptotic rates can obfuscate the impact of the constant factors, which becomes
more important for smaller n. We note that the upper and lower bounds: (i) have relatively close
constant factors; and (ii) the same function (i.e., Rademacher complexity) governs both in-domain
generalisation and cross-domain generalisation, so the number of training examples are needed for
generalisation in the i.i.d. setting will be indicative of the number of training domains needed to
have good generalisation in the DG setting.

6
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Figure 2: Linear SVM performance on DomainBed benchmark datasets. Optimal tuning for per-
formance on novel target domains (red) always requires stronger regularisation (lower C) than for
performance on seen domains (blue).

Practical Insights While the results so far appear to be pessimistic, there are actionable insights
that we discuss here. The difference between Theorem 2 and single domain bounds (e.g., Theorem
1) is the additional dependence on the number of domains n via the additional Rademacher com-
plexity term. This shows that in-domain generalisation and cross-domain generalisation are both
controlled by the same type of complexity term. This means that novel architectures or in-domain
regularisation methods (interventions that reduce complexity while maintaining the empirical risk,
or vice-versa) will automatically benefit cross-domain generalisation: Seeking models with good
in-domain generalisation will also improve DG. This reflects the situation in empirical DG bench-
marks where underlying neural architecture improvement has the most substantial influence on DG
performance (Gulrajani & Lopez-Paz, 2021; Zhou et al., 2021), as well as in-domain performance.

More specifically, comparing the theorems also shows that when the goal is to generalise to new
domains, the risk of overfitting is higher. Therefore a lower complexity model is better for held
out domain performance compared for seen domain performance in standard i.i.d. learning. To
illustrate this empirically, we train linear SVM on pre-computed DINO (Caron et al., 2021) deep
features1 for six popular DG benchmarks. Tight bounds on linear SVM model complexity are known
and can be directly controlled by the scalar SVM slack parameter. The objective is also convex so
confounding factors in deep network training (stochastic optimisers, early stopping, etc) disappear,
and training is fast so that we can densely and exhaustively evaluate a wide range of complexities.
We compare conditions corresponding to the two theorems: (i) Training on the train splits of all
domains, and testing on the test splits of all domains (standard i.i.d. learning). (ii) Training on the
train splits of three domains, and testing on the test splits of a held out domain (i.e., DG).

The results in Fig. 2 average over 5 random seeds for dataset splitting, and all choices of held-out
target domain. From these we can see that: (i) All experiments exhibit the classic trade-off between
fitting the data well and constraining hypothesis class complexity appropriately. There is underfit-
ting for high regularisation (small C), and overfitting at low regularisation (large C). (ii) Across-
domain/DG condition (red) exhibits lower performance as expected due due to the distribution shift.
And most importantly (iii) the optimal regularisation for novel-domain performance is stronger than
for seen-domain performance (red vertical lines left of blue). This illustrates our theoretical result
that the ideal model complexity is lower for DG than for conventional i.i.d. learning.

1Note that using a fixed feature extractor trained on independent data does not impact the model complexity
or associated generalisation bound.
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4.2 THE BOUNDED INTEGRAL PROBABILITY METRIC SETTING

The general setting analysed in Section 4.1 allows for arbitrarily different marginal distributions,
P (x) and P ′(x), across two different domains, P and P ′. We next analyse whether making as-
sumptions on their similarity could lead to stronger guarantees, and discuss whether this restriction
enables algorithms to improve on ERM.

Integral Probability Metrics are a broad class of metrics for measuring distances between probability
distributions. The generalised definition of an IPM is

dG(P, P
′) = sup

g∈G

∣∣∣∣ E
z∼P

[g(z)]− E
z∼P ′

[g(z)]

∣∣∣∣ , (12)

where different choices of G lead to different metrics, and in our case z will represent the tuple
(x, y). For various choices of G one can recover distribution distances commonly found in the DG
and domain adaptation literature, such as maximum mean discrepancy, dH∆H -distance, discrepancy
distance, total variation distance, and more. In this section we analyse a subset of DG problems EG,σ ,
where the distance between different domains, as measured by some IPM dG , is bounded by σ,

EG,σ = {E |E ∈ E ∧ ∀P, P ′ ∈ suppE, dG(P, P
′) ≤ σ}. (13)

As in the general setting, we start with a uniform convergence result that will be useful in the
subsequent analysis.
Theorem 5. Let ℓ be a loss function taking values in [0, 1]. For a hypothesis class, F , and any G
such that ℓ ◦ F ⊆ G, then we have for any E ∈ EG,σ

E
Smn

[
sup
f∈F

LE(f)− L̂Smn
(f)

]
≤ 2 E

P1:n

[RPm
1:n

(ℓ ◦ F)] + σ.

