
Dual-Stage Value-Guided Inference with
Margin-Based Reward Adjustment for Fast and

Faithful VLM Captioning

Ankan Deria1, Adinath Madhavrao Dukre1, Feilong Tang1, Sara Atito2, Sudipta Roy3

Muhammad Awais2, Muhammad Haris Khan1, Imran Razzak1,4

1 Mohamed bin Zayed University of AI, Abu Dhabi, UAE
2 University of Surrey, UK

3 Jio Institute, India
4 UNSW, Australia

Abstract

Despite significant advances in inference-time search for vision–language models
(VLMs), existing approaches remain both computationally expensive and prone
to unpenalized, low-confidence generations which often lead to persistent hallu-
cinations. We introduce Value-guided Inference with Margin-based Reward
(ViMaR)1, a two-stage inference framework that improves both efficiency and
output fidelity by combining a temporal-difference value model with a margin-
aware reward adjustment. In the first stage, we perform a single pass to identify the
highest-value caption among diverse candidates. In the second stage, we selectively
refine only those segments that were overlooked or exhibit weak visual grounding,
thereby eliminating frequently rewarded evaluations. A calibrated margin-based
penalty discourages low-confidence continuations while preserving descriptive rich-
ness. Extensive experiments across multiple VLM architectures demonstrate that
ViMaR generates captions that are significantly more reliable, factually accurate,
detailed, and explanatory, while achieving over 4× speedup compared to existing
value-guided methods. Specifically, we show that ViMaR trained solely on LLaVA
Mistral-7B generalizes effectively to guide decoding in stronger unseen models.
To further validate this, we adapt ViMaR to steer generation in both LLaVA-
OneVision-Qwen2-7B and Qwen2.5-VL-3B, leading to consistent improvements
in caption quality and demonstrating robust cross-model guidance. This cross-
model generalization highlights ViMaR’s flexibility and modularity, positioning
it as a scalable and transferable inference-time decoding strategy. Furthermore,
when ViMaR-generated captions are used for self-training, the underlying models
achieve substantial gains across a broad suite of visual comprehension benchmarks,
underscoring the potential of fast, accurate, and self-improving VLM pipelines.

1 Introduction
Vision-language models (VLMs) [2, 6, 11, 17, 23] have revolutionized our ability to produce fluent,
richly detailed image descriptions. However, they still contend with two intertwined challenges:
generating precise, fine-grained captions and combating “hallucinations” [21, 6, 47, 36, 46, 23, 37],
which often arise from unpenalized, low-confidence outputs that misrepresent the scene. Simply
scaling up training data can ameliorate these issues, but it incurs prohibitive annotation and API costs,

1Code: https://github.com/ankan8145/ViMaR

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ankan8145/ViMaR


making it fundamentally unscalable. Meanwhile, standard decoding strategies such as best-of-N
or greedy sampling either underutilize the model’s representational power or demand exhaustive,
compute-intensive re-scoring of every candidate at each generation step [33, 41].

Recent advances in large language models (LLMs) [28, 32, 50] have demonstrated that inference-
time search, using a pretrained process-reward model to iteratively refine candidate outputs can
substantially elevate response quality and even generate synthetic data for further model training
[38, 54]. Extending this paradigm to VLMs, however, introduces unique challenges: unlike text-only
tasks, VLMs require a reward signal that captures both visual grounding and linguistic coherence
across multiple sentences. To address this, Wang et al. [46] proposed the Vision Value Model
(VisVM), which employs temporal-difference learning [35] over CLIP similarity scores to estimate
the long-term quality of each candidate sentence. Though, VisVM markedly reduced hallucination
and enriches visual details, however scoring every candidate at each step incurs considerable overhead.

To overcome aforementioned challenges, we present a two-stage search pipeline that preserves or
improves caption fidelity while reducing end-to-end inference time by over 4×. In the first stage,
a single ‘nbest-of’ pass selects the highest-value caption (coarse caption) under our trained policy.
In the second stage, we propose to perform targeted refinement (fine caption): additional search
is restricted solely to those segments where salient image regions were likely overlooked, thereby
eliminating the need to re-score the full candidate set on every generation step. At the core of
our method lies a new margin-based reward adjustment for training: whenever a candidate’s CLIP
similarity falls below a calibrated threshold, we impose a penalty proportional to the gap. This
mechanism seamlessly integrates into the existing temporal difference framework, sharpening the
model’s preference for factually grounded, detail-rich phrases. In results, ViMaR demonstrates
strong cross-model generalization: despite being based on LLaVA Mistral-7B, ViMaR effectively
guides decoding on other stronger models such as LLaVA OneVision-Qwen2-7 B. This highlights
the generalizability and scalability of our framework, making it suitable as a plug-and-play decoding
strategy across diverse VLM architectures. Furthermore, by leveraging ground-truth captions in our
dataset, we ensure that truly accurate descriptions receive the highest reward signals. We validate
our approach in two comprehensive studies. First, in COCO-based descriptive captioning, our
optimized value-guided search produces captions that are markedly more detailed and substantially
less prone to hallucination than those from VisVM search, greedy decoding, best-of-N or standard
CLIP-PRM search. In blind evaluations conducted using both GPT-4o and human judges, our
captions are preferred in 49.3% and 64% of pairwise comparisons, respectively, against outputs
generated by the VisVM (see Figure 1). These performance gains are achieved at a much lower
cost, as our inference pipeline runs considerably faster than the state-of-the-art VisVM. Second,
we leverage these high-quality captions to self-train the base LLaVA-Next-7B model. Fine-tuning
on our optimized-generated data yields consistent improvements across eight diverse multimodal
benchmarks, achieving an average performance uplift of 15.87%. Together, these results highlight
the potential of a fast, accurate, and computationally efficient VLM inference paradigm that supports
self-improvement.

2 Related Work

Vision–Language Modeling: Early joint vision–text models combined convolutional or transformer-
based image encoders with sequence decoders to tackle tasks such as object tagging, image captioning,
and visual question answering [15, 18, 51]. More recent approaches fuse large pretrained language
backbones with powerful visual representations (e.g., CLIP) to enable instruction following, in-
context multimodal reasoning, and zero-shot generalization [1, 11, 43]. Despite these capabilities,
VLMs remain prone to hallucination, producing confidently stated but incorrect content [3, 14, 30].

