

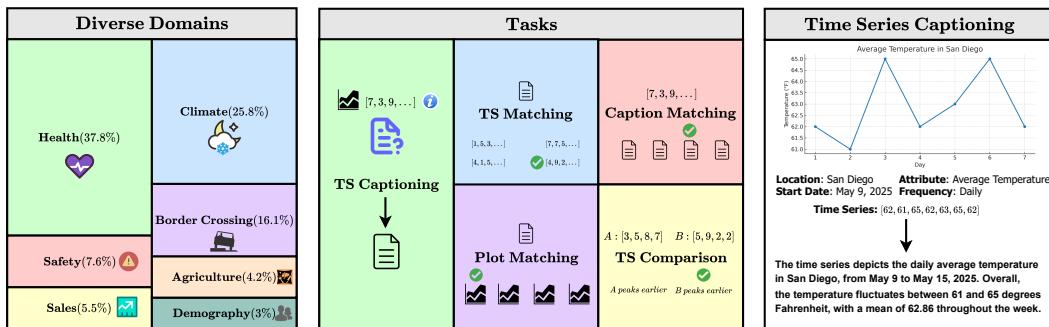
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 CATS-BENCH: CAN LANGUAGE MODELS DESCRIBE NUMERIC TIME SERIES?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Time series captioning, the task of describing numeric time series in natural lan-
012 guage, requires numeric reasoning, trend interpretation, and contextual understand-
013 ing. Existing benchmarks, however, often rely on synthetic data or overly simplistic
014 captions, and typically neglect metadata and visual representations. To close this
015 gap, we introduce **CaTS-Bench**, the first large-scale, real-world benchmark for
016 **Context-aware Time Series** captioning. CaTS-Bench is derived from 11 diverse
017 datasets reframed as captioning and Q&A tasks, comprising roughly 465k training
018 and 105k test timestamps. Each sample includes a numeric series segment, context-
019 ual metadata, a line-chart image, and a caption. A key contribution of this work is
020 the scalable pipeline used to generate reference captions: while most references
021 are produced by an oracle LLM and verified through factual checks, human indis-
022 tinguishability studies, and diversity analyses, we also provide a human-revisited
023 subset of 579 test captions, refined from LLM outputs to ensure accuracy and
024 human-like style. Beyond captioning, CaTS-Bench offers 460 multiple-choice
025 questions targeting deeper aspects of time series reasoning. We further propose
026 new tailored evaluation metrics and benchmark leading VLMs, highlighting both
027 their strengths and persistent limitations. Together, these contributions establish
028 CaTS-Bench and its captioning pipeline as a reliable and extensible foundation for
029 future research at the intersection of time series analysis and foundation models.



042 Figure 1: Overview of CaTS-Bench. It features diverse domains, provides training and benchmark
043 data, and formulates five challenging tasks, with time series captioning as the primary one.

044 045 046 1 INTRODUCTION

048 Effective interpretation of time series data is a cornerstone of decision-making in domains ranging
049 from financial markets and healthcare monitoring to climate analysis and industrial automation. Yet,
050 distilling raw numeric sequences into concise, human-readable summaries remains a labor-intensive
051 task, requiring domain expertise, statistical know-how, and careful visualization. Automating this
052 process through *time series captioning* (TSC) not only accelerates insight discovery but also democ-
053 ratizes access to complex temporal analytics, enabling non-experts to ask natural-language questions
and receive meaningful explanations without writing code or inspecting raw charts.

054 Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable
 055 prowess in text generation and visual reasoning, respectively. However, when applied to time series,
 056 they reveal critical deficiencies: LLMs exhibit well-documented limitations in precise numeric extrap-
 057 olation, temporal continuity, and uncertainty quantification (Tang et al., 2025; Merrill et al., 2024; Tan
 058 et al., 2024; Cao & Wang, 2024). While VLMs have shown promise in visual pattern recognition tasks
 059 such as trend and anomaly detection from plots (Zhou & Yu, 2025), their capacity for fine-grained
 060 numeric time series reasoning remains largely underexplored. These limitations underscore a broader
 061 challenge: existing evaluation resources fail to reflect the complexity of real-world temporal signals,
 062 leaving model improvements unguided by the demands of true data-driven applications.

063 In response, the community has proposed Time Series Captioning (TSC) as a more natural task for
 064 foundation models, leveraging their generative and reasoning capabilities to narrate trends, anomalies,
 065 and context in prose (Trabelsi et al., 2025; Jhamtani & Berg-Kirkpatrick, 2021). However, current
 066 benchmarks remain narrow, often synthetic or restricted to simple trend labels, and exclude rich
 067 metadata or visual modalities. Consequently, progress in model architecture, pretraining, or finetuning
 068 cannot be measured against challenges that mirror real deployment scenarios, slowing adoption in
 069 high-stakes sectors where accurate temporal interpretation is essential.

070 To fill this gap, we introduce **CaTS-Bench**, the first large-scale, multimodal benchmark explicitly
 071 designed for *context-aware* time series captioning and reasoning. We define “context-aware” to mean
 072 that captions are informed by both the metadata (units, domain labels, dates, region, etc.) and visual
 073 cues that provide semantic and numeric grounding. By mining 11 real-world datasets across various
 074 domains, CaTS-Bench provides 20k triplet samples drawn from 570k time steps of curated data,
 075 each paired with (1) rich metadata containing contextual information, units, and domain-specific
 076 cues (Dong et al., 2024; Wang et al., 2024); (2) a corresponding line plot image, enabling the use of
 077 VLMs (Chen et al., 2024a; Zhou & Yu, 2025); and (3) a reference caption produced by a scalable
 078 oracle-based pipeline and validated through factual checks, human indistinguishability studies, and
 079 diversity analyses. To further strengthen reliability, we additionally release a *human-revisited subset*
 080 of test captions: sampled from multiple LLM candidates and carefully edited by the authors to
 081 remove inaccuracies, speculative claims, and linguistic repetitions. This subset complements the
 082 larger benchmark with high-fidelity, human-styled references. Beyond captioning, CaTS-Bench
 083 also includes 460 challenging multiple-choice questions spanning time series matching, caption
 084 matching, plot matching, and comparative reasoning, designed to expose models’ blind spots in
 numeric precision and multimodal alignment. All data samples are made available [here](#).

085 We further propose new evaluation metrics tailored to time series captioning that move past generic
 086 N-gram overlap to reward numeric fidelity and coverage. Our comprehensive experiments on leading
 087 VLMs reveal that, in both zero-shot and finetuned settings, models can produce fluent text but fail to
 088 reliably capture quantitative details without specialized adaptation. A key finding is that VLMs fail
 089 to effectively leverage the visual cues provided for time series captioning, pointing to a significant
 090 limitation in current multimodal architectures. Our analysis identifies clear room for improvement,
 091 such as better leveraging visual cues, enhancing multimodal alignment, and incorporating dedicated
 092 numeric reasoning modules. These findings pave the way for a new generation of foundation models
 093 capable of translating complex temporal data into actionable narratives.

094 In summary, the contributions of this paper are:

- 095 **1. Scalable Captioning Pipeline:** A reproducible pipeline for generating high-quality time series
 096 captions. It anchors LLM outputs in factual metadata, validates them through factual checks,
 097 human indistinguishability studies, and diversity analyses, and is extensible to new datasets.
- 098 **2. CaTS-Bench:** A multimodal, context-aware benchmark for time series captioning and reasoning,
 099 featuring time series segments, rich metadata, visual plots, and factually grounded captions. Most
 100 references are LLM-generated via the pipeline, while a curated subset of human-revisited test
 101 captions ensures high-fidelity, human-styled references alongside the larger benchmark.
- 102 **3. Diagnostic Q&A Suite:** Four multiple-choice tasks designed to isolate capabilities in series
 103 matching, caption grounding, visual reasoning, and comparative analysis.
- 104 **4. Comprehensive Evaluation:** Zero-shot and finetuned assessments of state-of-the-art VLMs,
 105 revealing strengths, failure modes, and clear directions to advance time series understanding.

108 2 RELATED WORK

110 LLMs are increasingly being repurposed for time series analysis (Zhang et al., 2024; Liu et al., 2024a),
 111 with early efforts primarily focused on forecasting. These approaches span prompt engineering (Liu
 112 et al., 2024a; Chatzigeorgakidis et al., 2024), modality alignment (Liu et al., 2024b; Sun et al., 2023;
 113 Liu et al., 2024c; Pan et al., 2024), discretization (Ansari et al., 2024; Jin et al., 2024), and specialized
 114 finetuning (Zhou et al., 2023; Chang et al., 2023). Such studies highlight that LLMs pretrained on text
 115 can reason over temporal data, but subsequent work also shows consistent weaknesses in handling
 116 long-range dependencies, numeric precision, and structured reasoning, particularly in forecasting and
 117 anomaly detection (Tang et al., 2025; Merrill et al., 2024; Tan et al., 2024; Cao & Wang, 2024; Zeng
 118 et al., 2023).

119 Table 1: Comparison of TSC benchmarks.

120 Dataset	121 # Timesteps	122 Modality	123 Sources	124 Metadata	125 Captions	126 TSC	127 Q&A
TADACap (Fons et al., 2024)	N/A	Visual	4	Minimal	Patterns Only	✓	✗
TRUCE (Jhamtani & Berg-Kirkpatrick, 2021)	34k	Numeric	2	✗	Patterns Only	✓	✗
TACO (Dohi et al., 2025)	2.46b	Numeric	8	✗	Expressive	✓	✗
CaTS-Bench	570k	Numeric + Text + Visual	11	Rich	Expressive	✓	✓

128 Building on these foundations, researchers have explored Time Series Captioning (TSC), a task
 129 more aligned with the generative strengths of language models. TSLM (Trabelsi et al., 2025)
 130 introduces an encoder-decoder trained on synthetic cross-modal data; TADACap (Fons et al., 2024)
 131 retrieves domain-aware captions for visualized time series; TRUCE (Jhamtani & Berg-Kirkpatrick,
 132 2021) employs a truth-conditional framework to validate simple trend patterns; and TACO (Dohi
 133 et al., 2025) scales up caption corpora using LLM-based synthetic generation. While each provides
 134 valuable insights, they remain limited in scope: TADACap and TRUCE are domain-specific and
 135 pattern-oriented, while TACO’s reliance on templates restricts contextual richness (See Table 1).

136 Beyond these, standard time-series archives such as UCR (Chen et al., 2015), UEA (Bagnall et al.,
 137 2018), and Monash (Godahewa et al., 2021) support classification and forecasting but not generative
 138 captioning. Similarly, benchmarks like PISA (Xue & Salim, 2023) target prompt-based forecasting,
 139 omitting metadata entirely. Recent evidence shows that incorporating auxiliary modalities (metadata,
 140 domain context, or visual renderings) can significantly improve both interpretability and predictive
 141 performance (Zhou & Yu, 2025; Dong et al., 2024; Chen et al., 2024a; Wang et al., 2024; Kim
 142 et al., 2024; Williams et al., 2024; Liu et al., 2025; Tang et al., 2023). Yet no benchmark to date
 143 integrates large-scale numeric series, expressive captions, rich metadata, and multimodal grounding.
 144 CaTS-Bench fills this gap by offering the first benchmark that unifies numeric time series, metadata,
 145 and visuals with both expressive captions and Q&A tasks for systematic evaluation for TSC.

146 3 CATS-BENCH

147 In this section, we illustrate the entire data curation pipeline and the design of the benchmark tasks.
 148 While examples generated from this pipeline can be directly used for TSC evaluation, we further
 149 enrich the scope of CaTS-Bench by providing an additional suite of Q&A tasks constructed from the
 150 same data, enabling a more fine-grained examination of time series and caption reasoning abilities.

151 3.1 DATA CURATION

152 We build **CaTS-Bench**, a comprehensive benchmark curated from 11 diverse real-world source
 153 datasets spanning domains: climate (Jha, 2023; Ritchie, 2021), safety (of Los Angeles, n.d.; of Pub-
 154 lic Health, n.d.), USA border crossing (U.S. Department of Transportation, n.d.), demography (Aziz,
 155 1985), health (European Centre for Disease Prevention and Control, 2024; Food and Agriculture
 156 Organization of the United Nations, 2024), sales (Hassan, 2020; Chen, 2015), and agriculture (USDA
 157 Economic Research Service, 2024). See Appendix B for more details on the source datasets. The
 158 overall data pipeline is shown in Figure 2. Each source dataset provides a full-length time series per
 159 entity (e.g., country, city, product), and to generate samples, we apply a random window cropping
 160 strategy. For each dataset, we define a valid range of window lengths and randomly select a size for
 161 each crop; see Appendix C for our range calculation. The number of windows sampled from a dataset

depends on its total time steps, ensuring fair representation. The domain-specific number and lengths of the time series windows are illustrated in Table 2. Each time series window is augmented with a **metadata JSON** file with contextual information (domain, location, start time, etc.), a **line plot image** with randomized visual style (color, width, figure size), a **ground truth caption** produced by querying an oracle LLM (Gemini 2.0 Flash) with a structured prompt that includes: (i) the serialized numeric values of the cropped segment and (ii) metadata enriched with numerically grounded information, including both the historical and sample-specific mean, standard deviation, minimum, and maximum. An example of the prompt is available in Appendix N.1.

We emphasize that time series captioning lacks inherent ground truth at the level of a single canonical description: multiple valid ways exist to describe the same series depending on focus and phrasing. To provide consistent references at scale, our primary captions are generated by an oracle LLM, but anchored strictly in the underlying data. The oracle receives full contextual metadata (not available at evaluation time) and is instructed not to include any external knowledge, ensuring captions remain factual and context-grounded. This design makes captions a practical proxy for evaluation and challenges models to reason from multimodal inputs rather than mimic the oracle. Furthermore, we randomize time series window sizes and plot styles to prevent overfitting and better reflect real-world variability in length and visualization styles.

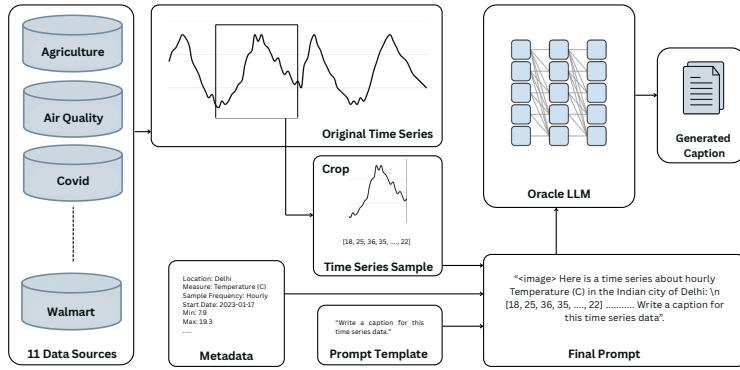


Figure 2: Overview of the CaTS-Bench semi-synthetic data generation pipeline. A time series window is cropped, metadata is attached, and an oracle LLM generates a reference caption. See Appendix L for examples and Appendix H for the quality verification protocol.

Table 2: Dataset outline by domain. AQ: Air Quality, Border: Border Crossing, Demo: Demography, Injury: Road Injuries, Calories: Calories Consumption, Agri: Agriculture

Metric	Overall	AQ	Border	Crime	Demo	Injury	COVID	CO ₂	Calories	Walmart	Retail	Agri
# Source Time Steps	287M	286M	397k	38k	14k	37k	720k	34k	234k	6k	7k	49k
# Samples Generated	20k	4.4k	3.2k	764	598	756	5.5k	732	2.1k	544	551	835
# Train Samples	16k	3.5k	2.6k	611	478	604	4.4k	585	1.7k	435	440	668
Avg. Sample Length	29.1	65.3	21.2	76.8	11.6	5.9	75.8	9.5	12.2	12.2	22.4	7.3
# Test Samples	4k	886	646	153	120	152	1.1k	147	422	109	111	167
Avg. Sample Length	26.1	66.0	21.2	76.9	5.0	3.6	73.0	8.7	5.5	11.8	8.1	7.5
# Human-revisited Samples	579	0	0	153	120	0	0	0	0	109	0	167
Avg. Sample Length	25.7	-	-	76.9	5.0	-	-	-	-	11.8	-	7.5

To prevent information leakage, we partition each source dataset temporally before generating the samples. Specifically, the first 80% is used for generating training samples, whereas the last 20% is reserved exclusively for generating test samples. Random window cropping is applied separately to the training and test partitions. This strategy ensures that the model is evaluated on future, unseen data relative to the training set. The actual benchmark samples consist of the test split resulting from this process. We leave the training split of the data for optional training. Our final semi-synthetic dataset version contains 20k examples, split into roughly 16k training samples and 4k test samples. Detailed statistics and source of our data are reported in Table 2.

Human-Revisited Subset. We also release a curated subset of test captions that have been revisited by humans. These captions were first sampled from multiple LLM candidates (Gemini 2.0 Flash, GPT-4o, Gemma 27B, and Llama 90B) using the above data pipeline, and then carefully refined by the authors to eliminate factual errors, speculative statements, and redundant phrasing.

216 Drawn from the domains of agriculture, crime, demography, and Walmart sales, this subset provides
 217 high-fidelity, human-styled references that complement the larger benchmark.
 218

219 **3.2 QUALITY VALIDATION OF SEMI-SYNTHETIC CAPTIONS**
 220

221 To ensure the quality of CaTS-Bench, we conducted a series of comprehensive verification studies
 222 addressing the core concern of semi-synthetic data: whether captions generated by the oracle
 223 model (Gemini 2.0 Flash) are factual, unbiased, and linguistically diverse. These analyses
 224 demonstrate that semi-synthetic captions in CaTS-Bench provide high-quality references and stable
 225 benchmarks for TSC, and thus are a sufficient proxy for human-written descriptions in practical
 226 scenarios. We verified caption quality through three complementary studies below (with full details
 227 in Appendix H).

228 **Manual Validation.** We manually checked $\sim 2.9k$ captions (72.5% of the semi-synthetic test
 229 benchmark) across statistical claims (min, max, mean, STD) and trend descriptors (up/downward,
 230 stable, fluctuating). Accuracy exceeded 98.6% on average across all categories (Table 9) which
 231 confirms that captions faithfully reflect underlying series properties.