Moreover, we have with confidence at least 1− δ over the realisations of Smn, for all f ∈ F , that

LE(f) ≤ L̂Smn
(f) + 2R̂Smn

(ℓ ◦ F) + σ + 3

√
ln 2/δ

2mn
.

The proof is given in Appendix E. Similar to the more general setting, we also obtain a bound on
the excess risk of ERM.
Corollary 1. Under the same conditions as Theorem 5, the excess risk of ERM is bounded by

E
Smn

[LE(f̂)]− LE(f
∗) ≤ 2 E

P1:n

[RPm
1:n

(ℓ ◦ F)] + σ.

The proof is essentially the same as for Theorem 3, except we apply Theorem 5 instead of Theorem
2.

Discussion This theorem tells us that if all domains associated with the DG problem exhibit a
high degree of similarity, as measured by a sufficiently expressive IPM, the effect of the distribution
shift is reduced and one mainly needs to consider the overfitting behaviour typically seen in i.i.d.
problems. This result is of most interest when only a small number of training domains are available;
if σ is small, one can still guarantee that not too much additional error will be incurred in the DG
setting, despite having seen little variety in training domains. It is also worth noting that EG,σ ⊆ E ,
so the guarantee from Theorem 3 still applies. This means that one can still expect the transfer risk to
improve as more training domains are collected, and the large-n scaling behaviour of O(1/

√
mn+

1/
√
n) is carried over.

Theorem 6. Let F be a class of models producing predictions in {−1, 1} and ℓ be the zero–one
loss. For any G such that dG takes values in [0, 1], we have that the minimax excess risk for problems
in EG,σ is bounded from below by

M(F , EG,σ,mn) ≥
supS2mn

R̂S2mn(F) + supS2n
σR̂S2n(F)

4
−
supSmn

R̂Smn(F) + supSn
σR̂Sn(F)

8
.

The proof is given in Appendix F.
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Discussion Because we have two upper bounds on the excess risk of ERM (Theorem 3 and Corollary
1), it is easiest to compare the upper and lower bounds separately for the large-n and small-n cases.
In the large-n case, the ERM excess risk and this lower bound behave in the same way as Theorems
3 and 4, respectively, so we can conclude that in the large-n case there is once again no substantial
room for improvement over ERM. In the small-n case, supSn

R̂Sn
(F) and supS2n

R̂S2n
(F) will

both be close to one, so the corresponding terms that they appear in will be approximately equal to
σ. This implies that in the small-n case, the lower bound in Theorem 6 will be close to the upper
bound in Corollary 1, so we can again conclude that there is little room for improvement over ERM.

4.2.1 WHEN CAN σ BE SMALL?

Given the full generality of IPMs, it may not be obvious what kinds of DG problems are likely to
have small bounds on the IPM between their domains. In this section we provide two examples of
cases where one can expect a small value for σ.

Domains are mixtures with common components If every domain P ∈ suppE can be written
as a mixture over a fixed set of components, Q1:k, but with random mixture coefficients, α1:k,

P =

k∑
c=1

αcQc,

k∑
c=1

αj,c = 1, (14)

then the IPM with TV , the set of all functions mapping to [0, 1], between two domains is bounded
by the sum of absolute differences in the corresponding α vectors, so

dTV (P, P
′) ≤ 1

2

k∑
c=1

|αc − α′
c|. (15)

This follows because dTV is the total variation distance, which can also be expressed as half the
L1 distance between the densities. If there are non-trivial bounds on the support of the mixing
coefficients then Equation 15 will be less than one and we will obtain a non-vacuous σ. An example
of where this can appear in real-world setting is in the crossover between DG and fairness, where
different domains can correspond to different mixtures of demographics between populations.