Hallucination Mitigation: Hallucinations in vision–language models are typically addressed in
the following ways. Enhance the quality of supervised fine-tuning (SFT) datasets through human
annotation, synthetic caption rewrites, or contrastive filtering to provide more accurate grounding [12,
9, 44, 45], or apply corrective methods during post-training, such as fine-tuning with adversarial
negatives, consistency checks, or calibrate self-rewarding to detect and suppress spurious phrases [21,
34, 55, 26]. In contrast, our approach leaves model weights and training data unchanged, instead
devising a two-stage inference-time search to actively reward well-grounded descriptions while
penalizing low-confidence outputs that are prone to hallucination.
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Descriptive Paragraph Captioning: Descriptive captioning extends single-sentence models to
produce multi-sentence paragraphs that comprehensively describe both global scene context and fine-
regional details [11, 5]. Early work on paragraph captioning demonstrated that standard sequence
models often generate repetitive text with limited diversity, motivating approaches that explicitly
promote novel content and discourage redundancy [16, 27]. Reinforcement learning methods such as
Self-Critical Sequence Training have been adapted to optimize non-differentiable paragraph-level
metrics, improving coherence but still requiring heavy sampling during inference [29]. Partially
non-autoregressive architectures further reduce latency by updating only segments of the caption in
parallel, yet they can struggle to maintain sequential consistency across sentences [13]. To mitigate
low-quality outputs, DeepSeek VL2 employs a lightweight quality control pipeline powered by
DeepSeek Chat to quickly score and filter captions based on writing quality alone, effectively pruning
imprecise or bland descriptions before post-training [48, 20]. More recent strategies incorporate
human-style feedback, for example, caption reformulations, to refine output at inference time,
achieving gains in factuality and readability without additional supervision [4]. Nevertheless, these
methods typically rerank or regenerate full paragraphs at each step, incurring substantial compute. In
contrast, our approach targets the inference-time search itself: By unifying a two-stage best-of pass
with targeted segment refinement and a margin-based penalty for low-confidence phrases, we obtain
richly detailed paragraphs with minimal extra computation.

Inference-Time Search: Inference-time search has emerged as a powerful mechanism for enhancing
model outputs in domains ranging from code generation and mathematical reasoning to multimodal
planning and robotics [31, 40, 54, 8]. In the text-only setting, techniques such as controlled decod-
ing [8], Best-of-N sampling [7, 19], and Monte Carlo Tree Search [38, 42] consistently enhance
performance by using a learned process or value model to rerank multiple candidate outputs. The
effectiveness of inference-time search depends primarily on the process reward model (PRM), since
the accuracy of its reward signals directly affects both the quality of the generated responses and the
computational cost required to obtain them.

Translating these ideas to vision–language models (VLMs) introduces unique challenges: the reward
signal must capture both visual–text alignment and sequential coherence across sentences. Zhou et
al. [55] first explored CLIP-based scoring as a proxy reward, using positive and negative sample
mining to refine the model post hoc. Xiong et al. [49] proposed LLAVA-Critic, which evaluates
entire paragraph-level captions to filter out poor outputs, but lacks stepwise granularity. Most
recently, Zhang et al. [54] introduced Rest-MCTS*, employing process-reward–guided tree search to
iteratively refine multimodal responses, yet still incurs a quadratic inference cost as the tree grows.
Building on temporal-difference value learning in VLMs, Wang et al. [46] presented the Vision Value
Model (VisVM), which estimates both immediate and future sentence value via CLIP similarity
and steers search toward low-hallucination, high-detail trajectories. Although VisVM substantially
elevates descriptive quality and reduces hallucinations, its naïve implementation must re-score all
N candidates at each generation step, resulting in an O(N × S) inference overhead (where S is
the number of sentences in each step). To mitigate these limitations, we developed ViMaR, a
two-stage inference framework that preserves long-term value signals while improving efficiency.
ViMaR conducts a best-of pass followed by targeted refinement, applies a margin-based penalty to
reduce redundant scoring of every candidates in training, and uses beam search for stable, diverse
decoding [7]. This achieves over 4× faster inference while maintaining or improving caption quality.

3 Value Guided Inference Framework-ViMaR

We formulate the VLM captioning process as a sequential generation task modeled by a policy πθ

over a probability distribution pθ. Given an input pair consisting of a textual prompt x and an image
I , the model produces a multi-sentence caption y = [y0; y1, y2, . . . , ym], where y0 is the first step
caption and each yi>0 denotes a sentence-level output. At the first step, the model produces y0 by
sampling from y0 ∼ pθ

(
# | x, I

)
, while each subsequent sentence yi>0 is drawn conditionally from

yi>0 ∼ pθ
(
· | x, I, y<i

)
, followed by evaluation and potential selection at each step. We cast this

caption generation process as a Markov Decision Process (MDP) defined by the tuple (S,A,R, γ),
where each state si ∈ S consists of the prompt–image pair (x, I) and the sequence of previously
generated sentences y<i, and the action yi ∈ A transitions the model to the next state si+1. The
reward function R(si, yi), parameterized by a value model Vρ, scores the quality of the generated
output at each step, while the discount factor γ ∈ [0, 1] governs the trade-off between immediate
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and future rewards. This MDP formulation enables inference-time search to explore alternative
trajectories and prioritize high-quality, visually grounded captions through value-guided decoding.

3.1 ViMaR Training

Training Method: Our proposed model, ViMaR, is designed to estimate the long-term utility
of image-conditioned sentence candidates, accounting for their potential to influence subsequent
generation steps. We adopt a temporal-difference (TD) learning strategy [35], which enables ViMaR
to recursively refine its predictions of the cumulative reward from any given state si = (yi, I), where
yi is the current sentence and I is the input image.

Given a training triplet (yi, yi+1, I) (the current and next sentence in a paragraph, together with
the associated image), we first compute the similarity score δ between yi and the image I using a
pretrained process reward model (PRM). To discourage low-confidence or potentially hallucinatory
outputs, we introduce a margin-based reward adjustment. The reward rsi at each state is computed
as:

rsi =

{
δ, if δ ≥ τ,

δ − τ, otherwise
(1)

Here, τ denotes a calibrated threshold that serves as a margin for penalizing uncertain or weakly
grounded predictions. When the PRM score falls below this threshold, a negative penalty proportional
to the margin gap is applied, encouraging the model to avoid such candidates during search.

The model is trained to minimize the discrepancy between the predicted value of the current state and
the target value, which is defined as the sum of the immediate reward and the discounted value of the
next state. Formally, the training objective is:

L(ρ) = E(yi,yi+1,I)∼D

[
(rsi + γVρ(yi+1, I)− Vρ(yi, I))

2
]

(2)

Here, Vρ is the value predicted by ViMaR, γ is the discount factor, and ρ denotes the learnable
model parameters. The training set D comprises image-caption pairs segmented into sentence-level
transitions to capture both local grounding and long-term contextual dependencies.

