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ABSTRACT

Time series captioning, the task of describing numeric time series in natural lan-
guage, requires numeric reasoning, trend interpretation, and contextual understand-
ing. Existing benchmarks, however, often rely on synthetic data or overly simplistic
captions, and typically neglect metadata and visual representations. To close this
gap, we introduce CaTS-Bench, the first large-scale, real-world benchmark for
Context-aware Time Series captioning. CaTS-Bench is derived from 11 diverse
datasets reframed as captioning and Q&A tasks, comprising roughly 465k training
and 105k test timestamps. Each sample includes a numeric series segment, contex-
tual metadata, a line-chart image, and a caption. A key contribution of this work is
the scalable pipeline used to generate reference captions: while most references
are produced by an oracle LLM and verified through factual checks, human indis-
tinguishability studies, and diversity analyses, we also provide a human-revisited
subset of 579 test captions, refined from LLM outputs to ensure accuracy and
human-like style. Beyond captioning, CaTS-Bench offers 460 multiple-choice
questions targeting deeper aspects of time series reasoning. We further propose
new tailored evaluation metrics and benchmark leading VLMs, highlighting both
their strengths and persistent limitations. Together, these contributions establish
CaTS-Bench and its captioning pipeline as a reliable and extensible foundation for
future research at the intersection of time series analysis and foundation models.
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Figure 1: Overview of CaTS-Bench. It features diverse domains, provides training and benchmark
data, and formulates five challenging tasks, with time series captioning as the primary one.

1 INTRODUCTION

Effective interpretation of time series data is a cornerstone of decision-making in domains ranging
from financial markets and healthcare monitoring to climate analysis and industrial automation. Yet,
distilling raw numeric sequences into concise, human-readable summaries remains a labor-intensive
task, requiring domain expertise, statistical know-how, and careful visualization. Automating this
process through time series captioning (TSC) not only accelerates insight discovery but also democ-
ratizes access to complex temporal analytics, enabling non-experts to ask natural-language questions
and receive meaningful explanations without writing code or inspecting raw charts.



Under review as a conference paper at ICLR 2026

Large language models (LLMs) and vision-language models (VLMs) have demonstrated remarkable
prowess in text generation and visual reasoning, respectively. However, when applied to time series,
they reveal critical deficiencies: LLMs exhibit well-documented limitations in precise numeric extrap-
olation, temporal continuity, and uncertainty quantification (Tang et al., 2025; Merrill et al., 2024; Tan
et al., 2024; Cao & Wang, 2024). While VLMs have shown promise in visual pattern recognition tasks
such as trend and anomaly detection from plots (Zhou & Yu, 2025), their capacity for fine-grained
numeric time series reasoning remains largely underexplored. These limitations underscore a broader
challenge: existing evaluation resources fail to reflect the complexity of real-world temporal signals,
leaving model improvements unguided by the demands of true data-driven applications.

In response, the community has proposed Time Series Captioning (TSC) as a more natural task for
foundation models, leveraging their generative and reasoning capabilities to narrate trends, anomalies,
and context in prose (Trabelsi et al., 2025; Jhamtani & Berg-Kirkpatrick, 2021). However, current
benchmarks remain narrow, often synthetic or restricted to simple trend labels, and exclude rich
metadata or visual modalities. Consequently, progress in model architecture, pretraining, or finetuning
cannot be measured against challenges that mirror real deployment scenarios, slowing adoption in
high-stakes sectors where accurate temporal interpretation is essential.

To fill this gap, we introduce CaTS-Bench, the first large-scale, multimodal benchmark explicitly
designed for context-aware time series captioning and reasoning. We define “context-aware” to mean
that captions are informed by both the metadata (units, domain labels, dates, region, etc.) and visual
cues that provide semantic and numeric grounding. By mining 11 real-world datasets across various
domains, CaTS-Bench provides 20k triplet samples drawn from 570k time steps of curated data,
each paired with (1) rich metadata containing contextual information, units, and domain-specific
cues (Dong et al., 2024; Wang et al., 2024); (2) a corresponding line plot image, enabling the use of
VLMs (Chen et al., 2024a; Zhou & Yu, 2025); and (3) a reference caption produced by a scalable
oracle-based pipeline and validated through factual checks, human indistinguishability studies, and
diversity analyses. To further strengthen reliability, we additionally release a human-revisited subset
of test captions: sampled from multiple LLM candidates and carefully edited by the authors to
remove inaccuracies, speculative claims, and linguistic repetitions. This subset complements the
larger benchmark with high-fidelity, human-styled references. Beyond captioning, CaTS-Bench
also includes 460 challenging multiple-choice questions spanning time series matching, caption
matching, plot matching, and comparative reasoning, designed to expose models’ blind spots in
numeric precision and multimodal alignment. All data samples are made available here.

We further propose new evaluation metrics tailored to time series captioning that move past generic
N-gram overlap to reward numeric fidelity and coverage. Our comprehensive experiments on leading
VLMs reveal that, in both zero-shot and finetuned settings, models can produce fluent text but fail to
reliably capture quantitative details without specialized adaptation. A key finding is that VLMs fail
to effectively leverage the visual cues provided for time series captioning, pointing to a significant
limitation in current multimodal architectures. Our analysis identifies clear room for improvement,
such as better leveraging visual cues, enhancing multimodal alignment, and incorporating dedicated
numeric reasoning modules. These findings pave the way for a new generation of foundation models
capable of translating complex temporal data into actionable narratives.

In summary, the contributions of this paper are:

1. Scalable Captioning Pipeline: A reproducible pipeline for generating high-quality time series
captions. It anchors LLM outputs in factual metadata, validates them through factual checks,
human indistinguishability studies, and diversity analyses, and is extensible to new datasets.

2. CaTS-Bench: A multimodal, context-aware benchmark for time series captioning and reasoning,
featuring time series segments, rich metadata, visual plots, and factually grounded captions. Most
references are LLM-generated via the pipeline, while a curated subset of human-revisited test
captions ensures high-fidelity, human-styled references alongside the larger benchmark.

3. Diagnostic Q&A Suite: Four multiple-choice tasks designed to isolate capabilities in series
matching, caption grounding, visual reasoning, and comparative analysis.

4. Comprehensive Evaluation: Zero-shot and finetuned assessments of state-of-the-art VLMs,
revealing strengths, failure modes, and clear directions to advance time series understanding.


https://huggingface.co/datasets/a9f3c7e2/CaTSBench
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2 RELATED WORK

LLMs are increasingly being repurposed for time series analysis (Zhang et al., 2024; Liu et al., 2024a),
with early efforts primarily focused on forecasting. These approaches span prompt engineering (Liu
et al., 2024a; Chatzigeorgakidis et al., 2024), modality alignment (Liu et al., 2024b; Sun et al., 2023;
Liu et al., 2024c; Pan et al., 2024), discretization (Ansari et al., 2024; Jin et al., 2024), and specialized
finetuning (Zhou et al., 2023; Chang et al., 2023). Such studies highlight that LLMs pretrained on text
can reason over temporal data, but subsequent work also shows consistent weaknesses in handling
long-range dependencies, numeric precision, and structured reasoning, particularly in forecasting and
anomaly detection (Tang et al., 2025; Merrill et al., 2024; Tan et al., 2024; Cao & Wang, 2024; Zeng
et al., 2023).

Table 1: Comparison of TSC benchmarks.

Dataset # Timesteps Modality Sources Metadata Captions TSC Q&A
TADACap (Fons et al., 2024) N/A Visual 4 Minimal Patterns Only v X
TRUCE (Jhamtani & Berg-Kirkpatrick, 2021) 34k Numeric 2 X Patterns Only v/ X
TACO (Dohi et al., 2025) 2.46b Numeric 8 X Expressive v X
CaTS-Bench 570k Numeric + Text + Visual 11 Rich Expressive v/ v

Building on these foundations, researchers have explored Time Series Captioning (TSC), a task
more aligned with the generative strengths of language models. TSLM (Trabelsi et al., 2025)
introduces an encoder—decoder trained on synthetic cross-modal data; TADACap (Fons et al., 2024)
retrieves domain-aware captions for visualized time series; TRUCE (Jhamtani & Berg-Kirkpatrick,
2021) employs a truth-conditional framework to validate simple trend patterns; and TACO (Dohi
et al., 2025) scales up caption corpora using LLM-based synthetic generation. While each provides
valuable insights, they remain limited in scope: TADACap and TRUCE are domain-specific and
pattern-oriented, while TACO’s reliance on templates restricts contextual richness (See Table 1).

Beyond these, standard time-series archives such as UCR (Chen et al., 2015), UEA (Bagnall et al.,
2018), and Monash (Godahewa et al., 2021) support classification and forecasting but not generative
captioning. Similarly, benchmarks like PISA (Xue & Salim, 2023) target prompt-based forecasting,
omitting metadata entirely. Recent evidence shows that incorporating auxiliary modalities (metadata,
domain context, or visual renderings) can significantly improve both interpretability and predictive
performance (Zhou & Yu, 2025; Dong et al., 2024; Chen et al., 2024a; Wang et al., 2024; Kim
et al., 2024; Williams et al., 2024; Liu et al., 2025; Tang et al., 2023). Yet no benchmark to date
integrates large-scale numeric series, expressive captions, rich metadata, and multimodal grounding.
CaTS-Bench fills this gap by offering the first benchmark that unifies numeric time series, metadata,
and visuals with both expressive captions and Q&A tasks for systematic evaluation for TSC.

3 CATS-BENCH

In this section, we illustrate the entire data curation pipeline and the design of the benchmark tasks.
While examples generated from this pipeline can be directly used for TSC evaluation, we further
enrich the scope of CaTS-Bench by providing an additional suite of Q&A tasks constructed from the
same data, enabling a more fine-grained examination of time series and caption reasoning abilities.

3.1 DATA CURATION

We build CaTS-Bench, a comprehensive benchmark curated from 11 diverse real-world source
datasets spanning domains: climate (Jha, 2023; Ritchie, 2021), safety (of Los Angeles, n.d.; of Pub-
lic Health, n.d.), USA border crossing (U.S. Department of Transportation, n.d.), demography (Aziz,
1985), health (European Centre for Disease Prevention and Control, 2024; Food and Agriculture
Organization of the United Nations, 2024), sales (Hassan, 2020; Chen, 2015), and agriculture (USDA
Economic Research Service, 2024). See Appendix B for more details on the source datasets. The
overall data pipeline is shown in Figure 2. Each source dataset provides a full-length time series per
entity (e.g., country, city, product), and to generate samples, we apply a random window cropping
strategy. For each dataset, we define a valid range of window lengths and randomly select a size for
each crop; see Appendix C for our range calculation. The number of windows sampled from a dataset
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depends on its total time steps, ensuring fair representation. The domain-specific number and lengths
of the time series windows are illustrated in Table 2. Each time series window is augmented with
a metadata JSON file with contextual information (domain, location, start time, etc.), a line plot
image with randomized visual style (color, width, figure size), a ground truth caption produced
by querying an oracle LLM (Gemini 2.0 Flash) with a structured prompt that includes: (i) the
serialized numeric values of the cropped segment and (ii) metadata enriched with numericly grounded
information, including both the historical and sample-specific mean, standard deviation, minimum,
and maximum. An example of the prompt is available in Appendix N.1.

We emphasize that time se- B
ries captioning lacks inher-
ent ground truth at the level e

of a single canonical de-

scription: multiple valid
ways exist to describe the
same series depending on
focus and phrasing. To pro-
vide consistent references at
scale, our primary captions
are generated by an oracle
LLM, but anchored strictly
in the underlying data. The | 1 patasources ) Metadata
oracle receives full contex-
tual metadata (not available
at evaluation time) and is in-
structed not to include any
external knowledge, ensur-
ing captions remain factual and context-grounded. This design makes captions a practical proxy for
evaluation and challenges models to reason from multimodal inputs rather than mimic the oracle.
Furthermore, we randomize time series window sizes and plot styles to prevent overfitting and better
reflect real-world variability in length and visualization styles.
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Figure 2: Overview of the CaTS-Bench semi-synthetic data generation
pipeline. A time series window is cropped, metadata is attached, and
an oracle LLM generates a reference caption. See Appendix L for
examples and Appendix H for the quality verification protocol.

Table 2: Dataset outline by domain. AQ: Air Quality, Border: Border Crossing, Demo: Demography,
Injury: Road Injuries, Calories: Calories Consumption, Agri: Agriculture

Metric Overall ‘ AQ Border Crime Demo Injury COVID CO, Calories Walmart Retail Agri
# Source Time Steps 287M |286M 397k 38k 14k 37k 720k 34k 234k 6k Tk 49k
# Samples Generated 20k 44k 32k 764 598 756 55k 732 2.1k 544 551 835
# Train Samples 16k 35k 2.6k 611 478 604 44k 585 1.7k 435 440 668
Avg. Sample Length 29.1 653 212 768 116 59 758 95 122 122 224 73
# Test Samples 4k 886 646 153 120 152 1.1k 147 422 109 111 167
Avg. Sample Length 26.1 66.0 212 769 50 3.6 73.0 87 5.5 11.8 81 175
# Human-revisited Samples 579 0 0 153 120 0 0 0 0 109 0 167
Avg. Sample Length 25.7 - - 769 5.0 - - - - 11.8 - 7.5

To prevent information leakage, we partition each source dataset temporally before generating the
samples. Specifically, the first 80% is used for generating training samples, whereas the last 20% is
reserved exclusively for generating test samples. Random window cropping is applied separately to
the training and test partitions. This strategy ensures that the model is evaluated on future, unseen
data relative to the training set. The actual benchmark samples consist of the test split resulting from
this process. We leave the training split of the data for optional training. Our final semi-synthetic
dataset version contains 20k examples, split into roughly 16k training samples and 4k test samples.
Detailed statistics and source of our data are reported in Table 2.

Human-Revisited Subset. We also release a curated subset of test captions that have been revisited
by humans. These captions were first sampled from multiple LLM candidates (Gemini 2.0
Flash,GPT-40, Gemma 27B,and Llama 90B)using the above data pipeline, and then carefully
refined by the authors to eliminate factual errors, speculative statements, and redundant phrasing.
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Drawn from the domains of agriculture, crime, demography, and Walmart sales, this subset provides
high-fidelity, human-styled references that complement the larger benchmark.