Invariant Hypothesis Classes Let G be a group that acts on elements of X . Suppose that for all
P, P ′ ∈ suppE there exists g ∈ G such that P (x, y) = P ′(gx, y). A hypothesis class can be said to
be (ϵ,G)-invariant w.r.t. E if for (x, y) ∼ P∣∣∣∣ E

(x,y)
[ℓ(f(x), y)− ℓ(f(gx), y)]

∣∣∣∣ ≤ ϵ, ∀g ∈ G, f ∈ F . (16)

From this definition, it is clear that when F is (ϵ,G)-invariant the IPM defined via ℓ ◦ F , for any
two domains P, P ′ ∈ suppE, the IPM is bounded as

dℓ◦F (P, P
′) ≤ ϵ. (17)

This style of invariance is commonly discussed in the geometric deep learning literature Bronstein
et al. (2021), where this is a lot of work on developing hypothesis classes with specific group invari-
ance properties. For example, in the design of machine learning models that operate on molecules to
enable drug discovery pipelines (Igashov et al., 2024). Leveraging models with invariance properties
also common in computer vision; we provide an empirical demonstration of how (G, ϵ)-invariance
can lead to good transfer risk in the image recognition context in Appendix I.

Note that this invariance property must hold for every model in the hypothesis class. One cannot
use the training data, Smn, to attempt to identify a subset of models that satisfy this condition and
obtain this more favourable guarantee. However, there is a growing literature on using auxiliary
unlabelled data to learn feature encoders with approximate invariances to various transformations
Ericsson et al. (2022); Chavhan et al. (2023).

4.3 THE BOUNDED DENSITY RATIO SETTING

The bounded IPM setting analysed in Section 4.2 assume there is some level of similarity between
domains, in the sense that some data points could be observed in more than one domain. However,

9
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the possibility of some examples occurring exclusively in a single domain is still left open. In con-
trast, this Section considers the bounded density ratio setting, where each domain in a DG problem
has identical support. This means that if an example can be observed in one domain, then it can also
be observed in any other domain, albeit with a different probability. Formally, we define the class of
ρ-bounded density ratio DG problems, for any ρ ≥ 1, as a subset of E ,

Eρ =

{
E |E ∈ E ∧ ∀P, P ′ ∈ suppE,

∥∥∥∥ dPdP ′

∥∥∥∥
∞

≤ ρ

}
, (18)

where we use dP to denote the probability density function of P .
Theorem 7. Let ℓ be a loss function taking values in [0, 1]. For a hypothesis class, F , and any
E ∈ Eρ, we have that

E
Smn

[LE(f̂)]− LE(f
∗)] ≤ 2ρ E

P1:n

[RPm
1:n

(F)] + (ρ− 1) E
Smn

[L̂Smn(f̂)].

The proof is given in Appendix G.

Discussion One of the key differences between this setting and previous settings is that there is
no term that scales as O(1/

√
n), indicating that one could actually achieve good transfer risk with

a small number of training domains. There are two ways to interpret this result in more detail.
The first is that if one uses ERM to train an interpolating classifier (i.e., a classifier achieving zero
training error) with sufficient data to make the Rademacher complexity term small, then the model
will generalise well to new domains. Substantial empirical evidence exists to suggest that deep
neural networks often interpolate the training data. We also note that this upper bound does not
stipulate that training data must come from a wide variety of training domains; a substantial volume
of data from one domain is enough. The second interpretation of this bound is arises from noting
that ESmn

[L̂Smn
(f̂)] ≤ LE(f

∗). This implies that if the hypothesis class is “well-specified”, in the
sense that it contains the ground truth labelling function, then one only needs sufficient data from a
single domain to find the best model via ERM.
Theorem 8. Let F be a class of models producing predictions in {−1, 1} and ℓ be the zero–one
loss. We have that the minimax risk for problem in Eρ is bounded from below by

M(F , Eρ,mn) ≥ sup
S2mn

1

2
R̂S2mn

(F)− 1

4
sup
Smn

R̂(F).

The proof is given in Appendix H.

Discussion Assuming a hypothesis class capable of obtaining low training error is chosen, the
minimax excess risk lower bound scales at the same rate as the upper bound on the excess risk of
ERM: Θ(1/

√
mn).