Training Data: To train ViMaR, we construct training triplets of the form (yi, yi+1, I), where yi is
a sentence from a paragraph-level caption, yi+1 is its immediate successor, and I is the corresponding
image. These triplets are derived from multi-sentence image descriptions y = [y1, y2, . . . , ym] paired
with their respective images. Modeling the long-term value of a sentence requires capturing not
only its direct alignment with the image but also its downstream influence on the continuation of the
caption. To ensure a diverse set of generation patterns, we begin with 23K images from the COCO
2017 training split and pair them with detailed prompts from the LLaVA-150K dataset. For each
image–prompt pair, we include both the ground-truth caption and five additional captions generated
by a VLM using a mix of greedy decoding and temperature-controlled sampling to promote diversity.
Each paragraph is then segmented into ordered sentence pairs, yielding a total of 792K triplets. We
used 732K examples for training and 60K for validation.

Implementation Details: We build ViMaR on top of the LLaVA-Next-Mistral-7B architecture.
Concretely, we attach a linear value head to the penultimate transformer layer; this head outputs a
scalar estimate of the cumulative, long-term reward for each image–sentence state. All other weights
in ViMaR are initialized from the pretrained LLaVA-Next-Mistral-7B checkpoint and remain trainable
alongside the new value head. For the process-reward model (PRM), we choose the CLIP-ViT. This
choice offers two advantages: (1) CLIP’s image–text embedding similarity provides a proven metric
for visual grounding, yielding reliable reward signals for descriptive captioning; and (2) leveraging
the native CLIP-ViT avoids external dependencies or costly human annotations, creating a fully
self-contained training pipeline and easily customized with our margin-based reward adjustment. To
support penalization and reduce hallucination, we modify the CLIP-based PRM by introducing a
margin-based reward adjustment (as described in Section 3.1), thereby downweighting low-confidence
alignments during reward computation.

3.2 Inference-Time Search with Two-Stage Refinement

Once trained, ViMaR serves as a value model Vρ to guide inference-time search, enabling the
VLM to produce more accurate and visually grounded descriptions. In the first stage, we perform
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Algorithm 1 Two-Stage Inference-Time Search with ViMaR
Require: Test sample {x, I}, VLM policy pθ, value model Vρ, temperature list T = {Tn}Nn=1,
candidate count K
Output: Final response y

1: # Stage 1: Generate diverse base captions
2: Initialize candidate set C = ∅
3: for Tn ∈ T do
4: Generate K paragraph-level responses {y(n,k)}Kk=1 ∼ pθ(· | x, I, Tn)

5: Add all {y(n,k)}Kk=1 to C
6: Select base caption y∗ = argmaxy∈C Vρ(y, I)
7: # Stage 2: Add supplementary segments to improve grounding
8: Identify under-grounded or missing visual regions in y∗

9: for while Generation is not Done do
10: Initialize candidate set Si = ∅
11: for Tn ∈ T do
12: Generate K candidate sentences {s(n,k)i }Kk=1 ∼ pθ(· | x, I, y<i, Tn)

13: Add all {s(n,k)i } to Si

14: Select best sentence s∗i = argmaxs∈Si
Vρ(s, I)

15: Append s∗i to y∗ at the appropriate position
16: return final refined response y∗

full-paragraph generation using beam search over the entire prompt–image pair (x, I), applying
temperature sampling with N distinct decoding temperatures {Tn}Nn=1. For each temperature Tn,
the model samples K complete paragraph-level candidates from the policy: y ∼ pθ(# | x, I, Tn),
where # denotes the end-of-caption token. This results in a total of N × K candidate captions.
Each is scored holistically by the value model Vρ(y, I), and the caption with the highest predicted
value is selected as the base output. In the second stage, we perform targeted refinement on the
selected base caption. For each segment yi with low visual grounding or missing objects, we resample
alternatives from the conditional distribution yi ∼ pθ(· | x, I, y<i, Tn), drawing K candidates per
temperature over N temperatures for a total of N × K alternatives. Each candidate is scored by
the value model Vρ(yi, I), and the highest-value sentence is incorporated into the caption. This
refinement loop repeats until all salient content is addressed and an end-of-sequence (EOS) token is
generated. This two-stage search preserves long-range reasoning while selectively improving weaker
segments, reducing inference cost without losing detail or accuracy. A complete overview is provided
in Algorithm 1.

4 Experiments
In this section, we empirically evaluate ViMaR-guided inference-time search framework. Our
investigation is centered around the following key questions: (1) Does the proposed two-stage
decoding strategy, guided by the learned value model, generate more accurate and visually grounded
outputs compared to existing inference-time decoding methods? (Section 4.1) (2) Can ViMaR’s
refined outputs serve as high-quality supervision signals to enhance the visual comprehension
capabilities of VLMs through self-training? (Section 4.2) (3) How efficient is our method in terms of
inference speed compared to baseline search strategies? (Section 4.3)

4.1 Evaluating the Effectiveness of ViMaR-Guided Two-Stage Search

Baselines and Implementation Details: We compare our two-stage ViMaR-guided search against
four established inference-time decoding strategies, all built on LLaVA-Next-Mistral-7B. Greedy
Decoding: Stepwise selection of the highest-probability token. Best-of-N (BoN): Generate 30
full captions using five temperatures {0.1, 0.3, 0.5, 0.7, 0.9} (six per temperature) and choose the
best via GPT-4o. CLIP-PRM Guided Search: Stepwise search using CLIP–ViT similarity as the
reward, with temperature decoding (N = 5) and K = 6 samples per temperature. VisVM-Guided
Search: Single-stage inference-time search guided by the Vision Value Model, evaluating all N ×K
candidates at each sentence step. ViMaR Two-Stage Search (Ours): Stage 1 generates paragraph
candidates with (N = 5,K = 6) and selects the best by Vρ; Stage 2 refine and add additional
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segments to improve the caption details. All methods employ LLaVA-Next-Mistral-7B as the base
VLM and initialize ViMaR’s value head from its penultimate layer. We fix the temperature set to
{0.1, 0.3, 0.5, 0.7, 0.9} and sample K = 6 candidates per temperature in both stages. CLIP–ViT (the
native LLaVA encoder) serves as the PRM for consistency and cost-efficiency. In all experiments, we
kept the total decode calls identical to ensure a fair comparison of quality versus compute.

