
Unraveling the Complexity of Memory in RL Agents:
an Approach for Classification and Evaluation

Anonymous Author(s)
Affiliation
Address
email

Abstract: The incorporation of memory into agents is essential for numerous1

tasks within the domain of Reinforcement Learning (RL). In particular, memory is2

paramount for tasks that require the use of past information, adaptation to novel3

environments, and improved sample efficiency. However, the term “memory”4

encompasses a wide range of concepts, which, coupled with the lack of a unified5

methodology for validating an agent’s memory, leads to erroneous judgments6

about agents’ memory capabilities and prevents objective comparison with other7

memory-enhanced agents. This paper aims to streamline the concept of memory8

in RL by providing practical precise definitions of agent memory types, such as9

long-term vs. short-term memory and declarative vs. procedural memory, inspired10

by cognitive science. Using these definitions, we categorize different classes of11

agent memory, propose a robust experimental methodology for evaluating the12

memory capabilities of RL agents, and standardize evaluations. Furthermore, we13

empirically demonstrate the importance of adhering to the proposed methodology14

when evaluating different types of agent memory by conducting experiments with15

different RL agents and what its violation leads to.16

Keywords: Memory, POMDP, RL17

1 Introduction18

Reinforcement Learning (RL) addresses problems under the Markov Decision Process (MDP)19

framework, but partial observability remains challenging, requiring agents to process their interaction20

history [1, 2, 3]. In complex environments with noisy observations and long episodes, storing and21

retrieving key information is essential [4, 5]. Yet, the notion of memory in RL lacks a unified22

definition. Some works view it as handling dependencies within a fixed context [1, 6], others as23

leveraging out-of-context information [7], or as adapting to new environments in Meta-RL [8].24

Without clear definitions and standardized evaluation, claims about agent memory are often vague or25

misleading. Memory is frequently attributed to recurrence or attention, but without isolating memory26

effects, such assumptions can be incorrect. Agents may appear to possess long-term memory due to27

task shortcuts, conflating mechanisms and obscuring limitations. This hampers fair comparison and28

progress toward genuinely memory-capable agents.29

In this work, we clarify memory in RL by linking it directly to agent mechanisms. We formalize30

key memory types—short vs. long-term and declarative vs. procedural—and propose evaluation31

in memory-intensive tasks. Our classification, grounded in temporal dependencies and information32

type, enables fairer comparisons, diagnosis of architectural limits, and principled improvements.33

Importantly, our goal is not to replicate human memory, but to adapt established neuroscience34

concepts already used informally in RL [9, 10, 6].35

Submitted to the 9th Conference on Robot Learning (CoRL 2025). Do not distribute.

event

knowledge memorization

knowledge recall

Declarative
Memory

Procedural
Memory

sk
ill

s
m

em
or

iz
at

io
n

skills
recall

Figure 1: Illustration of declar-
ative and procedural memory.
Red arrows represent memo-
rization steps, blue arrows indi-
cate the recall of task-relevant
information.

Figure 2: STM vs. LTM. te -
event start, tr - recall time; K
- context length, ξ — correlation
horizon. If the event lies beyond
K, LTM is needed; if within,
STM is enough.

Figure 3: Classification of mem-
ory types of RL agents. While the
Memory DM framework contrasts
with Meta-RL, its formalism can
also describe inner-loop tasks when
they are POMDPs.

In summary, our contributions are:36

1. Formal definitions of memory types in RL—short vs. long-term and declarative vs. proce-37

dural—grounded in neuroscience (Section 4).38

2. A task-level decoupling of Memory Decision-Making and Meta-RL, clarifying distinct roles39

of memory (Section 4).40

3. A principled methodology to evaluate STM and LTM in Memory DM tasks, with criteria for41

memory boundaries (Section 4.2).42

4. Evidence that neglecting this methodology leads to misleading claims about memory,43

underscoring the need for proper evaluation (Section 5).44

2 Background45

2.1 Memory of Humans and Agents46

RL studies often reference memory types from cognitive science—long-term [11, 6], working [12],47

associative [13], episodic [14]—but typically reduce them to coarse temporal scales (short vs. long-48

term). Such simplifications ignore the relative nature of memory and hinder evaluation. We instead49

formalize agent memory types and propose a principled evaluation framework.50

2.1.1 Memory in Cognitive Science51

Human behavior relies on memory to acquire, retain, and reuse knowledge [15, 16]. Neuroscience52

distinguishes memory by temporal scale and content. At a high level, “memory is the ability to retain53

information and recall it later”. This aligns with RL usage, and we adopt it to define agent memory54

types. Neuroscience separates short-term memory (seconds) from long-term memory (lifetime) [17],55

and declarative (explicit) from procedural (implicit) memory [18]. Declarative memory involves56

consciously recalled facts and events, while procedural memory covers unconscious skills. While57

established in biology, RL requires precise, testable counterparts. We adapt these categories into a58

formal framework for agents.59

2.1.2 Memory in RL60

Definitions of memory in RL vary widely. In Partially Observable Markov Decision Processes61

(POMDPs), agents must retain information for future use, involving two temporal dependencies:62

1) within a bounded window (e.g., transformer context [1, 6, 19]); 2) beyond the current context,63

requiring persistent recall [7, 20]. As in Section 2.1.1, short- vs. long-term memory describe temporal64

scopes of declarative memory. Meta-RL instead reflects procedural memory, reusing skills across65

tasks [8]. Yet many works conflate these, testing “long-term memory” only in Meta-RL [21], without66

isolating decision-making from past observations. We address this by formalizing RL memory types67

via task structure and temporal dependencies. Our focus is on declarative memory, which governs68

decisions from past observations, in both short- and long-term forms.69

2

2.1.3 Memory and Credit Assignment70

Agent memory studies often separate memory from credit assignment [22, 6, 23]. Ni et al. [6] define71

memory as recalling past events and credit assignment as identifying when reward-relevant actions72

occurred. While distinct, both capture temporal dependencies. We therefore treat them jointly,73

adopting the general definition from Section 2.1.1, which unifies their shared temporal nature.74

3 Related Works75

Research on memory-enhanced RL has produced many architectures [24, 11, 9] and benchmarks [25,76

26, 23, 27], yet “memory” remains inconsistently defined and misaligned with what experiments test.77

Some define memory as retaining recent observations within an episode—via recurrence [2], trans-78

former context [1, 28], or external stores [11, 29]. Others extend it to long-range dependencies79

through compression [30], key–value updates [31, 32], or spatial maps [33]. A separate view con-80

siders cross-episode transfer in Meta-RL [21, 34]. This diversity—from within-episode recall to81

multi-task adaptation—highlights the lack of a unified notion. Our work addresses this gap with a82

taxonomy grounded in temporal dependencies and task structure.83

Ni et al. [6] separate memory (recalling past events) from credit assignment (linking rewards to84

actions). Kang et al. [10] emphasize reconstructive memory [35] as reflective interaction. These85

perspectives stress the need for precise definitions. We formalize memory types and propose an86

evaluation framework. Concurrently, Yue et al. [19] introduced memory dependency pairs (p, q) for87

imitation learning; while useful, they lack a theoretical base of RL memory and a broader taxonomy.88

4 Memory Decision Making89

POMDP tasks involving memory fall into two categories: Meta-RL, focused on skill transfer across90

tasks, and Memory DM, where agents recall past information for future decisions. This distinction91

matters: Meta-RL relies on procedural memory for rapid adaptation, while Memory DM uses92

declarative memory to guide decisions within a single environment. Yet many works reduce memory93

to temporal range, ignoring the behavioral roles that distinguish these types. To formalize Memory94

DM tasks, we first define the agent’s context length:95

Definition 4.1. Agent context length (K ∈ N) – is the maximum number of previous steps (triplets96

of (o, a, r)) that the agent can process at time t.97

For example, an MLP-based agent processes one step at a time (K = 1), while a transformer-based98

agent can process a sequence of up to K = Kattn triplets, where Kattn is determined by attention.99