3.2 QUALITY VALIDATION OF SEMI-SYNTHETIC CAPTIONS

To ensure the quality of CaTS-Bench, we conducted a series of comprehensive verification studies
addressing the core concern of semi-synthetic data: whether captions generated by the oracle
model (Gemini 2.0 Flash) are factual, unbiased, and linguistically diverse. These analyses
demonstrate that semi-synthetic captions in CaTS-Bench provide high-quality references and stable
benchmarks for TSC, and thus are a sufficient proxy for human-written descriptions in practical
scenarios. We verified caption quality through three complementary studies below (with full details
in Appendix H).

Manual Validation. We manually checked ~2.9k captions (72.5% of the semi-synthetic test
benchmark) across statistical claims (min, max, mean, STD) and trend descriptors (up/downward,
stable, fluctuating). Accuracy exceeded 98.6% on average across all categories (Table 9) which
confirms that captions faithfully reflect underlying series properties.

Human Detectability Study. In a blind test with 35 participants, subjects attempted to distinguish
our captions from those written by humans. Accuracy was near random at 41.1%, suggesting that our
captions are indistinguishable from human-authored ones and no evidence of oracle-specific bias.

Diversity and Bias Analysis. Captions consistently drew from a wide variety of statistical and
temporal descriptors (Table 12), and embedding-based similarity analysis across nine embedding
models revealed minimal template reliance. Pairs of captions that were almost semantically identical,
measured as embedding cosine similarity > 0.95, were rare, averaging 2.3% of occurrences (Table 13).
Comparisons with human captions ( H.4.4) indicate that Gemini’s outputs are stylistically intermixed
with human text, while N-gram analysis (H.4.2) confirms high lexical diversity.

3.3 TIME SERIES CAPTIONING

TSC requires generating a detailed, coherent narrative that highlights the key characteristics of a
given time series. During evaluation, each model is presented with a standardized multi-part prompt
that combines four elements: the numeric series itself, embedded as raw time-indexed values (e.g.,
[25.3, 26.1, 26.8, ...]1);contextual metadata such as measurement units, data source,
sampling interval, and domain tags (e.g., “Hourly temperature readings from Rome, May 2000”),
which excludes explicit statistics like mean or maximum since the model must infer them; a visual
input in the form of a line-plot image that allows vision-language models to ground their descriptions
in visual trend cues; and a fixed-format instruction template containing the directive for caption
generation (see Appendix N.2). By standardizing this multi-part prompt, we evaluate models on their
ability to recognize numeric trends (e.g., rising or falling segments, peaks, and troughs), integrate
metadata cues, and utilize visual features to produce context-aware captions.

3.4 Q&A MULTIPLE-CHOICE TASKS

We introduce a suite of multiple-choice Q&A tasks designed to probe different reasoning skills
in time series understanding. All tasks are automatically derived from the same source data used
for captioning, with questions generated from task-specific, fixed templates (see Appendix J.1 for
examples). To increase difficulty, an initial pool of 4k questions per type was filtered by removing
those correctly answered by Qwen 2.5 Omni. Appendix J.2 shows that this filtering produces
genuinely harder questions, rather than reflecting Qwen-specific weaknesses only. Ambiguous
Time Series Matching questions were manually checked to ensure a single correct answer. From
the remaining 7k challenging questions, a random subset of 460 was sampled as the final test set,
including 100 each for time series matching, caption matching, and plot matching, and 40 each for
amplitude, peak, mean, and variance comparison tasks. Question types are described below.

Time Series Matching. Given a caption, the model must retrieve the correct time series from
distractor candidates created via shuffling, temporal reversal, and Gaussian noise. These perturbations
prevent simple numeric lookup and require alignment with both values and trends (see J.3 for details).
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Caption Matching. Given a time series, the model must select the correct caption from distractors
composed of random captions and perturbed variants of the ground truth (see Appendix N.5, N.6).
This isolates caption understanding from free-form generation.

Plot Matching. Given a caption and its numeric series, the model must select the correct line plot
from the candidates, testing visual grounding and the ability to link language with visual patterns.

Time Series Comparison. Given two time series, select the correct comparative statement from a
pair of options (e.g., “Series A peaks earlier than Series B” or “Series B has a higher volatility than
Series A”). This task challenges models to perform temporal and statistical comparison, a setting
where many language models currently struggle (Merrill et al., 2024).

3.5 EVALUATION METRICS

To comprehensively evaluate model-generated captions against the ground truth in TSC, we employ
a diverse set of metrics that target linguistic quality, statistical inference, and numeric fidelity. For
Q&A, we adopt accuracy as the evaluation metric, as each question is designed to have a single
correct answer. Below, we describe each metric used for TSC in our evaluation framework.

Standard Linguistic Metrics. We assess caption similarity using standard NLP metrics, including
DEBERTA SCORE (Zhang* et al., 2020), BLEU (Papineni et al., 2002), ROUGE-L (Chin-Yew,
2004), METEOR (Banerjee & Lavie, 2005), and SIMCSE (Gao et al., 2021; Liu et al., 2019).
Together, these metrics capture both surface-level linguistic overlap and deeper semantic similarity.
This ensures that evaluation does not merely reflect stylistic resemblance but instead rewards accurate
semantics of the underlying time series phenomena. Refer to Appendix F for more details.

numeric Fidelity Metrics. Since TSC involves reporting exact or approximate numeric values, we
introduce two tailored metrics to quantify numeric accuracy, both bounded within [0, 1]. The choice
of the 5% tolerance is discussed in Appendix F.2.

1. Statistical Inference Accuracy. While models are explicitly prompted to discuss descriptive
statistics, they demonstrate varying abilities to accurately infer and verbalize statistics such as the
mean, standard deviation, minimum, and maximum based on the raw time series and metadata. To
evaluate this behavior, we report the percentage of captions in which these statistics are mentioned
and fall within a 5% relative error, using offline-computed true values. Importantly, captions are
not penalized for omitting statistics; only wrongly reported values are considered errors. This
metric primarily measures hallucination, favoring omission over incorrect numeric claims.

2. Numeric Score. For each ground truth caption, we extract all numeric values (excluding time-
related ones like year or month) and search for the closest numeric value in the generated caption.
A match is recorded if the closest value is within a 5% relative tolerance. We compute Accuracy
(mean of 1—min{relative_error, tolerance}) over all matched numbers), Recall (fraction of ground
truth numbers matched), and a Final Score as a weighted combination: A 4 - Accuracy + Ay - Recall,
with A4 = 0.3 and A\p = 0.7 to emphasize recall over precision, as omitting critical numbers
is more severe than minor numeric rounding imprecisions. While the previous metric targets
numeric hallucinations, this one focuses on penalizing captions that omit numeric details.

4 EXPERIMENTS

We evaluate a broad range of VLMs on CaTS-Bench, covering both proprietary and open-source mod-
els, with the latter also tested after finetuning on our captioning training set (details in Appendix D).
For TSC, we additionally consider a program-aided (PAL) model (Gao et al., 2023). All models
are prompted with the same template-based format to ensure fair comparison, avoiding task- or
architecture-specific prompt engineering. Appendix E provides the full model list and a description
of PAL, while Appendix O outlines the human baseline that participated in our Q&A evaluation.

4.1 TIME SERIES CAPTIONING

To ensure fair comparison across the domains, we report macro-averaged scores for each metric,
mitigating sample size imbalances, as some domains contain more data, and preventing any domain
from disproportionately influencing the results. We benchmark leading VLMs on TSC using the
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semi-synthetic and human-revisited captions separately as ground truth. Selected results are shown in
Tables 3 and 4, with complete results in the Appendix G.

Table 3: Selected evaluation results of generated captions against human-revisited (HR) and semi-
synthetic (SS) ground truths. Bolded and underlined scores denote first and second places.

c | | DeBERTaF1 | SimCSE | BLEU | ROUGE-L | METEOR | Numeric
ategory ' Model

| | HR SS | HR SS | HR SS | HR SS | HR SS | HR  SS

z Gemini 2.0 Flash | 0.665 0.688 | 0.856 0.858 | 0.079 0.137 | 0248 0318 | 0.221 0279 | 0.634 0.677
2 Gemini 2.5Pro | 0.657 0.668 | 0.857 0.845 | 0.069 0.088 | 0.236 0.267 | 0.247 0.284 | 0.681 0.714
& Claude 3 Haiku | 0.658 0.682 | 0.853 0.856 | 0.064 0.112 | 0.241 0291 | 0.236 0.300 | 0.601 0.623
& GPT-40 0.661 0681 | 0.863 0.865 | 0.071 0.112 | 0.233 0284 | 0236 0.296 | 0.627 0.644
InternVL 2.5 38b | 0.664 0.688 | 0.871 0.868 | 0.072 0.129 | 0244 0305 | 0.255 0331 | 0.659 0.685
LLaVA v1.6 0.627 0.650 | 0.824 0.820 | 0.052 0.086 | 0215 0259 | 0.233 0.287 | 0.455 0.517

2 LLaVA v1.634b | 0.639 0.655 | 0.821 0.825 | 0.060 0.094 | 0221 0.265 | 0.232 0.285 | 0.547 0.560
£ Idefics 2 0.602 0.604 | 0.784 0.698 | 0.024 0.040 | 0.192 0226 | 0.140 0.162 | 0.424 0.455
g SmolVLM 0.592  0.594 | 0.755 0.693 | 0.027 0.044 | 0.194 0.224 | 0.154 0.178 | 0.431 0474
= QwenVL 0.619 0.643 | 0.821 0.890 | 0.049 0.082 | 0.209 0249 | 0214 0261 | 0.445 0.504
QwenVLPAL | 0.664 0.685 | 0.864 0.843 | 0.066 0.108 | 0237 0.292 | 0.226 0.282 | 0.564 0.613
Llama 3.2 V 0.653 0.671 | 0.852 0.850 | 0.072 0.118 | 0.239 0.290 | 0.252 0.315 | 0.650 0.685
Gemma327b | 0.648 0.667 | 0.863 0.863 | 0.065 0.085 | 0.222 0.263 | 0.257 0.309 | 0.641 0.668

5 LLaVA v1.6 0712 0758 | 0.896 0907 | 0.134 0.285 | 0.312 0445 | 0.300 0.441 | 0.693 0.732
g Idefics 2 0711 0.759 | 0.894 0.908 | 0.132 0.290 | 0.309 0.452 | 0298 0437 | 0.691 0.733
Z InternVL-2.58b | 0.638 0.655 | 0.817 0.809 | 0.053 0.088 | 0.215 0.259 | 0.229 0.282 | 0.582 0.594
£ QwenVL 0703 0.643 | 0.892 0.790 | 0.126 0.082 | 0.302 0.249 | 0.297 0.260 | 0.683 0.504
SmolVLM 0.604 0.613 | 0.817 0.781 | 0.051 0.091 | 0228 0269 | 0.220 0.265 | 0.556 0.643

Semi-synthetic (SS) Captions as Ground Truth. Our experiments show that finetuning substan-
tially improves performance across most metrics. Proprietary models such as GPT—-40 and Gemini
generally outperform Claude. Among open-source models, finetuned Idefics 2 and LLaVA
v1.6 Mistral achieve strong gains, in some cases surpassing proprietary baselines, underscoring
the effectiveness of finetuning for both linguistic quality and numeric precision. QwenVL PAL
shows marked improvements over standard QwenVL and even takes the lead on statistical inference
metrics (as shown in Table 4), highlighting code execution as a practical enhancement for tasks where

numbers matter.

Given the semi-synthetic nature of
ground truths in this experiment, we
assessed the robustness of evalua-
tion along two axes. First, to ac-
count for the stochasticity of LLM
outputs, we repeated inference three
times on ~ 600 test samples across
five representative models; variance
was vanishingly small (often 10~5;
Appendix H.5), confirming that our
single-run results are stable and reli-
able. Second, to test sensitivity to lin-
guistic style, we paraphrased a sub-
set of ground truth captions using
multiple architecturally distinct LLMs
while strictly preserving all factual
content and numeric details, generat-
ing variants of ground truths differ-
ing only by linguistic style. The para-
phrasing prompt is provided in Ap-
pendix N.3. Re-evaluating baseline
outputs against these paraphrased cap-
tions as ground truth yielded model
performance rankings largely consis-

Table 4: Representative statistical inference scores under
ground truths. E.g., Mean indicates statistical inference of
the series mean. Bolded and underlined scores denote first
and second places.

Category ‘ Model ‘ Mean Max ‘ Min
\ | HH SS | HR SS | HR SS
2 |Gemini 2.0 Flash  |0.536 0.651|0.982 0.985]0.936 0.917
© | Gemini 2.5 Pro Prev. | 0.323 0.49410.987 0.994(0.977 0.971
S | Claude 3 Haiku 0.833 0.693(0.980 0.977(0.934 0.898
&  |GPT-4o 0.817 0.700|0.992 0.990 |0.938 0.921
InternVL 2.538b | 0.858 0.784]0.982 0.966 |0.930 0.887
LLaVA v1.6 Mistral |0.667 0.644|0.871 0.864|0.751 0.743
g |LLaVAv1.634b  |0.410 0.445|0.817 0.843]0.727 0.698
5 |Idefics 2 0.806 0.616[0.891 0.903 [0.840 0.806
g |QwenVL 0.656 0.565(0.795 0.8220.678 0.657
A |QwenVL PAL 0.973 0.903 0.985 0.9800.978 0.942
Llama 3.2 Vision ~ |0.467 0.594|0.956 0.952{0.895 0.877
Gemma 3 27b 0.734 0.694[0.978 0.968 |0.904 0.864
< |LLaVAv1.6 Mistral |0.928 0.828|0.987 0.976|0.981 0.926
g |Idefics 2 0.958 0.885(0.988 0.985(0.967 0.927
2 |InternVL25(8b) |0.750 0.597|0.830 0.904|0.734 0.779
£ |QwenVL 0.952 0.565(0.973 0.822(0.963 0.657
SmolVLM 0.640 0.590|0.914 0.898|0.772 0.777

tent with those based on the original Gemini captions, with a mean Spearman Correlation of 0.9266
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and metric-specific correlations shown in Table 11 (full discussion in H.3). These results corrobo-
rate that our evaluation framework is stable and reliably gauges caption quality rather than biased
surface-level stylistic alignment.