1 Two-Stage Value-Guided Search Enhances Caption Quality

To evaluate the effectiveness of our proposed search strategy, we sample 1,000 images from the
COCO Train2017 dataset and pair each image with the prompts from the LLaVA-150k detailed
description dataset, resulting in 1,000 image–prompt pairs for evaluation. We generate one descriptive
caption per pair using our two-stage value-guided decoding strategy and four alternative decoding
methods—including greedy decoding, BoN search, CLP-PRM sampling, and the original VisVM-
guided search. The quality of the generated captions is assessed through both human preference
studies and automated metrics. For human evaluation, we randomly select 300 image–prompt
pairs and ask annotators to compare outputs from our method against each baseline, identifying
the preferred response in each case. As shown in Figure 1a, our two-stage strategy consistently
outperforms all baselines, achieving win rates of 64.0%, 65.3 %, 66.0% and 69.7% over VisVM-
guided search, CLIP-PRM, BoN and greedy search, respectively. Notably, greedy decoding performs
the worst, while VisVM-guided search offers meaningful improvements—but still lags behind our
approach, highlighting the benefits of long-horizon and localized refinement. As illustrated in Figure
2, our method generates descriptions that are both richer in detail and better aligned with visual
content. For instance, descriptions include nuanced elements such as “clearly raining in the image",
which are often omitted by competing methods. In addition, we evaluate model outputs using GPT-
4o-based pairwise comparisons. Figure 1b indicate that captions generated with our two-stage method
are preferred in 49.3%, 68.4%, 65.4%, and 73.8% of the cases over the same four baselines. These
findings demonstrate that our search strategy improves both the fidelity and richness of generated
descriptions, pushing the boundaries of VLM visual comprehension.

(a) Human evaluation of win rates. (b) GPT-4o evaluation of win rates.

Figure 1: Comparison of image-description quality across search strategies for LLaVA-Next-7B. (a)
Independent human raters corroborate these findings, selecting ViMaR-guided outputs at significantly
higher rates than all other methods. (b) Win-rate judgments by GPT-4o show that ViMaR-guided
search consistently outperforms all other search methods.

2 Two-Stage Value-Guided Search Mitigates Visual Hallucinations

To assess the impact of our two-stage value-guided search on visual hallucination, we conduct a
quantitative evaluation using 500 randomly sampled images from the COCO Val2017 dataset. Each
image is paired with detailed prompts sourced from the LLaVA-150k dataset. We employ two widely
used metrics to measure hallucination: CHAIR [30] and MMHal [34]. The CHAIR metric quantifies
hallucination at both the object level (CHAIRI) and sentence level (CHAIRS) as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}| , CHAIRS = |{captions with hallucinated objects}|

|{all captions}|

In addition, we use MMHal [34], a multimodal hallucination benchmark that evaluates object-level
consistency using a fine-grained image-text alignment model. Table 1 reports the hallucination results
across different inference-time decoding strategies. Our two-stage value-guided search achieves
significant reductions in both CHAIR and MMHal hallucination rates, outperforming all baselines
and VisVM-guided search.
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Table 1: Comparison of visual hallucination and inference efficiency across decoding methods on
the COCO Val2017 dataset. CHAIR and MMHal assess hallucination quality (↑ / ↓ indicate better
performance), and Avg. Approx Time reports the average inference time per sample in seconds.
Top-performing results are highlighted in bold.

Method CHAIRS ↓ CHAIRI ↓ MMHal ↑ MMHal Rate ↓ Avg. Approx Time
Greedy Decoding 32.4 5.9 2.94 0.52 62 s
BoN 27.1 5.2 3.06 0.45 668 s
CLIP-Guided 28.4 5.5 2.96 0.49 286 s
VisVM-Guided 26.2 4.6 3.30 0.39 462 s
ViMaR (Our) 23.1 4.1 3.75 0.35 108 s

These results demonstrate that our method effectively reduces visual hallucinations during caption
generation. Notably, even though our method operates under a smaller decoding budget compared to
methods like Visvm, it still yields superior performance. This highlights the efficacy of our localized
refinement strategy, which selectively targets visually ambiguous segments for re-generation. Our
improvements align with the design of the underlying value model, which is trained to predict long-
term rewards using TD learning. By scoring candidate continuations based on their expected future
quality, including grounding fidelity, our model encourages selections that reduce hallucinations
throughout the entire sequence.

Table 2: Evaluation of ViMaR-guided decoding on visual comprehension benchmarks for both
LLaVA-Mistral and LLaVA-OneVision-Qwen models. Our two-stage inference framework consis-
tently improves performance across all evaluated tasks, highlighting its effectiveness in enhancing
output fidelity and visual grounding. Compared to the base models, ViMaR yields consistent gains,
with an average improvement of 15.87% computed across all evaluation benchmarks, including
normalized variants of CHAIRs, CHAIRi, MMHal (normalized as 100–CHAIRs, 10–CHAIRi, and
1–MMHal), and others.

Visual Comprehension Benchmark Hallucination Benchmark

Base SFT Data Source M
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↑ M
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↑ M
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M
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↑ M
at

hV
is

ta

↑ C
V
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↑ L
L
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-W

↑ M
M
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↑ C
H

A
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s

↓ C
H

A
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i
↓ M

M
H

al

↑ M
M

H
al

ra
te

↓ Avg.

LLaVA-Next-Mistral-7B

Original 45.2 74.9 34.2 38.5 65.8 76.9 36.0 32.4 5.9 2.94 0.52 –
Greedy decoding 43.5 74.6 34.9 37.8 66.2 75.1 36.7 33.2 6.3 2.97 0.54 −1.44%
CLIP-BoN (6) 42.8 76.2 35.2 39.7 63.8 74.8 35.5 29.7 5.2 3.05 0.48 +2.45%
GPT4-BoN (30) 47.1 76.1 35.4 40.9 67.9 77.3 36.9 30.0 5.4 3.11 0.47 +4.82%
CLIP-PRM search 46.1 75.8 35.8 39.6 68.5 78.1 37.6 26.0 5.2 3.01 0.50 +5.33%
VisVM search 48.3 76.7 36.1 42.3 69.8 78.4 38.0 22.6 4.3 3.26 0.44 +11.08%
ViMaR 49.8 78.2 37.4 42.5 70.7 79.9 39.3 20.8 3.9 3.73 0.38 +15.87%

LLaVA-Onevision-Qwen-7B Original 58.8 81.7 47.3 56.1 – 86.9 – – – – – –
ViMaR 60.5 84.8 49.4 56.9 80.6 88.5 62.6 15.3 3.0 3.96 0.34 –

Qwen2.5-VL-3B Original 61.8 79.1 31.5 62.3 72.1 88.4 55.9 18.5 3.7 3.82 0.32 –
ViMaR 62.3 81.2 33.4 64.5 72.8 89.2 56.3 17.2 3.2 3.94 0.28 +6.7%

4.2 Self-Training Vision-Language Model

Beyond its utility at inference time, our two-stage value-guided decoding method offers a compelling
opportunity for self-training, leveraging high-quality model-generated responses to further enhance
the visual reasoning capabilities of vision-language models (VLM). This section investigates whether
the captions produced by our method can serve as effective supervision data for instruction tuning.

