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Abstract

Current successes of machine learning ar-001
chitectures are based on computationally ex-002
pensive algorithms and prohibitively large003
amounts of data. We need to develop tasks004
and data to train networks to reach more com-005
plex and more compositional skills. In this pa-006
per, we illustrate Blackbird’s language matri-007
ces (BLMs), a novel grammatical dataset de-008
veloped to test a linguistic variant of Raven’s009
progressive matrices, an intelligence test usu-010
ally based on visual stimuli. The dataset con-011
sists of roughly 48000 sentences, generatively012
constructed to support investigations of cur-013
rent models’ linguistic mastery of grammati-014
cal agreement rules and their ability to gen-015
eralise them. We present the logic of the016
dataset, the method to automatically construct017
data on a large scale and the architecture to018
learn them. Through error analysis and sev-019
eral experiments on variations of the dataset,020
we demonstrate that this language task and the021
data that instantiate it provide a new challeng-022
ing testbed to understand generalisation and023
abstraction.024

1 Introduction025

All speakers can understand a sentence never heard026

before, or derive the meaning of a word or a sen-027

tence from its parts. And yet, these basic linguistic028

skills have proven very hard to reach by compu-029

tational models. The current reported success of030

machine learning architectures is based on compu-031

tationally expensive algorithms and prohibitively032

large amounts of data that are available for only a033

few, non-representative languages. To reach better,034

possibly human-like, abilities in neural networks’035

abstraction and generalisation, we need to develop036

tasks and data that help us understand their current037

generalisation abilities and help us train them to038

more complex and compositional skills.039

Generalisation in NLP has been defined in a very040

narrow way, as extension from a set of data points041

to new data points of exactly the same nature (i.i.d. 042

assumption). Not much effort has gone in trying to 043

generalise to new problems or out of distribution 044

(Schölkopf, 2019). Even under this very narrow 045

definition, recent studies show that current algo- 046

rithms do not generalise well (Belinkov and Bisk, 047

2018; Belinkov and Glass, 2019). 048

One likely reason why people generalise better 049

is that they have a strong prior bias, grounded in 050

the actual structure of the problem. A large body of 051

literature of experimental work has demonstrated 052

that the human mind is predisposed to extract regu- 053

larities and generate rules from data, in a way that 054

is distinct from the patterns of activation of neural 055

networks (Lakretz et al., 2019a). 056

One possible approach to develop more robust 057

methods, then, is to pay more attention to the de- 058

composition of complex observations, discovering 059

the factors in the generative process that gives rise 060

to the data (Schölkopf et al., 2012). To study how 061

to discover the underlying problem structure, ma- 062

chine learning research in vision has developed the 063

notion of disentanglement. A disentangled repre- 064

sentation can be defined as one where single latent 065

units are sensitive to changes in single generative 066

factors, while being relatively invariant to changes 067

in other factors (Bengio et al., 2013). 068

To learn more disentangled linguistic represen- 069

tations, that reflect the underlying linguistic rules 070

of grammar, we develop a new linguistic task. We 071

will use a new set of progressive matrices tasks de- 072

veloped specifically for our goals and demonstrate 073

their usefulness. While the use of automatically 074

generated data in NLP is not new, this kind of pro- 075

gressive matrix generation for higher level linguis- 076

tic reasoning has never been tried before for NLP, 077

as far as we are aware.1 078

1The code and the data described in this paper will be
released in full on publication. Currently, more examples of
the data and more details on models specifications are to be
found in the supplementary materials.
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2 Blackbird’s Language Matrices (BLMs)079