232 **Human Detectability Study.** In a blind test with 35 participants, subjects attempted to distinguish
 233 our captions from those written by humans. Accuracy was near random at 41.1%, suggesting that our
 234 captions are indistinguishable from human-authored ones and no evidence of oracle-specific bias.
 235

236 **Diversity and Bias Analysis.** Captions consistently drew from a wide variety of statistical and
 237 temporal descriptors (Table 12), and embedding-based similarity analysis across nine embedding
 238 models revealed minimal template reliance. Pairs of captions that were almost semantically identical,
 239 measured as embedding cosine similarity > 0.95 , were rare, averaging 2.3% of occurrences (Table 13).
 240 Comparisons with human captions (H.4.4) indicate that Gemini’s outputs are stylistically intermixed
 241 with human text, while N-gram analysis (H.4.2) confirms high lexical diversity.
 242

243 **3.3 TIME SERIES CAPTIONING**
 244

245 TSC requires generating a detailed, coherent narrative that highlights the key characteristics of a
 246 given time series. During evaluation, each model is presented with a standardized multi-part prompt
 247 that combines four elements: the **numeric series** itself, embedded as raw time-indexed values (e.g.,
 248 $[25.3, 26.1, 26.8, \dots]$); **contextual metadata** such as measurement units, data source,
 249 sampling interval, and domain tags (e.g., “Hourly temperature readings from Rome, May 2000”),
 250 which excludes explicit statistics like mean or maximum since the model must infer them; a **visual**
 251 **input** in the form of a line-plot image that allows vision-language models to ground their descriptions
 252 in visual trend cues; and a fixed-format **instruction template** containing the directive for caption
 253 generation (see Appendix N.2). By standardizing this multi-part prompt, we evaluate models on their
 254 ability to recognize numeric trends (e.g., rising or falling segments, peaks, and troughs), integrate
 255 metadata cues, and utilize visual features to produce context-aware captions.
 256

257 **3.4 Q&A MULTIPLE-CHOICE TASKS**

258 We introduce a suite of multiple-choice Q&A tasks designed to probe different reasoning skills
 259 in time series understanding. All tasks are automatically derived from the same source data used
 260 for captioning, with questions generated from task-specific, fixed templates (see Appendix J.1 for
 261 examples). To increase difficulty, an initial pool of $4k$ questions per type was filtered by removing
 262 those correctly answered by Qwen 2.5 Omni. Appendix J.2 shows that this filtering produces
 263 genuinely harder questions, rather than reflecting Qwen-specific weaknesses only. Ambiguous
 264 Time Series Matching questions were manually checked to ensure a single correct answer. From
 265 the remaining $7k$ challenging questions, a random subset of 460 was sampled as the final test set,
 266 including 100 each for time series matching, caption matching, and plot matching, and 40 each for
 267 amplitude, peak, mean, and variance comparison tasks. Question types are described below.
 268

269 **Time Series Matching.** Given a caption, the model must retrieve the correct time series from
 270 distractor candidates created via shuffling, temporal reversal, and Gaussian noise. These perturbations
 271 prevent simple numeric lookup and require alignment with both values and trends (see J.3 for details).

270 **Caption Matching.** Given a time series, the model must select the correct caption from distractors
 271 composed of random captions and perturbed variants of the ground truth (see Appendix N.5, N.6).
 272 This isolates caption understanding from free-form generation.

273 **Plot Matching.** Given a caption and its numeric series, the model must select the correct line plot
 274 from the candidates, testing visual grounding and the ability to link language with visual patterns.

275 **Time Series Comparison.** Given two time series, select the correct comparative statement from a
 276 pair of options (e.g., “Series A peaks earlier than Series B” or “Series B has a higher volatility than
 277 Series A”). This task challenges models to perform temporal and statistical comparison, a setting
 278 where many language models currently struggle (Merrill et al., 2024).

280 3.5 EVALUATION METRICS

281 To comprehensively evaluate model-generated captions against the ground truth in TSC, we employ
 282 a diverse set of metrics that target linguistic quality, statistical inference, and numeric fidelity. For
 283 Q&A, we adopt accuracy as the evaluation metric, as each question is designed to have a single
 284 correct answer. Below, we describe each metric used for TSC in our evaluation framework.

285 **Standard Linguistic Metrics.** We assess caption similarity using standard NLP metrics, including
 286 DEBERTA SCORE (Zhang* et al., 2020), BLEU (Papineni et al., 2002), ROUGE-L (Chin-Yew,
 287 2004), METEOR (Banerjee & Lavie, 2005), and SIMCSE (Gao et al., 2021; Liu et al., 2019).
 288 Together, these metrics capture both surface-level linguistic overlap and deeper semantic similarity.
 289 This ensures that evaluation does not merely reflect stylistic resemblance but instead rewards accurate
 290 semantics of the underlying time series phenomena. Refer to Appendix F for more details.

291 **numeric Fidelity Metrics.** Since TSC involves reporting exact or approximate numeric values, we
 292 introduce two tailored metrics to quantify numeric accuracy, both bounded within $[0, 1]$. The choice
 293 of the 5% tolerance is discussed in Appendix F.2.

294 1. **Statistical Inference Accuracy.** While models are explicitly prompted to discuss descriptive
 295 statistics, they demonstrate varying abilities to accurately infer and verbalize statistics such as the
 296 mean, standard deviation, minimum, and maximum based on the raw time series and metadata. To
 297 evaluate this behavior, we report the percentage of captions in which these statistics are mentioned
 298 and fall within a 5% relative error, using offline-computed true values. Importantly, captions are
 299 not penalized for omitting statistics; only wrongly reported values are considered errors. This
 300 metric primarily measures hallucination, favoring omission over incorrect numeric claims.

301 2. **Numeric Score.** For each ground truth caption, we extract all numeric values (excluding time-
 302 related ones like year or month) and search for the closest numeric value in the generated caption.
 303 A match is recorded if the closest value is within a 5% relative tolerance. We compute *Accuracy*
 304 (mean of $1 - \min\{\text{relative_error}, \text{tolerance}\}$) over all matched numbers), *Recall* (fraction of ground
 305 truth numbers matched), and a *Final Score* as a weighted combination: $\lambda_A \cdot \text{Accuracy} + \lambda_R \cdot \text{Recall}$,
 306 with $\lambda_A = 0.3$ and $\lambda_R = 0.7$ to emphasize recall over precision, as omitting critical numbers
 307 is more severe than minor numeric rounding imprecisions. While the previous metric targets
 308 numeric hallucinations, this one focuses on penalizing captions that omit numeric details.

311 4 EXPERIMENTS

312 We evaluate a broad range of VLMs on CaTS-Bench, covering both proprietary and open-source mod-
 313 els, with the latter also tested after finetuning on our captioning training set (details in Appendix D).
 314 For TSC, we additionally consider a *program-aided* (PAL) model (Gao et al., 2023). All models
 315 are prompted with the same template-based format to ensure fair comparison, avoiding task- or
 316 architecture-specific prompt engineering. Appendix E provides the full model list and a description
 317 of PAL, while Appendix O outlines the human baseline that participated in our Q&A evaluation.

318 4.1 TIME SERIES CAPTIONING

319 To ensure fair comparison across the domains, we report macro-averaged scores for each metric,
 320 mitigating sample size imbalances, as some domains contain more data, and preventing any domain
 321 from disproportionately influencing the results. We benchmark leading VLMs on TSC using the

324 semi-synthetic and human-revised captions separately as ground truth. Selected results are shown in
 325 Tables 3 and 4, with complete results in the Appendix G.
 326

327 Table 3: Selected evaluation results of generated captions against human-revised (HR) and semi-
 328 synthetic (SS) ground truths. **Bolded** and underlined scores denote first and second places.
 329

330 Category	331 Model	332 DeBERTa F1		333 SimCSE		334 BLEU		335 ROUGE-L		336 METEOR		337 Numeric	
		338 HR	339 SS	340 HR	341 SS	342 HR	343 SS	344 HR	345 SS	346 HR	347 SS	348 HR	349 SS
350 Proprietary	Gemini 2.0 Flash	0.665	0.688	0.856	0.858	0.079	0.137	0.248	0.318	0.221	0.279	0.634	0.677
	Gemini 2.5 Pro	0.657	0.668	0.857	0.845	0.069	0.088	0.236	0.267	0.247	0.284	0.681	0.714
	Claude 3 Haiku	0.658	0.682	0.853	0.856	0.064	0.112	0.241	0.291	0.236	0.300	0.601	0.623
	GPT-4o	0.661	0.681	0.863	0.865	0.071	0.112	0.233	0.284	0.236	0.296	0.627	0.644
356 Pretrained	InternVL 2.5 38b	0.664	0.688	0.871	0.868	0.072	0.129	0.244	0.305	0.255	0.331	0.659	0.685
	LLaVA v1.6	0.627	0.650	0.824	0.820	0.052	0.086	0.215	0.259	0.233	0.287	0.455	0.517
	LLaVA v1.6 34b	0.639	0.655	0.821	0.825	0.060	0.094	0.221	0.265	0.232	0.285	0.547	0.560
	Idefics 2	0.602	0.604	0.784	0.698	0.024	0.040	0.192	0.226	0.140	0.162	0.424	0.455
	SmolVLM	0.592	0.594	0.755	0.693	0.027	0.044	0.194	0.224	0.154	0.178	0.431	0.474
	QwenVL	0.619	0.643	0.821	0.890	0.049	0.082	0.209	0.249	0.214	0.261	0.445	0.504
	QwenVL PAL	0.664	0.685	0.864	0.843	0.066	0.108	0.237	0.292	0.226	0.282	0.564	0.613
	Llama 3.2 V	0.653	0.671	0.852	0.850	0.072	0.118	0.239	0.290	0.252	0.315	0.650	0.685
358 Finetuned	Gemma 3.27b	0.648	0.667	0.863	0.863	0.065	0.085	0.222	0.263	0.257	0.309	0.641	0.668
	LLaVA v1.6	0.712	<u>0.758</u>	0.896	<u>0.907</u>	0.134	<u>0.285</u>	0.312	<u>0.445</u>	0.300	<u>0.441</u>	0.693	<u>0.732</u>
	Idefics 2	0.711	<u>0.759</u>	<u>0.894</u>	0.908	<u>0.132</u>	0.290	<u>0.309</u>	0.452	<u>0.298</u>	0.437	<u>0.691</u>	0.733
	InternVL-2.5 8b	0.638	0.655	0.817	0.809	0.053	0.088	0.215	0.259	0.229	0.282	0.582	0.594
	QwenVL	0.703	0.643	0.892	0.790	0.126	0.082	0.302	0.249	0.297	0.260	0.683	0.504
	SmolVLM	0.604	0.613	0.817	0.781	0.051	0.091	0.228	0.269	0.220	0.265	0.556	0.643

348 **Semi-synthetic (SS) Captions as Ground Truth.** Our experiments show that finetuning substantially
 349 improves performance across most metrics. Proprietary models such as GPT-4o and *Gemini*
 350 generally outperform Claude. Among open-source models, finetuned Idefics 2 and LLaVA
 351 v1.6 Mistral achieve strong gains, in some cases surpassing proprietary baselines, underscoring
 352 the effectiveness of finetuning for both linguistic quality and numeric precision. QwenVL PAL
 353 shows marked improvements over standard QwenVL and even takes the lead on statistical inference
 354 metrics (as shown in Table 4), highlighting code execution as a practical enhancement for tasks where
 355 numbers matter.

356 Given the semi-synthetic nature of
 357 ground truths in this experiment, we
 358 assessed the robustness of evalua-
 359 tion along two axes. First, to ac-
 360 count for the stochasticity of LLM
 361 outputs, we repeated inference three
 362 times on ~ 600 test samples across
 363 five representative models; variance
 364 was vanishingly small (often 10^{-6} ;
 365 Appendix H.5), confirming that our
 366 single-run results are stable and reli-
 367 able. Second, to test sensitivity to lin-
 368 guistic style, we paraphrased a sub-
 369 set of ground truth captions using
 370 multiple architecturally distinct LLMs
 371 while strictly preserving all factual
 372 content and numeric details, generat-
 373 ing variants of ground truths differ-
 374 ing only by linguistic style. The para-
 375 phrasing prompt is provided in Ap-
 376 pendix N.3. Re-evaluating baseline
 377 outputs against these paraphrased cap-
 378 tions as ground truth yielded model
 379 performance rankings largely consis-
 380 tent with those based on the original Gemini captions, with a mean Spearman Correlation of 0.9266

381 Table 4: Representative statistical inference scores under
 382 ground truths. E.g., *Mean* indicates statistical inference of
 383 the series mean. **Bolded** and underlined scores denote first
 384 and second places.

385 Category	386 Model	387 Mean		388 Max		389 Min	
		390 HR	391 SS	392 HR	393 SS	394 HR	395 SS
396 Proprietary	Gemini 2.0 Flash	0.536	0.651	<u>0.982</u>	0.985	0.936	0.917
	Gemini 2.5 Pro Prev.	0.323	0.494	0.987	<u>0.994</u>	0.977	<u>0.971</u>
	Claude 3 Haiku	0.833	0.693	0.980	0.977	0.934	0.898
	GPT-4o	0.817	0.700	0.992	<u>0.990</u>	0.938	0.921
398 Pretrained	InternVL 2.5 38b	0.858	0.784	<u>0.982</u>	0.966	0.930	0.887
	LLaVA v1.6 Mistral	0.667	0.644	0.871	0.864	0.751	0.743
	LLaVA v1.6 34b	0.410	0.445	0.817	0.843	0.727	0.698
	Idefics 2	0.806	0.616	0.891	0.903	0.840	0.806
	QwenVL	0.656	0.565	0.795	0.822	0.678	0.657
	QwenVL PAL	0.973	<u>0.903</u>	0.985	<u>0.980</u>	0.978	<u>0.942</u>
	Llama 3.2 Vision	0.467	0.594	0.956	0.952	0.895	0.877
402 Finetuned	Gemma 3.27b	0.734	0.694	0.978	0.968	0.904	0.864
	LLaVA v1.6 Mistral	0.928	0.828	<u>0.987</u>	<u>0.976</u>	0.981	<u>0.926</u>
	Idefics 2	0.958	<u>0.885</u>	<u>0.988</u>	0.985	0.967	<u>0.927</u>
	InternVL 2.5 (8b)	0.750	0.597	0.830	0.904	0.734	0.779
	QwenVL	0.952	0.565	0.973	0.822	0.963	0.657
	SmolVLM	0.640	0.590	0.914	0.898	0.772	0.777

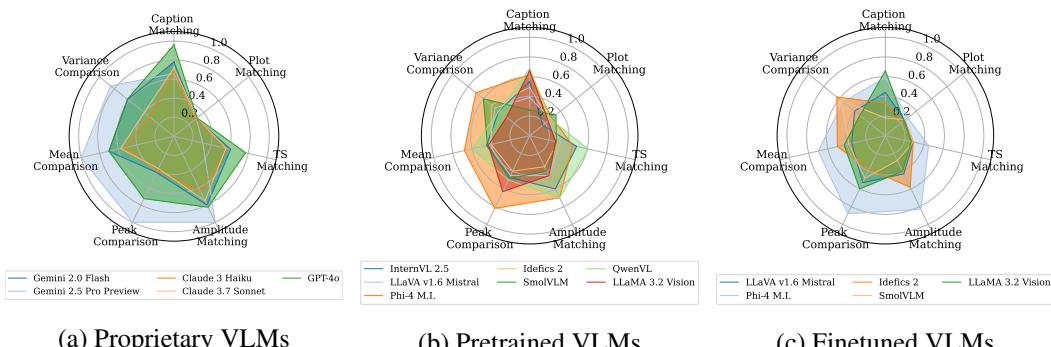
378 and metric-specific correlations shown in Table 11 (full discussion in H.3). These results corroborate
 379 that our evaluation framework is stable and reliably gauges caption quality rather than biased
 380 surface-level stylistic alignment.
 381

382 **Human-revisited (HR) Captions as Ground Truth.** We repeat the evaluation using human-
 383 revisited captions as ground truth, further confirming the benefits of finetuning. Open-source models
 384 like `Idefics` 2 and `LLaVA` v1.6 `Mistral` gain substantially in text quality and numeric
 385 accuracy, often surpassing proprietary baselines on linguistic metrics and nearing them on numeric
 386 ones. Proprietary models such as `GPT-4o` and `Gemini` still lead on some language-focused metrics,
 387 but their advantage shrinks when finetuned open-source models are included. Meanwhile, the `PAL`
 388 model excels in statistical inference thanks to code execution. Overall, these results confirm that
 389 finetuning not only enhances average performance but also improves numeric reliability, positioning
 390 open-source models as strong contenders when paired with targeted adaptation.
 391

4.2 Q&A TASKS

393 Figure 3 summarizes model performance on our Q&A tasks, while Table 17 provides detailed results.
 394 Performance is highly variable, and even proprietary models occasionally fail to exceed random
 395 chance on some tasks.
 396

397 No model consistently dominates across all categories. Models handle binary-choice time series
 398 comparisons better, likely due to the narrower range of options. Matching a time series to a caption is
 399 harder than the reverse, and plot matching is the most challenging, highlighting a key VLM weakness:
 400 linking numeric patterns with visual features. Proprietary models (`GPT-4o`, `Gemini` 2.0 `Flash`)
 401 lead, while among open-source models, `Phi-4 M.I.` excels in time series and statistical reasoning.
 402 Finetuning on TSC yields mixed results: some models (e.g., `Phi-4 M.I.`, `Idefics` 2) gain in
 403 specific sub-tasks, while others drop in performance. Notably, finetuning often fails to improve Q&A
 404 accuracy, likely due to task misalignment and catastrophic forgetting. As Table 17 shows, humans
 405 achieve the highest overall scores, though top models sometimes outperform them on distraction-
 406 prone tasks. Notably, all models perform near-random on plot matching, whereas humans score
 407 nearly perfectly. Despite the tasks’ apparent simplicity, they reveal fundamental limitations in VLMs’
 408 temporal reasoning capabilities which suggests the need to address basic time series understanding
 409 before tackling more complex applications.
 410



411 Figure 3: Model accuracy across Q&A sub-tasks. Proprietary models perform best, pretrained models
 412 lag behind, and finetuned models struggle across all tasks.
 413

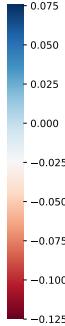
4.3 ROLE OF THE VISUAL MODALITY

414 **Visual Modality Ablation.** We perform a modality removal experiment by stripping away the time
 415 series plot and providing only the associated textual metadata and the numeric values of the time
 416 series. This quantifies the contribution of the visual channel and enables a better understanding of the
 417 model’s captioning performance. We evaluate a selected subset of pretrained baselines to assess their
 418 intrinsic reliance on vision. Full results can be found in Appendix I.1.
 419

420 Our experiments suggest that the additional contribution of the visual modality to caption quality is
 421 insignificant for most models. As shown in Figure 4, most models show only marginal performance
 422 drops, or even slight gains, when the time series plot is removed, suggesting a strong dependence on
 423

432 textual priors over visual understanding. In particular, models such as `Idefics2`, `Phi-4 M.I.`,
 433 and `InternVL` perform better in text-only settings on most metrics, hinting that generation is largely
 434 driven by language pretraining or instruction tuning rather than true visual interpretation.
 435

	DeBERTa F1	SimCSE	BLEU	ROUGE-L	METEOR	Numeric
InternVL	-0.018	-0.060	-0.032	-0.036	-0.057	-0.047
QwenVL	-0.005	-0.012	-0.009	-0.009	-0.014	-0.017
Phi-4 M.I.	-0.050	-0.048	-0.044	-0.016	-0.067	-0.051
SmolVLM	-0.009	-0.066	-0.025	-0.020	-0.079	-0.092
Llama 3.2 Vision	0.001	0.001	0.007	0.015	0.000	0.086
Idefics2-8B	-0.028	-0.118	-0.040	-0.033	-0.109	-0.131
LLaVA v1.6 Mistral	0.002	-0.004	-0.012	-0.002	0.001	-0.015
Claude 3 Haiku	0.006	0.003	-0.005	0.004	0.002	0.019
Gemini 2.0 Flash	-0.010	-0.013	-0.038	-0.025	-0.049	-0.007



447 Figure 4: Performance deltas between VL (vision-language input)
 448 and L (text-only input). Each cell shows $\Delta = VL - L$. Blue indicates
 449 better performance due to the visual input; red the opposite.

450 meaningfully reason with it. This phenomenon is not limited to line plots, as discussed in I.3, even
 451 more expressive visual forms (e.g., Gramian Angular Fields and recurrence plots) fail to trigger
 452 visual reasoning of current VLMs in TSC.