Looking ahead, RNNs also have a K = 1, but using hidden states allows longer dependencies to be100

handled. Using the introduced Definition 4.1 for agent context length, we can introduce a formal101

definition for the Memory DM framework we focus on in this paper:102

Definition 4.2. Memory Decision-Making (Memory DM) – is a class of POMDPs in which the103

agents decision-making process at time t is based on the history h0:t−1 = {(oi, ai, ri)}t−1
i=0 if t > 0104

otherwise h = ∅. The objective is to determine an optimal policy π∗(at | ot, h0:t−1) that maps105

the current observation ot and history h0:t−1 of length t to an action at, maximizing the expected106

cumulative reward within a single POMDP environment MP : Jπ = Eπ

[
T−1∑
t=0

γtrt

]
, where T –107

episode duration, γ ∈ [0, 1] – discount factor.108

In the Memory DM framework (Definition 4.2), memory refers to the agent’s ability to recall109

information from the past within a single environment and episode. In contrast, in the Meta-RL110

framework (Definition 4.3), memory involves recalling information about the agent’s behavior from111

other environments or previous episodes:112

Definition 4.3. Meta-RL – is a class of POMDPs where the agent learns to learn from its past113

experiences across multiple tasks and memorize the common patterns and structures to facilitate114

efficient adaptation to new tasks. Let D = {τMi
j }H−1

j=0 is all of the data of H episodes of length115

3

T collected in the MDP Mi ∼ p(M). A Meta-RL algorithm is a function fθ that maps the116

data D to a policy πϕ, where ϕ = fθ(D). The objective to determine an optimal fθ: Jθ =117

EMi∼p(M)

[
ED

[∑
τ∈DI:H

Gi(τ)

∣∣∣∣fθ,Mi

]]
, where Gi(τ) – discounted return in the MDP Mi, I –118

index of the first episode during the trial in which return counts towards the objective [36].119

To operationalize the distinction between memory types in RL, we translate the neuroscience concepts120

of declarative and procedural memory (Section 2.1.1) into measurable task-level criteria:121

Definition 4.4 (Declarative and Procedural memory in RL). Let nenvs be the number of training122

environments and neps the number of episodes per environment. Then,123

1. Declarative Memory – a type of agent memory when an agent transfers its knowledge within124

a single environment and across a single episode within that environment:125

Declarative Memory ⇐⇒ nenvs × neps = 1. (1)

2. Procedural Memory – a type of agent memory when an agent transfers its skills across126

multiple environments or multiple episodes within a single environment:127

Procedural Memory ⇐⇒ nenvs × neps > 1. (2)

In this formulation, knowledge refers to observable, environment-specific information – such as object128

locations or facts – used within a single episode. Skills, in contrast, are policies reused across tasks or129

trials. Accordingly, Memory DM primarily evaluates declarative memory, while Meta-RL settings130

test procedural memory (Section 3).131

Having distinguished declarative and procedural memory, we now examine the temporal structure of132

memory in the Memory DM framework, focusing on its division into short-term and long-term forms.133

Definition 4.5 (Memory DM types of memory). Let K be the agent context length, α∆t
te =134

{oi, ai, ri}te+∆t
i=te

– an event of duration ∆t that begins at t = te and ends at t = te + ∆t, and135

βtr (α
∆t
te) = at | (ot, α∆t

te) – a decision-making point (recall) at time t = tr based on the current136

observation ot and information about the event α∆t
te . Let also ξ = tr − te−∆t+1 be the correlation137

horizon, i.e. the minimal time delay between the event α∆t
te that supports the decision-making and138

the moment of recall of this event βtr . Then,139

1. Short-term memory (STM) - an agent’s ability to use information about local correlations140

from the past within the context of length K at decision time:141

βtr (α
∆t
te) = at | (ot, α∆t

te) ∀ ξ = tr − te −∆t+ 1 ≤ K.142

2. Long-term memory (LTM) - an agent ability to utilize information about global correlations143

from the past outside of the agent context of length K, during decision-making:144

βtr (α
∆t
te) = at | (ot, α∆t

te) ∀ ξ = tr − te −∆t+ 1 > K.145

An illustration for the definitions of classifying Memory DM tasks into LTM and STM from Defini-146

tion 4.5 is shown in 2.147

The two definitions of declarative memory encompass all work related to Memory DM tasks, where148

decisions are based on past information. Meta-RL consists of an inner-loop, where the agent interacts149

with the environment M ∼ p(M), and an outer-loop for transferring knowledge between tasks.150

Typically, M is an MDP that doesn’t require memory, serving only the outer-loop, which is what151

“memory” refers to in Meta-RL studies.152

The tasks in which the agent makes decisions based on interaction histories in the inner-loop are153

not named separately, since the classification of Meta-RL task types (multi-task, multi-task 0-shot,154

and single-task) is based solely on outer-loop parameters (nenvs and neps) and does not consider155

4

Table 1: Classification of tasks requiring agent
memory. Green marks tasks covered by our
LTM/STM definitions, blue marks those outside.
Meta-RL tasks with a POMDP inner-loop are
marked green as Memory DM tasks. POMDP†

denotes a Memory DM task treated as an inner-
loop task without an outer-loop.

nenvs neps POMDP Inner-loop
task

Memory Tasks that
require agent memory

Memory DM

LTM
ξ > K

STM
ξ ≤ K

1 1 Memory
DM POMDP† Dec. Long-term

memory task
Short-term
memory task

Meta-RL: Outer-loop
and inner-loop memory

LTM
ξ > K

STM
ξ ≤ K

1 ¿1 Meta-RL POMDP Proc. Single-task Single-task

¿1 1 Meta-RL POMDP Proc. Multi-task 0-
shot

Multi-task 0-
shot

¿1 ¿1 Meta-RL POMDP Proc. Multi-task Multi-task
Meta-RL: Outer-loop

memory only

No memory
ξ = 1

No memory
ξ = 1

1 ¿1 Meta-RL MDP Proc. Single-task Single-task

¿1 1 Meta-RL MDP Proc. Multi-task 0-
shot

Multi-task 0-
shot

¿1 ¿1 Meta-RL MDP Proc. Multi-task Multi-task

inner-loop task types. However, we can classify156

the agent’s memory for these tasks as declarative157

short-term or long-term memory (Section 3).158

We introduce an additional decoupling of Meta-159

RL task types into green (with POMDP inner-160

loop tasks) and blue (with MDP inner-loop161

tasks). In the green case, the agent’s memory162

is required for both skill transfer in the outer-163

loop and decision-making based on interaction164

histories in the inner-loop, and therefore within165

the inner-loop can be considered as a Memory166

DM. In the blue case, memory is needed only167

for skill transfer. While this paper focuses on168

Memory DM tasks, the terminology allows for169

further classification of various Meta-RL tasks,170

with POMDP sub-classes highlighted in green.171

The proposed classification of tasks requiring172

agent memory is presented in Section 1.173

4.1 Memory-intensive environments174

To effectively test a Memory DM agent’s use of175

short-term and long-term memory, it is crucial to design appropriate experiments. Not all environ-176

ments are suitable for assessing agent memory; for example, omnipresent Atari games [37] with frame177

stacking or MuJoCo control tasks [38] may yield unrepresentative results. To facilitate the evaluation178

of agent memory capabilities, we formalize the definition of memory-intensive environments:179

Definition 4.6 (Memory-Intensive Environments). Let MP be a POMDP, and let Ξ = {ξn}n =180

{(tr − te −∆t+ 1)n}n denote the set of correlation horizons for all event-recall pairs (α∆t
te , βtr).181

Then MP is a memory-intensive environment, denoted M̃P , if and only if: minn ξn > 1.182