Inspired by computational methods on vision, we080

develop a new linguistic task, to learn more dis-081

entangled linguistic representations that reflect the082

underlying linguistic rules of grammar.083

The solution of the tasks requires identifying084

the underlying rules that generate compositional085

datasets (like Raven’s progressive matrices), but086

for language. We call them Blackbird’s Language087

Matrices (BLMs).088

2.1 Progressive matrices for visual stimuli089

Raven’s progressive matrices (progressive because090

tasks get harder) are IQ tests consisting of a se-091

quence of images (usually eight) connected in a092

logical sequence by underlying generative rules.093

The task is to determine the missing element (usu-094

ally the last) in this visual sequence. An example095

and explanation of this task is given in Figure 1.096

The matrices are built according to generative rules097

that span the whole sequence of stimuli and the an-098

swers are constructed to be similar enough that the099

solution can be found only if the rules are identified100

correctly.101

Traditionally, progressive matrices as intelligent102

tests are designed by hand, but recent research in vi-103

sion that has used this task to train neural networks104

has typically employed some structured generative105

model to create larger numbers of questions (Wang106

and Su, 2015). In this way, a correct answer is107

consistent with the underlying generative model,108

so the learning process basically discovers how to109

induce the model. In this way, for example, it is110

possible to identify clear dimensions of successful111

and unsuccessful generalisation. For example, ma-112

trices for vision have shown that the best models113

can apply known abstract relationships in novel114

combinations, but fail in applying known abstract115

relationships to unfamiliar entities (Barrett et al.,116

2018).117

2.2 Progressive matrices for language118

Consider what subproblems need to be solved to119

reach the right answer in an RPM: (i) The ele-120

ments manipulated by the rules must be identified.121

(ii) The relevant attributes of the manipulated ele-122

ments must be identified. (iii) The rules of change123

of these attributes must be identified. (iv) The ab-124

stract structure of the matrix must be identified.125

To instantiate these subproblems in the auto-126

matic generation of language matrices, first, we de-127

Figure 1: Examples of progressive matrices in the vi-
sual world. The task is to determine the missing ele-
ment in a visual pattern: Given the matrix on the left,
choose the last element of the matrix from the choice
of elements on the right. The matrix is constructed ac-
cording to two rules: Rule 1: from left to right, the red
dot shape moves one place clockwise each time. This
pattern continues onto the next row; Rule 2: from top to
bottom, the blue square moves one place anticlockwise
each time. This pattern continues onto the next column.
Identifying these rules leads to the correct answer: the
correct answer is marked by double edges; it is the only
cell that continues the generative rules correctly.

fine the language tasks that need to be solved. Sec- 128

ond, we define the rules governing the abstract au- 129

tomatic generation process and we compose rules 130

into grammatical language templates. Finally, we 131

automatically create large samples of data. We 132

describe these steps below. 133

2.2.1 Choosing the body of grammatical rules 134

We choose to construct data to determine if the 135

rules of subject-verb number agreement can be 136

learned and if other elements in the sentences that 137

are involved (or not involved) in agreement can be 138

identified. We choose to work on French because 139

its agreement system, its verb conjugations and 140

its noun phrase structure lends itself well to our 141

investigation. 142

As a reminder, the main rule of subject-verb 143

agreement in French, and English, states that sub- 144

ject and verbs agree in their number, and they do 145

so independently of how many noun phrases inter- 146

vene between the subject and the verb, as shown in 147

the main clause examples of Figure 2. In practice, 148

the intervening noun phrases can act as agreement 149

attractors and trigger agreement mistakes, if they 150

are close to the verb, like for example the fourth 151

sentence in Figure 3. 152

Subject-verb agreement is a morphological phe- 153

nomenon of appropriate complexity to start our 154

investigations with BLMs. It is easily isolated from 155

other aspects of a sentence, it is marked explicitly 156

in the forms of words (for example by an −s end- 157

ing) and it does not depend on the words’ meaning. 158

Subject-verb agreement, then, is clearly limited to 159

some specific words in the sentence, so that the 160
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1 Subj-sing N1-sing Verb-sing
2 Subj-plur N1-sing Verb-plur
3 Subj-sing N1-plur Verb-sing
4 Subj-plur N1-plur Verb-plur
5 Subj-sing N1-sing N2-sing Verb-sing
6 Subj-plur N1-sing N2-sing Verb-plur
7 Subj-sing N1-plur N2-sing Verb-sing
8 Subj-plur N1-plur N2-sing Verb-plur

(a) Template

1 L’ ordinateur avec le programme est en panne.
2 Les ordinateurs avec le programme sont en panne.
3 L’ ordinateur avec les programmes est en panne.
4 Les ordinateurs avec les programmes sont en panne.
5 L’ ordinateur avec le programme de l’expérience est en panne.
6 Les ordinateurs avec le programme de l’expérience sont en panne.
7 L’ ordinateur avec les programmes de l’expérience est en panne.
8 Les ordinateurs avec les programmes de l’expérience sont en panne.