453 Models such as `QwenVL`, `LLaVA 1.6` and `Claude 3 Haiku` maintain strong performance with visual input, but the performance gap (Δ) remains modest, underscoring the underuse of plot-based information. Interestingly, the numeric score tends to decline when visual input is removed, hinting at weak but present reliance on the plot for numeric reasoning. These results point to a subtle yet important misalignment: models are exposed to visual data but often fail to

454 **Visual Attention Analysis.** To better understand how VLMs process plots during caption generation,
 455 we examined their attention maps. The analysis revealed minimal visual grounding: models
 456 concentrated predominantly on textual elements in the plots (e.g., axis labels and titles), with limited
 457 evidence of attending to the actual line trends. Attention to visual patterns was sporadic, weak, and
 458 inconsistent, suggesting that learned parameters largely disregard visual cues in favor of textual priors.
 459 This qualitative evidence highlights the gap between nominal multimodal input and actual integration.
 460 Full results are reported in Appendix I.2 and Figure 7.

461 It is important to note that the under-utilization of visual inputs observed in our experiments is
 462 not a limitation of CaTS-Bench itself, but rather a reflection of current VLM capabilities. The
 463 benchmark explicitly provides both time series plots and rich metadata, creating ample opportunity
 464 for multimodal reasoning. That most models default to textual priors instead of leveraging visual
 465 signals highlights a critical gap in the field. We view this as an opportunity for future research:
 466 developing models that better integrate plot-based information with textual and numeric cues to
 467 advance the broader goal of genuine multimodal understanding in time series analysis.

499 5 CONCLUSION

500 We introduced CaTS-Bench, the first large-scale, multimodal benchmark for context-aware time
 501 series captioning and reasoning. Built from 11 diverse real-world datasets, it combines numeric series,
 502 metadata, visual plots, and validated captions to provide a challenging testbed beyond synthetic or
 503 narrow benchmarks. A key contribution is not only the benchmark itself, but also the scalable data
 504 curation pipeline we developed to generate high-quality captions. This pipeline leverages an oracle
 505 LLM anchored in metadata, rigorous verification through factual checks, diversity analyses, and a
 506 complementary human-revisited subset, making it both scalable and extensible to new domains. Our
 507 evaluation of leading VLMs revealed both progress and limitations. Finetuning greatly improves
 508 open-source models, enhancing fluency and numeric fidelity, while proprietary models show stronger
 509 performance overall. A consistent weakness lies in multimodal grounding: models largely ignore
 510 visual inputs, with plot matching emerging as the most difficult task. These findings reveal a critical
 511 gap in multimodal alignment and point toward the urgent need for models that can genuinely integrate
 512 numeric, textual, and visual cues. By releasing CaTS-Bench together with its evaluation suite, we
 513 provide the community with not only a rigorous foundation for advancing time series reasoning, but
 514 also a practical methodology for generating reliable, context-rich captions at scale, paving the way
 515 for more robust multimodal understanding in the future.

486 ETHICAL STATEMENT
487

488 The development of CaTS-Bench was guided by a commitment to ethical research practices. All
489 datasets used in this work are publicly available and do not contain personally identifiable information
490 (PII). The domains, such as climate, public health, and agriculture, were chosen for their public
491 relevance and data accessibility. Our use of an oracle LLM to generate semi-synthetic reference
492 captions was a deliberate design choice to ensure scalability, particularly for a subjective task like
493 captioning, where a single ground-truth is ill-defined. We have taken extensive measures to validate
494 the quality, factual accuracy, and diversity of these semi-synthetic captions, as detailed in Section
495 3.2 and Appendix H, to mitigate the risk of propagating systemic biases from the oracle model. Our
496 human-revisited test set is also an attempt to further ensure evaluation reliability. For our human
497 evaluation studies, all participation was voluntary. We obtained informed consent from all participants,
498 who were university students. The study’s purpose was clearly communicated, and all responses were
499 collected anonymously to protect participant privacy, as shown in an example of a consent form in
500 Appendix O.

501
502 REPRODUCIBILITY STATEMENT
503

504 To ensure the reproducibility of our research, all components of our work will be made publicly
505 available upon publication.

506

- 507 1. **Data:** The complete CaTS-Bench dataset, including the numeric time series, metadata, generated
508 plots, oracle-generated and human-revisited captions, and the diagnostic Q&A suite, are released
509 at <https://huggingface.co/datasets/a9f3c7e2/CaTSBench>.
- 510 2. **Code:** We will release the source code for the entire data curation pipeline, model finetuning
511 scripts, and the evaluation suite. The code will be hosted in a public repository to allow for
512 complete replication of our results and to facilitate future research.
- 513 3. **Models and Environment:** All open-source models used in our experiments are explicitly named
514 with version details provided in Appendix E. For proprietary models, we specify the exact model
515 endpoints used at the time of the experiments. Detailed finetuning hyperparameters and hardware
516 specifications are documented in Appendix D.
- 517 4. **Evaluation:** Our evaluation protocol relies on standard, well-established linguistic metrics and
518 novel metrics that are precisely defined in F. All prompts used for caption generation, quality
519 verification, and LLM-based scoring are provided in Appendix N to ensure that our evaluation can
520 be replicated consistently. Furthermore, we conducted a robustness check (Appendix H.5), which
521 demonstrated minimal variance across multiple runs, confirming the stability of our results.

523
524 LLM USAGE STATEMENT
525

526 Large Language Models played a central role in multiple stages of this work.

527

- 528 1. LLMs were employed as **data generators**, producing semi-synthetic captions that serve as ground
529 truth references in CaTS-Bench.
- 530 2. LLMs were employed as **data extractors**, for example to parse statistical claims from captions
531 during our evaluation analyses.
- 532 3. LLMs, more precisely VLMs, served as **baselines** in our experiments as captioning models for
533 evaluation.
- 534 4. LLMs were employed as a **writing assist tool** to polish the presentation of the paper, while the
535 authors retain full responsibility for all content.

536 Importantly, LLMs did not contribute to research ideation or decision-making. All factual claims,
537 analyses, and conclusions are the responsibility of the authors.

540 REFERENCES
541

542 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
543 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical
544 report. *arXiv preprint arXiv:2412.08905*, 2024.

545 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
546 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
547 *arXiv preprint arXiv:2303.08774*, 2023.

548 Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
549 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper
550 Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon
551 Wilson, Michael Bohlke-Schneider, and Bernie Wang. Chronos: Learning the language of time
552 series. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=gerNCVqqtR>. Expert Certification.

553 Anthropic. The claude 3 model family: Opus, sonnet, haiku. Model card,
554 Anthropic, March 2024. URL https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

555 Saad Aziz. Population collapse. <https://www.kaggle.com/datasets/saadaziz1985/population-collapse>, 1985. Accessed: 2025-05-01.

556 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
557 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv
558 preprint arXiv:1811.00075*, 2018.

559 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
560 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
561 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

562 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
563 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic
564 evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

565 Rui Cao and Qiao Wang. An evaluation of standard statistical models and llms on time series
566 forecasting. *arXiv preprint arXiv:2408.04867*, 2024.

567 Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
568 forecasting with pre-trained llms. *arXiv preprint arXiv:2308.08469*, 2023.

569 Georgios Chatzigeorgakidis, Konstantinos Lentzos, and Dimitrios Skoutas. Multicast: Zero-shot
570 multivariate time series forecasting using llms. In *2024 IEEE 40th International Conference on
571 Data Engineering Workshops (ICDEW)*, pp. 119–127. IEEE, 2024.

572 Daqing Chen. Online Retail. UCI Machine Learning Repository, 2015. <https://doi.org/10.24432/C5BW33>.

573 Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu. Visions:
574 Visual masked autoencoders are free-lunch zero-shot time series forecasters. *arXiv preprint
575 arXiv:2408.17253*, 2024a.

576 Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen,
577 and Gustavo Batista. The ucr time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

578 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
579 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
580 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024b.

581 Lin Chin-Yew. Rouge: A package for automatic evaluation of summaries. In *Proceedings of the
582 Workshop on Text Summarization Branches Out*, 2004, 2004.

594 Kota Dohi, Aoi Ito, Harsh Purohit, Tomoya Nishida, Takashi Endo, and Yohei Kawaguchi. Domain-
 595 independent automatic generation of descriptive texts for time-series data. In *ICASSP 2025-2025*
 596 *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
 597 IEEE, 2025.

598 Jiaxiang Dong, Haixu Wu, Yuxuan Wang, Li Zhang, Jianmin Wang, and Mingsheng Long.
 599 Metadata matters for time series: Informative forecasting with transformers. *arXiv preprint*
 600 *arXiv:2410.03806*, 2024.

602 European Centre for Disease Prevention and Control. Download to-
 603 day's data on the geographic distribution of covid-19 cases world-
 604 wide. [https://www.ecdc.europa.eu/en/publications-data/](https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide)
 605 [download-todays-data-geographic-distribution-covid-19-cases-worldwide](https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide),
 606 2024. Accessed: 2025-04-03.

607 Elizabeth Fons, Rachneet Kaur, Zhen Zeng, Soham Palande, Tucker Balch, Svitlana Vyetrenko, and
 608 Manuela Veloso. Tadacap: Time-series adaptive domain-aware captioning. In *Proceedings of the*
 609 *5th ACM International Conference on AI in Finance*, pp. 54–62, 2024.

610 Food and Agriculture Organization of the United Nations. Faostat - food balance sheets. <http://www.fao.org/faostat/en/#data/FBS>, 2024. Accessed: 2025-04-03.

613 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 614 Graham Neubig. Pal: Program-aided language models, 2023. URL [https://arxiv.org/](https://arxiv.org/abs/2211.10435)
 615 [abs/2211.10435](https://arxiv.org/abs/2211.10435).

616 Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
 617 embeddings. In *Empirical Methods in Natural Language Processing (EMNLP)*, 2021.

619 Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
 620 Manso. Monash time series forecasting archive. In *Neural Information Processing Systems Track*
 621 *on Datasets and Benchmarks*, 2021.

622 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 623 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 624 models. *arXiv preprint arXiv:2407.21783*, 2024.

625 Yasser Hassan. Walmart dataset. <https://www.kaggle.com/datasets/yasserh/walmart-dataset>, 2020. Accessed: 2025-04-03.

628 Abhishek S. Jha. Time series air quality data of india (2010-
 629 2023). [https://www.kaggle.com/datasets/abhishekssjha/](https://www.kaggle.com/datasets/abhishekssjha/time-series-air-quality-data-of-india-2010-2023)
 630 [time-series-air-quality-data-of-india-2010-2023](https://www.kaggle.com/datasets/abhishekssjha/time-series-air-quality-data-of-india-2010-2023), 2023. Accessed:
 631 2025-05-01.

632 Harsh Jhamtani and Taylor Berg-Kirkpatrick. Truth-conditional captioning of time series data. In
 633 *EMNLP*, 2021.

635 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 636 uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting by
 637 reprogramming large language models. In *International Conference on Learning Representations*
 638 (*ICLR*), 2024.

639 Kai Kim, Howard Tsai, Rajat Sen, Abhimanyu Das, Zihao Zhou, Abhishek Tanpure, Mathew Luo,
 640 and Rose Yu. Multi-modal forecaster: Jointly predicting time series and textual data. *arXiv preprint*
 641 *arXiv:2411.06735*, 2024.

642 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
 643 vision-language models? *Advances in Neural Information Processing Systems*, 37:87874–87907,
 644 2024.

646 Chen Liu, Shibo He, Qihang Zhou, Shizhong Li, and Wenchao Meng. Large language model guided
 647 knowledge distillation for time series anomaly detection. In *Proceedings of the Thirty-Third*
International Joint Conference on Artificial Intelligence, pp. 2162–2170, 2024a.

648 Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and Rui
 649 Zhao. Timecma: Towards llm-empowered time series forecasting via cross-modality alignment.
 650 *CoRR*, 2024b.

651

652 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

653

654 Haoxin Liu, Harshavardhan Kamarthi, Zhiyuan Zhao, Shangqing Xu, Shiyu Wang, Qingsong Wen,
 655 Tom Hartvigsen, Fei Wang, and B Aditya Prakash. How can time series analysis benefit from
 656 multiple modalities? a survey and outlook. *arXiv preprint arXiv:2503.11835*, 2025.

657

658 Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao
 659 Xia. Calf: Aligning llms for time series forecasting via cross-modal fine-tuning. *arXiv preprint*
 660 *arXiv:2403.07300*, 2024c.

661

662 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 663 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 664 approach. *arXiv preprint arXiv:1907.11692*, 2019.

665

666 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Zakka,
 667 Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivastav, Joshua Lochner, Hugo
 668 Larcher, Mathieu Morlon, Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Smolvlm:
 669 Redefining small and efficient multimodal models. *arXiv preprint arXiv:2504.05299*, 2025.

670

671 Mike Merrill, Mingtian Tan, Vinayak Gupta, Thomas Hartvigsen, and Tim Althoff. Language models
 672 still struggle to zero-shot reason about time series. In *Findings of the Association for Computational*
 673 *Linguistics: EMNLP 2024*, pp. 3512–3533, 2024.

674

675 City of Los Angeles. Crime data from 2020 to present. <https://catalog.data.gov/dataset/crime-data-from-2020-to-present>, n.d. Accessed: 2025-05-01.

676

677 California Department of Public Health. Road traffic injuries narrative. <https://catalog.data.gov/dataset/road-traffic-injuries-0935b/resource/72f5ab0d-9887-48d0-828d-67ab21661ca2>, n.d. Accessed: 2025-05-01.

678

679 Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song. s^2
 680 ip-llm: Semantic space informed prompt learning with llm for time series forecasting. In *Forty-first*
 681 *International Conference on Machine Learning*, 2024.

682

683 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 684 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*
 685 *for Computational Linguistics*, pp. 311–318, 2002.

686

687 Hannah Ritchie. Many countries have decoupled economic growth from co2 emissions, even if we take
 688 offshored production into account. *Our World in Data*, 2021. <https://ourworldindata.org/co2-gdp-decoupling>.

689

690 Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding
 691 to activate llm’s ability for time series. In *The Twelfth International Conference on Learning*
 692 *Representations*, 2023.

693

694 Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
 695 models actually useful for time series forecasting? In *The Thirty-eighth Annual Conference on*
 696 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=DV15UbHCY1>.

697

698 Benny J Tang, Angie Boggust, and Arvind Satyanarayanan. Vistext: A benchmark for semantically rich
 699 chart captioning. *arXiv preprint arXiv:2307.05356*, 2023.

700

701 Hua Tang, Chong Zhang, Mingyu Jin, Qinkai Yu, Zhenting Wang, Xiaobo Jin, Yongfeng Zhang, and
 Mengnan Du. Time series forecasting with llms: Understanding and enhancing model capabilities.
 702 *ACM SIGKDD Explorations Newsletter*, 26(2):109–118, 2025.

702 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 703 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 704 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

705

706 Gemini Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 707 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemini 3 technical
 708 report. *arXiv preprint arXiv:2503.19786*, 2025.

709 Mohamed Trabelsi, Aidan Boyd, Jin Cao, and Huseyin Uzunalioglu. Time series language
 710 model for descriptive caption generation. *ArXiv*, abs/2501.01832, 2025. URL <https://api.semanticscholar.org/CorpusID:275324039>.

711

712 Bureau of Transportation Statistics U.S. Department of Transportation. Border crossing entry data. <https://catalog.data.gov/dataset/border-crossing-entry-data-683ae>, n.d. Accessed: 2025-05-01.

713

714

715

716 USDA Economic Research Service. International agricultural productivity. <https://www.ers.usda.gov/data-products/international-agricultural-productivity>, 2024. Accessed: 2025-04-03.

717

718

719 Xinlei Wang, Maike Feng, Jing Qiu, Jinjin Gu, and Junhua Zhao. From news to forecast: Integrating
 720 event analysis in llm-based time series forecasting with reflection. *Advances in Neural Information
 721 Processing Systems*, 37:58118–58153, 2024.

722

723 Andrew Robert Williams, Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Jithendaraa
 724 Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Chapados,
 725 and Alexandre Drouin. Context is key: A benchmark for forecasting with essential textual
 726 information, 2024. URL <https://arxiv.org/abs/2410.18959>.

727

728 Hao Xue and Flora D Salim. Promptcast: A new prompt-based learning paradigm for time series
 729 forecasting. *IEEE Transactions on Knowledge and Data Engineering*, 36(11):6851–6864, 2023.

730

731 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 732 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 11121–11128, 2023.

733

734 Jingyang Zhang. Visualizing the attention of vision-language models. <https://github.com/zjysteven/VLM-Visualizer>, 2024. Accessed: May 2025.

735

736 Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
 737 Evaluating text generation with bert. In *International Conference on Learning Representations*,
 738 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.

739

740 Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K Gupta, and Jingbo Shang. Large language models
 741 for time series: a survey. In *Proceedings of the Thirty-Third International Joint Conference on
 742 Artificial Intelligence*, pp. 8335–8343, 2024.

743

744 Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
 745 by pretrained lm. *Advances in neural information processing systems*, 36:43322–43355, 2023.

746

747 Zihao Zhou and Rose Yu. Can LLMs understand time series anomalies? In *The Thirteenth
 748 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=LGafQ1g2D2>.

749

750

751

752

753

754

755

756

757

758

759

Appendix

760

761

Table of Contents

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A Limitations and Future Work	16
B Source Datasets	16
C Time Series Segment Cropping	17
D Hardware and Settings	17
E Baseline Models	17
F Evaluation Metrics	18
F.1 Linguistic Metrics	18
F.2 Tolerance Design in Numeric Metrics	19
G Full TSC Results	19
H Quality Validation	20
H.1 Manual Verification of Semi-synthetic Ground Truth Captions	20
H.2 Human Study on Detectability	21
H.3 Robustness of Evaluation - Paraphrasing Experiment	21
H.4 Diversity Analysis	23
H.5 Reproducibility Validation	24
I Role of Vision	25
I.1 Visual Modality Ablation	25
I.2 Visual Attention Analysis	25
I.3 Testing Alternative Visual Encodings	27
J Q&A Tasks	28
J.1 Sample Q&A Questions	29
J.2 Qwen-Based Filtering	33
J.3 Distractor Generation in Q&A Tasks	33
K Inference Examples	34
K.1 Numeric Time Series Ablation	34
K.2 Statistical Inference Failure & Success	35
L CaTS-Bench Samples	36
M Editing and Review	38
M.1 Edits made in the captions	38
M.2 Interface	39
N Template-based Prompts	40
N.1 Ground-Truth Caption Generation Prompt	40
N.2 Baseline Caption Generation Prompt	40
N.3 Caption Paraphrasing Prompt	41
N.4 PAL Prompt	41
N.5 Semantic Perturbation Prompt	42

810	N.6 Numeric Perturbation Prompt	42
-----	---	----

811	O Human Baseline	42
-----	-------------------------	----

812

813

814

815

816 **A LIMITATIONS AND FUTURE WORK**

817

818 While CaTS-Bench represents a significant step toward multimodal, context-aware time series
 819 understanding, it also has limitations that suggest clear avenues for future work. First, the majority of
 820 captions are semi-synthetic and generated by a single oracle model (Gemini 2.0 Flash). Our
 821 validation studies confirm their factual reliability and linguistic diversity, with no clear evidence
 822 of bias; however, reliance on a single oracle may still introduce subtle, hidden modeling biases.
 823 Although we release a subset of data paraphrased by different LLMs, its limited scale points to
 824 future iterations of CaTS-Bench where semi-synthetic captions are fully generated from a broader
 825 pool of LLMs, thereby reducing such biases and better reflecting diversity in expression. Second,
 826 although we provide a curated human-revisited subset of captions, the scale of fully human-authored
 827 or expert-verified content remains limited. We acknowledge that captions written by human experts
 828 are often more insightful, and future work should incorporate such expert-written captions to enhance
 829 depth and interpretability. At the same time, human authors introduce their own stylistic biases, which
 830 should be considered when designing and evaluating the benchmark. Expanding this component,
 831 potentially by involving multiple domain experts in economics, healthcare, or climate data, would
 832 further strengthen the benchmark’s robustness and credibility.