Corollary 1. A task corresponds to an MDP (i.e., is Markovian) if and only if all correlation horizons183

are trivial: max
n

Ξ = 1.184

Proof. In an MDP, the optimal action depends only on the current state (or observation), i.e., no185

past information is needed. This implies ξn = 1 for all event-recall pairs, hence maxn ξn = 1.186

Conversely, if maxn ξn = 1, then no decision depends on events beyond the current step, satisfying187

the Markov property. ■188

Using the definitions of memory-intensive environments (Definition 4.6) and agent memory types189

(Definition 4.5), we can configure experiments to test short-term and long-term memory in the190

Memory DM framework. Notably, the same memory-intensive environment can validate both types191

of memory, as outlined in 2:192

Theorem 2 (On the context memory border). Let M̃P be a memory-intensive environment and K193

be an agents context length. Then there exists context memory border K ≥ 1 such that if K ≤ K then194

the environment M̃P is used to validate exclusively long-term memory in Memory DM framework:195

∃ K ≥ 1 : ∀K ∈ [1,K] : K < min
n

Ξ. (3)

Proof. Let K = minΞ−1. Then ∀K ≤ K is guaranteed that no correlation horizon ξ is in the agent196

history ht−K+1:t, hence the context length K ≤ minΞ− 1 generates the LTM problem exclusively.197

Since context length cannot be negative or zero, it turns out that 1 ≤ K ≤ K = minΞ− 1, which198

was required to prove. ■199

The following result, though intuitive, formalizes a practical criterion for isolating long-term memory200

evaluation by constraining the agent’s context window. It serves as the foundation for configuring201

5

experiments in the Memory DM framework. According to Theorem 2, in a memory-intensive202

environment M̃P , the value of the context memory border K can be found as203

K = minΞ− 1 = min
n

{
(tr − te −∆t+ 1)n

}
n
− 1. (4)

Using Theorem 2, we can establish the necessary conditions for validating short-term memory: 1)204

Weak condition to validate short-term memory: if K < K < maxΞ, then the memory-intensive205

environment M̃P is used to validate both short-term and long-term memory. 2) Strong condition to206

validate short-term memory: if maxΞ < K, then the memory-intensive environment M̃P is used207

to validate exclusively short-term memory.208

Algorithm 1 Setup for testing long- and short-
term memory in the Memory DM framework.

Require: M̃P – memory-intensive environ-
ment; µ(K) – memory mechanism. =0

1. Count n event–recall pairs (Def. 4.6).
1. n = 0: environment unsuitable.

2. n ≥ 1: environment suitable.

2. Estimate context border K (4).
1. For each pair (β(α), α)i, compute ξi.

2. Set K = minΞ− 1.

3. Run experiment (Def. 4.5).
1. STM: K > K.

2. LTM: K ≤ K ≤ Keff = µ(K).

4. Analyze results.

According to Theorem 2, if K ∈ [1,K], none of209

the correlation horizons ξ will be in the agent’s210

context, validating only long-term memory. When211

K < K < maxΞ ≤ T − 1, long-term memory can212

still be tested, but some correlation horizons ξ will213

fall within the agent’s context and won’t be used for214

long-term memory validation. In such a case it is215

not possible to estimate long-term memory explicitly.216

When K ≥ maxΞ, all correlation horizons ξ are217

within the agent’s context, validating only short-term218

memory. Summarizing the obtained results, the fi-219

nal division of the required agent context lengths for220

short-term memory and long-term memory validation221

is as follows: (i) K ∈ [1,K] ⇒ validating LTM only;222

(ii) K ∈ (K,maxΞ) ⇒ validating both STM and223

LTM; (iii) K ∈ [maxΞ,∞) ⇒ validating STM only.224

4.2 Long-term memory in Memory DM225

As defined in Definition 4.5, short-term Memory DM tasks arise when event-recall pairs in M̃P226

fall within the agent’s context (ξ ≤ K), allowing decisions based on local correlations. This holds227

regardless of how large K is. Examples include [1, 28, 6]. Validating STM is simple: increase K. In228

contrast, testing long-term memory requires more care and is typically more informative.229

Memory DM tasks requiring long-term memory occur when event-recall pairs in the memory-230

intensive environment M̃P are outside the agent’s context (ξ > K). In this case, memory involves231

the agent’s ability to connect information beyond its context, necessitating memory mechanisms232

(Definition 4.7) that can manage interaction histories h longer than the agent’s base model can handle.233

Definition 4.7 (Memory mechanisms). Let the agent process histories ht−K+1:t of length K at the234

current time t, where K ∈ N is agents context length. Then, a memory mechanism µ(K) : N → N is235

defined as a function that, for a fixed K, allows the agent to process sequences of length Keff ≥ K,236

i.e., to establish global correlations out of context, where Keff is the effective context.237

µ(K) = Keff ≥ K. (5)
Memory mechanisms are key to solving LTM tasks by accessing out-of-context data in Memory DM.238

Example of memory mechanism. Consider an agent based on an RNN architecture that can239

process K = 1 triplets of tokens (ot, at, rt) at all times t. By using memory mechanisms µ(K) (e.g.,240

as in [2]), the agent can increase the number of tokens processed in a single step without expanding241

the context size of its RNN architecture. Therefore, if initially in a memory-intensive environment242

M̃P : ξ > K = 1, it can now be represented as M̃P : ξ ≤ Keff = µ(K). Here, the memory243

mechanism µ(K) refers to the RNNs recurrent updates to its hidden state.244

Thus, validating an agent’s ability to solve long-term memory problems in the Memory DM framework245

reduces to validating the agent’s memory mechanisms µ(K). To design correct experiments in246

such a case, the following condition must be met:247

M̃P : K ≤ K < ξ ≤ Keff = µ(K) (6)

6

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0 1 2 3
Timestep ×105

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.4 0.8 1.2 1.6 2.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.4 0.8 1.2 1.6 2.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.4 0.8 1.2 1.6 2.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

-1.0

-0.5

0.0

0.5

1.0

Re
tu

rn

DTQN
DQN-GPT-2

Figure 5: Performance of Online RL agents “with memory” across different memory configurations.
Each environment (T-Maze, POPGym-Autoencode, POPGym-RepeatPrevious) is shown with varying
agent context length K and correlation horizons ξ. The STM ⇆ LTM transitions reflect the relative
nature of the settings to test memory, depending on both agent and environment parameters.

Figure 4: Correlation horizons ξ and LTM thresh-
olds K for popular memory-intensive tasks. L is
corridor length, T is episode length. (f) and (r)
denote fixed and variable setups. POPGym entries
show values for the easy setting; for easy / medium
/ hard, Ξ becomes {2, 4, . . . , 104/208/312} for
Autoencode and {5/33/65} for RepeatPrevious.