(b) Main clause

Figure 2: Agreement template and sentences generated by the templates. There are three types of context: main
clause, completive clause, and relative clause. Template is exemplified with main clause. Translation of main: The
computer(s) with the program(s) of the experiment is/are not working.

elements and the attributes manipulated by the un-161

derlying rules can be clearly identified. Moreover,162

agreement rules show structural properties, so that163

sequences of increasing complexity of application164

of the rule can be defined (Linzen et al., 2016;165

Linzen and Leonard, 2018).166

2.2.2 Defining the BLM generative rules and167

creating the BLM templates168

In describing the process to build BLMs, we will169

talk of contexts, the sequence of sentences whose170

last element needs to be identified, and answer171

set, the set of answers that instantiates the multiple172

choice task that needs to be solved by the BLM173

test.174

Creating the templates contexts For the (semi)-175

automatic generation of the contexts, first, we de-176

fine the abstract structure of the matrix as a pro-177

gression in the number of attractors, as shown in178

Figure 2. The ‘objects’ that we manipulate are179

noun phrases and we manipulate their agreement180

attributes: the number of the head noun (which181

needs to match the number of the verb), the number182

of the closest noun and the number of the second183

noun (both can vary freely), as in Figure 2a.184

So, for example, the sequence in Figure 2 is gen-185

erated by a rule of progression of number of attrac-186

tors (one and two), a rule of subject-verb agreement187

that alternates for every sentence between singular188

and plural of the head noun and a rule of number189

of the attractors that alternates between singular190

and plural every two sentences. Thus, the correct191

answer for this example is a sentence that has three192

attractors and a singular subject and singular attrac-193

tors.194

Thus, when learning rules of subject-verb agree-195

ment, the network needs to learn (i) to identify the196

relevant words that need to undergo agreement, the197

subject and the verb; (ii) needs to learn that attrac-198

tors do not count for subject-verb agreement; (iii) 199

needs nonetheless to pay attention to the attractors, 200

and not simply ignore them, to be able to correctly 201

predict which sentence will complete the matrix. 202

To do so, as explained above, it will have to learn 203

three separate rules that operate on the constituents 204

of the sentence in different ways. 205

We generated sentences according to the rules 206

with the adapted items from (Franck et al., 2002). 207

To vary the structures, we also create three versions 208

of the sentences: noun phrases in the matrix clause 209

or embedded in a completive or a relative clause.2 210

In total, there are 28 rules, and 896 matrices for 211

each of the sentence types. 212

Creating the template answers The generation 213

of possible answer sets is also a complex issue. 214

Alternative (and incorrect) answers need to be suffi- 215

ciently distinguishable, but also sufficiently similar 216

to actually require the application of all three rules 217

to be discarded. That is, the correct answer cannot 218

be found by just learning some of the generative 219

rules, instead of all of them, or by some simple 220

heuristic. We opt for a choice among grammati- 221

cal and ungrammatical alternatives comprising the 222

choices exemplified in Figure 3, for the main clause 223

structural context. 224

2.2.3 Creating the data sample 225

Once the BLM templates are defined, we need to 226

create a large sample of natural, grammatical sen- 227

tences, to train the networks and to generate the 228

2The completive corresponding to the example in Figure 2
is ‘Je suppose que le(s) ordinateur(s) avec les programmes de
l’expérience est/sont en panne’, whose translation is I assume
that the computer(s) with the program(s) of the experiment
is/are not working. The corresponding relative clause is ‘Le(s)
ordinateur(s) avec le(s) programme(s) de l’expérience dont
Jean se servait est/sont en panne’, and its translation is The
computer(s) with the program(s) of the experiment that Jean
was using is/are not working.
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Answers Error type
1 L’ ordinateur avec le programme et l’expérience est en panne. Coord: the last noun appears in a coordination phrase
2 L’ ordinateur avec le programme de l’expérience est en panne. Correct: Correct answer
3 L’ ordinateur avec le programme est en panne. WNA: Wrong number of attractors
4 L’ ordinateur avec le programme de l’expérience sont en panne. AE: Agreement error
5 Les ordinateurs avec le programme de l’expérience sont en panne. Alter N1: wrong number of the first NP
6 L’ ordinateur avec les programme de l’expérience est en panne. Alter N2: wrong number of the second NP

Figure 3: Different conditions of the answer matrix.