Human-revisited (HR) Captions as Ground Truth. We repeat the evaluation using human-
revisited captions as ground truth, further confirming the benefits of finetuning. Open-source models
like Idefics 2 and LLaVA v1.6 Mistral gain substantially in text quality and numeric
accuracy, often surpassing proprietary baselines on linguistic metrics and nearing them on numeric
ones. Proprietary models such as GPT—4o0 and Gemini still lead on some language-focused metrics,
but their advantage shrinks when finetuned open-source models are included. Meanwhile, the PAL
model excels in statistical inference thanks to code execution. Overall, these results confirm that
finetuning not only enhances average performance but also improves numeric reliability, positioning
open-source models as strong contenders when paired with targeted adaptation.

4.2 Q&A TASKS

Figure 3 summarizes model performance on our Q&A tasks, while Table 17 provides detailed results.
Performance is highly variable, and even proprietary models occasionally fail to exceed random
chance on some tasks.

No model consistently dominates across all categories. Models handle binary-choice time series
comparisons better, likely due to the narrower range of options. Matching a time series to a caption is
harder than the reverse, and plot matching is the most challenging, highlighting a key VLM weakness:
linking numeric patterns with visual features. Proprietary models (GPT-40, Gemini 2.0 Flash)
lead, while among open-source models, Phi—4 M. I. excels in time series and statistical reasoning.
Finetuning on TSC yields mixed results: some models (e.g., Phi-4 M.I., Idefics 2)gainin
specific sub-tasks, while others drop in performance. Notably, finetuning often fails to improve Q&A
accuracy, likely due to task misalignment and catastrophic forgetting. As Table 17 shows, humans
achieve the highest overall scores, though top models sometimes outperform them on distraction-
prone tasks. Notably, all models perform near-random on plot matching, whereas humans score
nearly perfectly. Despite the tasks’ apparent simplicity, they reveal fundamental limitations in VLMs’
temporal reasoning capabilities which suggests the need to address basic time series understanding
before tackling more complex applications.

Niatehing

Caption Caption
Matehing Matching

Variangé . P
Compafison Matching

Medn
Compakison Matching

Medn
Compalison

Peal pliti
Compariso atching

—— InternVL 2.5 Idefics 2 QwenVL

—— Gemini 2.0 Flash Claude 3 Haiku — GPT4o LLaVAv1.6 Mistral —— SmolVLM —— LLaMA 3.2 Vision ~ —— LLaVA v1.6 Mistral Idefics2 ~ —— LLaMA 3.2 Vision
Gemini 2.5 Pro Preview Claude 3.7 Sonnet Phi-d M.I Phi-4 M. SmolVLM

(a) Proprietary VLMs (b) Pretrained VLMs (c) Finetuned VLMs
Figure 3: Model accuracy across Q&A sub-tasks. Proprietary models perform best, pretrained models
lag behind, and finetuned models struggle across all tasks.

4.3 ROLE OF THE VISUAL MODALITY

Visual Modality Ablation. We perform a modality removal experiment by stripping away the time
series plot and providing only the associated textual metadata and the numeric values of the time
series. This quantifies the contribution of the visual channel and enables a better understanding of the
model’s captioning performance. We evaluate a selected subset of pretrained baselines to assess their
intrinsic reliance on vision. Full results can be found in Appendix I.1.

Our experiments suggest that the additional contribution of the visual modality to caption quality is
insignificant for most models. As shown in Figure 4, most models show only marginal performance
drops, or even slight gains, when the time series plot is removed, suggesting a strong dependence on
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textual priors over visual understanding. In particular, models such as Tdefics2,Phi-4 M.I.,
and InternVL perform better in text-only settings on most metrics, hinting that generation is largely
driven by language pretraining or instruction tuning rather than true visual interpretation.

0075 Models such as QwenVL,
- LLaVA 1.6 and Claude
QwenvL{ -0.005 -0.012 -0.009 -0.009 -0.014 -0.017 3 Haiku maintain Strong
PhiamL{ -0.050 | -0.048 | -0.044 | -0.016 | -0.067 | -0.051 [ oo performance with visual input,
“0.000 but the performance gap (A)
oo ~Temains modest, underscoring

t the underuse of plot-based

information. Interestingly, the

InternvLy -0.018 -0.060 -0.032 -0.036 -0.057 -0.047

SmolvLM+  -0.009 -0.066 -0.025 -0.020

Llama 3.2 vision{ 0.001 0.001 0.007 0.015

Idefics2-884 -0.028 -0.118 -0.040 -0.033

- -0.050

LLaVA V16 Mistral { 0.002 | -0.004 | -0.012 | -0.002 | 0.001 | -0.015 | oors numeric score tends to decline

Claude 3 Haiku{ 0.006 0.003 | -0.005 | 0.004 | 0.002 0.019 when visual input is removed,
—-0.100

Gemini 2.0 Flash{ -0.010 | -0.013 | -0.038 | -0.025 | -0.049 | -0.007 hinting at weak but present

DeBERTa F1  SimCSE BLEU ROUGE-L ~ METEOR  Numeric ST reliance on the plOt for numeric

Figure 4: Performance deltas between VL (vision-language input) reasoningl. Thes'e results poipt
and L (text-only input). Each cell shows A = VL — L. Blue indi- to a subtle yet important mis-

cates better performance due to the visual input; red the opposite. ahgpment: models are exp (.)Sed
to visual data but often fail to

meaningfully reason with it. This phenomenon is not limited to line plots, as discussed in 1.3, even
more expressive visual forms (e.g., Gramian Angular Fields and recurrence plots) fail to trigger
visual reasoning of current VLMs in TSC.

Visual Attention Analysis. To better understand how VLMs process plots during caption genera-
tion, we examined their attention maps. The analysis revealed minimal visual grounding: models
concentrated predominantly on textual elements in the plots (e.g., axis labels and titles), with limited
evidence of attending to the actual line trends. Attention to visual patterns was sporadic, weak, and
inconsistent, suggesting that learned parameters largely disregard visual cues in favor of textual priors.
This qualitative evidence highlights the gap between nominal multimodal input and actual integration.
Full results are reported in Appendix 1.2 and Figure 7.

It is important to note that the under-utilization of visual inputs observed in our experiments is
not a limitation of CaTS-Bench itself, but rather a reflection of current VLM capabilities. The
benchmark explicitly provides both time series plots and rich metadata, creating ample opportunity
for multimodal reasoning. That most models default to textual priors instead of leveraging visual
signals highlights a critical gap in the field. We view this as an opportunity for future research:
developing models that better integrate plot-based information with textual and numeric cues to
advance the broader goal of genuine multimodal understanding in time series analysis.

5 CONCLUSION

We introduced CaTS-Bench, the first large-scale, multimodal benchmark for context-aware time
series captioning and reasoning. Built from 11 diverse real-world datasets, it combines numeric series,
metadata, visual plots, and validated captions to provide a challenging testbed beyond synthetic or
narrow benchmarks. A key contribution is not only the benchmark itself, but also the scalable data
curation pipeline we developed to generate high-quality captions. This pipeline leverages an oracle
LLM anchored in metadata, rigorous verification through factual checks, diversity analyses, and a
complementary human-revisited subset, making it both scalable and extensible to new domains. Our
evaluation of leading VLMs revealed both progress and limitations. Finetuning greatly improves
open-source models, enhancing fluency and numeric fidelity, while proprietary models show stronger
performance overall. A consistent weakness lies in multimodal grounding: models largely ignore
visual inputs, with plot matching emerging as the most difficult task. These findings reveal a critical
gap in multimodal alignment and point toward the urgent need for models that can genuinely integrate
numeric, textual, and visual cues. By releasing CaTS-Bench together with its evaluation suite, we
provide the community with not only a rigorous foundation for advancing time series reasoning, but
also a practical methodology for generating reliable, context-rich captions at scale, paving the way
for more robust multimodal understanding in the future.
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ETHICAL STATEMENT

The development of CaTS-Bench was guided by a commitment to ethical research practices. All
datasets used in this work are publicly available and do not contain personally identifiable information
(PII). The domains, such as climate, public health, and agriculture, were chosen for their public
relevance and data accessibility. Our use of an oracle LLM to generate semi-synthetic reference
captions was a deliberate design choice to ensure scalability, particularly for a subjective task like
captioning, where a single ground-truth is ill-defined. We have taken extensive measures to validate
the quality, factual accuracy, and diversity of these semi-synthetic captions, as detailed in Section
3.2 and Appendix H, to mitigate the risk of propagating systemic biases from the oracle model. Our
human-revisited test set is also an attempt to further ensure evaluation reliability. For our human
evaluation studies, all participation was voluntary. We obtained informed consent from all participants,
who were university students. The study’s purpose was clearly communicated, and all responses were
collected anonymously to protect participant privacy, as shown in an example of a consent form in
Appendix O.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, all components of our work will be made publicly
available upon publication.

1. Data: The complete CaTS-Bench dataset, including the numeric time series, metadata, generated
plots, oracle-generated and human-revisited captions, and the diagnostic Q&A suite, are released
at https://huggingface.co/datasets/a9f3c7e2/CaTSBench.

2. Code: We will release the source code for the entire data curation pipeline, model finetuning
scripts, and the evaluation suite. The code will be hosted in a public repository to allow for
complete replication of our results and to facilitate future research.

3. Models and Environment: All open-source models used in our experiments are explicitly named
with version details provided in Appendix E. For proprietary models, we specify the exact model
endpoints used at the time of the experiments. Detailed finetuning hyperparameters and hardware
specifications are documented in Appendix D.

4. Evaluation: Our evaluation protocol relies on standard, well-established linguistic metrics and
novel metrics that are precisely defined in F. All prompts used for caption generation, quality
verification, and LLM-based scoring are provided in Appendix N to ensure that our evaluation can
be replicated consistently. Furthermore, we conducted a robustness check (Appendix H.5), which
demonstrated minimal variance across multiple runs, confirming the stability of our results.

LLM USAGE STATEMENT
Large Language Models played a central role in multiple stages of this work.
1. LLMs were employed as data generators, producing semi-synthetic captions that serve as ground

truth references in CaTS-Bench.

2. LLMs were employed as data extractors, for example to parse statistical claims from captions
during our evaluation analyses.

3. LLMs, more precisely VLMs, served as baselines in our experiments as captioning models for
evaluation.

4. LLMs were employed as a writing assist tool to polish the presentation of the paper, while the
authors retain full responsibility for all content.

Importantly, LLMs did not contribute to research ideation or decision-making. All factual claims,
analyses, and conclusions are the responsibility of the authors.
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A LIMITATIONS AND FUTURE WORK

While CaTS-Bench represents a significant step toward multimodal, context-aware time series
understanding, it also has limitations that suggest clear avenues for future work. First, the majority of
captions are semi-synthetic and generated by a single oracle model (Gemini 2.0 Flash). Our
validation studies confirm their factual reliability and linguistic diversity, with no clear evidence
of bias; however, reliance on a single oracle may still introduce subtle, hidden modeling biases.
Although we release a subset of data paraphrased by different LLMs, its limited scale points to
future iterations of CaTS-Bench where semi-synthetic captions are fully generated from a broader
pool of LLMs, thereby reducing such biases and better reflecting diversity in expression. Second,
although we provide a curated human-revisited subset of captions, the scale of fully human-authored
or expert-verified content remains limited. We acknowledge that captions written by human experts
are often more insightful, and future work should incorporate such expert-written captions to enhance
depth and interpretability. At the same time, human authors introduce their own stylistic biases, which
should be considered when designing and evaluating the benchmark. Expanding this component,
potentially by involving multiple domain experts in economics, healthcare, or climate data, would
further strengthen the benchmark’s robustness and credibility.

Overall, we view CaTS-Bench as a scalable foundation rather than a fixed resource, with ample room
to grow through multi-oracle captioning, richer human input, and extended coverage of temporal
reasoning tasks.

B SOURCE DATASETS

1. Air Quality — Hourly air pollution data from 453 Indian cities (2010-2023), covering 30+
parameters including PM, 5, NOy, CO, and SO,, compiled from CPCB Jha (2023).

2. Border Crossing — Monthly inbound border crossing counts at U.S.-Mexico and U.S.-Canada
ports, disaggregated by transport mode and collected by U.S. Customs and Border Protection U.S.
Department of Transportation (n.d.).

3. Crime — Incident-level crime reports in Los Angeles from 2020 onward, provided by LAPD
OpenData and updated biweekly, including NIBRS-compliant records of Los Angeles (n.d.).

4. Demography — Annual global indicators from the UN and World Bank (2000-2021) covering
population growth, fertility, life expectancy, death rates, and median age to assess patterns of
demographic change and collapse Aziz (1985).

5. Injury — Annual counts of fatal and severe road traffic injuries in California (2002-2010),
disaggregated by transport mode and geography, from CDPH’s Healthy Communities Indicators
of Public Health (n.d.).

6. COVID - Global daily COVID-19 case and death counts (2020), compiled by ECDC, covering
over 200 countries with population-adjusted metrics European Centre for Disease Prevention and
Control (2024).

7. CO;, — National-level per capita CO, emissions and GDP trends from Our World in Data, adjusted
for trade (consumption-based), spanning 1990-2023 Ritchie (2021).

8. Calories (Diet) — Food supply and caloric intake patterns from FAO Food Balance Sheets Food
and Agriculture Organization of the United Nations (2024).

9. Walmart — Weekly sales data from 45 Walmart stores (2010-2012), enriched with features like
temperature, fuel price, CPI, unemployment rate, and holiday flags Hassan (2020).

10. Retail — Transactional records from a UK-based online gift retailer (2010-2011), capturing
item-level purchases, cancellations, and customer behavior Chen (2015).
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11. Agriculture — Annual agricultural total factor productivity (TFP) indices from USDA for 1961-
2022, covering outputs and inputs like land, labor, capital, and materials across countries USDA
Economic Research Service (2024).

C TIME SERIES SEGMENT CROPPING

Our cropping strategy balances diversity with consistency across datasets. Many source time series
(e.g., 50 years of hourly CO2 emissions) are too long to process directly, so we sample random
windows of variable lengths. Each window length is drawn from a dataset-specific range [min, mazx],
with the maximum based on the original series length. This ensures that cropped windows preserve
the scale and structure of the data while introducing sufficient variability for training and evaluation.
We summarize these rules in Table 5 below.

Table 5: Minimum and maximum segment lengths for each dataset.