Training Setup: We construct our supervised fine-tuning (SFT) dataset using the same 23,240
<image, prompt> pairs used for training the value model (as detailed in Section 3.1). Applying our
two-stage value-guided decoding strategy, we generate a descriptive caption for each pair, resulting
in 23,240 <image, prompt, response> triplets for downstream training. All models are fine-
tuned starting from the LLaVA-Next-Mistral-7B checkpoint. To ensure a rigorous and consistent
comparison, we adopt the same dataset, evaluation metrics, and scoring setup used in the original
VisVM paper. Full-parameter fine-tuning is conducted using a learning rate of 1e-6. We directly
compare our approach against the following baselines: greedy decoding, CLIP-based Beam-of-N
(BoN), CLIP-PRM guided search, and VisVM-guided search. This evaluation allows us to assess
the effectiveness of our search method not only at inference time but also as a mechanism for
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generating high-quality supervision signals that improve the base model’s visual comprehension
through self-training.

Evaluation Benchmarks: We evaluate our method across two categories: (i) Visual compre-
hension, using seven established benchmarks, including MM-Vet [52], MMBench [24], MMMU
[53], MathVista [25], CVBench [39], LLaVA-Wild [22], and MMStar [10]; and (ii) Hallucination
analysis, assessed via CHAIR [30] and MMHal [34] metrics. These benchmarks collectively measure
the accuracy, reasoning, and visual grounding quality of the generated responses.

Visual Comprehension Results: Table 2 summarizes the performance of LLaVA-Next-7B after
fine-tuning on captions generated by different inference-time search methods. With the exception of
the greedy decoding baseline, which shows marginal declines in some tasks, all self-trained models
exhibit improved scores on the suite of visual reasoning benchmarks. Notably, our two-stage value-
guided search achieves the most pronounced improvements, with an average uplift of 15.87% relative
to the base model and 4.79% over the VisVM. These gains markedly outperform those achieved
by Best-of-N, CLIP-PRM, and VisVM search, underscoring the exceptional effectiveness of our
generated captions as high-quality supervision for advancing VLM visual comprehension.

Visual Hallucination Results: As presented in Table 2, our proposed two-stage value-guided
search demonstrates substantial improvements in mitigating visual hallucinations within LLaVA-
Next. When evaluated across four hallucination metrics drawn from CHAIR and MMHal benchmarks,
our method achieves a relative reduction of 30.87% in hallucination rate. This clearly surpasses
the improvements observed with CLIP-BoN (7.91%), GPT4o-BoN (7.82%), CLIP-PRM search
(9.46%), and VisVM search (20.91%). These outcomes confirm the robustness of our search strategy
in generating responses that are not only detailed but also grounded more accurately in visual content.

Cross-Model Generalization While ViMaR is trained solely using outputs from LLaVA Mistral-
7B, we evaluate its performance when applied to the stronger LLaVA-OneVision-Qwen2-7B and
Qwen2.5-VL-3B models. As shown in Table 2, ViMaR search yields consistent gains across multiple
benchmarks, improving the average score across all benchmarks. These results demonstrate that our
value model and refinement strategy generalize effectively across architectures, highlighting ViMaR’s
flexibility and plug-and-play applicability in high-performing VLMs.

Toward Self-Improving Vision-Language Models: The results highlight the potential of our
approach as a self-training paradigm for vision-language models. Importantly, the entire pipeline
is constructed without the need for external supervision or third-party models: our value model
is trained using the CLIP encoder embedded in LLaVA-Next and initialized with its parameters.
The supervised fine-tuning data are generated by leveraging our own inference-time search strategy
with LLaVA-Next, ensuring that all learning signals originate from the model itself. This closed-
loop design sets the foundation for future extensions of self-training in VLMs, enabling continual
performance enhancement without additional human annotations or external models.

4.3 Inference Efficiency

We evaluate the efficiency of our two-stage value-guided search in terms of average inference time
per sample and compare it with several existing decoding strategies, as summarized in Table 1.
While achieving state-of-the-art performance in reducing visual hallucination, ViMaR remains highly
efficient, requiring only 108 seconds per sample on average. In contrast, BoN, CLIP-guided, and
VisVM-guided searches incur significantly higher inference costs (668s, 286s, and 462s, respectively)
due to exhaustive scoring or step-by-step evaluation at each generation step. Although greedy
decoding is the fastest (62s), it performs the worst across hallucination metrics. ViMaR achieves a
strong balance between quality and compute, reducing hallucinations substantially while remaining
nearly 2.6× faster than CLIP search, 4.3× faster than VisVM, and over 6× faster than BoN, making
it well-suited for practical deployment.

5 Observations and Limitations
To better understand the behavioral differences between our decoding strategy and VisVM, we
analyze a representative case where both models are tasked with generating captions for the same
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Figure 2: Qualitative comparison of decoding strategies. The top section shows how our value
model and VisVM select different candidate responses, along with the resulting changes in LLaVA-
Next’s attention maps. Notable shifts in attention distribution highlight the influence of value-guided
selection. The bottom section presents full captions generated by various search methods. Correctly
grounded details are marked in green, while hallucinated content is highlighted in red. Our two-stage
decoding strategy produces responses that are more accurate, detailed, and visually aligned.

image and prompt. As illustrated in Figure 2, LLaVA-Next generates three full-sentence candidates.
VisVM selects the final sentence based on local scoring, choosing the third candidate with the highest
immediate score (2.285). In contrast, ViMaR evaluates each candidate in the context of the full
generated caption from the first stage, considering its broader contribution to overall caption quality.
As a result, our model selects the first candidate, which, despite a lower local score, yields the highest
predicted global value (2.342) due to its better grounding and potential to lead to more coherent and
accurate follow-up content. This example highlights how ViMaR’s objective function produces more
discriminative and globally aligned scores (e.g., 2.342 vs. 1.638), in contrast to VisVM’s closely
clustered local scores (e.g., 2.254, 2.216, 2.285), which limit its ability to distinguish high-quality
candidates and occasionally result in hallucinated or less grounded outputs.

The lower portion of Figure 2 displays the full captions produced following these selections. Our
two-stage value-guided approach produces descriptions that are richer in detail and better aligned with
the image. For example, it correctly preserves nuanced visual elements such as “left is holding black
and white checkered umbrella with a blue backpack,” while avoiding common hallucinations, such
as misattributing visual attributes to the wrong individual. In addition, we visualize the image-text
cross-attention maps corresponding to the two selection paths. The attention map from ViMaR shows
broader and more balanced coverage of the scene, reflecting the model’s ability to incorporate global
context and peripheral visual details. Overall, this case study highlights the core distinction between
the two approaches: while VisVM performs local step-by-step selection based on immediate reward
estimates, our two-stage method first analyzes entire captions to select the most globally coherent
candidate, followed by targeted refinement of under-grounded segments. This global-to-local strategy
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leads to more informed decisions and ultimately more accurate, grounded, and comprehensive
descriptions.