833

834 Overall, we view CaTS-Bench as a scalable foundation rather than a fixed resource, with ample room
 835 to grow through multi-oracle captioning, richer human input, and extended coverage of temporal
 836 reasoning tasks.

837

838

839 **B SOURCE DATASETS**

840

1. **Air Quality** – Hourly air pollution data from 453 Indian cities (2010–2023), covering 30+ parameters including PM_{2.5}, NO_x, CO, and SO₂, compiled from CPCB [Jha \(2023\)](#).
2. **Border Crossing** – Monthly inbound border crossing counts at U.S.-Mexico and U.S.-Canada ports, disaggregated by transport mode and collected by U.S. Customs and Border Protection [U.S. Department of Transportation \(n.d.\)](#).
3. **Crime** – Incident-level crime reports in Los Angeles from 2020 onward, provided by LAPD OpenData and updated biweekly, including NIBRS-compliant records [of Los Angeles \(n.d.\)](#).
4. **Demography** – Annual global indicators from the UN and World Bank (2000–2021) covering population growth, fertility, life expectancy, death rates, and median age to assess patterns of demographic change and collapse [Aziz \(1985\)](#).
5. **Injury** – Annual counts of fatal and severe road traffic injuries in California (2002–2010), disaggregated by transport mode and geography, from CDPH’s Healthy Communities Indicators of Public Health [\(n.d.\)](#).
6. **COVID** – Global daily COVID-19 case and death counts (2020), compiled by ECDC, covering over 200 countries with population-adjusted metrics [European Centre for Disease Prevention and Control \(2024\)](#).
7. **CO₂** – National-level per capita CO₂ emissions and GDP trends from Our World in Data, adjusted for trade (consumption-based), spanning 1990–2023 [Ritchie \(2021\)](#).
8. **Calories (Diet)** – Food supply and caloric intake patterns from FAO Food Balance Sheets [Food and Agriculture Organization of the United Nations \(2024\)](#).
9. **Walmart** – Weekly sales data from 45 Walmart stores (2010–2012), enriched with features like temperature, fuel price, CPI, unemployment rate, and holiday flags [Hassan \(2020\)](#).
10. **Retail** – Transactional records from a UK-based online gift retailer (2010–2011), capturing item-level purchases, cancellations, and customer behavior [Chen \(2015\)](#).

864 11. **Agriculture** – Annual agricultural total factor productivity (TFP) indices from USDA for 1961–
 865 2022, covering outputs and inputs like land, labor, capital, and materials across countries [USDA](#)
 866 [Economic Research Service \(2024\)](#).

867
 868 **C TIME SERIES SEGMENT CROPPING**
 869

870 Our cropping strategy balances diversity with consistency across datasets. Many source time series
 871 (e.g., 50 years of hourly CO₂ emissions) are too long to process directly, so we sample random
 872 windows of variable lengths. Each window length is drawn from a dataset-specific range $[min, max]$,
 873 with the maximum based on the original series length. This ensures that cropped windows preserve
 874 the scale and structure of the data while introducing sufficient variability for training and evaluation.
 875 We summarize these rules in Table 5 below.

876
 877 Table 5: Minimum and maximum segment lengths for each dataset.
 878

Source Dataset	Min Length	Max Length
Air Quality, Crime, Border Crossing, CO ₂ , Walmart, Agriculture	5	$\min(150, 5 + \lfloor \frac{\text{original_length}}{8} \rfloor)$
Demography, Online Retail	5	original_length
Road Injuries	3	$\min(3, 0.2 \times \text{original_length})$
COVID	5	$\min(150, 5 + \lfloor \frac{\text{original_length}}{5} \rfloor)$
Calories	5	$\min(6, 0.2 \times \text{original_length})$

879
 880 **D HARDWARE AND SETTINGS**
 881

882 All experiments were conducted on a high-performance computing node featuring two *AMD EPYC*
 883 *7453* processors, providing a total of 56 logical CPUs, and 125 GB of RAM (with over 117 GB
 884 available during runtime). For GPU acceleration, the system includes eight *NVIDIA A100* GPUs - six
 885 PCIe 80 GB models and two PCIe 40 GB models - along with an ASPEED graphics controller used
 886 for display purposes. This configuration offers ample computational and memory resources suitable
 887 for mid- to large-scale deep learning training and inference. The models we finetune range in size
 888 from 2 billion to 11 billion parameters, with finetuning times spanning from a few hours to a day.

889 For finetuning, we adopt a unified training strategy guided by best
 890 practices in instruction tuning for multimodal inputs. All models
 891 are trained using the AdamW optimizer with a cosine learning rate
 892 scheduler and a base learning rate of 2×10^{-5} . We apply gradient
 893 accumulation to simulate a larger batch size. Mixed precision training
 894 and gradient checkpointing are enabled for memory efficiency.
 895 Low Rank Adaptation (LoRA) is used to adapt large models by
 896 tuning a small subset of parameters, while keeping the rest of the
 897 model frozen or partially frozen. To ensure deterministic and focused
 898 generation, we use a temperature of 0.3 during inference across all
 899 evaluated models. Each model is finetuned using a structured JSONL
 900 dataset comprising time series plot images and corresponding image-
 901 grounded chat-style conversations. We preprocess data with each
 902 model’s native processor and apply minimal resizing to maintain fidelity in the visual input. Special
 903 care is taken to exclude padding and <image> tokens from loss computation by assigning them an
 904 ignore index.

911
 912 **E BASELINE MODELS**
 913

914 We evaluate Gemini 2.0 Flash and Gemini 2.5 Pro Preview (Team et al., 2023),
 915 Claude 3 Haiku and Claude 3.7 Sonnet (Anthropic, 2024), GPT-4o (Achiam et al.,
 916 2023), InternVL 2.5 (8b & 38b) (Chen et al., 2024b), LLaVA v1.6 Mistral 7b (de-
 917 fault) and 34b (Liu et al., 2023), Phi-4 Multimodal Instruct 5.6b (Abdin et al., 2024),
 918 Idefics 2 (8b) (Laurençon et al., 2024), SmolVLM (2b) (Marafioti et al., 2025), QwenVL

919 Table 6: Configurations

Hyperparameter	Value
Batch size	4
Grad. Acc.	12
Epochs	3
Learning Rate	2×10^{-5}
Scheduler	Cosine
Optimizer	AdamW
Precision	bf16
LoRA rank	8 or 16
Dropout	0.05
Image res.	224–560

918 (7b) (Bai et al., 2023), Llama 3.2 Vision (11b) (Grattafiori et al., 2024), and Gemma 3
 919 (12b & 27b) (Team et al., 2025) for both TSC and Q&A tasks.
 920

921 TSC requires precise numeric reasoning alongside text generation, making it suitable for program-
 922 aided language (PAL) models (Gao et al., 2023). Hence, we also evaluate QwenVL 32b by prompt-
 923 ing it to generate a Python program that outputs the full time series caption. The program is executed
 924 in Python, and its return value is taken as the caption. Most (90%) generated programs succeed on
 925 the first attempt; if a program fails, we increase the token limit and regenerate until successful. The
 926 full prompt example can be found in Appendix N.4.
 927

928 F EVALUATION METRICS

930 F.1 LINGUISTIC METRICS

931 **DeBERTa Score** The DeBERTa Score is a contextual similarity metric based on cosine similarity
 932 between contextual embeddings of tokens in the candidate (c) and reference (r) captions. Given token
 933 embeddings from the DeBERTa encoder, the metric computes token-level precision, recall, and F1:
 934

$$935 \quad F1_{DeBERTa} = \frac{2 \cdot P \cdot R}{P + R}, \quad P = \frac{1}{|c|} \sum_{i \in c} \max_{j \in r} \cos(\mathbf{e}_i, \mathbf{e}_j), \quad R = \frac{1}{|r|} \sum_{j \in r} \max_{i \in c} \cos(\mathbf{e}_j, \mathbf{e}_i) \quad (1)$$

936 where \mathbf{e}_i and \mathbf{e}_j are the contextual embeddings of candidate and reference tokens, respectively.
 937

938 **BLEU** BLEU evaluates n-gram overlap between a candidate caption and reference using precision
 939 with a brevity penalty to discourage short outputs:
 940

$$941 \quad BLEU = BP \cdot \exp \left(\sum_{n=1}^N w_n \log p_n \right), \quad BP = \begin{cases} 1, & \text{if } c > r \\ e^{1-r/c}, & \text{if } c \leq r \end{cases} \quad (2)$$

942 where p_n is the modified precision for n -grams, w_n are weights (usually uniform), c is candidate
 943 length, and r is reference length.
 944

945 **ROUGE-L** ROUGE-L measures fluency via the length of the longest common subsequence (LCS)
 946 between candidate and reference:
 947

$$948 \quad ROUGE-L_{F1} = \frac{(1 + \beta^2) \cdot LCS}{r + c}, \quad LCS = \text{LongestCommonSubsequence}(r, c) \quad (3)$$

949 where β balances recall and precision (often $\beta = 1$), and r and c are the reference and candidate
 950 lengths.
 951

952 **METEOR** METEOR aligns unigrams using exact matches, stems, synonyms, and paraphrases. It
 953 then computes an F-score and applies a fragmentation penalty:
 954

$$955 \quad METEOR = F_{\text{mean}} \cdot (1 - \text{Pen}), \quad F_{\text{mean}} = \frac{10 \cdot P \cdot R}{R + 9P}, \quad \text{Pen} = 0.5 \left(\frac{\text{chunks}}{\text{matches}} \right)^3 \quad (4)$$

956 where P and R are unigram precision and recall, and chunks refers to non-contiguous matched
 957 segments.
 958

959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **SimCSE** SimCSE computes semantic similarity at the sentence level using cosine similarity
 973 between sentence embeddings:
 974

$$\text{SimCSE}(c, r) = \cos(\mathbf{h}_c, \mathbf{h}_r) = \frac{\mathbf{h}_c \cdot \mathbf{h}_r}{\|\mathbf{h}_c\| \|\mathbf{h}_r\|} \quad (5)$$

975
 976 where \mathbf{h}_c and \mathbf{h}_r are candidate and reference sentence embeddings, produced by a contrastively
 977 trained RoBERTa encoder.
 978

982 F.2 TOLERANCE DESIGN IN NUMERIC METRICS

983
 984 We adopt a 5% relative tolerance for both numeric metrics, as it is a widely accepted threshold in
 985 numeric evaluation across data science and time series literature. This value balances sensitivity
 986 and robustness: it is tight enough to catch meaningful deviations from the true value, ensuring that
 987 significant errors are penalized, yet lenient enough to accommodate minor variations due to rounding,
 988 numeric precision, or natural approximations in model-generated captions. By using this standard
 989 threshold, our evaluation aligns with common practice while focusing on practically relevant numeric
 990 accuracy.
 991

994 G FULL TSC RESULTS

995
 996 Here, we report the full evaluation results for time series captioning, using human-revisited and
 997 semi-synthetic captions as ground truth. See Tables 7 and 8 respectively.
 998

1000 Table 7: Evaluation of generated captions against the human-revisited ground truths. Numeric:
 1001 numeric score. Mean/STD/Max/Min refer to statistical inference accuracy. **Bolded** and underlined
 1002 scores denote first and second places.

Model	DeBERTa F1	SimCSE	BLEU	ROUGE-L	METEOR	Mean	STD	Max	Min	Numeric
Proprietary										
Gemini 2.0 Flash	0.6645	0.8558	0.0793	0.2475	0.2205	0.5357	-	0.9823	0.9363	0.6335
Gemini 2.5 Pro Prev.	0.6568	0.8570	0.0690	0.2363	0.2468	0.3229	-	0.9871	<u>0.9771</u>	0.6805
Claude 3 Haiku	0.6580	0.8525	0.0640	0.2405	0.2358	0.8333	-	0.9797	0.9339	0.6007
GPT-4o	0.6605	0.8632	0.0705	0.2328	0.2355	0.8167	-	0.9921	0.9379	0.6268
Pretrained										
InternVL 2.5 (8b)	0.6418	0.8411	0.0510	0.2093	0.2153	0.7813	0.0000	0.9495	0.8186	0.5812
InternVL 2.5 (38b)	0.6640	0.8707	0.0723	0.2442	0.2550	0.8581	0.0000	0.9820	0.9297	0.6585
LLaVA v1.6 Mistral	0.6268	0.8243	0.0525	0.2145	0.2333	0.6667	0.0000	0.8714	0.7505	0.4548
LLaVA v1.6 34b	0.6388	0.8205	0.0595	0.2210	0.2317	0.4103	0.5588	0.8170	0.7274	0.5465
Phi-4 M.I.	0.6168	0.8196	0.0450	0.2355	0.1945	0.4554	0.2500	0.9227	0.8926	0.5533
Idefics 2	0.6023	0.7838	0.0235	0.1918	0.1400	0.8056	0.3854	0.8908	0.8401	0.4238
SmolVLM	0.5918	0.7552	0.0273	0.1935	0.1538	0.9050	0.5278	0.8972	0.7606	0.4308
QwenVL	0.6185	0.8205	0.0490	0.2088	0.2140	0.6563	-	0.7947	0.6776	0.4450
QwenVL PAL	0.6643	0.8643	0.0660	0.2373	0.2260	0.9730	<u>0.8571</u>	0.9848	0.9784	0.5638
Llama 3.2 Vision	0.6527	0.8520	0.0715	0.2390	0.2515	0.4667	-	0.9562	0.8952	0.6503
Gemma 3 12b	0.6568	0.8692	0.0713	0.2350	0.2633	0.8148	1.0000	0.9576	0.8956	0.6598
Gemma 3 27b	0.6480	0.8634	0.0650	0.2220	0.2565	0.7341	-	0.9780	0.9035	0.6407
Finetuned										
InternVL 2.5 (8b)	0.6378	0.8171	0.0533	0.2148	0.2285	0.7500	0.0000	0.8302	0.7339	0.5815
LLaVA v1.6 Mistral	0.7123	0.8964	0.1335	0.3123	0.3003	0.9284	0.1746	0.9866	0.9806	0.6932
Phi-4 M.I.	0.6485	0.8501	0.0638	0.2393	0.2295	0.6250	0.2500	0.9655	0.9184	0.5860
Idefics 2	<u>0.7108</u>	<u>0.8942</u>	<u>0.1323</u>	<u>0.3085</u>	<u>0.2975</u>	<u>0.9580</u>	<u>0.3453</u>	<u>0.9875</u>	<u>0.9665</u>	<u>0.6912</u>
SmolVLM	0.6035	0.8168	0.0513	0.2275	0.2198	0.6399	0.1250	0.9139	0.7721	0.5558
QwenVL	0.7032	0.8920	0.1263	0.3020	0.2965	0.9520	0.2430	0.9731	0.9634	0.6825
Llama 3.2 Vision	0.6470	0.8518	0.0693	0.2328	0.2483	0.5876	0.5000	0.9585	0.8961	0.6273

1026 Table 8: Evaluation of generated captions against semi-synthetic ground truths. Numeric: numeric
 1027 score. Mean/STD/Max/Min refer to statistical inference accuracy. **Bolded** and underlined scores
 1028 denote first and second places.

Model	DeBERTa F1	SimCSE	BLEU	ROUGE-I	METEOR	Mear	STD	Max	Min	Numeric
Proprietary										
Gemini 2.0 Flash	0.688	0.858	0.137	0.318	0.279	0.651	<u>0.916</u>	0.985	0.917	0.677
Gemini 2.5 Pro Prev.	0.668	0.845	0.088	0.267	0.284	0.494	0.667	0.994	<u>0.971</u>	0.714
Claude 3 Haiku	0.682	0.856	0.112	0.291	0.300	0.693	0.735	0.977	0.898	0.623
GPT-4o	0.681	0.865	0.112	0.284	0.296	0.700	0.778	<u>0.990</u>	0.921	0.644
Pretrained										
InternVL 2.5 (8b)	0.659	0.794	0.081	0.247	0.260	0.610	0.920	0.949	0.794	0.589
InternVL 2.5 (38b)	0.688	0.868	0.129	0.305	0.331	0.784	0.640	0.966	0.887	0.685
LLaVA v1.6 Mistral	0.650	0.820	0.086	0.259	0.287	0.644	0.611	0.864	0.743	0.517
LLaVA v1.6 34b	0.655	0.825	0.094	0.265	0.285	0.445	0.550	0.843	0.698	0.560
Phi-4 M.I.	0.624	0.797	0.074	0.274	0.239	0.457	0.443	0.942	0.859	0.583
Idefics 2	0.604	0.698	0.040	0.226	0.162	0.616	0.368	0.903	0.806	0.455
SmolVLM	0.594	0.693	0.044	0.224	0.178	0.747	0.446	0.864	0.705	0.474
QwenVL	0.643	0.890	0.082	0.249	0.261	0.565	0.257	0.822	0.657	0.504
QwenVL PAL	0.685	0.843	0.108	0.292	0.282	0.903	0.549	0.980	0.942	0.613
Llama 3.2 Vision	0.671	0.850	0.118	0.290	0.315	0.594	0.666	0.952	0.877	0.685
Gemma 3 12b	0.676	0.867	0.097	0.279	0.317	0.653	0.578	0.957	0.879	0.673
Gemma 3 27b	0.667	0.863	0.085	0.263	0.309	0.694	0.900	0.968	0.864	0.668
Finetuned										
InternVL 2.5 (8b)	0.655	0.809	0.088	0.259	0.282	0.597	0.464	0.904	0.779	0.594
LLaVA v1.6 Mistral	<u>0.758</u>	<u>0.907</u>	<u>0.285</u>	<u>0.445</u>	0.441	0.828	0.294	0.976	0.926	<u>0.732</u>
Phi-4 M.I.	0.662	0.821	0.010	0.285	0.279	0.645	0.641	0.965	0.877	0.607
Idefics 2	0.759	0.908	0.290	0.452	<u>0.437</u>	0.885	0.379	0.985	0.927	0.733
SmolVLM	0.613	0.781	0.091	0.269	0.265	0.590	0.297	0.898	0.777	0.643
QwenVL	0.643	0.790	0.082	0.249	0.260	0.565	0.257	0.822	0.657	0.504
Llama 3.2 Vision	0.667	0.844	0.111	0.283	0.310	0.502	0.619	0.955	0.867	0.668

H QUALITY VALIDATION

H.1 MANUAL VERIFICATION OF SEMI-SYNTHETIC GROUND TRUTH CAPTIONS

To assess the reliability of semi-synthetic captions used as ground truth, we manually verified statistical and trend claims in around 2.9k captions of the test set under a three-tier scoring system: *exact* (within ± 0.05 of the true value), *near* (within ± 0.1), and *incorrect*.

Table 9: Manual verification of SS captions. Accuracy remains high across all categories.