Source Dataset Min Length Max Length

Air Quality, Crime, Border Crossing, CO2, Walmart, Agriculture 5 min(150, 5+ L%D

Demography, Online Retail 5 original_length

Road Injuries 3 min(3, 0.2 x original_length)
COVID 5 min(150, 5 + | enatenet |)
Calories 5 min(6, 0.2 x original_length)

D HARDWARE AND SETTINGS

All experiments were conducted on a high-performance computing node featuring two AMD EPYC
7453 processors, providing a total of 56 logical CPUs, and 125 GB of RAM (with over 117 GB
available during runtime). For GPU acceleration, the system includes eight NVIDIA A100 GPUs - six
PCIe 80 GB models and two PCle 40 GB models - along with an ASPEED graphics controller used
for display purposes. This configuration offers ample computational and memory resources suitable
for mid- to large-scale deep learning training and inference. The models we finetune range in size
from 2 billion to 11 billion parameters, with finetuning times spanning from a few hours to a day.

For finetuning, we adopt a unified training strategy guided by best
practices in instruction tuning for multimodal inputs. All models
are trained using the AdamW optimizer with a cosine learning rate
scheduler and a base learning rate of 2 x 10~°. We apply gradient

Table 6: Configurations

Hyperparameter Value

accumulation to simulate a larger batch size. Mixed precision train- ~ Batch size 4

: . - . Grad. Acc. 12
ing and gradient checkpointing are enabled for memory efficiency. Epochs 3
Low Rank Adaptation (LoRA) is used to adapt large models by Learning Rate 2 x 105
tuning a small subset of parameters, while keeping the rest of the Scheduler Cosine
model frozen or partially frozen. To ensure deterministic and focused ~ Optimizer AdamW
generation, we use a temperature of 0.3 during inference across all ~ Precision bfl6
evaluated models. Each model is finetuned using a structured JSONL Iﬁ?&ﬁ) lﬁmk 8(;) B§6
dataset comprising time series plot images and corresponding image-  mage res. 224-560

grounded chat-style conversations. We preprocess data with each
model’s native processor and apply minimal resizing to maintain fidelity in the visual input. Special
care is taken to exclude padding and <image> tokens from loss computation by assigning them an
ignore index.

E BASELINE MODELS

We evaluate Gemini 2.0 Flash and Gemini 2.5 Pro Preview (Team et al., 2023),
Claude 3 Haiku and Claude 3.7 Sonnet (Anthropic, 2024), GPT-40 (Achiam et al.,
2023), InternVL 2.5 (8b & 38b) (Chenetal., 2024b), LLaVA v1.6 Mistral 7b (de-
fault) and 34b (Liu et al., 2023), Phi—-4 Multimodal Instruct 5.6b (Abdin et al., 2024),
Idefics 2 (8Db) (Laurengon etal., 2024), SmolVLM (2b) (Marafioti et al., 2025), QwenVL
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b) (Baietal., 2023), Llama 3.2 Vision (11b) (Grattafiori et al., 2024), and Gemma 3
(12b & 27b) (Team et al., 2025) for both TSC and Q&A tasks.

TSC requires precise numeric reasoning alongside text generation, making it suitable for program-
aided language (PAL) models (Gao et al., 2023). Hence, we also evaluate QwenVL 32b by prompt-
ing it to generate a Python program that outputs the full time series caption. The program is executed
in Python, and its return value is taken as the caption. Most ( 90%) generated programs succeed on
the first attempt; if a program fails, we increase the token limit and regenerate until successful. The
full prompt example can be found in Appendix N.4.

F EVALUATION METRICS

F.1 LINGUISTIC METRICS

DeBERTa Score The DEBERTA SCORE is a contextual similarity metric based on cosine similarity
between contextual embeddings of tokens in the candidate (c) and reference () captions. Given token
embeddings from the DeBERTa encoder, the metric computes token-level precision, recall, and F1:

2-P-R
FlpeBERT: = m, | nglearxcos el,ej |r| Zmaxcos ej,el) €))
cc

where e; and e; are the contextual embeddings of candidate and reference tokens, respectively.

BLEU BLEU evaluates n-gram overlap between a candidate caption and reference using precision
with a brevity penalty to discourage short outputs:

N .
BLEU = BP - exp (anlogpn>, BP — {11 e iizz: 2)

n=1

where p,, is the modified precision for n-grams, w,, are weights (usually uniform), c is candidate
length, and r is reference length.

ROUGE-L ROUGE-L measures fluency via the length of the longest common subsequence (LCS)
between candidate and reference:

(1+ 3%)-LCS

ROUGE-Lg; =
r+c

, LCS = LongestCommonSubsequence(r, ¢) 3)

where /3 balances recall and precision (often 5 = 1), and r and c are the reference and candidate
lengths.

METEOR METEOR aligns unigrams using exact matches, stems, synonyms, and paraphrases. It
then computes an F-score and applies a fragmentation penalty:

chunks )3 @

METEOR = Fjpean - (1 —Pen),  Fpewn = —————, Pen=0.5 (
matches

where P and R are unigram precision and recall, and chunks refers to non-contiguous matched
segments.
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SimCSE SIMCSE computes semantic similarity at the sentence level using cosine similarity
between sentence embeddings:

h,-h,

SimCSE(Ca T) = COoS (hC7 hr) = W

®

where h. and h, are candidate and reference sentence embeddings, produced by a contrastively
trained RoBERTa encoder.

F.2 TOLERANCE DESIGN IN NUMERIC METRICS

We adopt a 5% relative tolerance for both numeric metrics, as it is a widely accepted threshold in
numeric evaluation across data science and time series literature. This value balances sensitivity
and robustness: it is tight enough to catch meaningful deviations from the true value, ensuring that
significant errors are penalized, yet lenient enough to accommodate minor variations due to rounding,
numeric precision, or natural approximations in model-generated captions. By using this standard
threshold, our evaluation aligns with common practice while focusing on practically relevant numeric
accuracy.

G FuLL TSC RESULTS

Here, we report the full evaluation results for time series captioning, using human-revisited and
semi-synthetic captions as ground truth. See Tables 7 and 8 respectively.

Table 7: Evaluation of generated captions against the human-revisited ground truths. Numeric:
numeric score. Mean/STD/Max/Min refer to statistical inference accuracy. Bolded and underlined
scores denote first and second places.

Model DeBERTa F1 SimCSE BLEU ROUGE-L METEOR ‘ Mean STD Max Min ‘ Numeric
Proprietary

Gemini 2.0 Flash 0.6645 0.8558 0.0793  0.2475 0.2205 0.5357 - 0.9823 0.9363 0.6335
Gemini 2.5 Pro Prev. 0.6568 0.8570 0.0690  0.2363 0.2468 0.3229 - 0.9871 0.9771 0.6805
Claude 3 Haiku 0.6580 0.8525 0.0640  0.2405 0.2358 0.8333 - 09797 0.9339 0.6007
GPT-40 0.6605 0.8632 0.0705  0.2328 0.2355 0.8167 - 0.9921 0.9379 0.6268
Pretrained

InternVL 2.5 (8b) 0.6418 0.8411 0.0510  0.2093 0.2153 0.7813 0.0000 0.9495 0.8186 0.5812
InternVL 2.5 (38b) 0.6640 0.8707 0.0723  0.2442 0.2550 0.8581 0.0000 0.9820 0.9297 0.6585
LLaVA v1.6 Mistral 0.6268 0.8243 0.0525 0.2145 0.2333 0.6667 0.0000 0.8714 0.7505 0.4548
LLaVA v1.6 34b 0.6388 0.8205 0.0595 0.2210 0.2317 0.4103 0.5588 0.8170 0.7274 0.5465
Phi-4 M.I. 0.6168 0.8196 0.0450 0.2355 0.1945 0.4554 0.2500 0.9227 0.8926 0.5533
Idefics 2 0.6023 0.7838 0.0235 0.1918 0.1400 0.8056 0.3854 0.8908 0.8401 0.4238
SmolVLM 0.5918 0.7552  0.0273  0.1935 0.1538 0.9050 0.5278 0.8972 0.7606 0.4308
QwenVL 0.6185 0.8205 0.0490 0.2088 0.2140 0.6563 - 0.7947 0.6776 0.4450
QwenVL PAL 0.6643 0.8643 0.0660 0.2373 0.2260 0.9730 0.8571 0.9848 0.9784 0.5638
Llama 3.2 Vision 0.6527 0.8520 0.0715  0.2390 0.2515 04667 - 0.9562 0.8952 0.6503
Gemma 3 12b 0.6568 0.8692 0.0713  0.2350 0.2633 0.8148 1.0000 0.9576 0.8956 0.6598
Gemma 3 27b 0.6480 0.8634 0.0650  0.2220 0.2565 0.7341 - 0.9780 0.9035 0.6407
Finetuned

InternVL 2.5 (8b) 0.6378 0.8171 0.0533 0.2148 0.2285 0.7500 0.0000 0.8302 0.7339 0.5815
LLaVA v1.6 Mistral 0.7123 0.8964 0.1335  0.3123 0.3003 0.9284 0.1746 0.9866 0.9806 0.6932
Phi-4 M.I. 0.6485 0.8501 0.0638  0.2393 0.2295 0.6250 0.2500 0.9655 0.9184 0.5860
Idefics 2 0.7108 0.8942 0.1323  0.3085 0.2975 0.9580 0.3453 0.9875 0.9665 0.6912
SmolVLM 0.6035 0.8168 0.0513  0.2275 0.2198 0.6399 0.1250 0.9139 0.7721 0.5558
QwenVL 0.7032 0.8920 0.1263  0.3020 0.2965 0.9520 0.2430 0.9731 0.9634 0.6825
Llama 3.2 Vision 0.6470 0.8518 0.0693  0.2328 0.2483 0.5876 0.5000 0.9585 0.8961 0.6273
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Table 8: Evaluation of generated captions against semi-synthetic ground truths. Numeric: numeric
score. Mean/STD/Max/Min refer to statistical inference accuracy. Bolded and underlined scores
denote first and second places.

Model DeBERTa F1 SimCSE BLEU ROUGE-L METEORl Mean STD Max Min | Numeric
Proprietary

Gemini 2.0 Flash 0.688 0.858  0.137 0.318 0.279 0.651 0.916 0.985 0.917 0.677
Gemini 2.5 Pro Prev. 0.668 0.845  0.088 0.267 0.284 0.494 0.667 0.994 0.971 0.714
Claude 3 Haiku 0.682 0.856  0.112 0.291 0.300 0.693 0.735 0.977 0.898 0.623
GPT-40 0.681 0.865 0.112 0.284 0.296 0.700 0.778 0.990 0.921 0.644
Pretrained

InternVL 2.5 (8b) 0.659 0.794  0.081 0.247 0.260 0.610 0.920 0.949 0.794 0.589
InternVL 2.5 (38b) 0.688 0.868  0.129 0.305 0.331 0.784 0.640 0.966 0.887 0.685
LLaVA v1.6 Mistral 0.650 0.820 0.086 0.259 0.287 0.644 0.611 0.864 0.743 0.517
LLaVA v1.6 34b 0.655 0.825  0.094 0.265 0.285 0.445 0.550 0.843 0.698 0.560
Phi-4 MLL. 0.624 0.797  0.074 0.274 0.239 0.457 0.443 0.942 0.859 0.583
Idefics 2 0.604 0.698  0.040 0.226 0.162 0.616 0.368 0.903 0.806 0.455
SmolVLM 0.594 0.693  0.044 0.224 0.178 0.747 0.446 0.864 0.705 0.474
QwenVL 0.643 0.890 0.082 0.249 0.261 0.565 0.257 0.822 0.657 0.504
QwenVL PAL 0.685 0.843  0.108 0.292 0.282 0.903 0.549 0.980 0.942 0.613
Llama 3.2 Vision 0.671 0.850 0.118 0.290 0.315 0.594 0.666 0.952 0.877 0.685
Gemma 3 12b 0.676 0.867  0.097 0.279 0.317 0.653 0.578 0.957 0.879 0.673
Gemma 3 27b 0.667 0.863  0.085 0.263 0.309 0.694 0.900 0.968 0.864 0.668
Finetuned

InternVL 2.5 (8b) 0.655 0.809  0.088 0.259 0.282 0.597 0.464 0.904 0.779 0.594
LLaVA v1.6 Mistral 0.758 0.907 0.285 0.445 0.441 0.828 0.294 0.976 0.926 0.732
Phi-4 MLL. 0.662 0.821 0.010 0.285 0.279 0.645 0.641 0.965 0.877 0.607
Idefics 2 0.759 0.908 0.290 0.452 0.437 0.885 0.379 0.985 0.927 0.733
SmolVLM 0.613 0.781  0.091 0.269 0.265 0.590 0.297 0.898 0.777 0.643
QwenVL 0.643 0.790  0.082 0.249 0.260 0.565 0.257 0.822 0.657 0.504
Llama 3.2 Vision 0.667 0.844  0.111 0.283 0.310 0.502 0.619 0.955 0.867 0.668

H QUALITY VALIDATION

H.1 MANUAL VERIFICATION OF SEMI-SYNTHETIC GROUND TRUTH CAPTIONS

To assess the reliability of semi-synthetic captions used as ground truth, we manually verified
statistical and trend claims in around 2.9% captions of the test set under a three-tier scoring system:
exact (within £0.05 of the true value), near (within +0.1), and incorrect.

Table 9: Manual verification of SS captions. Accuracy remains high across all categories.

Task Feature/Type Occurences Verified Accuracy
mean / average 570 0.980

Statistical minimum / dip 310 0.994
standard deviation 123 1.000

maximum / peak 217 0.994

Upward 467 0.980

Trend Downward 328 0.997
Stability 45 0.970

Fluctuation 87 0.974

mean / average 435 0.980

Historical standard deviation 26 1.000
maximum / peak 95 0.994

(Trends + Stats) i imum / dip 12 1.000
norms 164 0.980

Total / Avg. 2879 0.986
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Method Each claim was extracted and checked against the underlying time series metadata. We
extracted statistical claims and trend patterns from captions using structured keyword clustering
across selected statistical categories (mean/average, min/max, standard deviation) and trend keywords
(increasing, decreasing, plateau, fluctuation). We (1) identified terms using keyword matching, (2)
extracted ground truth values therein, and (3) created verification sheets comparing claims against
actual metadata for manual verification. Then, we scored each claim by comparing statements against
ground truth data and verifying that trend claims matched actual trajectories.

Accuracy across both statistical descriptors and trend types is consistently high, confirming that
oracle-generated captions provide factually reliable reference annotations.