Task Ξ ξ LTM: K <

Passive T-Maze {L +
1}

L +
1

L+ 1

Minigrid-Memory (f) {L +
1}

L +
1

L+ 1

Minigrid-Memory (v) [7, L +
1]

7 7

ViZDoom-Two-Colors [2, 2055] 2 2
Memory Maze 9x9 [28, 1000]28 28
Memory Maze 15x15 [45, 4000]45 45
Memory Cards [2, T] 2 2
Mortar Mayhem (fi-
nite)

[38, 218] 38 38

Mystery Path (finite) [8, 26] 8 8
POPGym–Autoencode [2, 104] 2 2
POPGym–RepeatPrevious{5} 5 5

According to our definitions, agents with mem-248

ory mechanisms within the Memory DM frame-249

work that can solve long-term memory tasks can250

also handle short-term memory tasks, but not251

vice versa. The algorithm for setting up experi-252

ments to test an agent’s short-term or long-term253

memory is outlined in Section 1.254

4.3 Example of Ξ and ξ estimates255

Following the proposed methodology (Algo-256

rithm 1), we estimated the sets of corre-257

lation horizons Ξ and minimal recall dis-258

tances ξ for a range of popular memory-259

intensive tasks (Table 4), including Passive T-260

Maze [6], Minigrid-Memory [39], ViZDoom-261

Two-Colors [20], Memory Maze [40], Mem-262

ory Cards [1], Mortar Mayhem and Mystery263

Path [41], POPGym–Autoencode and POPGym-264

RepeatPrevious [25].265

Example: Testing Memory in Passive T-Maze In Passive T-Maze, the agent sees a cue at the start266

of a corridor and must turn correctly at the junction. The episode lasts T = L+1. Using Algorithm 1:267

1) There’s one event-recall pair (n = 1), so the task suits both STM and LTM. 2) The event lasts268

one step (∆t = 0), so ξ = T , and K = T − 1. 3) Varying T or context size K lets us test STM (if269

K > K) or LTM (if K ≤ K ≤ µ(K)). While K = K is enough in theory, choosing smaller K270

better reveals memory mechanism effects.271

5 Experiments272

0.0 0.2 0.4 0.6 0.8 1.0
Timestep ×106

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

K = 22 variable mode
K = 14 variable mode
K = 22 fixed mode
K = 14 fixed mode

Figure 6: SAC-GPT-2 in Minigrid-
Memory (L = 21) with short- (K = 22)
and long-term (K = 14) memory se-
tups. Variable mode (green) masks mem-
ory limits; fixed mode (red) reveals fail-
ure at K = 14, demonstrating lack of
long-term memory—made evident by
our evaluation method.

We evaluate memory-enhanced RL agents with the Mem-273

ory DM framework to distinguish STM and LTM. Our274

study highlights the importance of proper methodology275

(Section 1) and shows how poor setups can misrepresent276

memory. We test four tasks: Passive T-Maze and Minigrid-277

Memory (cue recall), and POPGym–Autoencode and Re-278

peatPrevious (reconstruction and repetition), all requiring279

temporal recall. In the online setting, we assess DTQN [1],280

DQN-GPT-2, and SAC-GPT-2 [6] with attention-based281

memory. Offline, we compare DT [42] and BC-LSTM,282

contrasting attention with recurrence. Across settings, we283

vary agent context K and task horizon ξ to isolate memory284

types and expose model limits.285

5.1 Pitfalls of Naive Memory Evaluation286

Proper memory evaluation in RL requires separating STM from LTM by controlling correlation287

horizons ξ. Otherwise, STM and LTM effects blur. We illustrate this with SAC-GPT-2 in Minigrid-288

Memory under (i) fixed L = 21 (ξ = 22) and (ii) variable L (ξ ∈ [7, 22]), testing STM (K = 22)289

and LTM (K = 14). As shown in Section 6, the variable setup yields high success in both cases,290

7

suggesting good memory. Yet in the fixed case, LTM fails, exposing the true limit. Mixed-horizon291

tasks thus mask LTM deficits; only fixed ξ > K reveals them. Accurate LTM evaluation therefore292

requires aligning ξ with K, which our methodology ensures.293

5.2 The Relative Nature of an Agent’s Memory294

According to Algorithm 1, testing STM vs. LTM depends on two parameters: agent context K295

and the environment’s correlation horizon ξ (with border K). Verifying memory requires varying296

one while fixing the other. Thus, memory is not intrinsic to the agent but emerges from the K–ξ297

interplay, so the same agent may show STM or LTM depending on setup. We evaluate DTQN and298

DQN-GPT-2 on Passive T-Maze, POPGym Autoencode, and RepeatPrevious by varying K and ξ.299

As shown in Figure 5, performance is high for ξ ≤ K but collapses for ξ > K, demonstrating that300

long-range dependencies demand explicit memory. These findings confirm that LTM is relative to301

both task horizon and agent design. Without controlling K and ξ, memory claims are unreliable. Our302

framework provides consistent, interpretable evaluation.303

5.3 Generalization Across Sequence Lengths304

9 30 90 150 300 600 900 1200 2400 4800 9600
Validation Sequence Length

9
30

90
15

0
30

0
60

0
90

0Tr
ai

ni
ng

 S
eq

ue
nc

e
Le

ng
th

1.00±0.00 0.50±0.00 0.53±0.02 0.52±0.03 0.50±0.01 0.53±0.02 0.51±0.01 0.53±0.01 0.50±0.01 0.51±0.02 0.49±0.02

1.00±0.00 1.00±0.00 0.51±0.00 0.50±0.01 0.53±0.02 0.51±0.01 0.50±0.00 0.52±0.01 0.50±0.01 0.50±0.00 0.52±0.01

1.00±0.00 1.00±0.00 1.00±0.00 0.51±0.01 0.50±0.01 0.48±0.01 0.49±0.01 0.49±0.01 0.49±0.01 0.49±0.01 0.49±0.01

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.50±0.01 0.49±0.00 0.49±0.01 0.51±0.01 0.50±0.01 0.50±0.01 0.50±0.01

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.49±0.01 0.50±0.00 0.50±0.01 0.49±0.01 0.50±0.01 0.50±0.01

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.49±0.00 0.49±0.01 0.49±0.00 0.48±0.02 0.50±0.01

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.48±0.01 0.49±0.00 0.50±0.01 0.49±0.01

DT Model Success Rate in Passive T-Maze (mean±sem)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

(a) DT agent heatmap

9 30 90 150 300 600 900 1200 2400 4800 9600
Validation Sequence Length

9
30

90
15

0
30

0
60

0
90

0Tr
ai

ni
ng

 S
eq

ue
nc

e
Le

ng
th

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

0.87±0.12 0.87±0.13 0.86±0.14 0.87±0.13 0.89±0.12 0.87±0.13 0.89±0.12 0.88±0.12 0.89±0.11 0.87±0.13 0.90±0.10

0.51±0.06 0.49±0.04 0.44±0.02 0.47±0.00 0.47±0.03 0.54±0.03 0.54±0.02 0.47±0.03 0.51±0.01 0.55±0.05 0.49±0.04

0.52±0.02 0.51±0.02 0.51±0.03 0.53±0.02 0.48±0.00 0.47±0.01 0.50±0.01 0.49±0.00 0.53±0.02 0.50±0.01 0.51±0.01

BC-LSTM Model Success Rate in Passive T-Maze (mean±sem)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

(b) BC-LSTM agent heatmap
Figure 7: Generalization on Passive T-Maze. Each
heatmap shows success rates for (a) DT and (b)
BC-LSTM across training (vertical) and validation
(horizontal) sequence lengths. DT succeeds only
when validation ≤ training, showing short-term
memory limits. BC-LSTM generalizes beyond
training, indicating strong long-term memory.