Task	Feature/Type	Occurrences	Verified	Accuracy
Statistical	mean / average	570		0.980
	minimum / dip	310		0.994
	standard deviation	123		1.000
	maximum / peak	217		0.994
Trend	Upward	467		0.980
	Downward	328		0.997
	Stability	45		0.970
	Fluctuation	87		0.974
Historical (Trends + Stats)	mean / average	435		0.980
	standard deviation	26		1.000
	maximum / peak	95		0.994
	minimum / dip	12		1.000
	norms	164		0.980
Total / Avg.		2879		0.986

1080 **Method** Each claim was extracted and checked against the underlying time series metadata. We
 1081 extracted statistical claims and trend patterns from captions using structured keyword clustering
 1082 across selected statistical categories (mean/average, min/max, standard deviation) and trend keywords
 1083 (increasing, decreasing, plateau, fluctuation). We (1) identified terms using keyword matching, (2)
 1084 extracted ground truth values therein, and (3) created verification sheets comparing claims against
 1085 actual metadata for manual verification. Then, we scored each claim by comparing statements against
 1086 ground truth data and verifying that trend claims matched actual trajectories.

1087 Accuracy across both statistical descriptors and trend types is consistently high, confirming that
 1088 **oracle-generated captions provide factually reliable reference annotations.**

1090 H.2 HUMAN STUDY ON DETECTABILITY

1092 We conducted a blind study with 35 participants, each reviewing 11 captions (half written by humans,
 1093 half by Gemini, using the same context information). Participants labeled each as human or AI-
 1094 written but achieved only 41.1% accuracy, essentially random, suggesting **Gemini’s captions were**
 1095 **indistinguishable from human ones**. Participation form with guidelines is in Appendix O.

1096 H.3 ROBUSTNESS OF EVALUATION - PARAPHRASING EXPERIMENT

1098 A legitimate concern when using a single LLM to generate reference captions is the potential for
 1099 evaluation bias towards the specific linguistic style of that model. To ensure that CaTS-Bench
 1100 evaluates generalizable time series understanding capabilities rather than facility in mimicking a
 1101 Gemini’s linguistic style, we conducted a robustness experiment.

1103 Table 10: Evaluation of generated captions across paraphrased/original ground truths.

1105 Model	1106 GT Style	1107 Embedding		1108 N-gram			1109 Numeric	1110 Stat. Inference		
		1111 SimCSE	1112 DeBERTa	1113 METEOR	1114 ROUGE-L	1115 BLEU		1116 Mean	1117 Max	1118 Min
1108 Gemini 1109 2.0 Flash	GPT-4o Phr.	0.8707	0.6803	0.2313	0.2605	0.0820	0.6715	0.3333	0.9823	0.9377
	Gemma Phr.	0.8635	0.6748	0.2068	0.2443	0.0605	0.6578	0.5357	0.9823	0.9374
	Llama Phr.	0.8680	0.6715	0.2080	0.2445	0.0710	0.6745	0.3750	0.9807	0.9351
	Original	0.8716	0.6860	0.2720	0.3068	0.1315	0.6802	0.3750	0.9823	0.9377
1111 GPT-4o	GPT-4o Phr.	0.8752	0.6740	0.2583	0.2488	0.0845	0.6773	0.8000	0.9921	0.9393
	Gemma Phr.	0.8645	0.6665	0.2250	0.2268	0.0578	0.6673	0.8167	0.9921	0.9393
	Llama Phr.	0.8726	0.6678	0.2295	0.2380	0.0725	0.6673	0.8000	0.9921	0.9379
	Original	0.8773	0.6785	0.2880	0.2785	0.1048	0.6558	0.8000	0.9921	0.9379
1115 Claude 1116 3 Haiku	GPT-4o Phr.	0.8636	0.6720	0.2497	0.2480	0.0693	0.6383	0.7500	0.9797	0.9338
	Gemma Phr.	0.8563	0.6665	0.2263	0.2295	0.0495	0.6223	0.8000	0.9781	0.9321
	Llama Phr.	0.8598	0.6678	0.2320	0.2473	0.0605	0.6285	0.8333	0.9797	0.9339
	Original	0.8683	0.6795	0.2873	0.2870	0.1038	0.6333	0.7500	0.9797	0.9338
1119 Idefics 2	GPT-4o Phr.	0.7952	0.6113	0.1463	0.2035	0.0243	0.3893	0.8056	0.8908	0.8377
	Gemma Phr.	0.7897	0.6058	0.1368	0.1915	0.0158	0.4005	0.8056	0.8908	0.8377
	Llama Phr.	0.7850	0.6045	0.1335	0.1950	0.0183	0.4198	0.8056	0.8908	0.8377
	Original	0.7962	0.6178	0.1623	0.2250	0.0380	0.4580	0.8056	0.8908	0.8377
1123 QwenVL	GPT-4o Phr.	0.8347	0.6323	0.2250	0.2205	0.0483	0.4098	0.4375	0.7948	0.6793
	Gemma Phr.	0.8262	0.6278	0.2043	0.2025	0.0350	0.4160	0.4375	0.7926	0.6793
	Llama Phr.	0.8270	0.6303	0.2113	0.2213	0.0453	0.4470	0.4375	0.7948	0.6776
	Original	0.8427	0.6405	0.2548	0.2488	0.0798	0.4895	0.4375	0.7926	0.6776
1126 Llama 1127 3.2 Vision	GPT-4o Phr.	0.8663	0.6625	0.2663	0.2473	0.0795	0.6890	0.4667	0.9562	0.8937
	Gemma Phr.	0.8591	0.6575	0.2393	0.2315	0.0572	0.6810	0.4722	0.9562	0.8952
	Llama Phr.	0.8647	0.6613	0.2588	0.2545	0.0793	0.6915	0.4722	0.9546	0.8961
	Original	0.8704	0.6680	0.2990	0.2843	0.1060	0.6853	0.4722	0.9562	0.8937

1129 We systematically paraphrased a representative subset of our ground truth captions (agriculture, crime,
 1130 demography, Walmart) using architecturally distinct LLMs (GPT-4o, Gemma 27B, and Llama 90B),
 1131 resulting in three additional sets of ground truth captions. The paraphrasing prompt was designed to
 1132 instruct the model to thoroughly alter sentence structure, syntax, and word choice while preserving all
 1133 factual information, numeric values, and statistical details with absolute fidelity. The prompt used for

paraphrasing is shown in N.3. We define this paraphrased caption set as CaTS-Bench-Paraphrased, which contains captions that are semantically equivalent to the original ground truth but differ only in linguistic style.

We then re-evaluated the outputs of all six representative pretrained models against CaTS-Bench-Paraphrased using our full suite of metrics. Results of this analysis are presented in the Table 10, one for each ground-truth generator’s linguistic style. Values represent the average across selected domains. To ease comparison, we also report the results obtained with our original Gemini captions as ground truth.

Next, we provide an analysis on the rank correlation of model performances between the original and paraphrased evaluation settings. A high correlation in model rankings would indicate that our benchmark is robust to linguistic variation; the metrics would be consistently measuring the underlying semantic content and numeric accuracy of the captions, not their surface-level similarity to a specific writing style. A low correlation would suggest a non-trivial dependence on the oracle’s particular linguistic patterns. For each linguistic evaluation metric, we provide the model ranking across the four linguistic styles in Figure 5.

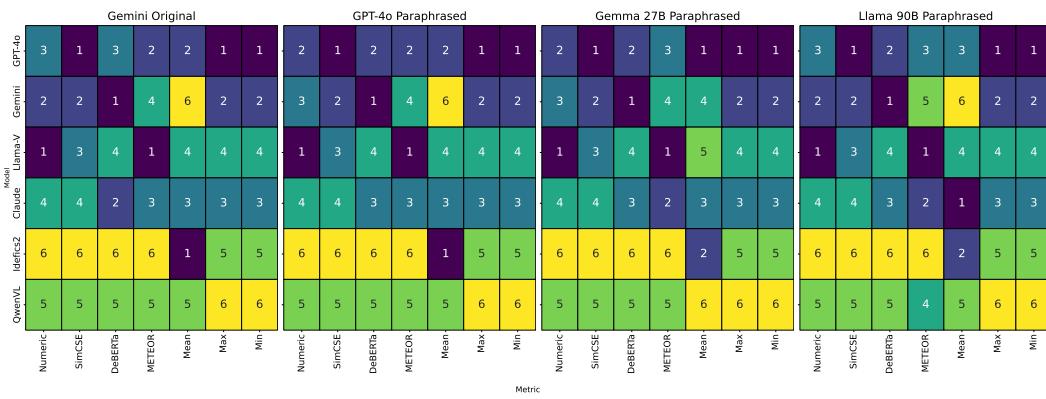


Figure 5: Model ranking heatmaps across metrics under four reference styles. Rankings: 1 (highest) to 6 (lowest). Model mappings: Gemini (Gemini 2.0 Flash), Claude (Claude 3 Haiku), Llama-V (Llama 3.2 Vision).

Qualitatively, we observe a negligible impact of model-specific linguistic style on the model rankings, suggesting that our evaluations are robust to particular linguistic styles. For each linguistic metric, we measure the average Spearman correlation between the ranking according to Gemini’s style and the ranking according to the other three styles. See Table 11.

Table 11: Spearman correlation of model rankings of Gemini as ground truth vs. different models as ground truth. A Spearman Correlation of 1 means ranking does not change at all.

	DeBERTa F1	SimCSE	BLEU	ROUGE-L	METEOR	Average
Spearman Correlation	0.9714	1.0000	0.8138	0.9048	0.9429	0.9266
p-value	0.0018	0.0000	0.0557	0.0257	0.0079	0.0182

In summary, this experiment demonstrates that our evaluation framework is robust to variations in the linguistic style of the reference captions. This conclusion is quantitatively supported by the high Spearman correlation coefficients observed in model rankings between the original and paraphrased benchmark sets. These results indicate that **our evaluation framework captures the semantic fidelity and factual quality of the generated content, rather than rewarding models for merely mimicking the stylistic patterns of our oracle model, Gemini 2.0 Flash**. Consequently, the benchmark evaluates fundamental capabilities in time series understanding and description, not superficial stylistic alignment. Furthermore, Gemini 2.0 Flash maintains its superior rank in most metrics regardless of the linguistic style of the ground truth. This consistent dominance validates

1188 its selection as a highly capable oracle, reinforcing that its utility stems from its intrinsic ability to
 1189 generate high-quality descriptions rather than from any benchmark-specific bias.
 1190

1191 1192 H.4 DIVERSITY ANALYSIS

1193 1194 H.4.1 CONTENT IN THE CAPTIONS

1195 We analyzed all the 4005 Gemini-generated test set captions using a structured keyword-based
 1196 approach. Captions across eleven domains were scanned for statistical descriptors (e.g., *mean*, *average*,
 1197 *standard deviation*, *maximum*, *minimum*, *range*) and trend-related expressions (e.g., *increase*,
 1198 *decrease*, *stability*, *volatility*, *seasonality*). These terms were grouped into clusters such as *Central*
 1199 *Tendency*, *Dispersion*, *Extremes*, *Increasing/Decreasing Trends*, *Stability and Volatility*, and *Comparative*
 1200 *Trends*. The results in Table 12 show that **captions consistently draw from a diverse mix of**
 1201 **descriptors, spanning both statistical features and temporal patterns**. While some categories
 1202 (e.g., percentiles, distribution-shape terms) were rare, coverage of core descriptors was broad, and
 1203 every caption included at least one statistical or trend-related element.
 1204

1205 1206 1207 Table 12: Coverage of statistical and trend descriptor clusters across benchmark captions. Captions
 1208 consistently include diverse descriptors capturing both quantitative and temporal aspects of the data.
 1209

1210 Category	1211 Cluster and Keywords in the cluster	1212 Captions
1213 Statistical	Central Tendency (mean, average, median, mode)	3930
	Minimum Values (min, minimum, lowest value)	1528
	Maximum Values (max, maximum, highest value)	1487
	Dispersion (std, variance, deviation, iqr)	1376
	Range/Spread (range, spread)	492
	Extremes (peak, spike, dip, trough)	2966
1218 Trend and Patterns	Peaks and Valleys (peak, dip, spike, trough)	3013
	Increasing Trends (increase, rising, growing)	1987
	Decreasing Trends (decrease, drop, falling)	2197
	Comparative Trends (higher/lower, difference)	2217
	Stability and Volatility (stable, fluctuating)	2276

1224 1225 H.4.2 N-GRAM DIVERSITY

1226 We measured type token ratios (TTR) across $411k$ tokens in the semi-synthetic test set. The ratios rise
 1227 significantly with n : TTR = 0.0288 (1 gram), 0.1288 (2 gram), 0.2971 (3 gram), 0.4638 (4 gram),
 1228 and 0.6050 (5 gram), indicating that the phrases diversify rapidly as n increases. Notably, we observe
 1229 over 250k unique 5-grams out of $411k$ tokens, providing strong evidence that the captions are not
 1230 overly templated.
 1231

1234 1235 H.4.3 LATENT SIMILARITIES

1236 We further assessed whether Gemini-generated captions introduce systematic stylistic or linguistic
 1237 bias. Results across multiple embedding models show minimal template reliance and high diversity.
 1238 We performed $\sim 8M$ pairwise comparisons across 4005 captions using nine embedding models
 1239 (Table 13). Intra-domain similarity was consistently higher (0.59 – 0.78) than inter-domain similarity
 1240 (0.23 – 0.54), with large effect sizes (Cohen’s $d > 3.26$). Near-duplicates (cosine > 0.95) were
 1241 rare, with an average of 2.3% of pairs. Even within domains, similarity showed non-trivial variance,
 indicating that **captions are not rigid templates but semantically varied**.

Table 13: Embedding similarities

Encoder Model	Dimensionality	Mean	Median	STD	Intra	Inter	% Pairs > 0.95
MiniLM-L12-v2	368	0.2932	0.2500	0.1771	0.6202	0.2269	5.26
MiniLM-L6-v2	384	0.3339	0.3013	0.1510	0.5999	0.2800	1.47
mpnet-base-v2	768	0.3278	0.2791	0.1775	0.6631	0.2599	8.29
bge-large-v1.5	1024	0.5807	0.5605	0.0986	0.7600	0.5443	1.67
mbxbai-large-v1	1024	0.5293	0.5032	0.1116	0.7370	0.4871	2.15
Qwen3-4B	2560	0.3816	0.3530	0.1273	0.6098	0.3354	0.20
e5-mistral-7b	4096	0.6507	0.6358	0.0697	0.7770	0.6251	1.33
GritLM-7B	4096	0.4767	0.4537	0.0947	0.6481	0.4420	0.04
Qwen3-8B	4096	0.3736	0.3465	0.1225	0.5947	0.3288	0.32
Average	-	0.4386	0.4092	0.1256	0.6678	0.3922	2.30

H.4.4 HUMAN VS. AI EMBEDDING SIMILARITY

We computed cosine similarities between captions authored by humans, GPT-4o, and Gemini using Qwen-8B embeddings. Both small-scale (22 vs. 22 captions) and larger-scale comparisons (22 vs. 150 captions; 3k vs. 3k STOCK dataset (Jhamtani & Berg-Kirkpatrick, 2021)) show only modest gaps between human–AI and human–human similarity. For random CaTS-Bench samples, we report averages across five runs with deviations in the range 0.0010–0.0174. See Table 14 for full results.

Table 14: Cosine similarities between human, GPT-4o, and Gemini captions. **Human–AI similarity closely tracks human–human similarity, suggesting minimal stylistic divergence.**

Comparison	Balanced (22 vs 22)			Unbalanced (22 vs 150)			STOCK (3k vs 3k)		
	Human	GPT	Gemini	Human	GPT	Gemini	Human	GPT	Gemini
Human	0.371	0.341	0.353	0.371	0.358	0.353	0.654	0.662	0.586
GPT		0.406	0.328		0.401	0.329		0.694	0.604
Gemini			0.370			0.378			0.599

H.5 REPRODUCIBILITY VALIDATION

We re-ran our evaluation three times on ~ 500 randomly sampled test examples from the semi-synthetic set across five representative models (GPT-4o, Claude 3 Haiku, LLaMA, Idefics, Qwen-VL). Figure 6 shows a log-scale visualization. **Across nearly all metrics, the variance is vanishingly small, often on the order of 10^{-6} , which confirms stability and supports single-run robustness.**

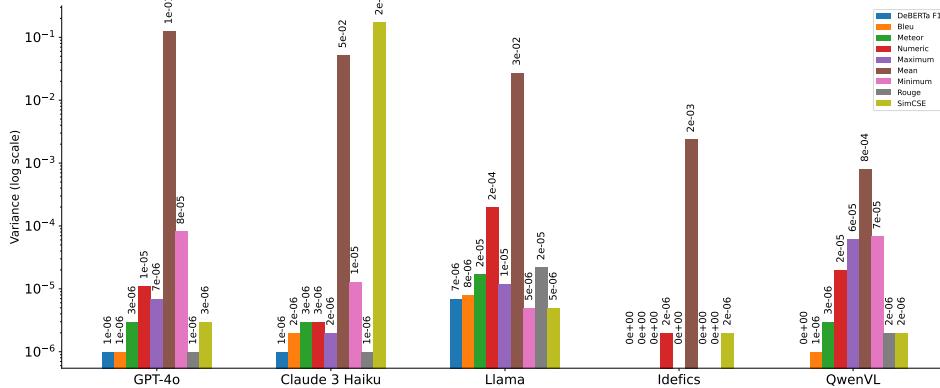


Figure 6: Variance across three independent runs (approximately 500 samples) for each model–metric pair. The logarithmic scale highlights both very small variances (10^{-6}) and moderately larger values.

1296 I ROLE OF VISION

1298 I.1 VISUAL MODALITY ABLATION

1300 We present Table 15, comparing the performance of VLMs with and without the visual input.

1303 Table 15: Evaluation of generated semi-synthetic captions under modality ablation. Each metric is
1304 split into two columns: **VL** (vision-language input) and **L** (text-only input).

Model	DeBERTa F1	SimCSE	BLEU	ROUGE-L	METEOR	Numeric				
	VL	L	VL	L	VL	L	VL	L	VL	L
InternVL	0.659	0.677	0.794	0.854	0.081	0.113	0.247	0.283	0.260	0.317
QwenVL	0.643	0.648	0.790	0.802	0.081	0.090	0.249	0.258	0.260	0.274
Phi-4 M.I.	0.624	0.674	0.797	0.845	0.074	0.118	0.274	0.290	0.239	0.306
SmolVLM	0.594	0.603	0.692	0.758	0.043	0.068	0.224	0.244	0.178	0.257
Llama 3.2 Vision	0.670	0.669	0.850	0.849	0.117	0.110	0.290	0.275	0.314	0.313
Idefics2-8B	0.604	0.632	0.698	0.816	0.040	0.080	0.225	0.258	0.161	0.270
LLaVA v1.6 Mistral	0.650	0.648	0.820	0.824	0.086	0.098	0.259	0.261	0.287	0.286
Claude 3 Haiku	0.682	0.676	0.856	0.853	0.112	0.117	0.291	0.287	0.300	0.298
Gemini 2.0 Flash	0.688	0.698	0.858	0.871	0.137	0.175	0.318	0.343	0.279	0.328

I.2 VISUAL ATTENTION ANALYSIS

Interpreting visual grounding in large multimodal models is non-trivial, as not all of them expose interpretable cross-modal attention mechanisms. We attempt this using the LLaVA model, which provides access to decoder-level cross-attention weights over vision tokens. We adapt the approach in [Zhang \(2024\)](#) for the LLaVA 1.6 model. We visualize per-token visual grounding via the following steps. For each generated token, we extract the decoder cross-attention matrix $\mathbf{A}_{\text{lm}} \in \mathbb{R}^{T \times V}$, where T is the number of generated tokens and V is the number of vision tokens.