5 CONCLUSION

This paper provides a theoretical analysis of several DG problem settings through the use of bounds
on the excess risk of ERM and the minimax excess risk. Our results delineate two constrained
settings where it is possible to generalise with a smaller number of training domains, as opposed
to the most general setting where a large number of training domains are required for learning.
However, in all cases it is not possible to substantially outperform ERM. Therefore we also provide
several insights into how one can maximise ERM performance in each setting. In the unconstrained
setting, the only course of action is to heavily regularise the model, as the model complexity has a
larger impact on the transfer risk than the usual i.i.d. risk. If the bounded density ratio assumption
holds, it is crucial to specify the “correct” model class—in the sense that the ground truth labelling
function is well approximated by a function in the hypothesis class. The bounded IPM setting
is unique in that the modeller can influence whether it holds or not by choosing an appropriate
hypothesis class. We have provided two examples, along with an experimental demonstration in
Appendix I, that carefully choosing a hypothesis class with the correct invariances for a problem can
substantially reduce the number of domains required for good DG performance. Going forward, we
anticipate that data-driven approaches to defining hypothesis classes via auxiliary data (e.g., through
transfer learning or meta-learning) will enable appropriate hypothesis classes to be constructed with
minimal manual labour.
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A APPENDIX

B PROOF OF THEOREM 2

Theorem 2. Assume ℓ takes values in [0, 1]. For a hypothesis class, F , and any E ∈ E , we have
that

E
Smn

[
sup
f∈F

LE(f)− L̂Smn
(f)

]
≤ 2 E

P1:n

[
RPm

1:n
(ℓ ◦ F)

]
+ 2REn(ℓ ◦ F).

Moreover, we have with confidence at least 1− δ over the realisations of Smn, for all f ∈ F , that

LE(f) ≤ L̂Smn
(f) + 2R̂Smn

(ℓ ◦ F) +
2

m

m∑
i=1

R̂Si
n
(ℓ ◦ F) + 5

√
ln 3/δ

2mn
,

where we denote by Si
n the set containing the the ith example from each Sj

m.

Proof. We can decompose the DG risk as

E
Smn

[
sup
f∈F

LE(f)− L̂Smn(f)

]
(19)

= E
Smn

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj (f) +
1

n

n∑
j=1

LPj (f)− L̂Smn(f)

 (20)

≤ E
P1:n

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj
(f)

+ E
Smn

sup
f∈F

1

n

n∑
j=1

LPj
(f)− L̂Smn

(f)

 , (21)
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where the inequality arises from splitting the supremum into two terms. The theorem will follow by
providing upper bounds on each of these expectations and plugging them back into this decomposi-
tion. The expectations are bounded using small variations of the symmetrisation argument typically
used to prove Rademacher complexity-based generalisation bounds.

The first expectation is bounded by

E
P1:n

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj
(f)

 (22)

= E
P1:n

sup
f∈F

Ẽ
P1:n

 1

n

n∑
j=1

LP̃j
(f)

− 1

n

n∑
j=1

LPj
(f)

 (23)

≤ E
P1:n

Ẽ
P1:n

sup
f∈F

1

n

n∑
j=1

(LP̃j
(f)− LPj

(f))

 (24)

= E
P1:n

Ẽ
P1:n

E
σ

sup
f∈F

1

n

n∑
j=1

σj(LP̃j
(f)− LPj

(f))

 (25)

≤ E
P1:n

E
σ

sup
f∈F

1

n

n∑
j=1

σjLPj (f)

+ Ẽ
P1:n

sup
f∈F

1

n

n∑
j=1

σjLP̃j
(f)

 (26)

= 2REn(ℓ ◦ F), (27)
where the first inequality comes from exchanging the supremum and expectations, and the second
inequality comes from the subadditivity of suprema.

The second expectation in the decomposition is bounded via Theorem 1, yielding the first part of the
result. It also allows us to conclude

LE(f) ≤ L̂Smn
(f) + 2R̂Smn

(ℓ ◦ F) + 2REn(ℓ ◦ F) + 3

√
ln 2/δ

2mn
. (28)

To obtain the second part of the result, we proceed as follows,

REn(ℓ ◦ F) = E
P1:n

sup
f∈F

1

n

n∑
j=1

σjLPj
(f)

 (29)

≤ E
P1:n

E
(x1:n,y1:n)

E
σ

sup
f∈F

1

n

n∑
j=1

σjℓ(f(xj), yj)

 , (30)

which we observe is the expected value of

1

m

m∑
i=1

R̂Si
m
(ℓ ◦ F). (31)

This satisfies the bounded difference property with constant 1
mn , so from McDiarmid’s inequality,

we have for all f ∈ F , with probability at least 1− δ,

REn(ℓ ◦ F) ≤ 1

m

m∑
i=1

R̂Si
n
(ℓ ◦ F) +

√
ln 1/δ

2mn
. (32)

The second part of the theorem follows from combining this with Equation 28 via the union bound.