6 Conclusion

We introduced ViMaR, a two-stage value-guided inference framework that enhances both the
efficiency and factual accuracy of vision–language model decoding. ViMaR integrates a temporal-
difference value model with a margin-based reward adjustment to selectively refine low-confidence
or weakly grounded segments, thereby reducing the computational cost associated with conventional
search methods. The framework delivers substantial improvements in caption quality and hallu-
cination mitigation, while achieving significantly faster inference than existing value-guided and
search-based decoding strategies.

Comprehensive qualitative and quantitative evaluations demonstrate that ViMaR exhibits strong
cross-model generalization. A value model trained solely on LLaVA Mistral-7B effectively guides
generation in the more capable LLaVA-OneVision-Qwen2-7B and Qwen2.5-VL-3B models, high-
lighting the scalability and modularity of our inference strategy. Furthermore, when ViMaR-generated
captions are used for self-training, the underlying models achieve consistent gains across a diverse
suite of visual understanding benchmarks. Overall, ViMaR establishes a fast, accurate, and general-
izable decoding framework that advances visual language generation and lays the groundwork for
scalable, self-improving vision–language models.
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A Appendix

A.1 Human Evaluation

This section details the human evaluation process used to compare captions generated by ViMaR against those
from four decoding baselines: VisVM, CLIP-PRM, best-of-N (BoN), and greedy decoding. We conduct a
blind pairwise comparison study over a randomly sampled subset of 300 image–prompt pairs from the COCO
Train2017 dataset, using detailed prompts from the LLaVA-150k dataset.

For each comparison, human annotators are shown the image and the two corresponding captions (one from
ViMaR and one from a baseline) in random order, without knowing the source model. Annotators rate which
caption is better using a 3-point scale: -1 (baseline is better), 0 (tie), or +1 (ViMaR is better). We aggregate these
scores and compute the win rate as the percentage of instances where ViMaR is rated superior (+1).

As reported in Section 4.1, ViMaR is preferred in 64.0%, 65.3%, 66.0%, and 69.7% of comparisons against
VisVM, CLIP-PRM, BoN, and greedy decoding, respectively. The detailed win rates are also visualized
in Figure 1, which summarizes GPT-4o and human preference comparisons across baselines. These results
demonstrate the consistent advantages of our two-stage decoding approach in producing more accurate and
descriptively rich captions.

A.2 GPT Evaluation

In this section, we leverage GPT-4o as an automated judge to compare captions generated by ViMaR against those
from baseline decoding strategies. Using the prompt defined above, GPT-4o selects the preferred caption based
on richness, accuracy, harmlessness, creativity, and clarity. This large-scale automated evaluation complements
our human studies and metric-based analyses by providing consistent, fine-grained judgments on caption quality.
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GPT-4o Evaluation Prompt

Evaluate the following image captions generated by two vision–language models (VLMs) in response to
a given image.

Criteria for “better” caption:
• Richness of Content: Provide a comprehensive description of objects, actions, colors, and

settings.

• Accuracy: Reflect only what is visible without adding incorrect information.

• Harmlessness and Appropriateness: Avoid harmful, offensive, or unwarranted personal
assumptions.

• Creativity and Elaboration: Offer imaginative yet accurate elaborations that enrich the scene.

• Clarity and Coherence: Present a clear, concise, and well-structured description.

After considering these, output exactly one of:

Response1 is better
Response2 is better
Tie

Image: {Insert image here}
Response1: {Caption from Model A}
Response2: {Caption from Model B}

A.3 System Configuration and Training Details

All experiments were conducted on a single NVIDIA RTX A6000 GPU with 48 GB of VRAM. We utilized
mixed-precision training with fp16 to optimize memory usage and computational throughput. The training
process was launched using the accelerate framework with gradient checkpointing enabled to reduce memory
overhead. The model was fine-tuned on the LLAVA dataset using the provided train and test splits, with a
per-device batch size of 16. Training was performed over 4 epochs. The same hardware setup was used to
measure inference times for all decoding strategies, including VisVM, CLIP-PRM, best-of-N (BoN), greedy
decoding, and our proposed ViMaR. All evaluations were conducted under identical conditions and batch sizes
to ensure a fair and consistent comparison of both efficiency and performance.

A.4 Analysis and Selection of Margin Threshold τ

To ensure effective reward shaping during value model training, we empirically analyze the distribution of CLIP
similarity scores across the full training set to determine a principled value for the margin threshold τ . Our
margin-based penalty mechanism is activated when a candidate caption’s CLIP similarity score falls below τ ,
enforcing a negative reward proportional to the gap. The choice of τ directly governs the aggressiveness of this
penalty and thus requires careful calibration.

We compute summary statistics over the entire dataset’s CLIP similarity scores, resulting in the following:
lowest score = 0.0031, highest = 0.4580, mean = 0.2102. We further analyze the distribution quantiles: the 90th
percentile (top 10%) is 0.2749, the 80th percentile is 0.2544, the 20th percentile is 0.1636, and the 10th percentile
is 0.1429. Based on this, we select τ = 0.16, which approximately corresponds to the lowest 17% of samples
in the dataset. This threshold captures a meaningful boundary between well-grounded and underperforming
captions, ensuring that only semantically weak generations receive penalization during training.

This percentile-based approach allows us to define τ in a data-driven, distribution-aware manner, avoiding
manual tuning and yielding a stable learning signal. By anchoring the penalty trigger to the empirical distribution,
we promote robustness and generalizability of the margin-based reward across diverse datasets and captioning
scenarios. The integration of this threshold into our value model’s training objective is detailed in Section 3.1,
where we describe the temporal-difference learning framework and margin-based reward adjustment.

A.5 Temperature Sensitivity Analysis

Our main experiments (Section 4.1) employ a multi-temperature decoding scheme, where ViMaR and other
methods generate candidates using a diverse set of temperatures {0.1, 0.3, 0.5, 0.7, 0.9}. This design promotes
candidate diversity, allowing Stage 1 to explore broad descriptive variations and Stage 2 to refine under-grounded
segments using samples with different entropy levels.
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Table 3: Comparison of temperature settings for ViMaR. Multi-temperature decoding
({0.1, 0.3, 0.5, 0.7, 0.9}) achieves the best balance between caption richness and visual ground-
ing, whereas fixed low or high temperatures lead to reduced performance.

Base Setting MM-Vet↑ MMBench↑ MMMU↑ MathVista↑ CVBench↑ LLaVA-W↑ MMStar↑ CHAIRs↓ CHAIRi↓ MMHal rate↓

LLaVA-Next-Mistral-7B
ViMaR (T=0.2) 49.7 77.3 37.1 42.5 70.4 79.5 38.9 21.1 3.97 0.39
ViMaR (T=0.6) 49.5 77.1 37.1 42.4 70.2 79.1 38.9 21.2 3.99 0.39

ViMaR (multi-temp) 49.8 78.2 37.4 42.5 70.7 79.9 39.3 20.8 3.9 0.38

Table 4: Comparison of reward formulations for ViMaR on LLaVA-Next-Mistral-7B. Reward′ yields
slightly better grounding and lower hallucination rates than Reward′′.