Next, we zero out the attention to the beginning-of-sequence token and normalize each row:

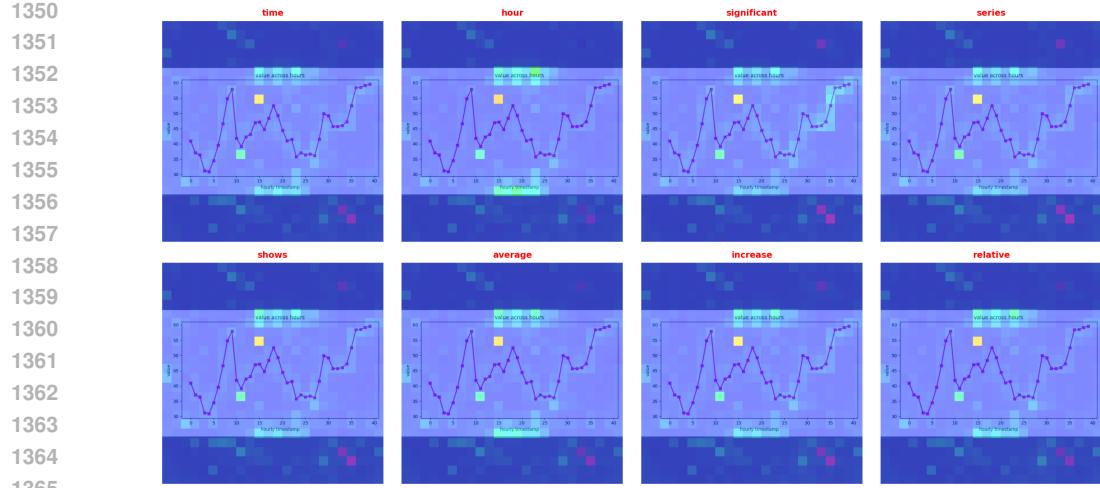
$$\tilde{\mathbf{A}}_{\text{lm}}[t, v] = \begin{cases} 0, & \text{if } v = \text{<bos>} \\ \frac{\mathbf{A}_{\text{lm}}[t, v]}{\sum_{v'} \mathbf{A}_{\text{lm}}[t, v']}, & \text{otherwise} \end{cases} \quad (6)$$

From the CLIP style vision encoder, we extract attention matrices $\mathbf{A}_{\text{vit}}^{(l)} \in \mathbb{R}^{V \times V}$ from multiple layers and average them:

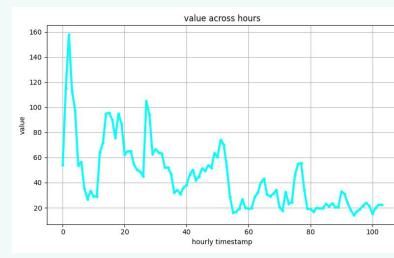
$$\bar{\mathbf{A}}_{\text{vit}} = \frac{1}{L} \sum_{l=1}^L \mathbf{A}_{\text{vit}}^{(l)} \quad (7)$$

For each token t , we compute its attention-weighted vision token distribution and project it back to the 2D image grid, and the projected map $\hat{\mathbf{H}}_t$ is rendered as a heatmap and overlaid on the original image. This allows inspection of which visual regions contribute to each generated token.

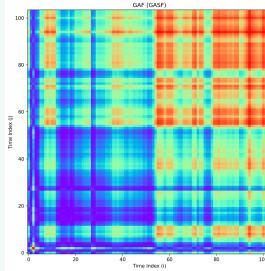
$$\hat{\mathbf{H}}_t = \text{Upsample}(\text{reshape}(\mathbf{H}_t, \text{grid})) \quad (8)$$



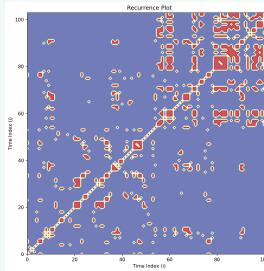
1366 Figure 7: Word-level attention maps for the top 8 tokens from LLaVA 1.6 Mistral overlaid on
1367 a time series plot. Despite expectations of alignment with visual trends, attention remains largely
1368 diffuse, offering only weak evidence of localized visual grounding in caption generation.
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405 I.3 TESTING ALTERNATIVE VISUAL ENCODINGS
1406
1407
1408
1409**Air Quality**

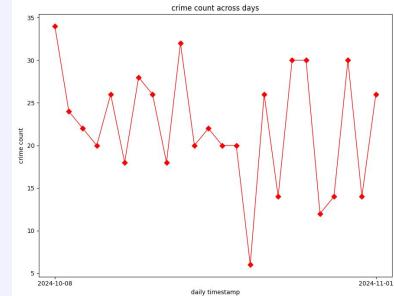
(a) Line



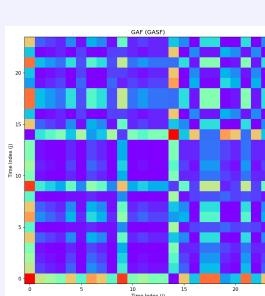
(b) GAF



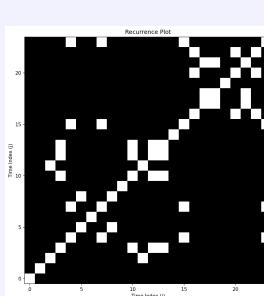
(c) RP

Crime

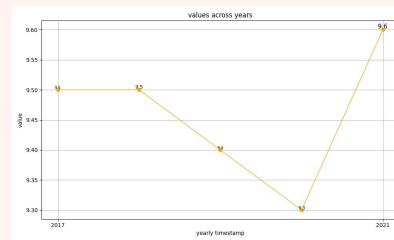
(a) Line



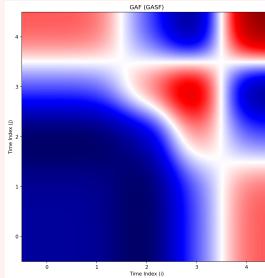
(b) GAF



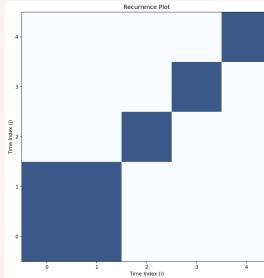
(c) RP

Demography

(a) Line



(b) GAF



(c) RP

1449 Figure 8: Examples of visual encodings across three domains across three sample domain (Air
1450 Quality, Crime, Demography) (a) Line, (b) GAF, and (c) RP.
1451
1452
14531454 To investigate whether more complex visualizations could help in the modality collapse issue, we
1455 experimented with Gramian Angular Fields (GAFs) and recurrence plots (RPs) in addition to standard
1456 line plots. Each was generated from the same univariate time series windows, using first-order deltas
1457 as input. There are also other encodings, such as multi-series overlays or confidence intervals, but we
1458 find these are less applicable in our strictly univariate setting.

1458
 1459 Table 16: Effect of alternative visual encodings on captioning performance on subset of semi-synthetic
 1460 captions. Values show the baseline score for *No Plot* (*TS+Text*) and relative differences (Δ) for line
 1461 plots, Gramian Angular Fields (GAFs), and recurrence plots (RPs).

Model	Metric	No Plot	Line (Δ)	GAF (Δ)	RP (Δ)
Idefics2 (8B)	DeBERTa F1	0.6255	-0.078	-0.0525	-0.0525
	BLEU	0.069	-0.0405	-0.0460	-0.0430
	METEOR	0.2275	-0.0925	-0.0905	-0.0815
	NUMERIC	0.4455	-0.1665	-0.1715	-0.1285
	MAXIMUM	0.8080	+0.0730	-0.1520	-0.1300
	MEAN	0.4195	+0.1285	+0.0945	+0.2995
	MINIMUM	0.7590	-0.0845	-0.2510	-0.3940
	STD	0.5500	-0.1835	-0.1060	-0.3360
	ROUGE	0.2375	-0.0460	-0.0465	-0.0415
	SIMCSE	0.7915	-0.1735	-0.1935	-0.1705
LLaMA 3.2 Vision	DeBERTa F1	0.6550	-0.0020	-0.0030	-0.0080
	BLEU	0.0840	+0.0005	-0.0090	-0.0100
	METEOR	0.2865	-0.0080	-0.0195	-0.0315
	NUMERIC	0.5070	+0.0315	+0.0120	+0.0170
	MAXIMUM	0.8611	+0.0584	-0.0381	-0.0151
	MEAN	0.5395	+0.0690	+0.0755	+0.1215
	MINIMUM	0.6670	+0.0820	+0.0740	+0.0670
	STD	0.8750	-0.3270	-0.2310	-0.1250
	ROUGE	0.2570	+0.0040	0.0000	-0.0040
	SIMCSE	0.8265	-0.0020	-0.0085	-0.0235
Qwen-VL	DeBERTa F1	0.6315	-0.0045	-0.0045	-0.0095
	BLEU	0.0645	-0.0040	+0.0025	-0.0015
	METEOR	0.2385	-0.0050	+0.0025	-0.0025
	NUMERIC	0.3555	+0.0560	-0.0675	-0.0515
	MAXIMUM	0.6610	+0.1135	+0.0200	+0.0430
	MEAN	0.4510	-0.0110	-0.2150	-0.2570
	MINIMUM	0.5350	-0.0055	-0.0650	-0.0620
	STD	0.1070	+0.2095	-0.0620	-0.0070
	ROUGE	0.2310	-0.0045	+0.0130	+0.0030
	SIMCSE	0.7835	+0.0020	-0.0085	-0.0090

1491 Table 16 reports results for three representative models (Idefics2-8B, LLaMA 3.2 Vision, Qwen-VL).
 1492 Values show the baseline metric with no plot (*TS+Text* only), followed by relative gains or losses for
 1493 each visualization type. Across models and metrics, neither GAFs nor recurrence plots significantly
 1494 improved performance; in many cases, they degraded results relative to line plots or even no visual
 1495 input. These findings suggest that the bottleneck lies not in the choice of visualization but in the
 1496 models’ inability to effectively integrate visual cues. With this, we motivate the development of
 1497 models and encodings that better exploit the structured information available in visualized time series.
 1498
 1499

J Q&A TASKS

1500 We present accuracy scores for VLMs on the Q&A task in Table 17. An analysis of the highlighted
 1501 statistics reveals a striking contrast between the finetuned and pretrained models. The finetuned model
 1502 frequently produces highly confident yet sometimes incorrect predictions, whereas the pretrained
 1503 model demonstrates more caution, acknowledging that the mean is lower than expected without
 1504 attempting to estimate a specific value. Notably, certain proprietary models are now reaching, and at
 1505 times even surpassing, human performance on specific subsets of tasks. While this signals exciting
 1506 progress in the field, it also highlights the nuances of human cognitive performance, particularly
 1507 under conditions where distraction might occur. It is vital to note, however, that no singular model has
 1508 consistently achieved near-human proficiency across the entirety of the benchmark’s demands. The
 1509 plot retrieval task, in particular, stands out as a significant hurdle, robustly affirming the unparalleled
 1510 human capacity for holistic visual-numeric integration, a critical frontier for time series understanding.
 1511

1512 Table 17: Model accuracy for time-series Q&A tasks. **Bolded** and underlined scores respectively
 1513 denote first and second places (excluding human performance). Caption/Plot/TS refer to caption, plot,
 1514 and time series matching. Amplitude/Peak Earlier/Mean/Variance refer to amplitude, peak, mean,
 1515 and variance comparison. **Green** and **Red** indicate improvement and degradation after finetuning,
 1516 respectively.

1517

Model	Caption	Plot	TS	Amplitude	Peak Earlier	Mean	Variance
Proprietary							
Gemini 2.0 Flash	0.78	0.30	<u>0.61</u>	0.8	0.42	<u>0.7</u>	0.62
Gemini 2.5 Pro Preview	0.66	0.30	0.31	1.0	1.0	1.0	0.85
Claude 3 Haiku	0.68	0.29	0.57	0.65	0.40	0.53	0.33
GPT-4o	0.96	<u>0.31</u>	0.77	0.825	0.725	<u>0.7</u>	0.625
Pretrained							
InternVL 2.5	0.55	0.17	0.49	0.60	0.47	0.45	0.40
LLaVA v1.6 Mistral	0.39	0.27	0.32	0.45	0.45	0.42	0.45
Phi-4 M.I.	0.62	0.29	0.45	0.7	0.82	0.68	<u>0.7</u>
Idefics 2	0.49	0.25	0.29	0.35	0.4	0.4	0.5
SmolVLM	0.26	0.34	0.28	0.4	0.48	0.44	0.6
QwenVL	0.68	0.27	<u>0.61</u>	0.7	0.5	0.6	0.4
Llama 3.2 Vision	0.66	0.24	0.27	0.45	0.63	0.43	0.3
Finetuned							
LLaVA v1.6 Mistral	0.44	0.25	0.29	0.43	0.53	0.35	0.4
Phi-4 M.I.	0.59	0.29	0.45	<u>0.83</u>	<u>0.88</u>	<u>0.7</u>	0.55
Idefics 2	0.33	0.23	0.29	0.58	0.38	0.5	0.63
SmolVLM	0.18	0.26	0.29	0.28	0.48	0.38	0.58
QwenVL	0.55	0.25	0.43	0.7	0.4	0.58	0.58
Llama 3.2 Vision	0.66	0.24	0.27	0.4	0.6	0.43	0.33
Human	0.81	0.95	0.83	0.925	0.85	0.95	0.90

1542

1543

1544 J.1 SAMPLE Q&A QUESTIONS

1545

1546

1547 We provide examples of Q&A questions in Figures 9, 10, 12, 11, 13, 14, and 15, covering one
 1548 example per question type.

1549

1550

1551

1552

Question

Given two time series A and B, detect which one has a higher amplitude defined as maximum - minimum.

A: [1.15, 0.92, 0.85, 0.75, 0.57, 0.62, 0.6, 0.5, 0.68, 0.72, 0.8, 0.67, 0.8, 0.55, 0.55, 0.7, 0.88]

B: [87.0, 83.0, 77.0, 74.0, 84.0]

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer

"answer": "B"

1564

1565

Figure 9: Example of a *time series amplitude comparison* question.

1566
 1567 **Question**
 1568 Given two time series A and B, detect which one reaches its maximum earlier.
 1569 A: [66.76, 83.06, 85.77, 90.77, 98.81, 90.62, 80.05, 91.36, 89.59, 76.4, 80.1, 85.6, 84.41]
 1570 B: [949.0, 689.0, 561.0, 552.0, 563.0]

1571 You must respond only with valid JSON, and no extra text or markdown.

1572
 1573 The JSON schema is:
 1574 {"answer": <string>}
 1575 <string> must be an answer string containing only A, B.
 1576 Ensure your output parses as JSON with exactly one top-level object containing the answer field.

1577
 1578 **Answer**
 1579 "answer": "B"

Figure 10: Example of a *time series peak comparison* question.

1580
 1581
 1582
 1583
 1584
 1585
 1586 **Question**
 1587 Given the following two time series A and B, please identify which one has higher volatility.
 1588 A: [0.14, 0.14, 0.14, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57]
 1589 B: [0.21, 0.33, 0.41, 0.39, 0.44, 0.35, 0.35, 0.43, 0.51, 0.65, 0.69, 0.74]

1590 You must respond only with valid JSON, and no extra text or markdown.

1591
 1592 The JSON schema is:
 1593 {"answer": <string>}
 1594 <string> must be an answer string containing only A, B.
 1595 Ensure your output parses as JSON with exactly one top-level object containing the answer field.

1596
 1597 **Answer**
 1598 "answer": "A"

Figure 11: Example of a *time series variance comparison* question.

1600
 1601
 1602
 1603
 1604
 1605
 1606 **Question**
 1607 Given the following two time series A and B, please identify which one has higher overall values.
 1608 A: [65.0, 65.0, 64.0, 37.0, 55.0, 51.0]
 1609 B: [6.29, 6.29, 6.29, 7.0, 7.0, 7.0, 7.0, 6.71, 6.71, 6.71, 6.71, 6.717, 7.57, 7.57, 7.14, 7.14, 7.14, 7.14, 7.43]

1610 You must respond only with valid JSON, and no extra text or markdown.

1611
 1612 The JSON schema is:
 1613 {"answer": <string>}
 1614 <string> must be an answer string containing only A, B.
 1615 Ensure your output parses as JSON with exactly one top-level object containing the answer field.

1616
 1617 **Answer**
 1618 "answer": "A"

Figure 12: Example of a *time series mean comparison* question.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Question

Here is a time series:

37.00,37.00,37.00,37.00,37.00,40.57,40.57,40.57,40.57,40.57,40.57

What caption best describes this time series?

(A) From May 1st to July 26th, 2024, the daily COVID-19 deaths in China show a fluctuating pattern, with values generally ranging between 0.29 and 2.86. There are periods of relative stability, such as the initial days of May with a consistent 0.86, interspersed with occasional spikes to 2.86, and dips to 0.29 towards the end of July. Compared to the general daily death statistics for China, where the mean is 73.0 and the maximum reaches 6812.0, this specific time series indicates a period of significantly lower daily deaths, suggesting a substantial improvement in the COVID-19 situation during this timeframe.

(B) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a relatively stable pattern, beginning at 37.3 cases and rising to 40.57 cases by October 29, 2023, where it remains for the rest of the period. Compared to the country's general statistics, where the mean is 236, the daily cases during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does not follow any expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

(C) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a relatively stable pattern, beginning at 37 cases and rising to 40.57 cases by October 29, 2023, where it remains for the rest of the period. Compared to the country's general statistics, where the mean is 236.0, the daily cases during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does not follow any expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

(D) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a relatively unstable pattern, beginning at 37 cases and decreasing to 40.57 cases by October 29, 2023, where it remains for the rest of the period. Compared to the country's general statistics, where the mean is 236.0, the daily cases during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does not follow expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B, C, or D.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer

"answer": "C"

Figure 13: Example of a *caption matching* question.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

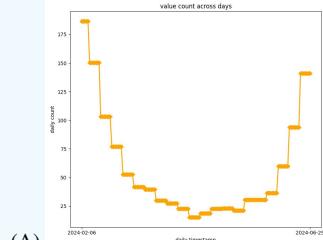
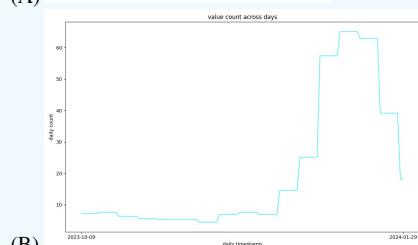
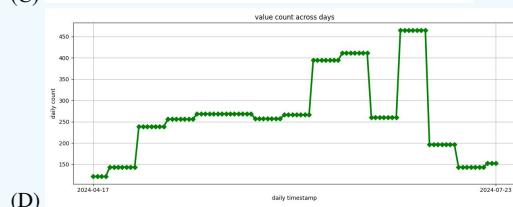
1685

Question

Here is a time series:

186.57, 186.57, 186.57, 186.57, 186.57, 150.29, 150.29, 150.29, 150.29, 150.29, 150.29, 103.14, 103.14, 103.14, 103.14, 103.14, 103.14, 103.14, 103.14, 77.00, 77.00, 77.00, 77.00, 77.00, 77.00, 52.71, 52.71, 52.71, 52.71, 52.71, 52.71, 41.71, 41.71, 41.71, 41.71, 41.71, 41.71, 39.71, 39.71, 39.71, 39.71, 39.71, 39.71, 29.86, 29.86, 29.86, 29.86, 29.86, 29.86, 27.43, 27.43, 27.43, 27.43, 27.43, 27.43, 22.57, 22.57, 22.57, 22.57, 22.57, 22.57, 15.14, 15.14, 15.14, 15.14, 15.14, 15.14, 18.71, 18.71, 18.71, 18.71, 18.71, 18.71, 22.71, 22.71, 22.71, 22.71, 22.71, 22.71, 23.14, 23.14, 23.14, 23.14, 23.14, 23.14, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 30.57, 30.57, 30.57, 30.57, 30.57, 30.57, 36.29, 36.29, 36.29, 36.29, 36.29, 36.29, 59.71, 59.71, 59.71, 59.71, 59.71, 59.71, 93.71, 93.71, 93.71, 93.71, 93.71, 93.71, 140.86, 140.86, 140.86, 140.86, 140.86, 140.86

Here are four plots of different time series:



Which plot corresponds to the time series provided above?