Evaluating memory in RL requires separat-305

ing true long-term memory (LTM) from fixed-306

context recall. We illustrate this using DT and307

BC-LSTM on T-Maze: agents are trained on308

specific corridor lengths and tested on both seen309

and longer ones. Success heatmaps (Figure 7)310

show in-distribution along the diagonal and ex-311

trapolation to the right.312

Although both are labeled memory-based, our313

framework highlights clear differences. DT re-314

lies on a fixed attention window, supporting only315

short-term memory, while LSTM’s recurrent316

state enables LTM. DT performs well within317

context but fails for L > 90; BC-LSTM gener-318

alizes further, though performance degrades at319

long training lengths (600, 900). If evaluated320

only on shorter lengths, DT may appear stronger,321

masking its lack of LTM.322

Thus, DT exhibits only STM, whereas BC-323

LSTM demonstrates LTM despite gradient challenges [43, 44]. Our framework prevents such324

misinterpretations, showing that DT is suited to STM tasks via attention, while BC-LSTM supports325

LTM through recurrence.326

6 Conclusion327

We propose a unified framework for classifying and evaluating memory in RL agents, grounded in328

neuroscience-inspired definitions of short- and long-term declarative memory. By introducing the329

concept of correlation horizon and formalizing memory-intensive environments, we enable precise330

evaluation of agent memory. Our methodology reveals key architectural differences: transformers331

such as DTQN or DT rely mainly on short-term memory, while recurrent models like BC-LSTM332

demonstrate true long-term memory. Experiments on T-Maze, MiniGrid, and POPGym highlight the333

need for proper setup to avoid misleading conclusions. Overall, our framework clarifies how different334

memory mechanisms shape agent behavior. Future work may extend it to other cognitive memory335

systems (e.g., working, episodic) and investigate whether new types emerge in complex RL tasks.336

8

References337

[1] K. Esslinger, R. Platt, and C. Amato. Deep transformer q-networks for partially observable338

reinforcement learning. arXiv preprint arXiv:2206.01078, 2022.339

[2] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps, 2015.340

[3] T. Ni, B. Eysenbach, and R. Salakhutdinov. Recurrent model-free rl can be a strong baseline for341

many pomdps. arXiv preprint arXiv:2110.05038, 2021.342

[4] A. Goyal, A. L. Friesen, A. Banino, T. Weber, N. R. Ke, A. P. Badia, A. Guez, M. Mirza, P. C.343

Humphreys, K. Konyushkova, L. Sifre, M. Valko, S. Osindero, T. Lillicrap, N. Heess, and344

C. Blundell. Retrieval-augmented reinforcement learning, 2022. URL https://arxiv.org/345

abs/2202.08417.346

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. Gómez,347

E. Grefenstette, T. Ramalho, J. Agapiou, A. Badia, K. Hermann, Y. Zwols, G. Ostrovski,348

A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid349

computing using a neural network with dynamic external memory. Nature, 538, 10 2016.350

doi:10.1038/nature20101.351

[6] T. Ni, M. Ma, B. Eysenbach, and P.-L. Bacon. When do transformers shine in RL? decou-352

pling memory from credit assignment. In Thirty-seventh Conference on Neural Information353

Processing Systems, 2023. URL https://openreview.net/forum?id=APGXBNkt6h.354

[7] E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jaderberg, R. L.355

Kaufman, A. Clark, S. Noury, et al. Stabilizing transformers for reinforcement learning. In356

International conference on machine learning, pages 7487–7498. PMLR, 2020.357

[8] A. A. Team, J. Bauer, K. Baumli, S. Baveja, F. Behbahani, A. Bhoopchand, N. Bradley-358

Schmieg, M. Chang, N. Clay, A. Collister, V. Dasagi, L. Gonzalez, K. Gregor, E. Hughes,359

S. Kashem, M. Loks-Thompson, H. Openshaw, J. Parker-Holder, S. Pathak, N. Perez-Nieves,360

N. Rakicevic, T. Rocktäschel, Y. Schroecker, J. Sygnowski, K. Tuyls, S. York, A. Zacherl,361

and L. Zhang. Human-timescale adaptation in an open-ended task space, 2023. URL https:362

//arxiv.org/abs/2301.07608.363

[9] M. Fortunato, M. Tan, R. Faulkner, S. Hansen, A. P. Badia, G. Buttimore, C. Deck, J. Z. Leibo,364

and C. Blundell. Generalization of reinforcement learners with working and episodic memory,365

2020. URL https://arxiv.org/abs/1910.13406.366

[10] Y. Kang, E. Zhao, Y. Zang, L. Li, K. Li, P. Tao, and J. Xing. Sample efficient reinforcement367

learning using graph-based memory reconstruction. IEEE Transactions on Artificial Intelligence,368

5(2):751–762, 2024. doi:10.1109/TAI.2023.3268612.369

[11] A. Lampinen, S. Chan, A. Banino, and F. Hill. Towards mental time travel: a hierarchical370

memory for reinforcement learning agents. Advances in Neural Information Processing Systems,371

34:28182–28195, 2021.372

[12] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines, 2014. URL https://arxiv.373

org/abs/1410.5401.374

[13] P. G. Polson. The American Journal of Psychology, 88(1):131–140, 1975. ISSN 00029556.375

URL http://www.jstor.org/stable/1421672.376

[14] A. Pritzel, B. Uria, S. Srinivasan, A. Puigdomènech, O. Vinyals, D. Hassabis, D. Wierstra, and377

C. Blundell. Neural episodic control, 2017. URL https://arxiv.org/abs/1703.01988.378

[15] T. Parr, R. V. Rikhye, M. M. Halassa, and K. J. Friston. Prefrontal computation as active379

inference. Cerebral Cortex, 30(2):682–695, 2020.380

9

https://arxiv.org/abs/2202.08417
https://arxiv.org/abs/2202.08417
https://arxiv.org/abs/2202.08417
http://dx.doi.org/10.1038/nature20101
https://openreview.net/forum?id=APGXBNkt6h
https://arxiv.org/abs/2301.07608
https://arxiv.org/abs/2301.07608
https://arxiv.org/abs/2301.07608
https://arxiv.org/abs/1910.13406
http://dx.doi.org/10.1109/TAI.2023.3268612
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
https://arxiv.org/abs/1410.5401
http://www.jstor.org/stable/1421672
https://arxiv.org/abs/1703.01988

[16] T. Parr, G. Pezzulo, and K. J. Friston. Active inference: the free energy principle in mind, brain,381

and behavior. MIT Press, 2022.382

[17] H. Davis and L. Squire. Davis hp, squire lr. protein synthesis and memory: a review. psychol bull383

96: 518-559. Psychological bulletin, 96:518–59, 11 1984. doi:10.1037/0033-2909.96.3.518.384

[18] P. Graf and D. Schacter. Implicit and explicit memory for new associations in normal and385

amnesic subjects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11:386

501–518, 1985.387

[19] W. Yue, B. Liu, and P. Stone. Learning memory mechanisms for decision making through388

demonstrations. arXiv preprint arXiv:2411.07954, 2024.389

[20] A. Sorokin, N. Buzun, L. Pugachev, and M. Burtsev. Explain my surprise: Learning effi-390

cient long-term memory by predicting uncertain outcomes. Advances in Neural Information391

Processing Systems, 35:36875–36888, 2022.392

[21] J. Kang, R. Laroche, X. Yuan, A. Trischler, X. Liu, and J. Fu. Think before you act: Decision393

transformers with working memory, 2024. URL https://arxiv.org/abs/2305.16338.394

[22] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney, T. Stepleton,395

N. Heess, A. Guez, et al. Counterfactual credit assignment in model-free reinforcement learning.396

arXiv preprint arXiv:2011.09464, 2020.397

[23] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,398

C. Szepesvari, S. Singh, et al. Behaviour suite for reinforcement learning. arXiv preprint399

arXiv:1908.03568, 2019.400

[24] J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and action401

in minecraft, 2016. URL https://arxiv.org/abs/1605.09128.402

[25] S. Morad, R. Kortvelesy, M. Bettini, S. Liwicki, and A. Prorok. Popgym: Benchmarking partially403

observable reinforcement learning, 2023. URL https://arxiv.org/abs/2303.01859.404

[26] E. Cherepanov, N. Kachaev, A. Kovalev, and A. Panov. Memory, benchmark & robots: A405

benchmark for solving complex tasks with reinforcement learning. In 7th Robot Learning406

Workshop: Towards Robots with Human-Level Abilities, 2025.407

[27] M. Pleines, M. Pallasch, F. Zimmer, and M. Preuss. Memory gym: Partially observable408

challenges to memory-based agents in endless episodes. arXiv preprint arXiv:2309.17207,409