answer sets.229

Creating natural contexts and answers We230

use an automatic method, based on context-aware231

word embeddings, specifically we use Camembert232

(Martin et al., 2020) to generate more sentences.233

The general process consists in masking some of234

the nouns to generate other most probable nouns235

and use them to construct new sentences. More236

specifically, we mask different nouns in the three237

kinds of constructions. For the main clause, we238

masked the first noun simultaneously for all the239

sentences in a matrix, and generated the five most240

probable nouns. We applied the same procedure for241

the second noun. So one template matrix can give242

rise to ten matrices. For the completive clause and243

relative clause, we mask the head noun in the sub-244

ject and main verb, as well as first noun and second245

noun of the embedded clause, and applied the same246

procedure for the main clause. One template matrix247

can generate twenty more matrices. We generate248

lexical variants of answers by the same procedure249

used in the contexts.250

Creating data variants: Matrices with lexical251

variation All the matrices described above were252

created with the same lexical items in each matrix.253

To force the learner to concentrate on the grammat-254

ical rules, sentences of the same type are shuffled255

and lexically varied matrices are created as shown256

in Figure 4, as an example of a main clause matrix.257

Creating data variants: Unordered matrices258

Natural language tasks and problems often are not259

limited to a single sentence but span over several260

sentences, for example, in textual entailment, ma-261

chine translation, reference resolution, dialogue. It262

is therefore important to build test sets that stress263

language learning abilities and from which we can264

extrapolate realistic conclusions about real learning265

patterns. To test whether the ordered nature of the266

data we build is important, we also shuffle each267

basic matrix, to keep the templates constant, but268

make the order random.269

With these novel datasets, we train learners and270

study their ability to learn the underlying rules giv- 271

ing rise to subject-verb agreement. As illustrated 272

by Figure 4, this task can get quite difficult. We ex- 273

plore whether current models can learn to perform 274

the task at all, and what factors of variation help 275

the learning of the underlying rules. 276

3 Learning the matrices 277

To demonstrate that we can learn these matrices, we 278

train several models. The computational choices 279

of the problem concern the representation of the 280

data set, the representation of the actual sentences 281

and sequence of sentences and, finally, the compu- 282

tational architecture. We describe these method- 283

ological components below. 284

Data and embeddings The training data con- 285

sists of 42800 BLMs (sequences of 7 context sen- 286

tences and the corresponding correct continuation), 287

split into 90% for training and 10% for valida- 288

tion. For testing, we have 4688 sequences of 7 289

sentences as BLMs and 6 possible answers for each 290

sequence. To obtain representations of our data, we 291

use FLAUBERT, a transformer model for French 292

(Le et al., 2020), pretrained using a masked lan- 293

guage modeling objective similar to BERT (Devlin 294

et al., 2019). As this model gives us representations 295

in context for each word in a sentence, we create 296

an average representation for our sentences, so that 297

we have a single vector for the entire sentence.3 298

Batch size is of 354 sentences. 299

3.1 Variational Information Bottleneck with 300

disentanglement 301

We test a variant of β-variational autoencoders for 302

disentanglement. Higgins et al. (2016) propose an 303

approach to learning disentangled representations 304