C PROOF OF THEOREM 3

Theorem 3. Under the same conditions as Theorem 2, the excess risk of ERM is bounded as

E
Smn

[LE(f̂)]− LE(f
∗) ≤ 2 E

P1:n

[
RPm

1:n
(ℓ ◦ F)

]
+ 2REn(ℓ ◦ F).
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Proof.

E
Smn

[LE(f̂)]− LE(f
∗) (33)

= E
Smn

[LE(f̂)− L̂Smn
(f̂) + L̂Smn

(f̂)− L̂Smn
(f∗) + L̂Smn

(f∗)]− LE(f
∗) (34)

= E
Smn

[LE(f̂)− L̂Smn
(f̂) + L̂Smn

(f̂)− L̂Smn
(f∗)] (35)

≤ E
Smn

[LE(f̂)− L̂Smn
(f̂)] (36)

≤ 2 E
P1:n

[
RPm

1:n
(F)

]
+ 2REn(F), (37)

where the last inequality is due to Theorem 2

D PROOF OF THEOREM 4

We begin with a Theorem bounding the minimax excess risk in terms of Rademacher complexity
for the case of i.i.d. learning. This Theorem is a generalisation of result from Sridharan (2011) that
enables the use of the zero–one classification loss, instead of an absolute difference regression loss.
Theorem 9. Let F be a class of models producing predictions in {−1, 1}, and let ℓ be the zero–one
loss. We have that the minimax excess risk for problems in P is bounded from below by

M(F ,P,m) ≥ sup
S2m

1

2
R̂S2m

(F)− sup
Sm

1

4
R̂Sm

(F).

Proof. Recall that the minimax excess risk is given by,

M(F ,P,m) = inf
A

sup
P∈P

{
E
Sm

[
E

(x,y)
[1(yA(Sm)(x) < 0)]

]
− inf

f∈F
E

(x,y)
[1(yf(x) < 0)]

}
. (38)

When models in F produce values in {−1, 1}, we note that the zero–one loss can be rewritten as

ℓ01(ŷ, y) = 1(yŷ < 0) (39)
= 1− 1(yŷ ≥ 0) (40)

= 1− yŷ + 1

2
. (41)

The minimax excess risk can therefore be expressed as

M(F ,P,m) = inf
A

sup
P∈P

{
sup
f∈F

E
(x,y)

[yf(x)]− E
Sm

[
E

(x,y)
[yA(Sm)(x)]

]}
, (42)

which can be bounded from below by

M(F ,P,m) ≥ inf
A

sup
x1,...,x2m

sup
y1,...,y2m

{
sup
f∈F

1

4m

2m∑
i=1

yif(xi)− E
Sm

[
1

4m

2m∑
i=1

yiA(Sm)(xi)

]}
,

(43)
where elements in Sm are distributed according to the uniform distribution over the (xi, yi) pairs.
We further observe

M(F ,P,m) ≥ inf
A

sup
x1,...,x2m

E
yi∼R

[
sup
f∈F

1

4m

2m∑
i=1

yif(xi)− E
Sm

[
1

4m

2m∑
i=1

yiA(Sm)(xi)

]]
(44)

≥ sup
x1,...,x2m

E
yi∼R

[
sup
f∈F

1

4m

2m∑
i=1

yif(xi)

]
(45)

− sup
A

sup
x1,...,x2m

E
yi∼R

[
E

Sm∼Pm
U

[
1

4m

2m∑
i=1

yiA(Sm)(xi)

]]
, (46)
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where the first inequality arises because we replace the supremum taken over y1, ..., y2m ∈ {−1, 1}
with an expectation over Rademacher random variables, yi ∼ R. The second inequality comes from
splitting the infimum and supremum across two terms and subsequently simplifying. The first term
is just a worst-case Rademacher complexity, so

M(F ,P,m) ≥ sup
S2m

1

2
R̂S2m(F)− sup

A
sup

x1,...,x2m

E
yi∼R

[
E
Sm

[
1

2m

4m∑
i=1

yiA(Sm)(xi)

]]
. (47)

Denote by I ⊂ N2m the set of indices determining the xi in Sm. The second term can be rewritten
as

sup
A

sup
x1,...,x2m

E
I∼U [2m]m

[
E

yi∼R

[
1

4m

∑
i∈I

yiA(Sm)(xi)

]]
, (48)

because the terms in the Rademacher sum corresponding to samples that do not appear in Sm will
evaluate to zero. This can then be bounded from above by

sup
A

sup
x1,...,x2m

E
I∼U [2m]m

[
E

yi∼R

[
1

4m

∑
i∈I

yiA(Sm)(xi)

]]
≤ sup

Sm

E
yi∼R

[
sup
f∈F

1

4m

∑
x∈Sm

yif(x)

]
(49)

= sup
Sm

1

4
R̂Sm(F), (50)

which concludes the proof.