2023.410

[28] J. Grigsby, L. Fan, and Y. Zhu. Amago: Scalable in-context reinforcement learning for adaptive411

agents, 2024. URL https://arxiv.org/abs/2310.09971.412

[29] H. Le, K. Do, D. Nguyen, S. Gupta, and S. Venkatesh. Stable hadamard memory: Revitalizing413

memory-augmented agents for reinforcement learning. arXiv preprint arXiv:2410.10132, 2024.414

[30] S. Morad, R. Kortvelesy, S. Liwicki, and A. Prorok. Reinforcement learning with fast and415

forgetful memory. Advances in Neural Information Processing Systems, 36:72008–72029, 2023.416

[31] S. Pramanik, E. Elelimy, M. C. Machado, and A. White. Recurrent linear transformers. arXiv417

preprint arXiv:2310.15719, 2023.418

[32] E. Cherepanov, A. Staroverov, D. Yudin, A. K. Kovalev, and A. I. Panov. Recurrent action419

transformer with memory. arXiv preprint arXiv:2306.09459, 2024. URL https://arxiv.420

org/abs/2306.09459.421

[33] E. Parisotto and R. Salakhutdinov. Neural map: Structured memory for deep reinforcement422

learning. arXiv preprint arXiv:1702.08360, 2017.423

10

http://dx.doi.org/10.1037/0033-2909.96.3.518
https://arxiv.org/abs/2305.16338
https://arxiv.org/abs/1605.09128
https://arxiv.org/abs/2303.01859
https://arxiv.org/abs/2310.09971
https://arxiv.org/abs/2306.09459
https://arxiv.org/abs/2306.09459
https://arxiv.org/abs/2306.09459

[34] J. Bauer, K. Baumli, F. Behbahani, A. Bhoopchand, N. Bradley-Schmieg, M. Chang, N. Clay,424

A. Collister, V. Dasagi, L. Gonzalez, K. Gregor, E. Hughes, S. Kashem, M. Loks-Thompson,425

H. Openshaw, J. Parker-Holder, S. Pathak, N. Perez-Nieves, N. Rakicevic, T. Rocktäschel,426

Y. Schroecker, S. Singh, J. Sygnowski, K. Tuyls, S. York, A. Zacherl, and L. M. Zhang. Human-427

timescale adaptation in an open-ended task space. In A. Krause, E. Brunskill, K. Cho, B. Engel-428

hardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Conference on Ma-429

chine Learning, volume 202 of Proceedings of Machine Learning Research, pages 1887–1935.430

PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/bauer23a.html.431

[35] F. C. Bartlett and W. Kintsch. Remembering: A Study in Experimental and Social Psychology.432

Cambridge University Press, 2 edition, 1995.433

[36] J. Beck, R. Vuorio, E. Z. Liu, Z. Xiong, L. Zintgraf, C. Finn, and S. Whiteson. A survey of434

meta-reinforcement learning, 2024. URL https://arxiv.org/abs/2301.08028.435

[37] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An436

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,437

2013.438

[38] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven439

reinforcement learning, 2021.440

[39] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou, S. Pal, P. S.441

Castro, and J. Terry. Minigrid & miniworld: Modular & customizable reinforcement learning442

environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.443

[40] J. Pasukonis, T. Lillicrap, and D. Hafner. Evaluating long-term memory in 3d mazes, 2022.444

URL https://arxiv.org/abs/2210.13383.445

[41] M. Pleines, M. Pallasch, F. Zimmer, and M. Preuss. Memory gym: Towards endless tasks to446

benchmark memory capabilities of agents. Journal of Machine Learning Research, 26(6):1–40,447

2025.448

[42] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and449

I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances450

in neural information processing systems, 34:15084–15097, 2021.451

[43] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.452

In International conference on machine learning, pages 1310–1318. Pmlr, 2013.453

[44] T. Trinh, A. Dai, T. Luong, and Q. Le. Learning longer-term dependencies in rnns with auxiliary454

losses. In International Conference on Machine Learning, pages 4965–4974. PMLR, 2018.455

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating456

errors. Nature, 323:533–536, 1986. URL https://api.semanticscholar.org/CorpusID:457

205001834.458

[46] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic Journal459

of the IGPL, 18:620–634, 10 2010. doi:10.1093/jigpal/jzp049.460

[47] I. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignateva. Deep attention recurrent461

q-network, 2015. URL https://arxiv.org/abs/1512.01693.462

[48] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast reinforce-463

ment learning via slow reinforcement learning, 2016. URL https://arxiv.org/abs/1611.464

02779.465

[49] D. R. Song, C. Yang, C. McGreavy, and Z. Li. Recurrent deterministic policy gradient method466

for bipedal locomotion on rough terrain challenge, Nov. 2018. URL http://dx.doi.org/10.467

1109/ICARCV.2018.8581309.468

11

https://proceedings.mlr.press/v202/bauer23a.html
https://arxiv.org/abs/2301.08028
https://arxiv.org/abs/2210.13383
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
http://dx.doi.org/10.1093/jigpal/jzp049
https://arxiv.org/abs/1512.01693
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
https://arxiv.org/abs/1611.02779
http://dx.doi.org/10.1109/ICARCV.2018.8581309
http://dx.doi.org/10.1109/ICARCV.2018.8581309
http://dx.doi.org/10.1109/ICARCV.2018.8581309

[50] L. Zintgraf, K. Shiarlis, M. Igl, S. Schulze, Y. Gal, K. Hofmann, and S. Whiteson. Varibad: A469

very good method for bayes-adaptive deep rl via meta-learning, 2020. URL https://arxiv.470

org/abs/1910.08348.471

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and472

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,473

30, 2017.474

[52] L. C. Melo. Transformers are meta-reinforcement learners, 2022. URL https://arxiv.org/475

abs/2206.06614.476

[53] J. Robine, M. Höftmann, T. Uelwer, and S. Harmeling. Transformer-based world models477

are happy with 100k interactions. In The Eleventh International Conference on Learning478

Representations, 2023. URL https://openreview.net/forum?id=TdBaDGCpjly.479

[54] G. Shala, A. Biedenkapp, and J. Grabocka. Hierarchical transformers are efficient meta-480

reinforcement learners, 2024. URL https://arxiv.org/abs/2402.06402.481

[55] A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces.482

arXiv preprint arXiv:2111.00396, 2021.483

[56] J. T. H. Smith, A. Warrington, and S. W. Linderman. Simplified state space layers for sequence484

modeling, 2023. URL https://arxiv.org/abs/2208.04933.485

[57] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv486

preprint arXiv:2312.00752, 2023.487

[58] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent488

dynamics for planning from pixels. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings489

of the 36th International Conference on Machine Learning, volume 97 of Proceedings of490

Machine Learning Research, pages 2555–2565. PMLR, 09–15 Jun 2019. URL https://491

proceedings.mlr.press/v97/hafner19a.html.492

[59] C. Lu, Y. Schroecker, A. Gu, E. Parisotto, J. Foerster, S. Singh, and F. Behbahani. Structured493

state space models for in-context reinforcement learning, 2023. URL https://arxiv.org/494

abs/2303.03982.495

[60] P. Becker, N. Freymuth, and G. Neumann. Kalmamba: Towards efficient probabilistic state496

space models for rl under uncertainty, 2024. URL https://arxiv.org/abs/2406.15131.497

[61] M. R. Samsami, A. Zholus, J. Rajendran, and S. Chandar. Mastering memory tasks with world498

models, 2024. URL https://arxiv.org/abs/2403.04253.499

[62] T. D. YuXuan Liu and W. Hsieh. Temporal convolutional policy networks, 2016. URL500

https://yuxuanliu.com/files/tcpn.pdf.501

[63] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner,502

2018. URL https://arxiv.org/abs/1707.03141.503

[64] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution, 2018. URL504

https://arxiv.org/abs/1809.01999.505

[65] S. D. Morad, S. Liwicki, R. Kortvelesy, R. Mecca, and A. Prorok. Graph convolutional memory506

using topological priors, 2021. URL https://arxiv.org/abs/2106.14117.507

[66] D. Zhu, L. E. Li, and M. Elhoseiny. Value memory graph: A graph-structured world model for508

offline reinforcement learning, 2023. URL https://arxiv.org/abs/2206.04384.509

[67] W. Zaremba and I. Sutskever. Reinforcement learning neural turing machines - revised, 2016.510