inspired by the human tendency to reduce redun- 305

dancy. To learn statistically independent factors, 306

3In these averaged representations, we omit the special
tokens (e.g. [CLS], [SEP ]) added by the transformer at the
beginning and end of a sentence. In addition, we pad each
sentence to have the same length as the longest sentence in the
data. This padding consists in adding 0s to the representation
of the sentence.
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Contexts
Example Translation
1 La conférence sur l’histoire a commencé plus tard que prévu. The talk on history has started later than expected.
2 Les responsables du droit vont démissionner. Those responsible for the right will resign.
3 L’ exposition avec les peintures a rencontré un grand succès. The show with the paintings has met with great success.
4 Les menaces de les réformes inquiètent les médecins. The threats of reforms worry the doctors.
5 Le trousseau avec la clé de la cellule repose sur l’étagère. The bunch of keys of the cell sits on the shelf.
6 Les études sur l’effet de la drogue apparaîtront bientôt. The studies on the effect of the drug will appear soon.
7 La menace des réformes dans l’ école inquiète les médecins. The threat of reforms in the school worries the doctors.
Answers
Example Translation
1 Les nappes sur les tables et le banquet brillent au soleil. The tablecloths on the table and the console shine in the sun.
2 Les copines des propriétaires de la villa dormaient sur
la plage.

The friends of the owners of the villa were sleeping on the
beach.

3 Les avocats des assassins vont revenir. The laywers of the murderers will come back.
4 Les avocats des assassins du village va revenir. The lawyers of the murderers of the village will come back.
5 La visite aux palais de l’ artisanat approchent. The visit of the palace of the crafts is approaching.
6 Les ordinateurs avec le programme de l’ expérience sont en
panne.

The computers with the program of the experiment are broken.

Figure 4: Example of lexically varied contexts for the main clause contexts. Correct answer in bold.

that is a disentangled representation, a constraint307

is added to the loss function of a variational au-308

toencoder that forces closeness to the prior and309

embodies pressure for redundancy reduction and310

latent factors independence (the DKL factor in the311

equation 1 below). Higgins et al. (2017) propose312

the addition of a single hyperparameter β to the313

original framework to limit the capacity of the la-314

tent variable and control the rate of learning of315

independent factors. A β-VAE with β = 1 corre-316

sponds to the original VAE, while a β-VAE with317

β > 1 is pushed to learn more efficient latent rep-318

resentations. 4319

3.2 Our model320

We apply this general framework to our language321

data, with a substantial modification that makes our322

model more similar to a variational information323

bottleneck (VIB) approach (Alemi et al., 2017)324

than a proper VAE, as described and motivated325

below. A picture of the architecture is shown in326

Figure 5.327

Encoder and decoding classifier The encoder328

is composed of four one-dimensional CNNs, three329

fully connected layers and ReLU activation.5 The330

4However, Higgins et al. (2017) warn us that a high value
of β can result in a trade-off between reconstruction and dis-
entanglement. In fact, having β > 1 leads to poorer recon-
structions when compared to the original VAE. They show
that their β-VAE model learns disentangled representation
whose generating factors are as good as ground truth generat-
ing vectors, but the quality of reconstruction is not as good as
entangled representation (images are less crisp).

5Structure and dimensionality: Input: 1x768x7 ; Encoder:
four CNNs 1x100x7 (stride 1), three fully-connected layers
1x300; Output: 1x10 (dimensionality of the latent vector).