The key insight for proving Theorem 4 is encapsulated in the following lemma.
Lemma 1. For γ ∈ [0, 1] we have

M(F , E ,mn) ≥ γM(F ,P,mn) + (1− γ)M(F ,P, n).

Proof. Let E1 be the subset of E consisting of all environments containing only one domain each.
Also, let E2 be the subset of E consisting of environments where each domain is a point mass. Let
γ1 = γ and γ2 = 1− γ. The minimax excess risk can be lower bounded by

M(F , E ,mn) ≥ inf
A

2∑
k=1

γk

(
sup
E∈Ek

{
E

Smn

[L01
E (A(Smn)]− inf

f∈F
L01
E (f)

})
(51)

≥
2∑

k=1

γk

(
inf
A

sup
E∈Ek

{
E

Smn

[L01
E (A(Smn)]− inf

f∈F
L01
E (f)

})
(52)

= γM(F ,P,mn) + (1− γ)

(
inf
A

sup
E∈E2

{
E

Smn

[L01
E (A(Smn)]− inf

f∈F
L01
E (f)

})
,

(53)

where the first inequality comes from the supremum of a set being lower bounded by supremum of
a subset, the second inequality from a standard property of infima, and the final equality from the
definition of E1.

We now turn our attention to the second term. Define the function,

Cm(Sn) = ∪m
i=1Sn (54)

Note that, because each P ∼ E ∈ E is a point mass, we have that for every Smn there exists and Sn

such that Smn = Cm(Sn). Therefore, for every learning algorithm, A, that maps from sets of size
mn to models, there exists an algorithm Ã = A ◦ Cm that maps from the corresponding set of size
n to the same model. Therefore,

inf
A

sup
E∈E2

{
E

Smn

[L01
E (A(Smn)]− inf

f∈F
L01
E (f)

}
= inf

A
sup
P∈P

{
E
Sn

[L01
P (A(Sn)]− inf

f∈F
L01
P (f)

}
(55)

= M(F ,P, n), (56)

from which the result follows.
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We now prove Theorem 4.

Theorem 4. Let F be a class of models producing predictions in {−1, 1} and let ℓ be the zero–one
loss. We have that the minimax excess risk for problems in E is bounded from below by

M(F , E ,mn) ≥
supS2mn

R̂S2mn(F) + supS2n
R̂S2n(F)

4
−

supSmn
R̂Smn(F) + supSn

R̂Sn(F)

8
.

Proof. This is an immediate consequence of Theorem 9 and Lemma 1 with γ = 1
2 . We note that

a tighter lower bound can be obtained with a different choice of γ, but this choice enables easier
comparison with the upper bound on the excess risk of ERM.

E PROOF OF THEOREM 5

Theorem 5. Let ℓ be a loss function taking values in [0, 1]. For a hypothesis class, F , and any G
such that ℓ ◦ F ⊆ G, then we have for any E ∈ EG,σ

E
Smn

[
sup
f∈F

LE(f)− L̂Smn(f)

]
≤ 2 E

P1:n

[RPm
1:n

(ℓ ◦ F)] + σ.

Moreover, we have with confidence at least 1− δ over the realisations of Smn, for all f ∈ F , that

LE(f) ≤ L̂Smn(f) + 2R̂Smn(ℓ ◦ F) + σ + 3

√
ln 2/δ

2mn
.

Proof. First note that

E
Smn

[
sup
f∈F

LE(f)− L̂Smn
(f)

]
= E

Smn

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj
(f) +

1

n

n∑
j=1

LPj
(f)− L̂Smn

(f)


(57)

≤ E
P1:n

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj
(f)

+ 2RPm
1:n

(F), (58)

from Theorem 1. Further, we have

E
P1:n

sup
f∈F

LE(f)−
1

n

n∑
j=1

LPj (f)

 ≤ E
P1:n

E
P ′

1:n

sup
f∈F

1

n

n∑
j=1

(LP ′
j
(f)− LPj (f))

 (59)

≤ E
P1:n

E
P ′

1:n

 1

n

n∑
j=1

(
sup
f∈F

LP ′
j
(f)− LPj (f)

) , (60)

≤ σ, (61)

which yields the first part of the result. The second part of the result follows from the same line of
reasoning as used in Theorem 2.