Base Setting MM-Vet↑ MMBench↑ MMMU↑ MathVista↑ CVBench↑ LLaVA-W↑ MMStar↑ CHAIRs↓ CHAIRi↓ MMHal rate↓

LLaVA-Next-Mistral-7B ViMaR (Reward′) 48.8 77.6 36.7 41.4 70.2 79.2 38.7 21.5 4.1 0.41
ViMaR (Reward′′) 48.1 76.9 35.8 40.7 69.8 78.2 38.0 22.8 4.4 0.45

To further analyze the effect of temperature, we compare ViMaR under fixed-temperature settings of T = 0.2 and
T = 0.6. As shown in Table 3, both fixed-temperature configurations lead to performance degradation relative to
the multi-temperature setup. Specifically, T = 0.2 produces overly conservative captions that lack fine-grained
detail, while T = 0.6 increases diversity but also raises hallucination rates. In contrast, our multi-temperature
approach maintains a balanced trade-off, combining low-entropy and high-entropy candidates to achieve detailed
yet visually grounded captions.

Overall, these results confirm that the proposed multi-temperature strategy is not arbitrary but an essential design
choice that enhances candidate diversity and grounding stability. Both the main results (Tables 1–2) and this
ablation study consistently validate its effectiveness.

A.6 Reward Function Analysis

We further examine the impact of different reward formulations on ViMaR’s performance under a fixed tempera-
ture setting (T = 0.6). Specifically, we compare two variants of the reward function: Reward', where rsi = δ
if δ ≥ τ and rsi = 0 otherwise, and Reward′′, where rsi = max(δ, τ). As summarized in Table 4, Reward′′

slightly improves overall caption quality and reduces hallucination compared to Reward'. This improvement
stems from Reward′′ providing a smoother penalty near the margin threshold, allowing the value model to better
differentiate between marginally grounded and confidently grounded sentences. In contrast, the hard-threshold
Reward' formulation tends to under-penalize uncertain cases, leading to minor degradation in grounding accuracy.
Overall, these results validate the effectiveness of our margin-based reward design and highlight the importance
of calibrated reward shaping in stable value-guided decoding.

A.7 Additional Case Studies

In this section, we present further qualitative comparisons to illustrate the differences between ViMaR-guided
decoding and baseline methods. Figures 3 through 7 showcase a series of representative examples, highlighting
how our approach improves caption fidelity, visual grounding, and descriptive richness across diverse scenes.
Additional qualitative results are also provided in the supplementary material to further support our findings.
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Figure 3: Qualitative comparison example 1
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Figure 4: Qualitative comparison example 2
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Figure 5: Qualitative comparison example 3
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Figure 6: Qualitative comparison example 4
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Figure 7: Qualitative comparison example 5
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Figure 8: Qualitative comparison example 6
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Figure 9: Qualitative comparison example 7
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Figure 10: Qualitative comparison example 8
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Figure 11: Qualitative comparison example 9
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Figure 12: Qualitative comparison example 10
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Figure 13: Qualitative comparison example 11
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Figure 14: Qualitative comparison example 12
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Figure 15: Qualitative comparison example 13
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Figure 16: Qualitative comparison example 14
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Figure 17: Qualitative comparison example 15
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Figure 18: Qualitative comparison example 16
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately claim that ViMaR introduces a two-stage infer-
ence framework combining temporal-difference value learning with margin-based reward adjustment
to improve both efficiency and output fidelity in VLM captioning. The paper explicitly claims over 4×
speedup compared to VisVM, 64% human preference over VisVM outputs, and consistent cross-model
generalization to stronger unseen models (LLaVA-OneVision-Qwen2-7B and Qwen2.5-VL-3B). All
claims are directly supported by experimental results in Section 4, particularly Tables 1, 2 and Figures
1-2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations in Section 5. The authors acknowledge that while their
two-stage approach achieves superior performance, the method relies on CLIP-ViT as the process
reward model, which may not perfectly capture all aspects of visual grounding. The paper also
notes computational constraints were evaluated on single NVIDIA RTX A6000 GPU, and inference
times are measured under specific batch configurations that may vary with different hardware setups.
Additionally, the method requires multiple temperature sampling (N=5, K=6) which, while efficient,
still incurs overhead compared to greedy decoding.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [No]