Figure 5: Model architecture

structure of the decoding classifier is the mirror 331

image of the encoder, but with a different output 332

dimensionality, as shown in Figure 5. It is com- 333

posed of three fully connected layers, four one- 334

dimensional transposed CNNs and ReLU activa- 335

tion.6 336

Loss function An adapted version of the objec- 337

tive function of the β-VAE objective is used. The 338

β-VAE loss is composed of two different terms: the 339

reconstruction loss and the Kullback-Leibler diver- 340

gence. The reconstruction loss is the binary cross- 341

entropy between the output of the model and the 342

true answer. It penalizes the output based on the dis- 343

tance from the true answer. The Kullback-Leibler 344

divergence is used to measure the divergence of 345

two probability distributions. In our model, it puts 346

pressure to reduce redundancy and reduce the dis- 347

tance from a prior. 348

In our approach, instead of reconstructing the 349

original input (the sequence of sentences), the 350

model produces a new and compressed represen- 351

tation of the input. The intuition is that the latent 352

6Structure and dimensionality: Input: 1x10 (latent vec-
tor); Encoder: three Fully connected layers of dim 1x300,
four Transposed-1d-CNN of dim 1x100x1 (stride 1); Output:
1x768x1 (new representation of the input).
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layer, having learned the important factors of the353

input, can be used as is to produce a new single354

vector which represents the sequence and is close355

to the answer. The new vector will then be com-356

pared, at training time, with the correct answer.357

The model is updated after an entire sequence of358

seven sentences and the loss function is computed359

between the produced vector and the true answer360

vector.361

So, in our model, x and y are not the same, as y362

is not the reconstruction of x. Instead, the output y363

is a vector of real numbers. In binary cross entropy364

—the loss function we use— these numbers are365

interpreted as a distribution over 0, 1.366

Equation 1 shows our objective function, where367

x is our input, z is the latent variable, β is our dis-368

entangled hyperparameter and DKL, the Kullback-369

Leibler divergence, is the regulariser that forces the370

solution to be close to the prior, and p(z) is a Gaus-371

sian prior, qφ refers to the encoder and pθ refers372

to the decoder, and LBCE is binary cross-entropy373

loss.374

(1) L(θ, φ;x, z, β) =
Eqφ(z|x)[LBCE(fθ(z), y)]− βDKL(qφ(z|x)