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B, C, or D.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer

"answer": "A"

Figure 14: Example of a *plot matching* question.

1728

1729

Question

1730

Here is a time series caption:

1731

From 2014 to 2019, Bulgaria's Agricultural output index (2015=100) generally increased, starting at 103.4 in 2014 and reaching a peak of 109.23 in 2019, with a slight dip to 100.0 in 2015. The average output index during this period was 105.4, notably lower than the historical mean of 126.73, suggesting a period of relatively lower agricultural productivity compared to Bulgaria's long-term performance. The increase from 2015 to 2019 indicates a moderate recovery and growth phase-t within this specific timeframe.

1732

What time series is best described by this caption?

1733

- (A) [109.23, 107.24, 108.45, 104.1, 100.0, 103.4]
- (B) [108.45, 100.0, 104.1, 107.24, 103.4, 109.23]
- (C) [103.9, 99.8, 104.1, 109.2, 106.8, 109.23]
- (D) [103.4, 100.0, 104.1, 108.45, 107.24, 109.23]

1734

You must respond only with valid JSON, and no extra text or markdown.

1735

The JSON schema is:

1736

```
{"answer": <string>}
```

1737

<string> must be an answer string containing only A, B, C, or D.

1738

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

1739

Answer

1740

```
"answer": "D"
```

1741

1742

1743

Figure 15: Example of a *time series matching* question.

1744

1745

1746

1747

J.2 QWEN-BASED FILTERING

1748

1749

1750

1751

1752

To show that questions erroneously answered by Qwen 2.5 Omni are indeed harder, we evaluated a subset of models on both an easy set of 600 questions and the hard set generated by Qwen 2.5 Omni. The questions in the easy set are randomly sampled from those correctly answered by Qwen 2.5 Omni. Table 18 depicts the comparison. All models, regardless of architecture, show a consistent performance gain on the “easy” subset, demonstrating that Qwen-filtered questions are broadly harder, not uniquely harder for Qwen. To ensure a balanced benchmark, we release both the full set (38.4k questions) and the hard subset (7k questions), enabling evaluation and training across the entire difficulty spectrum.

1753

1754

1755

1756

1757

1758

1759

Table 18: Performance on easy vs. hard questions and corresponding lift.

1760

1761

1762

1763

1764

1765

1766

1767

1768

J.3 DISTRACTOR GENERATION IN Q&A TASKS

1769

1770

1771

1772

1773

1774

To increase task difficulty, artificial perturbations are applied in the Time Series Matching and Caption Matching tasks. As shown in the table below, these perturbations significantly impacted model performance in Time Series Matching, increasing task difficulty and forcing models to reason over trends rather than relying on superficial cues.

1775

1776

1777

1778

1779

1780

1781

Model	Easy	Hard	Lift
Idefics 2	65%	46%	+19%
InternVL 2.5	72%	43%	+29%
Phi-4	61%	46%	+15%
SmolVLM	53%	48%	+5%
Llama-3.2	54%	49%	+5%

To illustrate the rationale of this design choice, assume the correct time series option is [1, 2, 3]. Having distractors like [101, 99, 102] makes the question trivial due to its totally different scale and nature. Our distractors are generated by perturbations on the correct time series, resulting in the following distractors.

1. **Shuffled:** [2, 1, 3], avoids answering correctly by exploiting numeric lookup without temporal order awareness.
2. **Reversed:** [3, 2, 1], avoids reasoning without trend awareness.

1782 3. **Gaussian-noised**: [1.03, 1.99, 3.002], forces precise numeric reasoning instead of
 1783 superficial numeric and trend similarity.
 1784

1785
1786 Table 19: Qwen-2.5-Omni-7B accuracy by task and distractor type.
1787

Question Type	Distractor Type	Accuracy
Time Series Matching	Cross-domain	0.9803
Time Series Matching	Same-domain	0.9586
Time Series Matching	Artificially Perturbed	0.6864
Caption Matching	Cross-domain	0.8325
Caption Matching	Same-domain	0.8250
Caption Matching	Artificially Perturbed	0.8532

1797 Table 19 shows that these perturbations indeed augment question difficulty. For Caption Matching,
 1798 we do not find a significant difference between artificially perturbed distractors compared to original
 1799 negative examples drawn from the dataset. We release the set of Q&A questions without artificial
 1800 perturbations as well. Perturbations are not applied to the other tasks; negative samples are instead
 1801 drawn directly from other time series in the dataset.
 1802

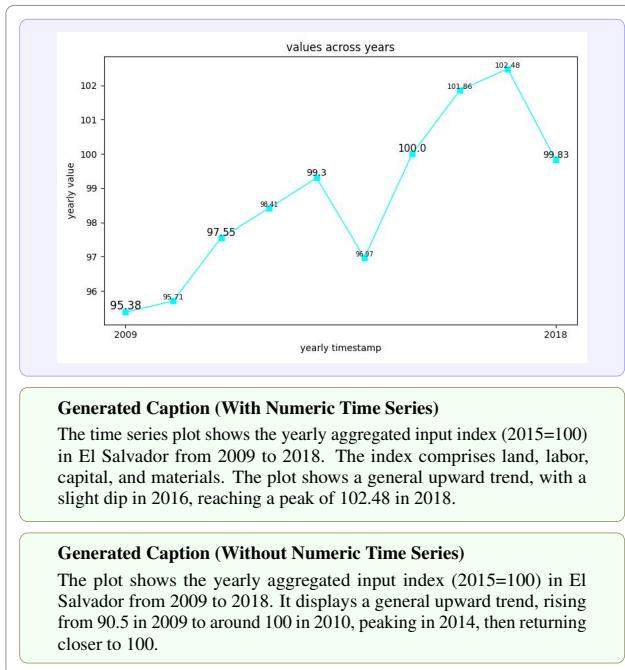
1803
1804

K INFERENCE EXAMPLES

1805
1806

K.1 NUMERIC TIME SERIES ABLATION

1807 We compare the generated captions
 1808 with and without explicitly providing
 1809 the numeric time series data as input
 1810 to the model in the prompt. As
 1811 seen in Figure 16, when a numeric
 1812 time series is included, the model
 1813 produces some factual and interpre-
 1814 tive errors. Notably, it describes the
 1815 trend as “increased steadily,” despite
 1816 the clear dip in 2014 and a decline
 1817 post-2017. It also incorrectly iden-
 1818 tifies 2018 as the year of the peak
 1819 value 102.48, while the actual peak
 1820 occurs in 2017. Similarly, the slight
 1821 dip is misattributed to 2016 instead
 1822 of the correct year 2014. In con-
 1823 trast, when the numeric time series
 1824 is removed from the input, the gen-
 1825 erated caption becomes significantly
 1826 more erroneous. The model fabri-
 1827 cates plausible-sounding but incor-
 1828 rect values, for example, claiming the
 1829 index reached 90.5 in 2009 and spiked
 1830 to 105 in 2014, neither of which is
 1831 present in the actual plot. This sug-
 1832 gests that the absence of explicit nu-
 1833 meric context forces the model to hal-
 1834 lucinate plausible trajectories based solely on the shape of the line plot. While both versions
 1835 demonstrate limitations in temporal precision, the numeric-aware caption is more grounded and
 less prone to hallucinating specific values, producing some factual errors but still outperforming the
 numeric-agnostic version, which fabricates values entirely.

1833 Figure 16: Comparison of generated captions with and without
 1834 numeric time series input. Model evaluated is LLaVA
 1835 1.6.

1836

K.2 STATISTICAL INFERENCE FAILURE & SUCCESS

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

In the main paper, we mentioned that finetuned models often become overconfident when inferring statistical properties such as means and standard deviations, despite lacking the capability to compute them accurately. In this section, we present two concrete cases that illustrate this overconfidence in practice, and one case where the finetuned model actually successfully inferred the statistics.

1853

1854

1855

1856

Case 1: Failure The following error case shows the finetuned LLaVA v1.6 Mistral erroneously attempting to infer the time series mean, while its pretrained version does not. We compare the captions generated by both versions of the model against the numerically grounded reference.

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Ground-Truth Caption

The Total Factor Productivity (TFP) index for Malawi from 2008 to 2017 reveals notable fluctuations, starting at 85.99 in 2008 and peaking at 110.47 in 2017, with 2015 set at 100.0. There's an initial rise from 2008 to 2009, followed by some volatility before a significant jump to 107.82 in 2013, indicating a period of strong productivity growth, and the mean of **98.93** for this period is significantly higher than the historical mean of **61.88**, suggesting a period of above-average productivity compared to Malawi's longer-term performance.

Caption from Pretrained Model

The time series for Malawi's Total Factor Productivity index shows a generally upward trend from 2008 to 2017, with some fluctuations. The index starts at 85.99 in 2008 and reaches a peak of 110.47 in 2014. It then experiences a decline, dropping below 100 in 2015 and 2016. In 2017, the index showed a slight increase, reaching 100.06. Compared to global or regional norms, Malawi's productivity index appears to be lower than expected, suggesting a need for economic development and productivity enhancement strategies.

Caption from Finetuned Model

From 2008 to 2017, Malawi's Total Factor Productivity index (2015=100) exhibited considerable volatility, starting at 85.99 in 2008 and ending at 110.47 in 2017. The index experienced a notable increase from 2008 to 2010, rising from 85.99 to 95.76, followed by a dip to 91.75 in 2011, before generally trending upwards with some fluctuations. Compared to the historical mean of **94.84**, the mean of this specific time series is moderately higher at **99.88**, suggesting a period of relatively stronger productivity growth than the broader historical context.

Figure 17: Finetuned model attempts to infer the mean, but it fails. Compare the **bolden** values.

We observe that, while the pretrained model refrains from inferring the mean of the time series, displaying a form of "self-awareness" about its limitations, the finetuned model tends to make confident guesses. This behavior underscores a key limitation of the cross-entropy loss objective. Since ground-truth captions often include the time series mean, the model can reduce its loss by always attempting to predict them, as number tokens are treated like any text tokens. When the model generates captions with sentence structures resembling those in the ground truth, even erroneous guesses of these statistics incur less loss than omitting them entirely.

Case 2: Success The following is a success case where the finetuned Idefics 2 is able to infer the time series mean accurately with a negligible error. We compare the captions generated by the pretrained and finetuned versions of the model against the ground-truth.

Interestingly, the issue of statistical overconfidence appears to be model-specific, as different models exhibit varying behaviors after finetuning. In this case, the finetuned Idefics 2 was able to infer both the mean and the standard deviation with reasonable accuracy, when even the ground-truth caption did not explicitly include the standard deviation. This signals that some models benefit more from finetuning on our training data.

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

Ground-Truth Caption

The death rate in Papua New Guinea from 2017 to 2021 shows a relatively stable trend, fluctuating around a mean of **6.52** deaths per 1000 people, with a slight dip to 6.4 in 2020 and a peak of 6.68 in 2021. Compared to the global average, which steadily increased from 7.53 in 2017 to 8.57 in 2021, Papua New Guinea's death rate is significantly lower. While the global death rate saw a notable increase, particularly between 2020 and 2021, Papua New Guinea's rate remained relatively consistent, indicating a different trajectory than the global trend.

Caption from Pretrained Model

The yearly death rate in Papua New Guinea has been increasing since 2017. In 2017, the death rate was 6.51, and it has been increasing since then. In 2021, the death rate was 6.68, which is the highest value in the time series.

Caption from Finetuned Model

From 2017 to 2021, the death rate in Papua New Guinea, a lower-middle-income country, fluctuated slightly, ranging from a low of 6.40 in 2020 to a high of 6.68 in 2021. The average death rate during this period was **6.49**, with a standard deviation of **0.1**, indicating relatively stable numbers. Compared to the global average death rate, which decreased from 7.57 to 7.16 over the same period, Papua New Guinea's death rate was significantly lower and showed no clear downward trend.

Figure 18: Finetuned model successfully infers the mean and standard deviation with negligible error. Compare the **bolden** values.

L CATS-BENCH SAMPLES

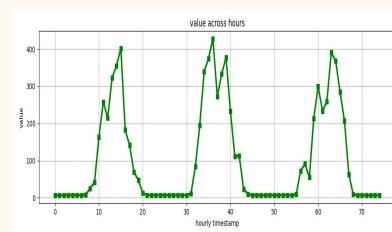
In this section, we provide representative time series samples from CaTS-Bench across several domains. Samples include the numeric time series segment, rich JSON metadata, line plot image, and ground-truth caption.

Time Series Segment

```
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 25.5,
42.0, 163.33, 258.0, 214.5, 322.5, 354.75,
402.0, 182.33, 141.25, 69.25, 47.0, 12.5,
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0,
7.0, 11.25, 84.0, 194.5, 338.75, 374.75,
427.25, 272.75, 332.67, 377.75, 232.33,
111.67, 113.25, 23.5, 10.0, 7.0, 7.0, 7.0,
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 9.0,
72.25, 91.0, 54.5, 213.0, 299.25, 233.75,
259.0, 390.75, 367.75, 285.25, 207.75, 63.25,
9.5, 7.0, 7.0, 6.75, 6.75, 7.0, 7.0
```

Metadata JSON

```
{
  "all-time maximum": 730.0, "all-time average value until today": 127.62,
  "all-time minimum": 0.0, "all-time standard deviation until today": 175.79, "average value in this time series": 105.78, "city": "Visakhapatnam", "maximum value in this time series": 427.25, "measure": "SR (W/m²)", "minimum value in this time series": 6.75, "sampling frequency": "hourly", "standard deviation in this time series": 133.47, "start_month": "July", "start_year": 2017, "starting time": "2022-06-27 22:00:00", "state": "Andhra Pradesh", "station_location": "GVM Corporation, Visakhapatnam" }
```

Line Plot Image**Caption**

The hourly solar radiation (sr) data from Visakhapatnam, starting on June 27, 2022, exhibits a clear daily pattern of low values around 7 w/m² during the night and early morning, sharply increasing to peaks during daylight hours, with a maximum value of 427.25 w/m², compared to the city's all-time average of 127.62 w/m², the average value in this time series is 105.78 w/m². The data follows a consistent diurnal cycle, with repeated peaks during the day and low values at night, showing a stable daily pattern.

Figure 19: Sample 1 showing time series data, metadata, plot image, and reference caption.

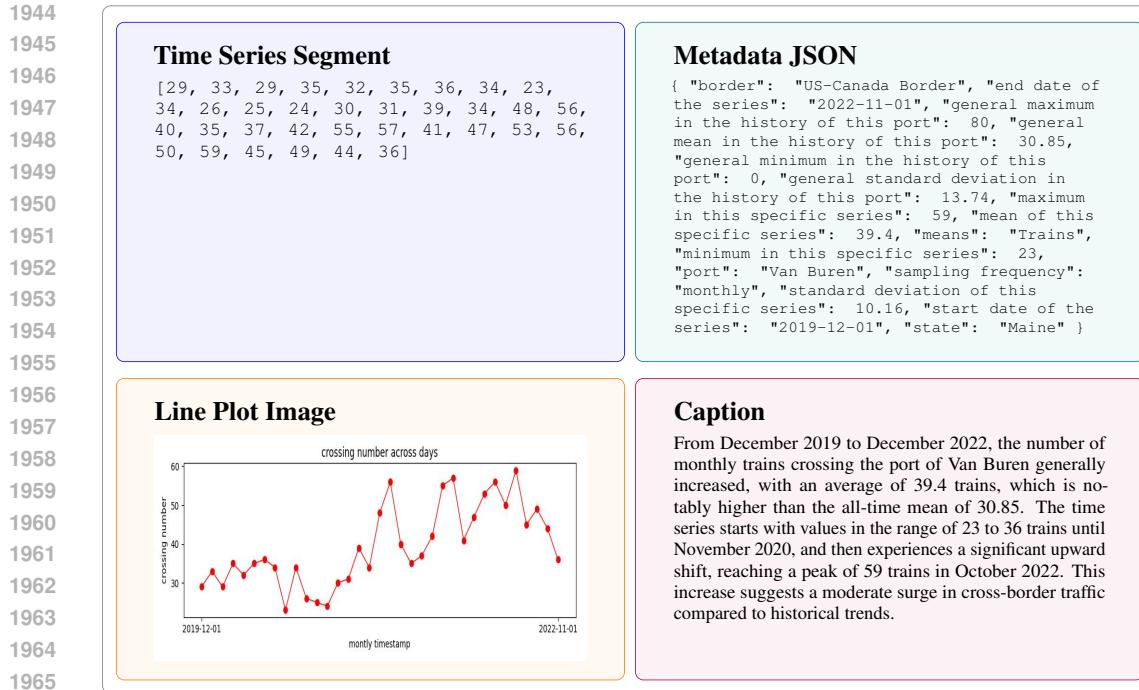


Figure 20: Sample 2 showing time series data, metadata, plot image, and reference caption.

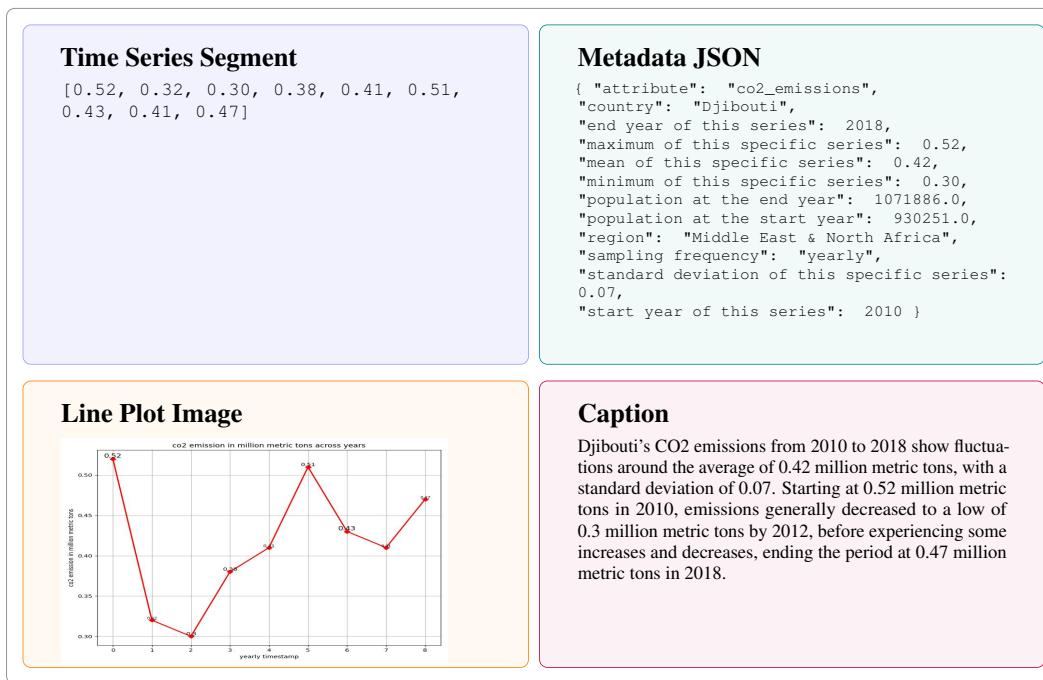


Figure 21: Sample 3 showing time series data, metadata, plot image, and reference caption.