F PROOF OF THEOREM 6

Theorem 6. Let F be a class of models producing predictions in {−1, 1} and ℓ be the zero–one
loss. For any G such that dG takes values in [0, 1], we have that the minimax excess risk for problems
in EG,σ is bounded from below by

M(F , EG,σ,mn) ≥
supS2mn

R̂S2mn
(F) + supS2n

σR̂S2n
(F)

4
−
supSmn

R̂Smn
(F) + supSn

σR̂Sn
(F)

8
.
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Proof. For any E′ ∈ E and P0 ∈ P , we define P ∼ E as

P = (1− σ)P0 + σP ′, (62)

where P ′ ∼ E′. Observe that E ∈ EG,σ ,

dG(P1, P2) = sup
g∈G

| E
(x,y)∼P1

[g(x, y)]− E
(x,y)∼P2

[g(x, y)]| (63)

= sup
g∈G

∣∣∣∣∫
X×Y

g(x, y) · ((1− σ)dP0 + σdP ′
1)−

∫
X×Y

g(x, y) · ((1− σ)dP0 + σdP ′
2)

∣∣∣∣
(64)

= sup
g∈G

∣∣∣∣∫
X×Y

g(x, y) · σ(dP ′
1 − dP ′

2)

∣∣∣∣ (65)

= σ sup
g∈G

∣∣∣∣∣ E
(x,y)∼P ′

1

[g(x, y)]− E
(x,y)∼P ′

2

[g(x, y)]

∣∣∣∣∣ (66)

≤ σ. (67)

Let E1 be the set of all DG problems that contain only a single domain, and define

E2 = {E |E′ ∈ E , P0 ∈ P}. (68)

Then we apply the same decomposition used in the proof for Lemma 1,

M(F , EG,σ,mn) ≥ inf
A

1

2

2∑
k=1

(
sup
E∈Ek

{
E

Smn

[L01
E (A(Smn))]− inf

f∈F
L01
E (f)

})
(69)

≥ 1

2

2∑
k=1

(
inf
A

sup
E∈Ek

{
E

Smn

[L01
E (A(Smn))]− inf

f∈F
L01
E (f)

})
(70)

=
1

2
M(F ,P,mn) +

1

2

(
inf
A

sup
E∈E2

{
E

Smn

[L01
E (A(Smn))]− inf

f∈F
L01
E (f)

})
.

(71)

From the definition of E2, we can rewrite the second term as

inf
A

sup
E′,P0

{
E

Smn

[σLE′(A(Smn)) + (1− σ)LP0
(A(Smn))] (72)

− inf
f∈F

(σLE′(f) + (1− σ)LP0
(f))

}
(73)

≥ inf
A

sup
E′,P0

{
E

P1:n∼E′n
E

Smn∼Pm
1:n

[σLE′(A(Smn))] + E
Smn∼Pmn

0

[(1− σ)LP0(A(Smn))] (74)

− inf
f∈F

(σLE′(f) + (1− σ)LP0
(f))

}
(75)

(76)

We proceed by considering two cases. First, assume the optimal model for the worst-case DG
problem, E′, does not have a zero–one error of 1. Choose P0 to be a point mass on one of the points
classified correctly by the optimal model. Then the optimal model for E′ is also optimal for P0 and
achieves zero error. Noting also that the expected loss of any algorithm on P0 is greater than or
equal zero, we can further lower bound the above by

σ inf
A

sup
E′∈E

{
E

Smn

[LE′(A(Smn))]− inf
f

LE′(f)

}
. (77)

In the case where the optimal model for E′ does classify every point incorrectly, choose P0 to be
any point that can be generated by a domain in suppE′. The expected loss of any algorithm and
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the loss of the optimal model are both one, and therefore cancel, yielding the same result as the first
case. The main result follows from noting

σ inf
A

sup
E′∈E

{
E

Smn

[LE′(A(Smn))]− inf
f

LE′(f)

}
= σM(F , E ,mn), (78)

and subsequently applying Lemma 1 with γ = 0.