∥∥p(z))375

4 Experimental results376

We perform several experiments to investigate how377

the properties of the dataset support the learning of378

subject-verb agreement and what latent represen-379

tations are developed. First we investigate if the380

sentence type (main, completive or relative clause)381

has an effect on the results and errors. In terms382

of correct answers, main clauses are actually the383

hardest ones to learn. For all the three datasets, we384

observe roughly the same distributions in terms of385

correct answers and types of errors. In the follow-386

ing analysis of results and errors, then we no longer387

distinguish by sentence type.388

Experimental results by β and z values Figure389

6 presents results for the three data sets: the basic390

data set, the lexically-varied data set and the reshuf-391

fled data set. For high values of β and large sizes392

of the latent vector there is hardly any learning, so393

we will not discuss them further.394

For the more successful configurations, we can395

observe, first of all, that the learning curve is steep,396

showing already a good rate of learning after a few397

epochs, if the latent vector is small, reaching a good398

84.2% accuracy in the best, and easiest, case. β = 1399

yields the best results, with a certain consistency 400

of results across latent spaces of different sizes, 401

the smallest the best. β = 1 is the value of a 402

normal VIB that does not force disentanglement. 403

This result then confirms what already found in the 404

vision literature that entangled representations lead 405

to better accuracy (Higgins et al., 2017). 406

If we class the data to train the models as ± 407

lexical uniformity and ± sequence ordering, we 408

can see that the basic data is the easiest model (+ 409

lexical uniformity and + sequence ordering); the 410

lexically varied data is harder (− lexical uniformity 411

and + sequence ordering); the shuffled data is the 412

hardest(− lexical uniformity and − sequence or- 413

dering). This indicates that sequence ordering does 414

provide information the models are able to use, 415

while lexical variation does not help identifying the 416

underlying formal invariants of the examples. This 417

latter result replicates findings in vision that the 418

best models can apply known abstract relationships 419

in novel combinations, but fail in applying known 420

abstract relationships to unfamiliar entities (Barrett 421

et al., 2018). 422

Error analysis Figure 6 also shows interesting 423

patterns of errors, which differ between the two 424

models with sequence order (basic and lexically 425

varied) and the model without (shuffled). The dif- 426

ferent errors indicate ability of the models to learn 427

different types of information: subject-verb agree- 428

ment requires long-distance, structural information; 429

errors on N1 and N2 tell us whether the model 430

exhibits recency effects, thereby showing, like hu- 431

mans, that both structural and linear considerations 432

come into play in learning agreement; choosing the 433

wrong number of attractors is a very salient form 434

of structural deviance from the correct answer and 435

coordination is a more subtle one. 436

For sequence order models, agreement errors 437

are always the most frequent, followed by N1 and 438

N2 alternatives, while coordination and number of 439

attractors mistakes occur much less frequently, sug- 440

gesting the models do learn the difference in con- 441

struction and the rule of attractor sequence. This 442

result matches our intuitions that these are also the 443

two most saliently different cases from the right 444

answer, because they differ in structure. 445

For the model without sequence order, the results 446

are overall worst, indicating that providing the se- 447

quence actually helps in finding the right answer. 448

The pattern of errors, though, is a little different, 449

with most errors on N1 and N2, thereby showing 450
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Figure 6: Results on test set for the three models. Dotted horizontal random baseline.

Rule Expected error
(R1) Subj-verb agreement: The
subject and the main verb agree.
They alternate between singular and
plural at each sentence.

Increase in agree-
ment errors (AE).

(R2) Number of attractors: The
number of attractors grows with in-
crements of one.

Increase in coordi-
nation and number
of attractors errors
(Coord and WNA).

(R3) N1 grammatical number:
The number of the first attractor al-
ternates between singular and plural
in increments of two.

Wrong number of
the first attractor
NP (alter N1).

(R4) N2 grammatical number:
The number of the second attractor
never changes.

Wrong number of
the second attrac-
tor NP (alter N2).

Table 1: Predictions of expected errors for masking of
latent factors.

linear considerations dominate learning if ordering451

is not provided; coordination and number of attrac-452

tors mistakes are still much rarer, suggesting the453

model does learn salient differences in structure.454

Analysis of disentanglement by ablation of la-455

tent factors Recall that disentangled representa-456

tions are those where the single latent units are457

sensitive to changes in single generative factors.458

It can be determined whether the latent represen-459

tations are disentangled by ablation studies that460

modify portions of the latent vectors. These should461

give rise to predictable effects. BLMs contexts are462

built by generative rules and the answers set was463

chosen according to specific patterns. So assuming464

we have a latent space that encodes the underly-465

ing generative rules, we can make the predictions466

shown in Table 1.467

The process to test these expectations in error468

patterns consists in learning the latent vector in the469
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Figure 7: Error analysis by ablation of latent compo-
nents. The y-axis shows the difference in errors be-
tween the non-ablated and the ablated model for each
ablated component of the latent vector z, when z = 5.