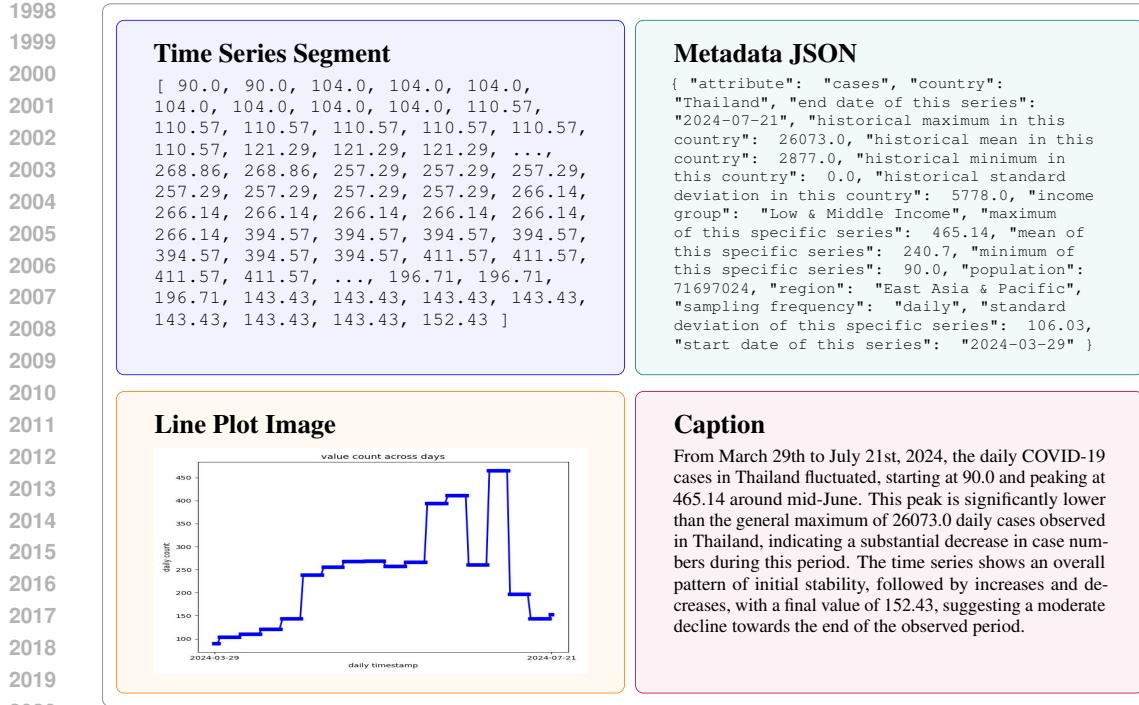


Figure 22: Sample 4 showing time series data, metadata, plot image, and reference caption.

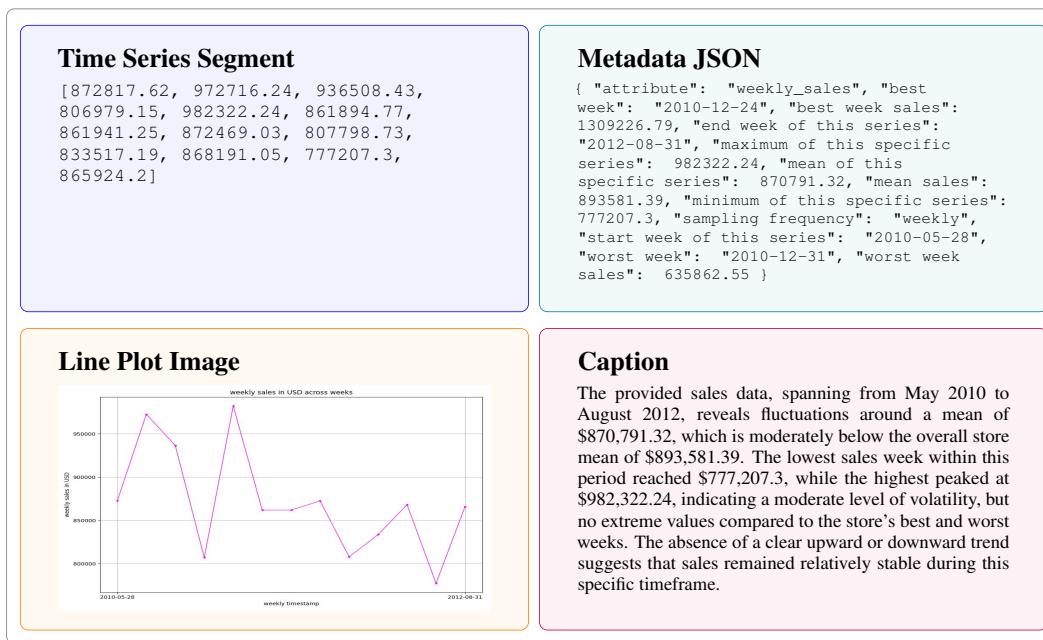


Figure 23: Sample 5 showing time series data, metadata, plot image, and reference caption.

M EDITING AND REVIEW

M.1 EDITS MADE IN THE CAPTIONS

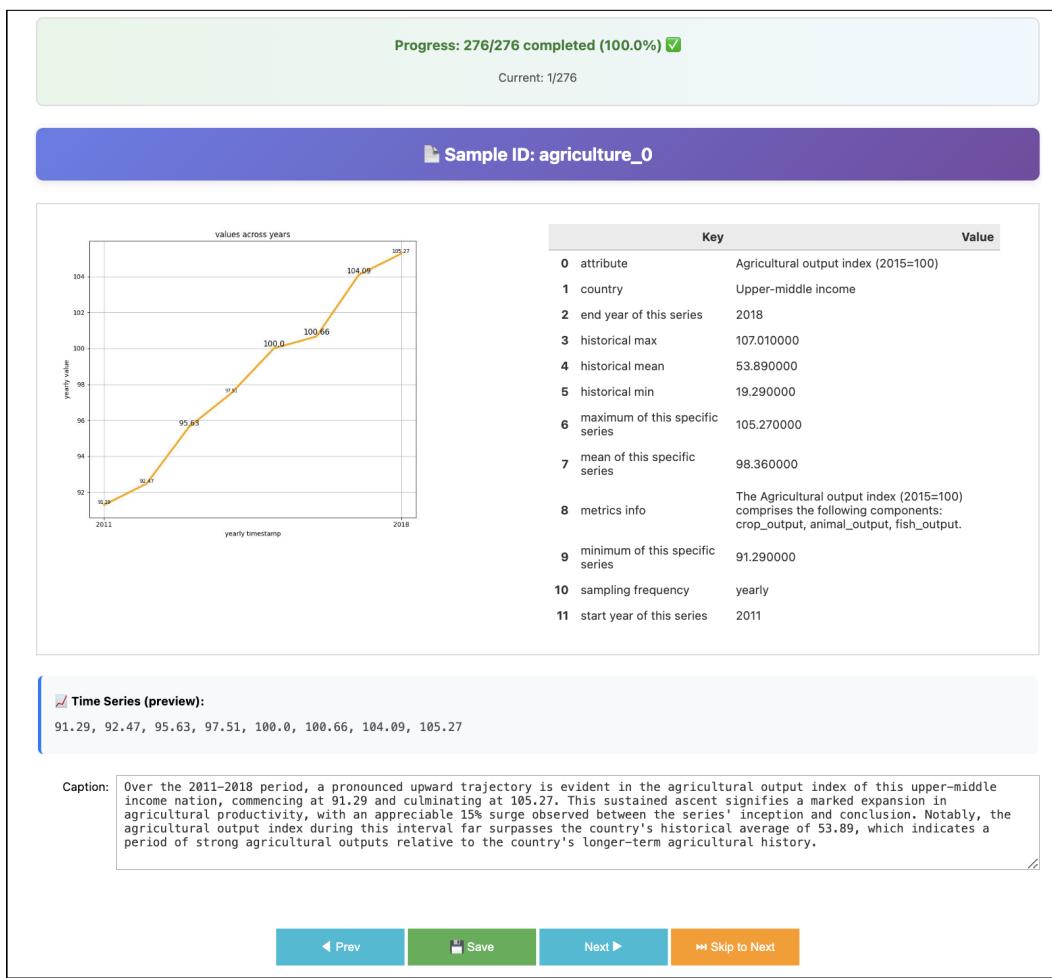
During the editing process, captions were systematically refined to ensure accuracy, clarity, and consistency across the dataset. The following key rules were applied:

2052 1. **Removal of external speculation:** Captions were restricted strictly to information verifiable from
 2053 the metadata, time series, and plot, avoiding any causal claims or conjecture not grounded in the time
 2054 series values or provided metadata.
 2055 2. **Variation in phrasing:** To reduce repetitiveness, sentence openings and phrases were varied
 2056 rather than uniformly beginning and phrasing the same sentences.
 2057 3. **Pattern summarization:** When trends or unique structures (such as V-shaped or monotonic
 2058 movements, etc.) were clearly visible, they were explicitly noted.
 2059 4. **Quantitative grounding:** Values such as maxima, minima, averages, and percentage changes
 2060 were consistently included when relevant to ensure captions remained data-driven.
 2061 5. **Consistency with variation:** While maintaining factual accuracy and grounding in the data,
 2062 captions were intentionally varied in structure and style to avoid monotony and ensure more
 2063 natural, human-like phrasing across the dataset.
 2064

2065 This systematic review process resulted in captions that were both faithful to the underlying data and
 2066 stylistically coherent across the dataset.
 2067

2069 M.2 INTERFACE

2071 In Figure 24, we provide a screenshot of the editing interface we used to edit the human-revisited test
 2072 set.



2105 Figure 24: Interface used to edit and verify the captions.

2106 **N TEMPLATE-BASED PROMPTS**
21072108 In this section, we illustrate the prompts used in our sample generation pipeline, evaluation, para-
2109 phrasing, PAL, and distractor generation in Q&A. Angular brackets are used as placeholders for the
2110 actual values.
21112112 **N.1 GROUND-TRUTH CAPTION GENERATION PROMPT**
21132114 The following is an example of a prompt for generating the ground-truth caption from the source
2115 dataset *Crime*.
21162117 Here is a time series about the number of <sampling frequency> crimes in
<town>, Los Angeles, from <start date> to <end date>:
21182119 <time series>
21202121 The all-time statistics of <town> until today are:
2122 Mean: <general mean of this town>
2123 Standard Deviation: <general standard deviation of this town>
2124 Minimum: <general minimum of this town>
2125 Maximum: <general maximum of this town>
21262127 And the statistics for this specific time series are:
2128 Mean: <mean of this specific series>
2129 Standard Deviation: <standard deviation of this specific series>
2130 Minimum: <minimum of this specific series>
2131 Maximum: <maximum of this specific series>
21322133 Describe this time series by focusing on trends and patterns. Discuss
2134 concrete numbers you see and pay attention to the dates.
21352136 For numeric values, ensure consistency with the provided time series. If
2137 making percentage comparisons, round to the nearest whole number. Report
2138 the dates when things happened.
21392140 Use the statistics I provided you for comparing this example to the
2141 normalcy.
21422143 Do not add any extra information beyond what is given.
2144 Highlight significant spikes, dips, or patterns.
21452146 You don't have to explicitly report the numeric values of general
2147 statistics; you just use them for reference.
2148 Compare the trends in this time series to global or regional norms,
2149 explaining whether they are higher, lower, or follow expected seasonal
2150 patterns.
21512152 When making comparisons, clearly state whether differences are minor,
2153 moderate, or significant.
21542155 Use descriptive language to create engaging, natural-sounding text.
2156 Avoid repetitive phrasing and overused expressions.
21572158 Answer in a single paragraph of four sentences at most, without bullet
2159 points or any formatting.
21602161 **N.2 BASELINE CAPTION GENERATION PROMPT**
21622163 When evaluating the baselines on our benchmark, we provide limited metadata, excluding the
2164 precomputed statistics of the time series, as the models are expected to infer them on their own. An
2165 example of the prompt is the following.
21662167 Here is a time series about the number of <sampling frequency> crimes in
<town>, Los Angeles, from <start date> to <end date>:
2168

```

2160 <time series>
2161
2162 Describe this time series by focusing on trends and patterns. Discuss
2163 concrete numbers you see and pay attention to the dates. For numeric
2164 values, ensure consistency with the provided time series. If making
2165 percentage comparisons, round to the nearest whole number. Report the
2166 dates when things happened.
2167
2168 Compare the trends in this time series to global or regional norms,
2169 explaining whether they are higher, lower, or follow expected seasonal
2170 patterns.
2171
2172 When making comparisons, clearly state whether differences are minor,
2173 moderate, or significant.
2174
2175 Use descriptive language to create engaging, natural-sounding text.
2176 Avoid repetitive phrasing and overused expressions.
2177
2178 Answer in a single paragraph of four sentences at most, without bullet
2179 points or any formatting.
2180

```

N.3 CAPTION PARAPHRASING PROMPT

To rephrase a caption into a different linguistic style while preserving semantic and numeric information, we feed the following prompt into a paraphraser model of choice.

```

2183 You are a helpful assistant. Your task is to rephrase the following
2184 paragraph that describes a time series. You MUST strictly follow these
2185 rules:
2186
2187 Preserve all factual information: All numeric values, statistics (min,
2188 max, mean, etc.), trends ('increased', 'peaked'), comparisons ('higher
2189 than'), and dates must remain exactly the same.
2190
2191 Change the style completely: Use different sentence structures,
2192 synonyms, and grammatical constructions. Alter the tone (e.g., make it
2193 more formal or more conversational). Do not use the same phrasing as the
2194 original.
2195
2196 Output only the rephrased paragraph, with no additional explanation.
2197
2198 Here is the paragraph to rephrase:
2199 <caption>
2200

```

N.4 PAL PROMPT

Here we reproduce the full prompt used for the program-aided context:

```

2203 ### Task
2204 <caption_prompt>
2205
2206     ### Instructions for the assistant
2207     1. You are an expert coding assistant; think through the task
2208     **step-by-step**.
2209     2. Write **Python 3.12** code (inside one ```python``` block) that
2210     computes the final answer.
2211         * Use only the Python Standard Library (e.g., you may use the 'math',
2212         'statistics' libraries).
2213             * Wrap everything in a 'solve()' function that will be invoked to
2214             produce the final caption.
2215                 * The code **must** produce the caption string itself**. Any numeric
2216                 values can be computed
2217

```

```

2214     in Python and formatted into the caption string. Make sure to use
2215     any values you compute
2216     in the resulting caption string.
2217 3. The `solve()` function you write will be invoked to produce the final
2218  caption.

2219  ### Output format (exactly; no extra text, explanations, or formatting)
2220  ````python
2221  # code that defines solve() and any desired strings
2222  solve()
2223  ````
```

2224 The full TSC prompt from [N.2](#) is injected as the `caption_prompt` string.

2227 N.5 SEMANTIC PERTURBATION PROMPT

2229 To perturb a caption so that its semantic meaning is altered while keeping numbers intact, we feed the
2230 following prompt into Gemini 2.0 Flash.

```

2231 Your task is to minimally modify a time series description so that its
2232 meaning is altered but the numbers are maintained.
2233
2234 For example, you can switch "increase" with "decrease", "upward" to
2235 "downward", or something more sophisticated. Keep the description
2236 structurally identical to the original text; you don't have to alter too
2237 much information. Altering anywhere between 1 and 3 parts is enough. Do
2238 not edit the numbers.
2239 Here's the description to modify:
2240 <caption>
2241 Give your answer in a paragraph of text as the given description,
2242 without any explanation or formatting.
```

2244 N.6 NUMERIC PERTURBATION PROMPT

2246 To perturb a caption so that its numbers are altered while its semantic information is preserved, we
2247 feed the following prompt into Gemini 2.0 Flash.

```

2249 Your task is to slightly modify the numbers in a time series description
2250 so that its semantics remain the same, but the numbers are slightly
2251 altered.
2252
2253 For example, you can replace "12" with "12.2", "45%" with "46%". Keep
2254 the description structurally and semantically identical to the original
2255 text; you don't have to alter all numbers but anywhere between 1 to 3
2256 times is enough. Make sure that the altered number still makes sense and
2257 fits the scale of the phenomenon.
2258 Here's the description to modify:
2259 <caption>
2260
2261 Give your answer in a paragraph of text as the given description,
2262 without any explanation and formatting.
```

2264 O HUMAN BASELINE

2266 To establish a human performance baseline, we invited university students to voluntarily complete
2267 all four Q&A tasks. These tasks span a range of reasoning types, including fine-grained statistical

2268 comparisons, semantic interpretation, and multimodal alignment. Participants were recruited through
 2269 academic networks and completed the tasks without the aid of external tools, ensuring a fair compari-
 2270 son with models operating under similar conditions. Participation was entirely voluntary, with no
 2271 compensation, and individuals could withdraw at any time. Below, we present the instructions given
 2272 to the volunteers for their participation.

2273 **Participant Information and Consent Form for Time Series QA**
 2274 **Questionnaire**

2275 Thank you for considering participation in our study!

2276 This questionnaire is part of a research project evaluating human
 2277 performance on time series understanding tasks. Your responses
 2278 will help us establish a baseline for comparing human performance
 2279 to that of current language models. You will be given a Google
 2280 Form consisting of 10 to 14 multiple-choice questions of the same
 2281 type, and you should not use any external tools.

2282 Please read the following information carefully before continuing:

2283 **Voluntary Participation:** Your participation is entirely
 2284 voluntary. You may choose not to participate or to withdraw at
 2285 any time without any consequences.

2286 **Duration:** The questionnaire is brief and is estimated to take
 2287 between 3 and 6 minutes to complete.

2288 **Anonymity & Data Use:** No personal information will be collected
 2289 or stored. Your answers will remain anonymous and will be used
 2290 solely for research purposes, such as evaluating and reporting
 2291 model performance in academic publications.

2292 **No Compensation:** There is no monetary or material compensation
 2293 for participating in this study.

2294 **Confidentiality:** All collected data will be handled securely.
 2295 Only aggregated and anonymized results will be published.

2296 **By proceeding,** you confirm that you understand the above terms
 2297 and agree to participate in this research study.

2298 **Thank you for your collaboration and contribution to our research!**

2299 Date: _____ Signature: _____

2300
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321