H.2 HUMAN STUDY ON DETECTABILITY

We conducted a blind study with 35 participants, each reviewing 11 captions (half written by humans,
half by Gemini, using the same context information). Participants labeled each as human or Al-
written but achieved only 41.1% accuracy, essentially random, suggesting Gemini’s captions were
indistinguishable from human ones. Participation form with guidelines is in Appendix O.

H.3 ROBUSTNESS OF EVALUATION - PARAPHRASING EXPERIMENT

A legitimate concern when using a single LLM to generate reference captions is the potential for
evaluation bias towards the specific linguistic style of that model. To ensure that CaTS-Bench
evaluates generalizable time series understanding capabilities rather than facility in mimicking a
Gemini’s linguistic style, we conducted a robustness experiment.

Table 10: Evaluation of generated captions across paraphrased/original ground truths.

Model ‘ GT Style ‘ Embedding ‘ N-gram ‘ Numeric ‘ Stat. Inference

| | SImCSE  DeBERTa | METEOR ROUGE-L BLEU | Numeric | Mean  Max Min

GPT-40 Phr. | 0.8707 0.6803 0.2313 0.2605 0.0820 | 0.6715 | 0.3333 0.9823 0.9377
Gemini Gemma Phr. | 0.8635 0.6748 0.2068 0.2443 0.0605 | 0.6578 | 0.5357 0.9823 0.9374
2.0 Flash | Llama Phr. 0.8680 0.6715 0.2080 0.2445 0.0710 | 0.6745 | 0.3750 0.9807 0.9351
Original 0.8716 0.6860 0.2720 0.3068 0.1315 | 0.6802 | 0.3750 0.9823 0.9377

GPT-40 Phr. | 0.8752 0.6740 0.2583 0.2488 0.0845 | 0.6773 | 0.8000 0.9921 0.9393
Gemma Phr. | 0.8645 0.6665 0.2250 0.2268 0.0578 | 0.6673 | 0.8167 0.9921 0.9393
Llama Phr. 0.8726 0.6678 0.2295 0.2380 0.0725 | 0.6673 | 0.8000 0.9921 0.9379
Original 0.8773 0.6785 0.2880 0.2785 0.1048 | 0.6558 | 0.8000 0.9921 0.9379

GPT-40

GPT-40 Phr. | 0.8636 0.6720 0.2497 0.2480 0.0693 | 0.6383 | 0.7500 0.9797 0.9338
Claude Gemma Phr. | 0.8563 0.6665 0.2263 0.2295 0.0495 | 0.6223 | 0.8000 0.9781 0.9321
3 Haiku Llama Phr. 0.8598 0.6678 0.2320 0.2473 0.0605 | 0.6285 | 0.8333 0.9797 0.9339

Original 0.8683 0.6795 0.2873 0.2870 0.1038 | 0.6333 | 0.7500 0.9797 0.9338

GPT-40 Phr. | 0.7952 0.6113 0.1463 0.2035 0.0243 | 0.3893 | 0.8056 0.8908 0.8377

Idefics 2 Gemma Phr. | 0.7897 0.6058 0.1368 0.1915 0.0158 | 0.4005 | 0.8056 0.8908 0.8377
Llama Phr. 0.7850 0.6045 0.1335 0.1950 0.0183 | 0.4198 | 0.8056 0.8908 0.8377

Original 0.7962 0.6178 0.1623 0.2250 0.0380 | 0.4580 | 0.8056 0.8908 0.8377

GPT-40 Phr. | 0.8347 0.6323 0.2250 0.2205 0.0483 | 0.4098 | 0.4375 0.7948 0.6793

QwenVL Gemma Phr. | 0.8262 0.6278 0.2043 0.2025 0.0350 | 0.4160 | 0.4375 0.7926 0.6793
Llama Phr. 0.8270 0.6303 0.2113 0.2213 0.0453 | 0.4470 | 0.4375 0.7948 0.6776

Original 0.8427 0.6405 0.2548 0.2488 0.0798 | 0.4895 | 0.4375 0.7926 0.6776

GPT-40 Phr. | 0.8663 0.6625 0.2663 0.2473 0.0795 | 0.6890 | 0.4667 0.9562 0.8937

Llama Gemma Phr. | 0.8591 0.6575 0.2393 0.2315 0.0572 | 0.6810 | 0.4722 0.9562 0.8952
3.2 Vision | Llama Phr. 0.8647 0.6613 0.2588 0.2545 0.0793 | 0.6915 | 0.4722 0.9546 0.8961

Original 0.8704 0.6680 0.2990 0.2843 0.1060 | 0.6853 | 0.4722 0.9562 0.8937

We systematically paraphrased a representative subset of our ground truth captions (agriculture, crime,
demography, Walmart) using architecturally distinct LLMs (GPT-40, Gemma 27B, and Llama 90B),
resulting in three additional sets of ground truth captions. The paraphrasing prompt was designed to
instruct the model to thoroughly alter sentence structure, syntax, and word choice while preserving all
factual information, numeric values, and statistical details with absolute fidelity. The prompt used for
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paraphrasing is shown in N.3. We define this paraphrased caption set as CaTS-Bench-Paraphrased,
which contains captions that are semantically equivalent to the original ground truth but differ only in
linguistic style.

We then re-evaluated the outputs of all six representative pretrained models against CaTS-Bench-
Paraphrased using our full suite of metrics. Results of this analysis are presented in the Table 10,
one for each ground-truth generator’s linguistic style. Values represent the average across selected
domains. To ease comparison, we also report the results obtained with our original Gemini captions
as ground truth.

Next, we provide an analysis on the rank correlation of model performances between the original
and paraphrased evaluation settings. A high correlation in model rankings would indicate that
our benchmark is robust to linguistic variation; the metrics would be consistently measuring the
underlying semantic content and numeric accuracy of the captions, not their surface-level similarity
to a specific writing style. A low correlation would suggest a non-trivial dependence on the oracle’s
particular linguistic patterns. For each linguistic evaluation metric, we provide the model ranking
across the four linguistic styles in Figure 5.
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Figure 5: Model ranking heatmaps across metrics under four reference styles. Rankings: 1 (highest)
to 6 (lowest). Model mappings: Gemini (Gemini 2.0 Flash), Claude (Claude 3 Haiku), Llama-V
(Llama 3.2 Vision).

Qualitatively, we observe a negligible impact of model-specific linguistic style on the model rankings,
suggesting that our evaluations are robust to particular linguistic styles. For each linguistic metric,
we measure the average Spearman correlation between the ranking according to Gemini’s style and
the ranking according to the other three styles. See Table 11.

Table 11: Spearman correlation of model rankings of Gemini as ground truth vs. different models as
ground truth. A Spearman Correlation of 1 means ranking does not change at all.

| DeBERTaF1 SimCSE BLEU ROUGE-L METEOR Average |

Spearman Correlation 0.9714 1.0000 0.8138 0.9048 0.9429 0.9266
p-value 0.0018 0.0000  0.0557 0.0257 0.0079 0.0182

In summary, this experiment demonstrates that our evaluation framework is robust to variations
in the linguistic style of the reference captions. This conclusion is quantitatively supported by
the high Spearman correlation coefficients observed in model rankings between the original and
paraphrased benchmark sets. These results indicate that our evaluation framework captures the
semantic fidelity and factual quality of the generated content, rather than rewarding models
for merely mimicking the stylistic patterns of our oracle model, Gemini 2.0 Flash. Consequently,
the benchmark evaluates fundamental capabilities in time series understanding and description, not
superficial stylistic alignment. Furthermore, Gemini 2.0 Flash maintains its superior rank in most
metrics regardless of the linguistic style of the ground truth. This consistent dominance validates
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its selection as a highly capable oracle, reinforcing that its utility stems from its intrinsic ability to
generate high-quality descriptions rather than from any benchmark-specific bias.

H.4 DIVERSITY ANALYSIS

H.4.1 CONTENT IN THE CAPTIONS

We analyzed all the 4005 Gemini-generated test set captions using a structured keyword-based
approach. Captions across eleven domains were scanned for statistical descriptors (e.g., mean, aver-
age, standard deviation, maximum, minimum, range) and trend-related expressions (e.g., increase,
decrease, stability, volatility, seasonality). These terms were grouped into clusters such as Central
Tendency, Dispersion, Extremes, Increasing/Decreasing Trends, Stability and Volatility, and Compar-
ative Trends. The results in Table 12 show that captions consistently draw from a diverse mix of
descriptors, spanning both statistical features and temporal patterns. While some categories
(e.g., percentiles, distribution-shape terms) were rare, coverage of core descriptors was broad, and
every caption included at least one statistical or trend-related element.

Table 12: Coverage of statistical and trend descriptor clusters across benchmark captions. Captions
consistently include diverse descriptors capturing both quantitative and temporal aspects of the data.

Category \ Cluster and Keywords in the cluster \ Captions
Central Tendency (mean, average, median, mode) 3930
Minimum Values (min, minimum, lowest value) 1528
Statistical Maximum Values (max, maximum, highest value) 1487
Dispersion (std, variance, deviation, iqr) 1376
Range/Spread (range, spread) 492
Extremes (peak, spike, dip, trough) 2966
Peaks and Valleys (peak, dip, spike, trough) 3013
Increasing Trends (increase, rising, growing) 1987
Trend and Patterns Decreasing Trends (decrease, drop, falling) 2197
Comparative Trends (higher/lower, difference) 2217
Stability and Volatility (stable, fluctuating) 2276

H.4.2 N-GRAM DIVERSITY

We measured type token ratios (TTR) across 411k tokens in the semi-synthetic test set. The ratios rise
significantly with n: TTR = 0.0288 (1 gram), 0.1288 (2 gram), 0.2971 (3 gram), 0.4638 (4 gram),
and 0.6050 (5 gram), indicating that the phrases diversify rapidly as n increases. Notably, we observe
over 250k unique 5-grams out of 411k tokens, providing strong evidence that the captions are not
overly templated.

H.4.3 LATENT SIMILARITIES

We further assessed whether Gemini-generated captions introduce systematic stylistic or linguistic
bias. Results across multiple embedding models show minimal template reliance and high diversity.
We performed ~ 80 pairwise comparisons across 4005 captions using nine embedding models
(Table 13). Intra-domain similarity was consistently higher (0.59 — 0.78) than inter-domain similarity
(0.23 — 0.54), with large effect sizes (Cohen’s d > 3.26). Near-duplicates (cosine > 0.95) were
rare, with an average of 2.3% of pairs. Even within domains, similarity showed non-trivial variance,
indicating that captions are not rigid templates but semantically varied.
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Table 13: Embedding similarities

Encoder Model  Dimensionality | Mean Median STD Intra Inter | % Pairs > 0.95

MiniLM-L12-v2 368 | 0.2932 0.2500 0.1771  0.6202  0.2269 5.26
MiniLM-L6-v2 384 | 0.3339 0.3013  0.1510 0.5999  0.2800 1.47
mpnet-base-v2 768 | 0.3278 02791  0.1775 0.6631  0.2599 8.29
bge-large-v1.5 1024 | 0.5807 0.5605 0.0986 0.7600  0.5443 1.67
mxbai-large-v1 1024 | 0.5293 0.5032 0.1116  0.7370  0.4871 2.15
Qwen3-4B 2560 | 0.3816 0.3530  0.1273  0.6098  0.3354 0.20
e5-mistral-7b 4096 | 0.6507 0.6358  0.0697 0.7770  0.6251 1.33
GritLM-7B 4096 | 0.4767 0.4537 0.0947 0.6481 0.4420 0.04
Qwen3-8B 4096 | 0.3736 0.3465 0.1225 0.5947  0.3288 0.32
Average - | 0.4386 0.4092 0.1256 0.6678  0.3922 2.30

H.4.4 HUMAN vs. AI EMBEDDING SIMILARITY

We computed cosine similarities between captions authored by humans, GPT-40, and Gemini using
Qwen-8B embeddings. Both small-scale (22 vs. 22 captions) and larger-scale comparisons (22 vs.
150 captions; 3k vs. 3k STOCK dataset (Jhamtani & Berg-Kirkpatrick, 2021)) show only modest
gaps between human—AI and human—human similarity. For random CaTS-Bench samples, we report
averages across five runs with deviations in the range 0.0010-0.0174. See Table 14 for full results.

Table 14: Cosine similarities between human, GPT-40, and Gemini captions. Human-AlI similarity
closely tracks human-human similarity, suggesting minimal stylistic divergence.

Balanced (22 vs 22) Unbalanced (22 vs 150) STOCK (3k vs 3k)

Comparison Human GPT Gemini ‘ Human GPT Gemini ‘ Human GPT Gemini

Human 0.371 0.341 0.353 0371 0.358 0.353 0.654 0.662 0.586
GPT 0406 0.328 0401 0.329 0.694 0.604
Gemini 0.370 0.378 0.599

H.5 REPRODUCIBILITY VALIDATION

We re-ran our evaluation three times on ~500 randomly sampled test examples from the semi-
synthetic set across five representative models (GPT-40, Claude 3 Haiku, LLaMA, Idefics, Qwen-VL).
Figure 6 shows a log-scale visualization. Across nearly all metrics, the variance is vanishingly
small, often on the order of 10~°, which confirms stability and supports single-run robustness.
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Figure 6: Variance across three independent runs (approximately 500 samples) for each model-metric
pair. The logarithmic scale highlights both very small variances (10~°) and moderately larger values.
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I ROLE OF VISION

I.1

VISUAL MODALITY ABLATION

We present Table 15, comparing the performance of VLMs with and without the visual input.

Table 15: Evaluation of generated semi-synthetic captions under modality ablation. Each metric is
split into two columns: VL (vision-language input) and L (text-only input).