usual way, then masking one of the latent vector 470

components (putting its value to 0) and running the 471

classifier with this partially-masked vector. Analy- 472

sis of errors on the test set by ablated latent compo- 473

nent are shown in Figure 7. 474

We can observe that all ablated models do over- 475

all worse than the non-ablated one, and also that 476

component z[5] is not useful, for β = 1, which 477

already shows that the information is factorised. 478

As expected, for β > 1, more factors are not use- 479

ful, z[3] and z[5]. For the errors, no clear pattern 480

emerges. If we look at what kind of error is majori- 481

tarily degraded, we can say that agreement errors 482

are markedly degraded if z[2] is masked in β = 1, 483

and z[4] appears to be associated to the rule on 484

number of attractors (R2). 485

Discussion The experiments show that BLMs de- 486

fine a hard, but learnable task. Their structured 487

construction lends itself to controlled experiments, 488

and the task is challenging enough that the models 489

make informative patterns of mistakes. Our mod- 490

7



els can learn BLMs, and show that both lexical491

uniformity and sequence information help learn492

the right solution to the tests, but that the best re-493

sults are still at least partially entangled. Finding494

models which learn disentangled representations of495

this task is a challenging open problem, which can496

help our understanding of different deep learning497

architectures.498

5 Related work499

The current paper does not have any direct compar-500

ison, as, to our knowledge, this is the first proposal501

of a dataset for language using BLMs. But it is502

inspired by and situated among work on disentan-503

glement and generalisation for vision, where RPMs504

datasets have been used, and it contributes to the505

investigation on learning of agreement by neural506

networks.507

Disentanglement datasets for vision and lan-508

guage van Steenkiste et al. (2020) develop a509

dataset for vision to learn tasks similar to Raven’s510

Progressive Matrices, and evaluate the usefulness511

of the representations learned for abstract reasoning512

tasks. They observe that disentangled representa-513

tions enable quicker learning using fewer samples.514

RPMs and their language equivalent have not been515

used before for language, as far as we know, but516

one other dataset exists to learn disentanglement for517

language, dSentences (M’Charrak, 2018).7 Like518

our dataset, it is large in terms of size, but, un-519

like our dataset, the examples are unrealistically520

simple. The factorial combinations of very sim-521

ple sentences with a few morphological marking522

does not constitute a sufficiently realistic challenge523

from the linguistic point of view. Moreover, natural524

language tasks and problems often span over sev-525

eral sentences, as discussed above, so the ordered526

sequence that characterises our BLMs is a crucial527

difference.528

Related work on disentanglement for vision529

and language In the literature on disentangle-530

ment for vision, Higgins et al. (2016) and related531

work propose an approach to variational autoen-532

coders based on redundancy reductions, and pres-533

sure to learn statistically independent factors. The534

disentangled representations enable zero-shot learn-535

ing and emergence of visual concepts (Higgins536

et al., 2018). Following work shows the conditions537

7This dataset is similar to the dSprites dataset for vision
(https://github.com/deepmind/dsprites-dataset))

when representations that align with underlying 538

generative factors of variation of data emerge in 539

optimisation (ELBO bound) (Burgess et al., 2018), 540

and demonstrates that inductive biases are neces- 541

sary to learn, but can be successfully encoded in 542

potentially imprecise and incomplete labels (Lo- 543

catello et al., 2020). Mercatali and Freitas (2021) 544

extend VAEs to learn discrete representations ap- 545

propriate for language. The proposed model outper- 546

forms continuous and discrete baselines on several 547

qualitative and quantitative disentanglement bench- 548

marks and extrinsic evaluations. 549

Related work on learning agreement Previous 550

work on agreement has tested recursive neural 551

network (RNN) language models and found that 552

RNNs can learn to predict English subject-verb 553

agreement, if provided with explicit supervision 554

(Linzen et al., 2016). Follow-up work has shown 555

that RNNs are better at long-distance agreement 556

if they can use large vocabularies to form rich 557

lexical representations to learn structural patterns 558

Bernardy and Lappin (2017). Gulordava et al. 559

(2018) extends previous work to four languages 560

of different linguistic properties (Italian, English, 561

Hebrew, Russian) and shows the models make ac- 562

curate predictions and compare well with humans, 563

thereby suggesting that the networks learn deeper 564

grammatical competence. Recent work by Lakretz 565

et al. (2019b) studies RNNs in more detail, looking 566

at single neurons, and finds that individual neu- 567

rons encode linguistically meaningful features very 568

saliently and propagate subject-verb number agree- 569

ment information over time. 570

6 Conclusions 571

In this paper, we have introduced Blackbird’s lan- 572

guage matrices (BLMs), a novel linguistic dataset, 573

generatively constructed to support investigations 574

in representation learning of grammatical rules. 575

Through error analysis and several experiments 576

on variations of the dataset, we demonstrate that 577

this language task and the data that instantiate it 578

provide a new testbed to understand generalisation 579

and abstraction. 580

The contribution of the paper lies in the defini- 581

tion of a new challenging task, the development of 582

its actual data and of a general procedure to develop 583

many other such datasets, on different linguistic 584

problems. But it also lies in tackling a mixture of 585

language tasks and reasoning to take us closer to 586

investigations of human linguistic intelligence. 587
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