URL https://arxiv.org/abs/1505.00521.511

12

https://arxiv.org/abs/1910.08348
https://arxiv.org/abs/1910.08348
https://arxiv.org/abs/1910.08348
https://arxiv.org/abs/2206.06614
https://arxiv.org/abs/2206.06614
https://arxiv.org/abs/2206.06614
https://openreview.net/forum?id=TdBaDGCpjly
https://arxiv.org/abs/2402.06402
https://arxiv.org/abs/2208.04933
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.mlr.press/v97/hafner19a.html
https://arxiv.org/abs/2303.03982
https://arxiv.org/abs/2303.03982
https://arxiv.org/abs/2303.03982
https://arxiv.org/abs/2406.15131
https://arxiv.org/abs/2403.04253
https://yuxuanliu.com/files/tcpn.pdf
https://arxiv.org/abs/1707.03141
https://arxiv.org/abs/1809.01999
https://arxiv.org/abs/2106.14117
https://arxiv.org/abs/2206.04384
https://arxiv.org/abs/1505.00521

[68] E. Parisotto and R. Salakhutdinov. Neural map: Structured memory for deep reinforcement512

learning, 2017. URL https://arxiv.org/abs/1702.08360.513

[69] B. Deverett, R. Faulkner, M. Fortunato, G. Wayne, and J. Z. Leibo. Interval timing in deep514

reinforcement learning agents. Advances in Neural Information Processing Systems, 32, 2019.515

13

https://arxiv.org/abs/1702.08360

A Appendix – Glossary516

In this section, we provide a comprehensive glossary of key terms and concepts used throughout this517

paper. The definitions are intended to clarify the terminology proposed in our research and to ensure518

that readers have a clear understanding of the main elements underpinning our work.519

1. M – MDP environment520

2. MP – POMDP environment521

3. M̃P – memory-intensive environment522

4. h0:t−1 = {(oi, ai, ri)}t−1
i=0 – agent history of interactions with environment523

5. K – agent base model context length524

6. K – context memory border of the agent, such that K ∈ [1,K] ⇔ strictly LTM problem525

7. µ(K) – memory mechanism that increases number of steps available to the agent to process526

8. Keff = µ(K) – the agent effective context after applying the memory mechanism527

9. α∆t
te = {(oi, ai, ri)}te+∆t

i=te
– an event starting at time te and lasting ∆t, which the agent528

should recall when making a decision in the future529

10. βtr = βtr (α
∆t
te) = at | (ot, α∆t

te) – the moment of decision making at time tr according to530

the event α∆t
te531

11. ξ = tr − ta −∆t+ 1 – an event’s correlation horizon532

533

B Appendix – Additional notes on the motivation for the article534

535

B.1 Why use definitions from neuroscience?536

Definitions from neuroscience and cognitive science, such as short-term and long-term memory, as537

well as declarative and procedural memory, are already well-established in the RL community, but538

do not have common meanings and are interpreted in different ways. We strictly formalize these539

definitions to avoid possible confusion that may arise when introducing new concepts and redefine540

them with clear, quantitative meanings to specify the type of agent memory, since the performance of541

many algorithms depends on their type of memory.542

In focusing exclusively on memory within RL, we do not attempt to exhaustively replicate the543

full spectrum of human memory. Instead, our goal is to leverage the intuitive understanding of544

neuroscience concepts already familiar to RL researchers. This approach avoids the unnecessary545

introduction of new terminology into the already complex Memory RL domain. By refining and546

aligning existing definitions, we create a robust framework that facilitates clear communication,547

rigorous evaluation, and practical application in RL research.548

549

B.2 On practical applications of our framework550

The primary goal of our framework is to address practical challenges in RL by providing a robust551

classification of memory types based on temporal dependencies and the nature of memorized infor-552

mation. This classification is essential for standardizing memory testing and ensuring that RL agents553

are evaluated under conditions that accurately reflect their capabilities.554

In RL, memory is interpreted in various ways, such as transformers with large context windows,555

recurrent networks, or models capable of skill transfer across tasks. However, these approaches556

often vary fundamentally in design, making comparisons unreliable and leading to inconsistencies in557

14

testing. Our framework resolves this by providing a clear structure to evaluate memory mechanisms558

under uniform and practical conditions.559

The proposed definitions of declarative and procedural memory use two straightforward numerical560

parameters: the number of environments (nenvs) and episodes (neps). These parameters allow561

researchers to reliably determine the type of memory required for a task. This simplicity and562

alignment with numerical parameters make the framework practical and widely applicable across563

diverse RL problems.564

Moreover, the division of declarative memory into long-term and short-term memory, as well as565

the need to use a balance between the agent’s context length K and the correlation horizons of the566

environment ξ when conducting the experiment, allows us to unambiguously determine which type567

of memory is present in the agent. This clarity ensures fair comparisons between agents with similar568

memory mechanisms and highlights specific limitations in an agent’s design. By aligning memory569

definitions with practical testing requirements, the framework provides actionable insights to guide570

the development of memory-enhanced RL agents.571

C Appendix – Memory Mechanisms572

In RL, memory has several meanings, each of which is related to a specific class of different573

tasks. To solve these tasks, the authors use various memory mechanisms. The most prevalent574

approach to incorporating memory into an agent is through the use of Recurrent Neural Networks575

(RNNs) [45], which are capable of handling sequential dependencies by maintaining a hidden576

state that captures information about previous time steps [46, 2, 47, 48, 49, 50]. Another popular577

way to implement memory is to use Transformers [51], which use self-attention mechanisms to578

capture dependencies inside the context window [7, 11, 1, 52, 8, 31, 53, 6, 28, 54]. State-space579

models (SSMs) [55, 56, 57] combine the strengths of RNNs and Transformers and can also serve to580

implement memory through preservation of system state [58, 59, 60, 61]. Temporal convolutions may581

be regarded as an effective memory mechanism, whereby information is stored implicitly through582

the application of learnable filters across the time axis [62, 63]. A world model [64] which builds583

an internal environment representation can also be considered as a form of memory. One method584

for organizing this internal representation is through the use of a graph, where nodes represent585

observations within the environment and edges represent actions [65, 66, 10].586

A distinct natural realization of memory is the utilization of an external memory buffer, which enables587

the agent to retrieve pertinent information. This approach can be classified into two categories:588

read-only (writeless) [24, 11, 4, 32] and read/write access [5, 67, 68].589

Memory can also be implemented without architectural mechanisms, relying instead on agent policy.590

For instance, in the work of Deverett et al. [69], the agent learns to encode temporal intervals by591

generating specific action patterns. This approach allows the agent to implicitly represent timing592

information within its behavior, showcasing that memory can emerge as a result of policy adaptations593

rather than being explicitly embedded in the underlying neural architecture.594

Using these memory mechanisms, both decision-making tasks based on information from the past595

within a single episode and tasks of fast adaptation to new tasks are solved. However, even in works596

using the same underlying base architectures to solve the same class of problems, the concepts of597

memory may differ.598

D Appendix – POMDP599

D.1 POMDP600

The Partially Observable Markov Decision Process (POMDP) is a generalization of the Markov601

Decision Process (MDP) that models sequential decision-making problems where the agent has602

incomplete information about the environment’s state. POMDP can be represented as a tuple603

15

MP = ⟨S,A,O,P,R,Z⟩, where S denotes the set of states, A is the set of actions, O is the set of604

observations and Z = P(ot+1 | st+1, at) is an observation function such that ot+1 ∼ Z(st+1, at).605