Model DeBERTa F1 SimCSE BLEU ROUGE-L METEOR Numeric
VL L |VL L |VL L |VL L |VL L |VL L
InternVL 0.659 0.677 |0.794 0.854|0.081 0.113]0.247 0.283]0.260 0.317|0.589 0.636
QwenVL 0.643 0.648 |0.790 0.802|0.081 0.090|0.249 0.258{0.260 0.2740.503 0.520
Phi-4 ML 0.624 0.674 |0.797 0.845|0.074 0.118/0.274 0.290|0.239 0.306|0.583 0.634
SmolVLM 0.594 0.603 {0.692 0.758|0.043 0.068|0.224 0.244/0.178 0.257|0.473 0.565
Llama 3.2 Vision  [0.670 0.669 [0.850 0.849|0.117 0.110{0.290 0.275|0.314 0.313/0.684 0.598
Idefics2-8B 0.604 0.632 {0.698 0.816|0.040 0.080|0.225 0.258(0.161 0.270|0.454 0.585
LLaVA v1.6 Mistral |0.650 0.648 |0.820 0.824/0.086 0.098|0.259 0.2610.287 0.286|0.517 0.532
Claude 3 Haiku ~ [0.682 0.676 |0.856 0.853(0.112 0.117|0.291 0.287|0.300 0.298|0.628 0.609
Gemini 2.0 Flash ~ [0.688 0.698 |0.858 0.871|0.137 0.175|0.318 0.343|0.279 0.328|0.677 0.684

1.2 VISUAL ATTENTION ANALYSIS

Interpreting visual grounding in large multimodal models is non-trivial, as not all of them expose
interpretable cross-modal attention mechanisms. We attempt this using the LLaVA model, which
provides access to decoder-level cross-attention weights over vision tokens. We adapt the approach in
Zhang (2024) for the LLaVvA 1.6 model. We visualize per-token visual grounding via the following
steps. For each generated token, we extract the decoder cross-attention matrix Ay, € RV, where
T is the number of generated tokens and V' is the number of vision tokens.

Next, we zero out the attention to the beginning-of-sequence token and normalize each row:
0 if v = <bos>

b
A [t,v]
Do Am[t,0']?

Aynt,v] = { (6)

otherwise

From the CLIP style vision encoder, we extract attention matrices A‘(,ft) € RV*V from multiple layers
and average them:

L
A 1 0
Av=1 l; Al (7

For each token ¢, we compute its attention-weighted vision token distribution and project it back to
the 2D image grid, and the projected map H; is rendered as a heatmap and overlaid on the original
image. This allows inspection of which visual regions contribute to each generated token.

H, = Upsample (reshape(H,, grid)) (8)
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time hour significant series

increase relative

average

Figure 7: Word-level attention maps for the top 8 tokens from LLaVA 1.6 Mistral overlaid on
a time series plot. Despite expectations of alignment with visual trends, attention remains largely
diffuse, offering only weak evidence of localized visual grounding in caption generation.
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1.3 TESTING ALTERNATIVE VISUAL ENCODINGS

Air Quality
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==============

(c) RP

Figure 8: Examples of visual encodings across three domains across three sample domain (Air

Quality, Crime, Demography) (a) Line, (b) GAF, and (c) RP.

To investigate whether more complex visualizations could help in the modality collapse issue, we
experimented with Gramian Angular Fields (GAFs) and recurrence plots (RPs) in addition to standard
line plots. Each was generated from the same univariate time series windows, using first-order deltas
as input. There are also other encodings, such as multi-series overlays or confidence intervals, but we

find these are less applicable in our strictly univariate setting.
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Table 16: Effect of alternative visual encodings on captioning performance on subset of semi-synthetic
captions. Values show the baseline score for No Plot (TS+Text) and relative differences (A) for line
plots, Gramian Angular Fields (GAFs), and recurrence plots (RPs).

Model | Metric | NoPlot | Line(d) | GAF(A) | RP(Q)
DeBERTa Fl 0.6255 -0.078 -0.0525 -0.0525
BLEU 0.069 -0.0405 -0.0460 -0.0430
METEOR 0.2275 -0.0925 -0.0905 -0.0815
NUMERIC 0.4455 -0.1665 -0.1715 -0.1285
MAXIMUM 0.8080 +0.0730 -0.1520 -0.1300
Idefics2 (8B) MEAN 04195 +0.1285 +0.0945 +0.2995
MINIMUM 0.7590 -0.0845 -0.2510 -0.3940
STD 0.5500 -0.1835 -0.1060 -0.3360
ROUGE 0.2375 -0.0460 -0.0465 -0.0415
SIMCSE 0.7915 -0.1735 -0.1935 -0.1705
DeBERTa F1 0.6550 -0.0020 -0.0030 -0.0080
BLEU 0.0840 +0.0005 -0.0090 -0.0100
METEOR 0.2865 -0.0080 -0.0195 -0.0315
NUMERIC 0.5070 +0.0315 +0.0120 +0.0170
MAXIMUM 0.8611 +0.0584 -0.0381 -0.0151
LLaMA 3.2 Vision MEAN 0.5395 +0.0690 +0.0755 +0.1215
MINIMUM 0.6670 +0.0820 +0.0740 +0.0670
STD 0.8750 -0.3270 -0.2310 -0.1250
ROUGE 0.2570 +0.0040 0.0000 -0.0040
SIMCSE 0.8265 -0.0020 -0.0085 -0.0235
DeBERTa F1 0.6315 -0.0045 -0.0045 -0.0095
BLEU 0.0645 -0.0040 +0.0025 -0.0015
METEOR 0.2385 -0.0050 +0.0025 -0.0025
NUMERIC 0.3555 +0.0560 -0.0675 -0.0515
MAXIMUM 0.6610 +0.1135 +0.0200 +0.0430
Qwen-VL MEAN 0.4510 -0.0110 -0.2150 -0.2570
MINIMUM 0.5350 -0.0055 -0.0650 -0.0620
STD 0.1070 +0.2095 -0.0620 -0.0070
ROUGE 0.2310 -0.0045 +0.0130 +0.0030
SIMCSE 0.7835 +0.0020 -0.0085 -0.0090

Table 16 reports results for three representative models (Idefics2-8B, LLaMA 3.2 Vision, Qwen-VL).
Values show the baseline metric with no plot (TS+Text only), followed by relative gains or losses for
each visualization type. Across models and metrics, neither GAFs nor recurrence plots significantly
improved performance; in many cases, they degraded results relative to line plots or even no visual
input. These findings suggest that the bottleneck lies not in the choice of visualization but in the
models’ inability to effectively integrate visual cues. With this, we motivate the development of
models and encodings that better exploit the structured information available in visualized time series.

J Q&A TASKS

We present accuracy scores for VLMs on the Q&A task in Table 17. An analysis of the highlighted
statistics reveals a striking contrast between the finetuned and pretrained models. The finetuned model
frequently produces highly confident yet sometimes incorrect predictions, whereas the pretrained
model demonstrates more caution, acknowledging that the mean is lower than expected without
attempting to estimate a specific value. Notably, certain proprietary models are now reaching, and at
times even surpassing, human performance on specific subsets of tasks. While this signals exciting
progress in the field, it also highlights the nuances of human cognitive performance, particularly
under conditions where distraction might occur. It is vital to note, however, that no singular model has
consistently achieved near-human proficiency across the entirety of the benchmark’s demands. The
plot retrieval task, in particular, stands out as a significant hurdle, robustly affirming the unparalleled
human capacity for holistic visual-numeric integration, a critical frontier for time series understanding.
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Table 17: Model accuracy for time-series Q&A tasks. Bolded and underlined scores respectively
denote first and second places (excluding human performance). Caption/Plot/TS refer to caption, plot,
and time series matching. Amplitude/Peak Earlier/Mean/Variance refer to amplitude, peak, mean,
and variance comparison. Green and Red indicate improvement and degradation after finetuning,
respectively.

Model | Caption Plot TS | Amplitude Peak Earlier Mean Variance
Proprietary

Gemini 2.0 Flash 0.78 030 0.61 0.8 0.42 0.7 0.62
Gemini 2.5 Pro Preview 0.66 0.30 0.31 1.0 1.0 1.0 0.85
Claude 3 Haiku 0.68 0.29 0.57 0.65 0.40 0.53 0.33
GPT-40 096 031 0.77 0.825 0.725 0.7 0.625
Pretrained

InternVL 2.5 0.55 0.17 0.49 0.60 0.47 0.45 0.40
LLaVA v1.6 Mistral 0.39 0.27 0.32 0.45 0.45 0.42 0.45
Phi-4 M.L. 0.62 0.29 045 0.7 0.82 0.68 0.7
Idefics 2 0.49 0.25 0.29 0.35 0.4 04 0.5
SmolVLM 0.26 034 0.28 0.4 0.48 0.44 0.6
QwenVL 0.68 0.27 0.61 0.7 0.5 0.6 04
Llama 3.2 Vision 0.66 024 0.27 0.45 0.63 0.43 0.3
Finetuned

LLaVA v1.6 Mistral 0.44 0.25 0.29 0.43 0.53 0.35 0.4
Phi-4 M.L. 0.59 0.29 045 0.83 0.88 0.7 0.55
Idefics 2 0.33 0.23 0.29 0.58 0.38 0.5 0.63
SmolVLM 0.18 0.26 0.29 0.28 0.48 0.38 0.58
QwenVL 0.55 0.25 043 0.7 0.4 0.58 0.58
Llama 3.2 Vision 0.66 024 0.27 04 0.6 0.43 0.33
Human \ 0.81 095 0.83 \ 0.925 0.85 0.95 0.90

J.1 SAMPLE Q&A QUESTIONS

We provide examples of Q&A questions in Figures 9, 10, 12, 11, 13, 14, and 15, covering one
example per question type.

Question
Given two time series A and B, detect which one has a higher amplitude defined as maximum - minimum.

A:[1.15,0.92, 0.85, 0.75, 0.57, 0.62, 0.6, 0.5, 0.68, 0.72, 0.8, 0.67, 0.8, 0.55, 0.55, 0.7, 0.88]
B: [87.0, 83.0, 77.0, 74.0, 84.0]

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer
"answer": "B"

Figure 9: Example of a time series amplitude comparison question.
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Question
Given two time series A and B, detect which one reaches its maximum earlier.

A: [66.76, 83.06, 85.77, 90.77, 98.81, 90.62, 80.05, 91.36, 89.59, 76.4, 80.1, 85.6, 84.41]
B: [949.0, 689.0, 561.0, 552.0, 563.0]

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer
"answer": "B"

Figure 10: Example of a time series peak comparison question.
Question

Given the following two time series A and B, please identify which one has higher volatility.

A:[0.14,0.14, 0.14, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.57, 0.57, 0.57, 0.57, 0.57, 0.57]
B: [0.21, 0.33,0.41, 0.39, 0.44, 0.35, 0.35, 0.43, 0.51, 0.65, 0.69, 0.74]

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:
"answer": <string>}
<string> must be an answer string containing only A, B.
Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer
"answer": "A"

Figure 11: Example of a time series variance comparison question.
Question

Given the following two time series A and B, please identify which one has higher overall values.

A: [65.0, 65.0, 64.0, 37.0, 55.0, 51.0]
B: [6.29,6.29,6.29,7.0,7.0,7.0,7.0, 6.71, 6.71, 6.71, 6.71, 6.717, 7.57,7.57, 7.14, 7.14, 7.14, 7.14, 7.43]

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:
"answer": <string>}
<string> must be an answer string containing only A, B.
Ensure your output parses as JSON with exactly one top-level object containing the answer field.

{ Answer

"answer": "A"

Figure 12: Example of a time series mean comparison question.
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Question

Here is a time series:
37.00,37.00,37.00,37.00,37.00,40.57,40.57,40.57,40.57,40.57,40.57

What caption best describes this time series?

(A) From May 1st to July 26th, 2024, the daily COVID-19 deaths in China show a fluctuating pattern, with
values generally ranging between 0.29 and 2.86. There are periods of relative stability, such as the initial days
of May with a consistent 0.86, interspersed with occasional spikes to 2.86, and dips to 0.29 towards the end of
July. Compared to the general daily death statistics for China, where the mean is 73.0 and the maximum reaches
6812.0, this specific time series indicates a period of significantly lower daily deaths, suggesting a substantial
improvement in the COVID-19 situation during this timeframe.

(B) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a
relatively stable pattern, beginning at 37.3 cases and rising to 40.57 cases by October 29, 2023, where it remains
for the rest of the period. Compared to the country’s general statistics, where the mean is 236, the daily cases
during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does not
follow any expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

(C) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a
relatively stable pattern, beginning at 37 cases and rising to 40.57 cases by October 29, 2023, where it remains for
the rest of the period. Compared to the country’s general statistics, where the mean is 236.0, the daily cases
during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does not
follow any expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

(D) From October 24, 2023, to November 3, 2023, the daily COVID-19 cases in Luxembourg show a
relatively unstable pattern, beginning at 37 cases and decreasing to 40.57 cases by October 29, 2023, where it
remains for the rest of the period. Compared to the country’s general statistics, where the mean is 236.0, the daily
cases during this period are significantly lower, suggesting a period of reduced viral transmission. This trend does
follow expected seasonal patterns, as COVID-19 case numbers are known to fluctuate unpredictably.

You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B, C, or D.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer

"answer": "C"

Figure 13: Example of a caption matching question.
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Question

Here is a time series:

186.57, 186.57, 186.57, 186.57, 186.57, 150.29, 150.29, 150.29, 150.29, 150.29, 150.29, 150.29, 103.14, 103.14,
103.14, 103.14, 103.14, 103.14, 103.14, 77.00, 77.00, 77.00, 77.00, 77.00, 77.00, 77.00, 52.71, 52.71, 52.71,
52.71,52.71,52.71,52.71, 41.71, 41.71, 41.71, 41.71, 41.71, 41.71, 41.71, 39.71, 39.71, 39.71, 39.71, 39.71,
39.71, 39.71, 29.86, 29.86, 29.86, 29.86, 29.86, 29.86, 29.86, 27.43, 27.43, 27.43, 27.43, 27.43, 27.43, 27.43,
22.57,22.57,22.57,22.57, 22.57, 22.57, 22.57, 15.14, 15.14, 15.14, 15.14, 15.14, 15.14, 15.14, 18.71, 18.71,
18.71, 18.71, 18.71, 18.71, 18.71, 22.71, 22.71, 22.71, 22.71, 22.71, 22.71, 22.71, 23.14, 23.14, 23.14, 23.14,
23.14, 23.14, 23.14, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 21.00, 30.57, 30.57, 30.57, 30.57, 30.57, 30.57,
30.57, 30.57, 30.57, 30.57, 30.57, 30.57, 30.57, 30.57, 36.29, 36.29, 36.29, 36.29, 36.29, 36.29, 36.29, 59.71,
59.71,59.71, 59.71, 59.71, 59.71, 59.71, 93.71, 93.71, 93.71, 93.71, 93.71, 93.71, 93.71, 140.86, 140.86, 140.86,
140.86, 140.86, 140.86, 140.86

Here are four plots of different time series:

value count across days

value count across days
6 %
s |
g L‘Y
3 LJT
’ LJ‘J
20240130 20240427
©) daily timestamp
value coun across days
-
® 20
R R
(D) asy smestamp

Which plot corresponds to the time series provided above?
You must respond only with valid JSON, and no extra text or markdown.