Justification: The paper is empirical and architectural in nature, not theoretical. It does not present
formal theorems, lemmas, or mathematical proofs. The work builds on established temporal-difference
learning (Sutton, 1988) and applies it to VLM captioning without introducing new theoretical results
requiring formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive reproducibility information: (1) Architecture de-
tails—ViMaR is built on LLaVA-Next-Mistral-7B with a linear value head attached to the penultimate
transformer layer; (2) Training data—792K triplets derived from 23K COCO 2017 images paired with
LLaVA-150K prompts (732K train, 60K validation); (3) Hyperparameters—margin threshold =0.16
(justified in Appendix A.4 via percentile analysis), discount factor , learning objectives specified in
Eq. 1-2; (4) Implementation details in Section 3.1 and Appendix A.3; (5) Inference parameters—N=5
temperatures 0.1, 0.3, 0.5, 0.7, 0.9, K=6 samples per temperature; (6) Evaluation metrics—CHAIR,
MMHal, and seven visual comprehension benchmarks clearly defined; (7) Hardware—NVIDIA RTX
A6000 GPU with fp16 mixed precision training. Code availability is promised for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
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to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All datasets used are publicly available: COCO 2017 (train and validation splits),
LLaVA-150K prompts, and standard benchmarks (MM-Vet, MMBench, MMMU, MathVista,
CVBench, LLaVA-Wild, MMStar) documented with their sources. The authors explicitly state
"Code: https://github.com/ankan8145/ViMaR" in the paper header. Training and inference procedures
are fully specified with exact hyperparameters, loss functions (Eq. 2), and architectural modifica-
tions enabling reproduction. The paper provides sufficient detail (Section 3, Algorithm 1, Appendix
A.3-A.6) to implement ViMaR from scratch and reproduce reported results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper comprehensively specifies: (1) Data splits—732K training triplets, 60K valida-
tion triplets, 1,000 images for main evaluation (Section 4.1), 500 for hallucination evaluation (Section
4.1.2), with COCO Train2017/Val2017 sources clearly identified; (2) Hyperparameters—learning rate,
discount factor , margin threshold =0.16 with data-driven justification (Appendix A.4 analyzing CLIP
score distribution); (3) Training procedure—4 epochs, batch size 16 per device (Appendix A.3); (4)
Optimizer and precision—implied by LLaVA-Next architecture, fp16 mixed precision confirmed in
Appendix A.3; (5) Temperature selection—five decoding temperatures 0.1, 0.3, 0.5, 0.7, 0.9 with abla-
tion analysis (Appendix A.5 Table 3); (6) Reward formulation justification—Appendix A.6 compares
alternative reward functions with empirical validation. These details enable reproducibility and inform
methodological choices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports statistical significance through multiple complementary approaches:
(1) Human evaluation (Section 4.1)—blind pairwise comparison with 300 image-prompt pairs, report-
ing win rates with multiple baselines (64.0% vs VisVM, 65.3% vs CLIP-PRM, 66.0% vs BoN, 69.7%
vs greedy); (2) Automated evaluation—GPT-4o-based pairwise comparisons (Figure 1b) showing
consistent preferences (49.3%-73.8% across baselines); (3) Hallucination metrics (Table 1)—quanti-
tative comparisons with measurable reductions in CHAIRI , CHAIRS , and MMHal metrics; (4)
Self-training results (Table 2)—performance improvements across multiple benchmarks with concrete
percentage gains (15.87% average improvement). While error bars are not displayed in plots, the large
evaluation set (1,000+ images) and multiple evaluation metrics provide robust statistical grounding.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper specifies: (1) Hardware—NVIDIA RTX A6000 GPU with 48GB VRAM
(Appendix A.3); (2) Training configuration—4 epochs with batch size 16 per device, using mixed-
precision fp16 and gradient checkpointing to optimize memory; (3) Inference timing—detailed in
Table 1 with average inference time per sample (108s for ViMaR vs 462s for VisVM, 668s for
BoN, 62s for greedy), demonstrating computational efficiency and enabling resource planning; (4)
Framework—accelerate library with distributed training capabilities noted (Appendix A.3). These
specifications enable practitioners to assess hardware requirements and deployment feasibility for their
settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics. No personally identifiable
information or private data was collected or used. All training data (COCO 2017, LLaVA-150K) are
publicly available datasets. The evaluation uses standard public benchmarks without sensitive attributes.
The paper does not make claims about demographic fairness or intentionally suppress negative results.
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The work focuses on improving caption quality and reducing hallucinations—inherently beneficial
objectives without documented harm to individuals or groups.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification:The paper implicitly addresses broader impacts: (1) Positive impacts—reducing hallucina-
tions in VLM outputs improves reliability for real-world applications (medical imaging, accessibility
descriptions); enhanced visual grounding supports more accurate image understanding across domains.
(2) Potential concerns—while not explicitly detailed, the margin-based reward adjustment and value-
guided decoding represent a mechanism for shaping model behavior, which could potentially encode
biases present in CLIP-ViT embeddings if training data contains skewed visual representations. (3)
Self-training implications—using model-generated captions for further training (Section 4.2) creates
feedback loops that could amplify initial biases if present. The paper’s focus on factual accuracy and
visual grounding mitigates some risks but acknowledges no explicit safeguards against these potential
negative outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [No]

Justification: The paper does not describe explicit safeguards for responsible release. While all datasets
used are publicly available and pose no privacy risks, the paper does not propose usage guidelines,
restrict deployment contexts, or implement safety filters for the released code or value model. The
work does not address potential misuse scenarios such as generating misleading captions at scale
or using the value model to adversarially manipulate outputs. However, the focus on hallucination
reduction and visual grounding inherently promotes beneficial use cases without obvious dual-use
concerns.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper properly credits all external assets: (1) Datasets—COCO 2017 (Lin et
al.), LLaVA-150K (Liu et al.), and benchmark datasets (MM-Vet, MMBench, MMMU, MathVista,
CVBench, LLaVA-Wild, MMStar) are cited with references; (2) Models—LLaVA-Next-Mistral-7B,
LLaVA-OneVision-Qwen2-7B, and Qwen2.5-VL-3B are cited from their respective papers; (3) CLIP-
ViT encoder properly cited (Radford et al.); (4) Temporal-difference learning framework credited to
Sutton (1988). All citations appear in the References section with full bibliographic details. The use
of publicly available datasets and pre-trained models complies with academic research purposes and
respective licensing terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new pre-trained model checkpoints. ViMaR is primarily an
inference-time decoding algorithm and strategy, not a novel foundation model or independent asset.
The value model component is lightweight (a linear value head attached to LLaVA-Next-Mistral-7B’s
penultimate layer) and is trained as part of the methodology, but trained checkpoints are not provided
separately. The paper promises code release via GitHub (https://github.com/ankan8145/ViMaR)
which enables reproducibility of the training procedure and inference algorithm, but model
weights/checkpoints are not mentioned as being released. Therefore, while the code and repro-
ducibility details are comprehensive (Sections 3.1, 3.2, Appendix A.3-A.6, Algorithm 1), no new
standalone model assets requiring asset documentation are distributed.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [No]

Justification: The paper includes human evaluation (Section 4.1, Appendix A.1) but without complete
documentation. The paper describes the evaluation procedure: blind pairwise comparison over 300
image-prompt pairs where annotators select preferred captions without knowing source model identity.
However, the paper does not include: (1) full text of instructions given to human annotators, (2)
screenshots or interface screenshots showing how annotators performed the task, (3) any compensation
details (payment, incentives, or voluntary participation). The evaluation is in-house rather than crowd-
sourced, which explains the minimal disclosure, but the checklist criteria require such documentation.
A more complete submission would include annotator instructions as supplementary material and
clarify the evaluation setup (internal team members vs. external annotators).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [No]

Justification: The paper does not mention IRB approval or review. The human evaluation involves
annotators performing caption comparison tasks, which pose minimal risk (non-invasive, no sensitive
data collection, no personal information gathered). However, the paper does not explicitly state that
IRB approval was obtained or that participant consent procedures were followed. Best practice would
include mention of IRB exemption or approval status, though the low-risk nature of the study may not
require formal review depending on institutional requirements. The paper could strengthen compliance
by explicitly addressing this point.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper’s core methodology relies heavily on LLMs as integral components: (1)
Base VLM—LLaVA-Next-Mistral-7B is the primary policy model for caption generation (Sec-
tion 3.2, Algorithm 1), providing the generation distribution from which candidates are sampled;
(2) Training data—the training triplets (yi, yi+1, I) are generated using LLaVA-Next with greedy
decoding and temperature-controlled sampling to ensure diversity (Section 3.1); (3) Cross-model eval-
uation—ViMaR’s value model is tested on stronger LLMs (LLaVA-OneVision-Qwen2-7B, Qwen2.5-
VL-3B) demonstrating generalization (Table 2, Section 4.2); (4) Self-training evaluation—fine-tuning
experiments use LLaVA-Next-Mistral-7B as the base model (Section 4.2). The LLM is not merely
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used for writing or formatting; it is central to method development, training data generation, and
evaluation. This usage is clearly described throughout the methodology.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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