An agent takes an action at ∈ A based on the observed history h0:t−1 = {(oi, ai, ri)}t−1
i=0 and606

receives a reward rt = R(st, at). It is important to note that state st is not available to the agent at607

time t. In the case of POMDPs, a policy is a function π(at | ot, h0:t−1) that uses the agent history608

h0:t−1 to obtain the probability of the action at. Thus, in order to operate effectively in a POMDPs,609

an agent must have memory mechanisms to retrieve a history h0:t−1. Partial observability arises in a610

variety of real-world situations, including robotic navigation and manipulation tasks, autonomous611

vehicle tasks, and complex decision-making problems.612

E Appendix – Meta Reinforcement Learning613

In this section, we explore the concept of Meta-Reinforcement Learning (Meta-RL), a specialized614

domain within POMDPs that focuses on equipping agents with the ability to learn from their past615

experiences across multiple tasks. This capability is particularly crucial in dynamic environments616

where agents must adapt quickly to new challenges. By recognizing and memorizing common patterns617

and structures from previous interactions, agents can enhance their efficiency and effectiveness when618

facing unseen tasks.619

Meta-RL is characterized by the principle of “learning to learn”, where agents are trained not only to620

excel at specific tasks but also to generalize their knowledge and rapidly adjust to new tasks with621

minimal additional training. This adaptability is achieved through a structured approach that involves622

mapping data collected from various tasks to policies that guide the agent’s behavior.623

Meta-RL algorithm is a function fθ parameterized with meta-parameters that maps the data D,624

obtained during the process of training of RL agent in MDPs (tasks) Mi ∼ p(M), to a policy625

πϕ : ϕ = fθ(D). The process of learning the function f is typically referred to as the outer-loop,626

while the resulting function f is called the inner-loop. In this context, the parameters θ are associated627

with the outer-loop, while the parameters ϕ are associated with the inner-loop. Meta-training proceeds628

by sampling a task from the task distribution, running the inner-loop on it, and optimizing the inner-629

loop to improve the policies it produces. The interaction of the inner-loop with the task, during which630

the adaptation happens, is called a lifetime or a trial. In Meta-RL, it is common for S and A to631

be shared between all of the tasks and the tasks to only differ in the reward R(s, a) function, the632

dynamics P(s
′ | s, a), and initial state distributions P0(s0) [36].633

F Appendix – Experiment Details634

F.1 Appendix – Environments description635

This section provides an extended description of the environments used in this work.636

Passive-T-Maze [6]. In this T-shaped maze environment, the agent’s goal is to move from the637

starting point to the junction and make the correct turn based on an initial signal. The agent can638

select from four possible actions: a ∈ left, up, right, down. The signal, denoted by the variable639

clue, is provided only at the beginning of the trajectory and indicates whether the agent should turn640

up (clue = 1) or down (clue = −1). The episode duration is constrained to T = L+ 1, where L is641

the length of the corridor leading to the junction, which adds complexity to the task. To facilitate642

navigation, a binary variable called flag is included in the observation vector. This variable equals643

1 one step before reaching the junction and 0 at all other times, indicating the agent’s proximity to644

the junction. Additionally, a noise channel introduces random integer values from the set −1, 0,+1645

into the observation vector, further complicating the task. The observation vector is defined as646

o = [y, clue, flag, noise], where y represents the vertical coordinate.647

The agent receives a reward only at the end of the episode, which depends on whether it makes a648

correct turn at the junction. A correct turn yields a reward of 1, while an incorrect turn results in649

16

a reward of 0. This configuration differs from the conventional Passive T-Maze environment [6]650

by featuring distinct observations and reward structures, thereby presenting a more intricate set of651

conditions for the agent to navigate and learn within a defined time constraint. To transition from a652

sparse reward function to a dense reward function, the environment is parameterized using a penalty653

defined as penalty = − 1
T−1 , which imposes a penalty on the agent for each step taken within the654

environment. Thus, this environment has a 1D vector space of observations, a discrete action space,655

and sparse and dense configurations of the reward function.656

Minigrid-Memory [39]. Minigrid-Memory is a two-dimensional grid-based environment specifi-657

cally crafted to evaluate an agent’s long-term memory and credit assignment capabilities. The layout658

consists of a T-shaped maze featuring a small room at the corridor’s outset, which contains an object.659

The agent is instantiated at a random position within the corridor. Its objective is to navigate to the660

chamber, observe and memorize the object, then proceed to the junction at the maze’s terminus and661

turn towards the direction where the object, identical to that in the initial chamber, is situated. A662

reward function defined as r = 1− 0.9× t
T is awarded upon successful completion, while failure663

results in a reward of zero. The episode concludes when the agent either makes a turn at a junction664

or exhausts a predefined time limit of 95 steps. To implement partial observability, observational665

constraints are imposed on the agent, limiting its view to a 3× 3 frame size. Thus, this environment666

has a 2D space of image observations, a discrete action space, and sparse reward function.667

668

F.2 Experimental Protocol669

For each experiment, we conducted three runs of the agents with different initializations and performed670

validation during training using 100 random seeds ranging from 0 to 99. The results are presented as671

the mean success rate (or reward) ± the standard error of the mean (SEM).672

17

Table 2: Online RL baselines hyperparameters used in the Minigrid-Memory and Passive T-Maze
experiments.

Table 3: SAC-GPT-2
Hyperparameter Value
Number of layers 2
Number of attention heads 2
Hidden dimension 256
Batch size 64
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 1e6
Discount (γ) 0.99
Entropy temperature 0.1

Table 4: DQN-GPT-2
Hyperparameter Value
Number of layers 2
Number of attention heads 2
Hidden dimension 256
Batch size 64
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 1e6
Discount (γ) 0.99

Table 5: DTQN
Hyperparameter Value
Number of layers 4
Number of attention heads 8
Hidden dimension 128
Batch size 32
Optimizer Adam
Learning rate 3e-4
Dropout 0.1
Replay buffer size 5e5
Discount (γ) 0.99

Table 6: Offline RL baselines hyperparameters used for Decision Transformer and BC-LSTM in
T-Maze experiments.

Table 7: Decision Transformer (DT)
Hyperparameter Value
Number of layers 8
Number of attention heads 4
Hidden dimension (dmodel) 128
Feedforward dimension (dinner) 128
Head dimension (dhead) 128
Context length (K) 3T
Dropout 0.0
DropAttention 0.0
Optimizer AdamW
Learning rate 1e-4
Weight decay 0.1
Adam betas (0.9, 0.999)
Batch size 64
Warmup steps 1000
Epochs 200

Table 8: BC-LSTM
Hyperparameter Value
Number of layers 1
Hidden dimension (dmodel) 64
Bidirectional False
Effective Context length (Keff) 3T
Dropout 0.0
Optimizer AdamW
Learning rate 3e-4
Weight decay 0.01
Adam betas (0.9, 0.999)
Batch size 64
Warmup steps 100
Epochs 100

18

Figure 8: Memory-intensive environments for testing STM and LTM in Memory DM.

19

	Introduction
	Background
	Memory of Humans and Agents
	Memory in Cognitive Science
	Memory in RL
	Memory and Credit Assignment

	Related Works
	Memory Decision Making
	Memory-intensive environments
	Long-term memory in Memory DM
	Example of and estimates

	Experiments
	Pitfalls of Naive Memory Evaluation
	The Relative Nature of an Agent's Memory
	Generalization Across Sequence Lengths

	Conclusion
	Appendix – Glossary
	Appendix – Additional notes on the motivation for the article
	Why use definitions from neuroscience?
	On practical applications of our framework

	Appendix – Memory Mechanisms
	Appendix – POMDP
	POMDP

	Appendix – Meta Reinforcement Learning
	Appendix – Experiment Details
	Appendix – Environments description
	Experimental Protocol