The JSON schema is:

{"answer": <string>}

<string> must be an answer string containing only A, B, C, or D.

Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer

"answer": "A"

Figure 14: Example of a plot matching question.
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Question

Here is a time series caption:

From 2014 to 2019, Bulgaria’s Agricultural output index (2015=100) generally increased, starting at 103.4 in
2014 and reaching a peak of 109.23 in 2019, with a slight dip to 100.0 in 2015. The average output index during
this period was 105.4, notably lower than the historical mean of 126.73, suggesting a period of relatively lower
agricultural productivity compared to Bulgaria’s long-term performance. The increase from 2015 to 2019 indicates
a moderate recovery and growth phase-t within this specific timeframe.

What time series is best described by this caption?

(A) [109.23, 107.24, 108.45, 104.1, 100.0, 103.4]

(B) [108.45, 100.0, 104.1, 107.24, 103.4, 109.23]

(C) [103.9,99.8, 104.1, 109.2, 106.8, 109.23]

(D) [103.4, 100.0, 104.1, 108.45, 107.24, 109.23]

You must respond only with valid JSON, and no extra text or markdown.
The JSON schema is:
{"answer": <string>}

<string> must be an answer string containing only A, B, C, or D.
Ensure your output parses as JSON with exactly one top-level object containing the answer field.

Answer
"answer™: "D

Figure 15: Example of a time series matching question.

J.2 QWEN-BASED FILTERING

To show that questions erroneously answered by Qwen 2.5 Omni are indeed harder, we evaluated
a subset of models on both an easy set of 600 questions and the hard set generated by Qwen 2.5
Omni. The questions in the easy set are randomly sampled from those correctly answered by
Qwen 2.5 Omni. Table 18 depicts the comparison. All models, regardless of architecture, show a
consistent performance gain on the “easy” subset, demonstrating that Qwen-filtered questions are
broadly harder, not uniquely harder for Qwen. To ensure a balanced benchmark, we release both the
full set (38.4k questions) and the hard subset (7k questions), enabling evaluation and training across
the entire difficulty spectrum.

Table 18: Performance on easy vs. hard questions and corresponding lift.

Model | Easy Hard | Lift
Idefics 2 65%  46% | +19%
InternVL 2.5 | 72%  43% | +29%
Phi-4 61%  46% | +15%

SmolVLM 3%  48% +5%
Llama-3.2 54%  49% +5%

J.3 DISTRACTOR GENERATION IN Q&A TASKS

To increase task difficulty, artificial perturbations are applied in the Time Series Matching and
Caption Matching tasks. As shown in the table below, these perturbations significantly impacted
model performance in Time Series Matching, increasing task difficulty and forcing models to reason
over trends rather than relying on superficial cues.

To illustrate the rationale of this design choice, assume the correct time series optionis [1,2, 3].
Having distractors like [101, 99, 102] makes the question trivial due to its totally different
scale and nature. Our distractors are generated by perturbations on the correct time series, resulting
in the following distractors.

1. Shuffled: [2, 1, 3], avoids answering correctly by exploiting numeric lookup without temporal
order awareness.

2. Reversed: [3, 2, 1], avoids reasoning without trend awareness.
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3. Gaussian-noised: [1.03, 1.99, 3.002], forces precise numeric reasoning instead of
superficial numeric and trend similarity.

Table 19: Qwen-2.5-Omni-7B accuracy by task and distractor type.

Question Type ‘ Distractor Type ‘ Accuracy
Time Series Matching Cross-domain 0.9803
Time Series Matching Same-domain 0.9586
Time Series Matching Artificially Perturbed 0.6864
Caption Matching Cross-domain 0.8325
Caption Matching Same-domain 0.8250
Caption Matching Artificially Perturbed 0.8532

Table 19 shows that these perturbations indeed augment question difficulty. For Caption Matching,
we do not find a significant difference between artificially perturbed distractors compared to original
negative examples drawn from the dataset. We release the set of Q&A questions without artificial
perturbations as well. Perturbations are not applied to the other tasks; negative samples are instead
drawn directly from other time series in the dataset.

K INFERENCE EXAMPLES

K.1 NUMERIC TIME SERIES ABLATION

We compare the generated captions

values across years

with and without explicitly providing

the numeric time series data as in- 102

put to the model in the prompt. As 101

seen in Figure 16, when a numeric 100 1000 oh,p3

time series is included, the model
produces some factual and interpre-
tative errors. Notably, it describes the
trend as “increased steadily,” despite

yearly value

97.55

the clear dip in 2014 and a decline * ot

post-2017. 1Tt also incorrectly iden- o P
tifies 2018 as the year of the peak ety tmestam

value 102.48, while the actual peak

occurs in 2017. Similarly the Slight Generated Caption (With Numeric Time Series)

CR : : : The time series plot shows the yearly aggregated input index (2015=100)
dlp is misattributed to 2016 instead in El Salvador from 2009 to 2018. The index comprises land, labor,
of the correct year 2014. In con- capital, and materials. The plot shows a general upward trend, with a
trast, when the numeric time series slight dip in 2016, reaching a peak of 102.48 in 2018.
is removed from the input, the gen-
erated caption becomes si gniﬁcantly Generated Caption (Without Numeric Time Series)

B The plot shows the yearly aggregated input index (2015=100) in EI
more erroneous. The model fabri Salvador from 2009 to 2018. It displays a general upward trend, rising
cates plaUSIble-Soundlng but incorrect from 90.5 in 2009 to around 100 in 2010, peaking in 2014, then returning
values, for example, claiming the in- closer to 100.

dex reached 90.5 in 2009 and spiked . - . .
to 105 in 2014, neither of which is Figure 16: Comparison of generated captions with and with-

present in the actual plot. This sug- Out numeric time series input. Model evaluated is LLaVA
gests that the absence of explicit nu- 1-6-

meric context forces the model to hal-

lucinate plausible trajectories based solely on the shape of the line plot. While both versions
demonstrate limitations in temporal precision, the numeric-aware caption is more grounded and
less prone to hallucinating specific values, producing some factual errors but still outperforming the
numeric-agnostic version, which fabricates values entirely.
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K.2 STATISTICAL INFERENCE FAILURE & SUCCESS

In the main paper, we mentioned that finetuned models often become overconfident when inferring
statistical properties such as means and standard deviations, despite lacking the capability to compute
them accurately. In this section, we present two concrete cases that illustrate this overconfidence in
practice, and one case where the finetuned model actually successfully inferred the statistics.

Case 1: Failure The following error case shows the finetuned LLaVA v1.6 Mistral erro-
neously attempting to infer the time series mean, while its pretrained version does not. We compare
the captions generated by both versions of the model against the numericly grounded reference.

Ground-Truth Caption

The Total Factor Productivity (TFP) index for Malawi from 2008 to 2017 reveals notable fluctuations, starting at
85.99 in 2008 and peaking at 110.47 in 2017, with 2015 set at 100.0. There’s an initial rise from 2008 to 2009,
followed by some volatility before a significant jump to 107.82 in 2013, indicating a period of strong productivity
growth, and the mean of 98.93 for this period is significantly higher than the historical mean of 61.88, suggesting
a period of above-average productivity compared to Malawi’s longer-term performance.

Caption from Pretrained Model

The time series for Malawi’s Total Factor Productivity index shows a generally upward trend from 2008 to 2017,
with some fluctuations. The index starts at 85.99 in 2008 and reaches a peak of 110.47 in 2014. It then experiences
a decline, dropping below 100 in 2015 and 2016. In 2017, the index showed a slight increase, reaching 100.06.
Compared to global or regional norms, Malawi’s productivity index appears to be lower than expected, suggesting
a need for economic development and productivity enhancement strategies.

Caption from Finetuned Model

From 2008 to 2017, Malawi’s Total Factor Productivity index (2015=100) exhibited considerable volatility,
starting at 85.99 in 2008 and ending at 110.47 in 2017. The index experienced a notable increase from 2008 to
2010, rising from 85.99 to 95.76, followed by a dip to 91.75 in 2011, before generally trending upwards with
some fluctuations. Compared to the historical mean of 94.84, the mean of this specific time series is moderately
higher at 99.88, suggesting a period of relatively stronger productivity growth than the broader historical context.

Figure 17: Finetuned model attempts to infer the mean, but it fails. Compare the bolden values.

We observe that, while the pretrained model refrains from inferring the mean of the time series,
displaying a form of "self-awareness" about its limitations, the finetuned model tends to make
confident guesses. This behavior underscores a key limitation of the cross-entropy loss objective.
Since ground-truth captions often include the time series mean, the model can reduce its loss by
always attempting to predict them, as number tokens are treated like any text tokens. When the model
generates captions with sentence structures resembling those in the ground truth, even erroneous
guesses of these statistics incur less loss than omitting them entirely.

Case 2: Success The following is a success case where the finetuned Idefics 2 is able to infer
the time series mean accurately with a negligible error. We compare the captions generated by the
pretrained and finetuned versions of the model against the ground-truth.

Interestingly, the issue of statistical overconfidence appears to be model-specific, as different models
exhibit varying behaviors after finetuning. In this case, the finetuned Idefics 2 was able to infer
both the mean and the standard deviation with reasonable accuracy, when even the ground-truth
caption did not explicitly include the standard deviation. This signals that some models benefit more
from finetuning on our training data.
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Ground-Truth Caption

The death rate in Papua New Guinea from 2017 to 2021 shows a relatively stable trend, fluctuating around a mean
of 6.52 deaths per 1000 people, with a slight dip to 6.4 in 2020 and a peak of 6.68 in 2021. Compared to the
global average, which steadily increased from 7.53 in 2017 to 8.57 in 2021, Papua New Guinea’s death rate is
significantly lower. While the global death rate saw a notable increase, particularly between 2020 and 2021, Papua
New Guinea’s rate remained relatively consistent, indicating a different trajectory than the global trend.

Caption from Pretrained Model

The yearly death rate in Papua New Guinea has been increasing since 2017. In 2017, the death rate was 6.51, and
it has been increasing since then. In 2021, the death rate was 6.68, which is the highest value in the time series.

Caption from Finetuned Model

From 2017 to 2021, the death rate in Papua New Guinea, a lower-middle-income country, fluctuated slightly,
ranging from a low of 6.40 in 2020 to a high of 6.68 in 2021. The average death rate during this period was 6.49,
with a standard deviation of 0.1, indicating relatively stable numbers. Compared to the global average death rate,
which decreased from 7.57 to 7.16 over the same period, Papua New Guinea’s death rate was significantly lower
and showed no clear downward trend.

Figure 18: Finetuned model successfully infers the mean and standard deviation with negligible error.
Compare the bolden values.

L CATS-BENCH SAMPLES

In this section, we provide representative time series samples from CaTS-Bench across several
domains. Samples include the numeric time series segment, rich JSON metadata, line plot image,
and ground-truth caption.

Time Series Segment

V.0, Tc@; 70, 7.0, 70, 7-0, 7-0, 8.0, 25:.5,

42.0, 163.33, 258.0, 214.5, 322.5, 354.75,
402.0, 182.33, 141.25, 69.25, 47.0, 12.5,
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0,
7.0, 11.25, 84.0, 194.5, 338.75, 374.75,
427.25, 272.75, 332.67, 377.75, 232.33,
111.67, 113.25, 23.5, 10.0, 7.0, 7.0, 7.0,
7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 9.0,
72.25, 91.0, 54.5, 213.0, 299.25, 233.75,

259.0, 390.75, 367.75, 285.25, 207.75, 63.25,

9.5, 7.0, 7.0, 6.75, 6.75, 7.0, 7.0

Line Plot Image

value across hours

] 1 0 E 0 50 ) n
hauy timestamg

Metadata JSON

{ "all-time maximum": 730.0, "all-time
average value until today": 127.62,
"all-time minimum": 0.0, "all-time standard
deviation until today": 175.79, "average
value in this time series": 105.78, "city":
"Visakhapatnam", "maximum value in this
time series": 427.25, "measure": "SR
(W/mt2)", "minimum value in this time
series": 6.75, "sampling frequency":
"hourly", "standard deviation in this

time series": 133.47, "start_month":
"July", "start_year": 2017, "starting

time": "2022-06-27 22:00:00", "state":
"Andhra Pradesh", "station_location": "GVM
Corporation, Visakhapatnam " }

Caption

The hourly solar radiation (sr) data from Visakhapatnam,
starting on June 27, 2022, exhibits a clear daily pattern
of low values around 7 w/mt? during the night and early
morning, sharply increasing to peaks during daylight hours,
with a maximum value of 427.25 w/mt2. compared to the
city’s all-time average of 127.62 w/mt?, the average value
in this time series is 105.78 w/mt2. The data follows a
consistent diurnal cycle, with repeated peaks during the
day and low values at night, showing a stable daily pattern.

Figure 19: Sample 1 showing time series data, metadata, plot image, and reference caption.
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Time Series Segment Metadata JSON

[29, 33, 29, 35, 32, 35, 36, 34, 23, { "border": "US-Canada Border", "end date of
34, 26, 25, 24, 30, 31, 39, 34, 48, 56, the series": "2022-11-01", "general maximum
40, 35, 37, 42, 55, 57, 41, 47, 53, 56, in th§ hlstory of this po?t": 80, "general
mean in the history of this port": 30.85,
50, 59, 45, 49, 44, 36] "general minimum in the history of this
port": 0, "general standard deviation in
the history of this port": 13.74, "maximum
in this specific series": 59, "mean of this
specific series": 39.4, "means": "Trains",
"minimum in this specific series": 23,
"port": "Van Buren", "sampling frequency":
"monthly", "standard deviation of this
specific series": 10.16, "start date of the
series": "2019-12-01", "state": "Maine" }

Line Plot Image Caption

] From December 2019 to December 2022, the number of
Crossing numboer across days . .

60- ' monthly trains crossing the port of Van Buren generally
WA increased, with an average of 39.4 trains, which is no-
v \V-\ tably higher than the all-time mean of 30.85. The time
Y series starts with values in the range of 23 to 36 trains until
A/ L\ '/( \ November 2020, and then experiences a significant upward
/\(v‘\'\ R F‘/ v shift, reaching a peak of 59 trains in October 2022. This
\/ \“4’ increase suggests a moderate surge in cross-border traffic

compared to historical trends.

crossing number
B &

.-

-

2018-12:01 2022101
‘mendy timestamp

Figure 20: Sample 2 showing time series data, metadata, plot image, and reference caption.