G PROOF OF THEOREM 7

Theorem 7. Let ℓ be a loss function taking values in [0, 1]. For a hypothesis class, F , and any
E ∈ Eρ, we have that

E
Smn

[LE(f̂)]− LE(f
∗)] ≤ 2ρ E

P1:n

[RPm
1:n

(F)] + (ρ− 1) E
Smn

[L̂Smn
(f̂)].

Proof. Follow the proof of Theorem 3 until

E
Smn

[LE(f̂)]− LE(f
∗) ≤ 2ρ E

P1:n

[RPm
1:n

(ℓ ◦ F)] + (ρ− 1) E
Smn

[L̂Smn
(f̂)]. (79)

The result follows from applying a change of measure and applying the definition of Eρ,

E
Smn

[LE(f̂)− L̂Smn
(f̂)] ≤ E

P1:n

E
Smn

 ρ

n

n∑
j=1

LPj
(f̂)− L̂Smn

(f̂)

 (80)

= E
P1:n

E
Smn

 ρ

n

n∑
j=1

LPj
(f̂)− ρL̂Smn

(f̂) + ρL̂Smn
(f̂)− L̂Smn

(f̂)


(81)

≤ 2ρ E
P1:n

[RPm
1:n

(ℓ ◦ F)] + (ρ− 1) E
Smn

[L̂Smn
(f̂)]. (82)

H PROOF OF THEOREM 8

Theorem 8. Let F be a class of models producing predictions in {−1, 1} and ℓ be the zero–one
loss. We have that the minimax risk for problem in Eρ is bounded from below by

M(F , Eρ,mn) ≥ sup
S2mn

1

2
R̂S2mn

(F)− 1

4
sup
Smn

R̂(F).

Proof. Notice that E1 is the set of all DG problems containing a single domain. From the definition
of Eρ we have E1 ⊆ Eρ. So,

M(F , Eρ,mn) ≥ M(F , E1,mn) (83)
= M(F ,P,mn). (84)

The result follows by applying Theorem 9.

I EXPERIMENTAL ILLUSTRATION

We conduct small-scale experiments to illustrate the practical impact of our theoretical results. More
specifically, we focus on a modification of the well-known MNIST hand-written digit classification
task. We embed the original 28×28 images into a larger 64×64 grid, where each unique placement
corresponds to a separate domain. In total there are 1,369 possible ways to place the digit, and
from these we select uniformly at random 1,000 domains for training, 169 for validation, and 200
for testing. Additionally, each domain has an associated unique mixture component of rotating the
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Figure 3: The CNN model includes a suitable invariance that helps it generalize across domains
better than the MLP model.

digit, which is used with a probability ϵ. The selected rotations are between −45◦ and 45◦. In our
experiments we vary the number of training domains to measure its impact on the generalization
to new unseen domains. We control the total training set size to be the same across all numbers of
domains, and we achieve this by associating each example in the dataset with a unique domain, with
balancing the number of examples assigned to each domain. We repeat each experiment with three
random seeds and calculate the average.

We use two models: a small Convolutional Neural Network (CNN) with global average pooling,
and a Multi-Layer Perceptron (MLP). The purpose of these is to show that having a hypothesis
class that includes suitable invariances leads to better excess risk. The CNN model consists of two
convolutional layers followed by one dense layer, with global average pooling before the dense layer.
The MLP model consists of three dense layers. Both models use ReLU non-linearity activation
between the layers. We train each model for 10 epochs using Adam optimizer with learning rate of
0.001, cross-entropy loss and training minibatch of 64 items. We use early stopping via checkpoint
selection, where we evaluate the model on the validation set after each epoch.

Translations and rotations of images can both be represented at permutations of the pixels, so these
transforms can therefore can be modelled as a finite group, G. The CNN is invariant to the position
of the digit, due to the global average pooling layer, but will does not explicitly encode rotation
invariance. As such, the class of CNNs we consider is (G, ϵ)-invariant, because we only apply a
rotation with probability ϵ. In contrast, the MLP does not encode either of these invariances, so we
can expect it will need to see a large number of training domains before being able to approach the
optimal within-class risk.

We show the results in Figure 3, comparing the two models with different rotation probabilities, ϵ.
When ϵ is small, very few training domains are needed in order to minimise the excess risk, because
the differences in domains is mainly explained by translations. As ϵ grows, the CNN requires more
training domains to converge towards the best possible model for this corresponding DG problem.
However, the MLP converges towards the optimal model considerably slower, and at the same rate
for all values of ϵ, because it does not have any of the correct built-in invariances.
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