Time Series Segment Metadata JSON
[0.52, 0,32, 0,30, .38, Q.41, 0,51, { "attribute": "co2_emissions",
0.43, 0.41, 0.47] "country": "Djibouti",
"end year of this series": 2018,
"maximum of this specific series": 0.52,
"mean of this specific series": 0.42,
"minimum of this specific series": 0.30,
"population at the end year": 1071886.0,
"population at the start year": 930251.0,
"region": "Middle East & North Africa",
"sampling frequency": "yearly",
"standard deviation of this specific series":
0.07,
"start year of this series": 2010 }
Line Plot Image Caption
— <03 omission In mi Wion retri tons scross years Djibouti’s CO2 emissions from 2010 to 2018 show fluctua-
» tions around the average of 0.42 million metric tons, with a
standard deviation of 0.07. Starting at 0.52 million metric
tons in 2010, emissions generally decreased to a low of
0.3 million metric tons by 2012, before experiencing some
increases and decreases, ending the period at 0.47 million
i metric tons in 2018.

Figure 21: Sample 3 showing time series data, metadata, plot image, and reference caption.

37



Under review as a conference paper at ICLR 2026

Time Series Segment Metadata JSON
[ 90.0, 90.0, 104.0, 104.0, 104.0, { "attribute": "cases", "country":
104.0, 104.0, 104.0, 104.0, 110.57, "Thailand", "end date of this series":
110.57 110.57 110.57 110.57 110.57 "2024-07-21", "historical maximum in this
. ! . ! . ! . ! : ! country": 26073.0, "historical mean in this
110.57, 1z1.29, 121.29, 121.29, ..., country": 2877.0, "historical minimum in
268.86, 268.86, 257.29, 257.29, 257.29, this country": 0.0, "historical standard
257.29, 257.29, 257.29, 257.29, 266.14, deviation in this country": 5778.0, "income
266.14, 266.14, 266.14, 266.14, 266.14, group": "Low & Middle Income", "maximum
266.14, 394.57, 394.57, 394.57, 394.57, of this specific series": 465.14, "mean of
394.57, 394.57, 394.57, 411.57, 411.57, this specific series": 240.7, "minimum of
411.57 411.57 196.71 196.71 this specific series": 90.0, "population":
. ! ° vt - ! : ! 71697024, "region": "East Asia & Pacific",
196.71, 143.43, 143.43, 143.43, 143.43, nsampling frequency”: "daily", "standard
143.43, 143.43, 143.43, 152.43 ] deviation of this specific series": 106.03,
"start date of this series": "2024-03-29" }
Line Plot Image Caption

value count across days

daily timestamp

From March 29th to July 21st, 2024, the daily COVID-19
cases in Thailand fluctuated, starting at 90.0 and peaking at
465.14 around mid-June. This peak is significantly lower
than the general maximum of 26073.0 daily cases observed
in Thailand, indicating a substantial decrease in case num-
bers during this period. The time series shows an overall
pattern of initial stability, followed by increases and de-
creases, with a final value of 152.43, suggesting a moderate
decline towards the end of the observed period.

Figure 22: Sample 4 showing time series data, metadata, plot image, and reference caption.

Time Series Segment Metadata JSON

[872817.62, 972716.24, 936508.43, { "attribute": ‘"weekly_ sales", "best
806979.15, 982322.24, 861894.77, weekts  TACL0-123-240, oot veck salegts
861941.25 872469.03 807798.73 1309226.79, "end week of this series":

° 4 ) ! : ! "2012-08-31", "maximum of this specific
833517.19, 868191.05, 777207.3, series": 982322.24, "mean of this
865924.2] specific series": 870791.32, "mean sales":

893581.39, "minimum of this specific series":
777207.3, "sampling frequency": "weekly",
"start week of this series": "2010-05-28",
"worst week": "2010-12-31", "worst week
sales": 635862.55 }
Line Plot Image Caption

weekly sales In USD scr The provided sales data, spanning from May 2010 to

August 2012, reveals fluctuations around a mean of

550000 —

$870,791.32, which is moderately below the overall store
mean of $893,581.39. The lowest sales week within this
period reached $777,207.3, while the highest peaked at
$982,322.24, indicating a moderate level of volatility, but
no extreme values compared to the store’s best and worst
weeks. The absence of a clear upward or downward trend
suggests that sales remained relatively stable during this
specific timeframe.

Figure 23: Sample 5 showing time series data, metadata, plot image, and reference caption.

M EDITING AND REVIEW

M.1

During the editing process, captions were systematically refined to ensure accuracy, clarity, and

EDITS MADE IN THE CAPTIONS

consistency across the dataset. The following key rules were applied:
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. Removal of external speculation: Captions were restricted strictly to information verifiable from
the metadata, time series, and plot, avoiding any causal claims or conjecture not grounded in the
time series values or provided metadata.

. Variation in phrasing: To reduce repetitiveness, sentence openings and phrases were varied
rather than uniformly beginning and phrasing the same sentences.

. Pattern summarization: When trends or unique structures (such as V-shaped or monotonic
movements, etc.) were clearly visible, they were explicitly noted.

. Quantitative grounding: Values such as maxima, minima, averages, and percentage changes
were consistently included when relevant to ensure captions remained data-driven.

Consistency with variation: While maintaining factual accuracy and grounding in the data,
captions were intentionally varied in structure and style to avoid monotony and ensure more
natural, human-like phrasing across the dataset.

This systematic review process resulted in captions that were both faithful to the underlying data and
stylistically coherent across the dataset.

M.2 INTERFACE

In Figure 24, we provide a screenshot of the editing interface we used to edit the human-revisited test
set.

Progress: 276/276 completed (100.0%)

Current: 1/276

B Sample ID: agriculture_0

values across years Key Value
= 0 attribute Agricultural output index (2015=100)
106
1 country Upper-middle income
A, 2 end year of this series 2018
10066
100 1000 3 historical max 107.010000
2 4 nhistorical mean 53.890000
i 5 historical min 19.290000
% — maximum of this specific
6 series 1056.270000
o mean of this specific
7 serles 98.360000
a4
ek The Agricultural output index (2015=100)
8 metrics info comprises the following components:
2011 2018 crop_output, animal_output, fish_output.
yearly tmestamp
g Minimum of this specific 91.290000
series
10 sampling frequency yearly
11 start year of this series 201

~/ Time Series (preview):

91.29, 92.47, 95.63, 97.51, 100.0, 100.66, 104.09, 105.27

Caption: | Over the 2011-2018 period, a pronounced upward trajectory is evident in the agricultural output index of this upper-middle
income nation, commencing at 91.29 and culminating at 105.27. This sustained ascent signifies a marked expansion in
agricultural productivity, with an appreciable 15% surge observed between the series' inception and conclusion. Notably, the
agricultural output index during this interval far surpasses the country's historical average of 53.89, which indicates a
period of strong agricultural outputs relative to the country's longer-term agricultural history.

Figure 24: Interface used to edit and verify the captions.
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N TEMPLATE-BASED PROMPTS

In this section, we illustrate the prompts used in our sample generation pipeline, evaluation, para-
phrasing, PAL, and distractor generation in Q&A. Angular brackets are used as placeholders for the
actual values.

N.1 GROUND-TRUTH CAPTION GENERATION PROMPT

The following is an example of a prompt for generating the ground-truth caption from the source
dataset Crime.

Here is a time series about the number of <sampling frequency> crimes in
<town>, Los Angeles, from <start date> to <end date>:

<time series>

The all-time statistics of <town> until today are:

Mean: <general mean of this town>

Standard Deviation: <general standard deviation of this town>
Minimum: <general minimum of this town>

Maximum: <general maximum of this town>

And the statistics for this specific time series are:

Mean: <mean of this specific series>

Standard Deviation: <standard deviation of this specific series>
Minimum: <minimum of this specific series>

Maximum: <maximum of this specific series>

Describe this time series by focusing on trends and patterns. Discuss
concrete numbers you see and pay attention to the dates.

For numeric values, ensure consistency with the provided time series. If
making percentage comparisons, round to the nearest whole number. Report
the dates when things happened.

Use the statistics I provided you for comparing this example to the
normalcy.

Do not add any extra information beyond what is given.

Highlight significant spikes, dips, or patterns.

You don’t have to explicitly report the numeric values of general
statistics; you just use them for reference.

Compare the trends in this time series to global or regional norms,
explaining whether they are higher, lower, or follow expected seasonal
patterns.

When making comparisons, clearly state whether differences are minor,
moderate, or significant.

Use descriptive language to create engaging, natural-sounding text.
Avoid repetitive phrasing and overused expressions.

Answer in a single paragraph of four sentences at most, without bullet
points or any formatting.

N.2 BASELINE CAPTION GENERATION PROMPT

When evaluating the baselines on our benchmark, we provide limited metadata, excluding the
precomputed statistics of the time series, as the models are expected to infer them on their own. An
example of the prompt is the following.

Here is a time series about the number of <sampling frequency> crimes in
<town>, Los Angeles, from <start date> to <end date>:
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<time series>

Describe this time series by focusing on trends and patterns. Discuss
concrete numbers you see and pay attention to the dates. For numeric
values, ensure consistency with the provided time series. If making
percentage comparisons, round to the nearest whole number. Report the
dates when things happened.

Compare the trends in this time series to global or regional norms,
explaining whether they are higher, lower, or follow expected seasonal
patterns.

When making comparisons, clearly state whether differences are minor,
moderate, or significant.

Use descriptive language to create engaging, natural-sounding text.
Avoid repetitive phrasing and overused expressions.

Answer in a single paragraph of four sentences at most, without bullet
points or any formatting.

N.3 CAPTION PARAPHRASING PROMPT

To rephrase a caption into a different linguistic style while preserving semantic and numeric informa-
tion, we feed the following prompt into a paraphraser model of choice.

You are a helpful assistant. Your task is to rephrase the following
paragraph that describes a time series. You MUST strictly follow these
rules:

Preserve all factual information: All numeric values, statistics (min,
max, mean, etc.), trends (’increased’, ’peaked’), comparisons (’higher
than’), and dates must remain exactly the same.

Change the style completely: Use different sentence structures,
synonyms, and grammatical constructions. Alter the tone (e.g., make it
more formal or more conversational). Do not use the same phrasing as the
original.

Output only the rephrased paragraph, with no additional explanation.

Here is the paragraph to rephrase:
<caption>

N.4 PAL PrROMPT

Here we reproduce the full prompt used for the program-aided context:

### Task
<caption_prompt>

### Instructions for the assistant
1. You are an expert coding assistant; think through the task
**step-by-stepx*x*.
2. Write x+xPython 3.12%% code (inside one ‘‘‘python‘‘‘ block) that
computes the final answer.

* Use only the Python Standard Library (e.g., you may use the ‘math?,
‘statistics' libraries).

* Wrap everything in a ‘solve() ‘' function that will be invoked to
produce the final caption.

* The code xxmust produce the caption string itselfxx. Any numeric
values can be computed
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in Python and formatted into the caption string. Make sure to use
any values you compute

in the resulting caption string.
3. The ‘solve() ' function you write will be invoked to produce the final
caption.

### Output format (exactly; no extra text, explanations, or formatting)
‘Y'python

# code that defines solve() and any desired strings

solve ()

AN

The full TSC prompt from N.2 is injected as the caption_prompt string.

N.5 SEMANTIC PERTURBATION PROMPT

To perturb a caption so that its semantic meaning is altered while keeping numbers intact, we feed the
following prompt into Gemini 2.0 Flash.

Your task is to minimally modify a time series description so that its
meaning is altered but the numbers are maintained.

For example, you can switch "increase" with "decrease", "upward" to
"downward", or something more sophisticated. Keep the description
structurally identical to the original text; you don’t have to alter too
much information. Altering anywhere between 1 and 3 parts is enough. Do
not edit the numbers.

Here’s the description to modify:
<caption>

Give your answer in a paragraph of text as the given description,
without any explanation or formatting.

N.6 NUMERIC PERTURBATION PROMPT

To perturb a caption so that its numbers are altered while its semantic information is preserved, we
feed the following prompt into Gemini 2.0 Flash.

Your task is to slightly modify the numbers in a time series description
so that its semantics remain the same, but the numbers are slightly
altered.

For example, you can replace "12" with "12.2", "45%" with "46%". Keep
the description structurally and semantically identical to the original
text; you don’t have to alter all numbers but anywhere between 1 to 3
times is enough. Make sure that the altered number still makes sense and
fits the scale of the phenomenon.

Here’s the description to modify:
<caption>

Give your answer in a paragraph of text as the given description,
without any explanation and formatting.

O HUMAN BASELINE

To establish a human performance baseline, we invited university students to voluntarily complete
all four Q&A tasks. These tasks span a range of reasoning types, including fine-grained statistical
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comparisons, semantic interpretation, and multimodal alignment. Participants were recruited through
academic networks and completed the tasks without the aid of external tools, ensuring a fair compari-
son with models operating under similar conditions. Participation was entirely voluntary, with no
compensation, and individuals could withdraw at any time. Below, we present the instructions given
to the volunteers for their participation.

Participant Information and Consent Form for Time Series QA
Questionnaire

Thank you for considering participation in our study!

This questionnaire is part of a research project evaluating human
performance on time series understanding tasks. Your responses
will help us establish a baseline for comparing human performance
to that of current language models. You will be given a Google
Form consisting of 10 to 14 multiple-choice questions of the same
type, and you should not use any external tools.

Please read the following information carefully before continuing:
Voluntary Participation: Your participation is entirely
voluntary. You may choose not to participate or to withdraw at

any time without any consequences.

Duration: The questionnaire is brief and is estimated to take
between 3 and 6 minutes to complete.

Anonymity & Data Use: No personal information will be collected
or stored. Your answers will remain anonymous and will be used
solely for research purposes, such as evaluating and reporting

model performance in academic publications.

No Compensation: There is no monetary or material compensation
for participating in this study.

Confidentiality: All collected data will be handled securely.
Only aggregated and anonymized results will be published.

By proceeding, you confirm that you understand the above terms
and agree to participate in this research study.

Thank you for your collaboration and contribution to our research!

Date: Signature:
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